

Invariant Drinfeld twists on group algebras

Christian Kassel

Institut de Recherche Mathématique Avancée
CNRS - Université de Strasbourg
Strasbourg, France

International Workshop “Groups and Hopf Algebras”
Memorial University of Newfoundland
5 June 2009

Introduction

- ▶ Report on joint work with **Pierre Guillot** (Strasbourg):
Cohomology of invariant Drinfeld twists on group algebras
arXiv:0903.2807
- ▶ Our original motivation was to compute the second lazy cohomology group $H_\ell^2(H)$ of Hopf algebras that are neither cocommutative, nor pointed such as the Hopf algebras $\mathcal{O}_k(G)$ of functions on finite non-abelian groups
- ▶ We reformulate the problem in terms of invariant Drinfeld twists and obtain a method to compute $H_\ell^2(H)$ when $H = \mathcal{O}_k(G)$
- ▶ The answer involves the abelian normal subgroups of central type of G as well as the group of class-preserving outer automorphisms of G
The proof uses tools from quantum group theory, mainly R -matrices
- ▶ I shall illustrate all this with several examples

Introduction

- ▶ Report on joint work with **Pierre Guillot** (Strasbourg):
Cohomology of invariant Drinfeld twists on group algebras
arXiv:0903.2807
- ▶ Our original motivation was to compute the second lazy cohomology group $H_\ell^2(H)$ of Hopf algebras that are neither cocommutative, nor pointed such as the Hopf algebras $\mathcal{O}_k(G)$ of functions on finite non-abelian groups
- ▶ We reformulate the problem in terms of invariant Drinfeld twists and obtain a method to compute $H_\ell^2(H)$ when $H = \mathcal{O}_k(G)$
- ▶ The answer involves the abelian normal subgroups of central type of G as well as the group of class-preserving outer automorphisms of G
The proof uses tools from quantum group theory, mainly R -matrices
- ▶ I shall illustrate all this with several examples

Introduction

- ▶ Report on joint work with **Pierre Guillot** (Strasbourg):
Cohomology of invariant Drinfeld twists on group algebras
arXiv:0903.2807
- ▶ Our original motivation was to compute the second **lazy cohomology** group $H_\ell^2(H)$ of Hopf algebras that are **neither cocommutative, nor pointed** such as the Hopf algebras $\mathcal{O}_k(G)$ of **functions on finite non-abelian groups**
- ▶ We reformulate the problem in terms of invariant Drinfeld twists and obtain a method to compute $H_\ell^2(H)$ when $H = \mathcal{O}_k(G)$
- ▶ The answer involves the abelian normal subgroups of central type of G as well as the group of class-preserving outer automorphisms of G
The proof uses tools from **quantum group theory**, mainly R -matrices
- ▶ I shall illustrate all this with several examples

Introduction

- ▶ Report on joint work with **Pierre Guillot** (Strasbourg):
Cohomology of invariant Drinfeld twists on group algebras
arXiv:0903.2807
- ▶ Our original motivation was to compute the second **lazy cohomology** group $H_\ell^2(H)$ of Hopf algebras that are **neither cocommutative, nor pointed** such as the Hopf algebras $\mathcal{O}_k(G)$ of **functions on finite non-abelian groups**
- ▶ We reformulate the problem in terms of invariant Drinfeld twists and obtain a method to compute $H_\ell^2(H)$ when $H = \mathcal{O}_k(G)$
- ▶ The answer involves the abelian normal subgroups of central type of G as well as the group of class-preserving outer automorphisms of G
The proof uses tools from **quantum group theory**, mainly R -matrices
- ▶ I shall illustrate all this with several examples

Introduction

- ▶ Report on joint work with **Pierre Guillot** (Strasbourg):
Cohomology of invariant Drinfeld twists on group algebras
arXiv:0903.2807
- ▶ Our original motivation was to compute the second **lazy cohomology** group $H_\ell^2(H)$ of Hopf algebras that are **neither cocommutative, nor pointed** such as the Hopf algebras $\mathcal{O}_k(G)$ of **functions on finite non-abelian groups**
- ▶ We reformulate the problem in terms of **invariant Drinfeld twists** and obtain a **method to compute** $H_\ell^2(H)$ when $H = \mathcal{O}_k(G)$
- ▶ The answer involves the **abelian normal subgroups of central type** of G as well as the group of **class-preserving outer automorphisms** of G
The proof uses tools from **quantum group theory**, mainly **R -matrices**
- ▶ I shall illustrate all this with several **examples**

Introduction

- ▶ Report on joint work with **Pierre Guillot** (Strasbourg):
Cohomology of invariant Drinfeld twists on group algebras
arXiv:0903.2807
- ▶ Our original motivation was to compute the second **lazy cohomology** group $H_\ell^2(H)$ of Hopf algebras that are **neither cocommutative, nor pointed** such as the Hopf algebras $\mathcal{O}_k(G)$ of **functions on finite non-abelian groups**
- ▶ We reformulate the problem in terms of **invariant Drinfeld twists** and obtain a **method to compute** $H_\ell^2(H)$ when $H = \mathcal{O}_k(G)$
- ▶ The answer involves the **abelian normal subgroups of central type** of G as well as the group of **class-preserving outer automorphisms** of G
The proof uses tools from **quantum group theory**, mainly **R -matrices**
- ▶ I shall illustrate all this with several **examples**

Introduction

- ▶ Report on joint work with **Pierre Guillot** (Strasbourg):
Cohomology of invariant Drinfeld twists on group algebras
arXiv:0903.2807
- ▶ Our original motivation was to compute the second **lazy cohomology** group $H_\ell^2(H)$ of Hopf algebras that are **neither cocommutative, nor pointed** such as the Hopf algebras $\mathcal{O}_k(G)$ of **functions on finite non-abelian groups**
- ▶ We reformulate the problem in terms of **invariant Drinfeld twists** and obtain a **method to compute** $H_\ell^2(H)$ when $H = \mathcal{O}_k(G)$
- ▶ The answer involves the **abelian normal subgroups of central type** of G as well as the group of **class-preserving outer automorphisms** of G
The proof uses tools from **quantum group theory**, mainly R -matrices
- ▶ I shall illustrate all this with several examples

Introduction

- ▶ Report on joint work with **Pierre Guillot** (Strasbourg):
Cohomology of invariant Drinfeld twists on group algebras
arXiv:0903.2807
- ▶ Our original motivation was to compute the second **lazy cohomology** group $H_\ell^2(H)$ of Hopf algebras that are **neither cocommutative, nor pointed** such as the Hopf algebras $\mathcal{O}_k(G)$ of **functions on finite non-abelian groups**
- ▶ We reformulate the problem in terms of **invariant Drinfeld twists** and obtain a **method to compute** $H_\ell^2(H)$ when $H = \mathcal{O}_k(G)$
- ▶ The answer involves the **abelian normal subgroups of central type** of G as well as the group of **class-preserving outer automorphisms** of G
The proof uses tools from **quantum group theory**, mainly R -matrices
- ▶ I shall illustrate all this with several examples

Introduction

- ▶ Report on joint work with **Pierre Guillot** (Strasbourg):
Cohomology of invariant Drinfeld twists on group algebras
arXiv:0903.2807
- ▶ Our original motivation was to compute the second **lazy cohomology** group $H_\ell^2(H)$ of Hopf algebras that are **neither cocommutative, nor pointed** such as
the Hopf algebras $\mathcal{O}_k(G)$ of **functions on finite non-abelian groups**
- ▶ We reformulate the problem in terms of **invariant Drinfeld twists** and obtain a **method to compute** $H_\ell^2(H)$ when $H = \mathcal{O}_k(G)$
- ▶ The answer involves the **abelian normal subgroups of central type** of G as well as the group of **class-preserving outer automorphisms** of G
The proof uses tools from **quantum group theory**, mainly R -matrices
- ▶ I shall illustrate all this with several **examples**

Plan

Drinfeld twists and cohomology

The main theorem

On the proof

Examples

Rationality issues

References

Plan

Drinfeld twists and cohomology

The main theorem

On the proof

Examples

Rationality issues

References

Drinfeld twists

- ▶ Let H be a Hopf algebra over some fixed field k

Definition. A Drinfeld twist on H is an invertible element F of $H \otimes H$ satisfying the condition

$$(F \otimes 1)(\Delta \otimes \text{id}_H)(F) = (1 \otimes F)(\text{id}_H \otimes \Delta)(F) \quad (1)$$

where $\Delta : H \rightarrow H \otimes H$ is the coproduct of H

Twists were introduced by Drinfeld in his work on quasi-Hopf algebras, in order to “twist” the coproduct of H without changing its product. They have become an important tool in the classification of finite-dimensional Hopf algebras. There is now an abundant literature on twists

- ▶ “Trivial” solutions of (1) : $F = (a \otimes a)\Delta(a^{-1})$
where a is an invertible element of H

Problem. Find more (all?) solutions of (1)

We shall look for special solutions of (1) as follows...

Drinfeld twists

- ▶ Let H be a Hopf algebra over some fixed field k

Definition. A Drinfeld twist on H is an invertible element F of $H \otimes H$ satisfying the condition

$$(F \otimes 1)(\Delta \otimes \text{id}_H)(F) = (1 \otimes F)(\text{id}_H \otimes \Delta)(F) \quad (1)$$

where $\Delta : H \rightarrow H \otimes H$ is the coproduct of H

Twists were introduced by Drinfeld in his work on quasi-Hopf algebras, in order to “twist” the coproduct of H without changing its product. They have become an important tool in the classification of finite-dimensional Hopf algebras. There is now an abundant literature on twists

- ▶ “Trivial” solutions of (1) : $F = (a \otimes a)\Delta(a^{-1})$
where a is an invertible element of H

Problem. Find more (all?) solutions of (1)

We shall look for special solutions of (1) as follows...

Invariant twists

- ▶ **Definition.** A twist F is *invariant*

$$\Delta(a)F = F\Delta(a) \quad \text{for all } a \in H$$

In general the product of two twists is not a twist, but...

- ▶ **Proposition.** (a) Invariant twists form a group under multiplication
(b) The group of invariant twists contains as a central subgroup the group of trivial twists, where a twist F is called trivial if

$$F = (a \otimes a)\Delta(a^{-1})$$

for some central invertible element $a \in H$

We can thus consider the quotient group

$$\{\text{invariant twists on } H\} / \{\text{trivial twists}\} \dots$$

Invariant twists

- ▶ **Definition.** A twist F is *invariant*

$$\Delta(a)F = F\Delta(a) \quad \text{for all } a \in H$$

In general the product of two twists is not a twist, but...

- ▶ **Proposition.** (a) Invariant twists form a group under multiplication
(b) The group of invariant twists contains as a central subgroup the group of trivial twists, where a twist F is called trivial if

$$F = (a \otimes a)\Delta(a^{-1})$$

for some central invertible element $a \in H$

We can thus consider the quotient group

$$\{\text{invariant twists on } H\} / \{\text{trivial twists}\} \dots$$

Invariant twists

- ▶ **Definition.** A twist F is *invariant*

$$\Delta(a)F = F\Delta(a) \quad \text{for all } a \in H$$

In general the product of two twists is not a twist, but...

- ▶ **Proposition.** (a) Invariant twists form a *group* under multiplication

(b) The group of invariant twists contains as a *central subgroup* the group of *trivial twists*, where a twist F is called *trivial* if

$$F = (a \otimes a)\Delta(a^{-1})$$

for some *central* invertible element $a \in H$

We can thus consider the quotient group

$$\{\text{invariant twists on } H\}/\{\text{trivial twists}\} \dots$$

Invariant twists

- ▶ **Definition.** A twist F is *invariant*

$$\Delta(a)F = F\Delta(a) \quad \text{for all } a \in H$$

In general the product of two twists is not a twist, but...

- ▶ **Proposition.** (a) Invariant twists form a *group* under multiplication

(b) The group of invariant twists contains as a *central subgroup* the group of *trivial twists*, where a twist F is called *trivial* if

$$F = (a \otimes a)\Delta(a^{-1})$$

for some *central* invertible element $a \in H$

We can thus consider the quotient group

$$\{\text{invariant twists on } H\}/\{\text{trivial twists}\} \dots$$

Invariant twists

- ▶ **Definition.** A twist F is *invariant*

$$\Delta(a)F = F\Delta(a) \quad \text{for all } a \in H$$

In general the product of two twists is not a twist, but...

- ▶ **Proposition.** (a) Invariant twists form a *group* under multiplication
(b) The group of invariant twists contains as a *central subgroup* the group of *trivial twists*, where a twist F is called *trivial* if

$$F = (a \otimes a)\Delta(a^{-1})$$

for some *central* invertible element $a \in H$

We can thus consider the quotient group

$$\{\text{invariant twists on } H\}/\{\text{trivial twists}\} \dots$$

Invariant twists

- ▶ **Definition.** A twist F is *invariant*

$$\Delta(a)F = F\Delta(a) \quad \text{for all } a \in H$$

In general the product of two twists is not a twist, but...

- ▶ **Proposition.** (a) Invariant twists form a *group* under multiplication
(b) The group of invariant twists contains as a *central subgroup* the group of *trivial twists*, where a twist F is called *trivial* if

$$F = (a \otimes a)\Delta(a^{-1})$$

for some *central* invertible element $a \in H$

We can thus consider the quotient group

$$\{\text{invariant twists on } H\}/\{\text{trivial twists}\} \dots$$

The group $H_\ell^2(G)$

- ▶ ... which we consider in the special case when $H = k[G]$ is the **algebra of a group** G

Definition. Given a **group** G , set

$$H_\ell^2(G) = \{\text{invariant twists on } k[G]\} / \{\text{trivial twists}\}$$

Our aim. Determine the group $H_\ell^2(G)$ for any **finite** group G

Why consider $H_\ell^2(G)$?

- ▶ Because it is a first step in finding all invariant twists on $k[G]$ and...
... the group $H_\ell^2(G)$ is isomorphic to the second lazy cohomology group of the Hopf algebra $\mathcal{O}_k(G)$ of **k -valued functions on** G :

$$H_\ell^2(G) \cong H_\ell^2(\mathcal{O}_k(G))$$

The group $H_\ell^2(G)$

- ▶ ... which we consider in the special case when $H = k[G]$ is the **algebra of a group** G

Definition. Given a **group** G , set

$$H_\ell^2(G) = \{\text{invariant twists on } k[G]\} / \{\text{trivial twists}\}$$

Our aim. Determine the group $H_\ell^2(G)$ for any **finite** group G

Why consider $H_\ell^2(G)$?

- ▶ Because it is a first step in finding all invariant twists on $k[G]$ and...
... the group $H_\ell^2(G)$ is isomorphic to the second lazy cohomology group of the Hopf algebra $\mathcal{O}_k(G)$ of **k -valued functions on** G :

$$H_\ell^2(G) \cong H_\ell^2(\mathcal{O}_k(G))$$

The group $H_\ell^2(G)$

- ▶ ... which we consider in the special case when $H = k[G]$ is the **algebra of a group** G

Definition. Given a **group** G , set

$$H_\ell^2(G) = \{\text{invariant twists on } k[G]\} / \{\text{trivial twists}\}$$

Our aim. Determine the group $H_\ell^2(G)$ for any **finite** group G

Why consider $H_\ell^2(G)$?

- ▶ **Because** it is a first step in **finding all invariant twists** on $k[G]$ and...

... the group $H_\ell^2(G)$ is isomorphic to the **second lazy cohomology group** of the Hopf algebra $\mathcal{O}_k(G)$ of **k -valued functions** on G :

$$H_\ell^2(G) \cong H_\ell^2(\mathcal{O}_k(G))$$

The group $H_\ell^2(G)$

- ▶ ... which we consider in the special case when $H = k[G]$ is the **algebra of a group** G

Definition. Given a **group** G , set

$$H_\ell^2(G) = \{\text{invariant twists on } k[G]\} / \{\text{trivial twists}\}$$

Our aim. Determine the group $H_\ell^2(G)$ for any **finite** group G

Why consider $H_\ell^2(G)$?

- ▶ **Because** it is a first step in **finding all invariant twists** on $k[G]$ and...

... the group $H_\ell^2(G)$ is isomorphic to the **second lazy cohomology group** of the Hopf algebra $\mathcal{O}_k(G)$ of **k -valued functions** on G :

$$H_\ell^2(G) \cong H_\ell^2(\mathcal{O}_k(G))$$

The group $H_\ell^2(G)$

- ▶ ... which we consider in the special case when $H = k[G]$ is the **algebra of a group** G

Definition. Given a **group** G , set

$$H_\ell^2(G) = \{\text{invariant twists on } k[G]\} / \{\text{trivial twists}\}$$

Our aim. Determine the group $H_\ell^2(G)$ for any **finite** group G

Why consider $H_\ell^2(G)$?

- ▶ **Because** it is a first step in **finding all invariant twists** on $k[G]$ and...
... the group $H_\ell^2(G)$ is isomorphic to the **second lazy cohomology group** of the Hopf algebra $\mathcal{O}_k(G)$ of **k -valued functions on** G :

$$H_\ell^2(G) \cong H_\ell^2(\mathcal{O}_k(G))$$

Lazy cohomology

- ▶ In the last decade Schauenburg, Bichon, Carnovale *et al.* defined cohomology groups $H_\ell^1(H)$ and $H_\ell^2(H)$ for an **arbitrary** Hopf algebra H . These groups are called the **lazy cohomology** groups of H
 - On the class of **cocommutative** Hopf algebras the lazy cohomology groups **coincide** with the cohomology groups introduced by **Sweedler** (1968)
- ▶ In particular, if $H = k[G]$ is the **algebra of a group** G , then lazy cohomology coincides with **group cohomology**

$$H_\ell^i(H) \cong H^i(G, k^\times) \quad (i = 1, 2)$$

where G acts trivially on $k^\times = k - \{0\}$

- ▶ The **first** lazy cohomology group for a **general** Hopf algebra is given by

$$H_\ell^1(H) = \{\mu \in \text{Alg}(H, k) \mid \mu * \text{id}_H = \text{id}_H * \mu\}$$

Lazy cohomology

- ▶ In the last decade Schauenburg, Bichon, Carnovale *et al.* defined cohomology groups $H_\ell^1(H)$ and $H_\ell^2(H)$ for an **arbitrary** Hopf algebra H . These groups are called the **lazy cohomology** groups of H
 - On the class of **cocommutative** Hopf algebras the lazy cohomology groups **coincide** with the cohomology groups introduced by **Sweedler** (1968)
- ▶ In particular, if $H = k[G]$ is the **algebra of a group** G , then lazy cohomology coincides with **group cohomology**

$$H_\ell^i(H) \cong H^i(G, k^\times) \quad (i = 1, 2)$$

where G acts trivially on $k^\times = k - \{0\}$

- ▶ The **first** lazy cohomology group for a **general** Hopf algebra is given by

$$H_\ell^1(H) = \{\mu \in \text{Alg}(H, k) \mid \mu * \text{id}_H = \text{id}_H * \mu\}$$

Lazy cohomology

- ▶ In the last decade Schauenburg, Bichon, Carnovale *et al.* defined cohomology groups $H_\ell^1(H)$ and $H_\ell^2(H)$ for an **arbitrary** Hopf algebra H . These groups are called the **lazy cohomology** groups of H
 - On the class of **cocommutative** Hopf algebras the lazy cohomology groups **coincide** with the cohomology groups introduced by **Sweedler** (1968)
- ▶ In particular, if $H = k[G]$ is the **algebra of a group** G , then lazy cohomology coincides with **group cohomology**

$$H_\ell^i(H) \cong H^i(G, k^\times) \quad (i = 1, 2)$$

where G acts trivially on $k^\times = k - \{0\}$

- ▶ The **first** lazy cohomology group for a **general** Hopf algebra is given by

$$H_\ell^1(H) = \{\mu \in \text{Alg}(H, k) \mid \mu * \text{id}_H = \text{id}_H * \mu\}$$

The second lazy cohomology group

- For the **second** lazy cohomology group $H_\ell^2(H)$ only **few computations** (for non-cocommutative Hopf algebras) had been done

Our original motivation. Compute $H_\ell^2(H)$ for **more** Hopf algebras

We decided to try to compute $H_\ell^2(H)$ for the Hopf algebras $\mathcal{O}_k(G)$

- Proposition.** For any finite group G ,

$$H_\ell^2(\mathcal{O}_k(G)) \cong H_\ell^2(G)$$

where $H_\ell^2(G) = \{\text{invariant twists on } k[G]\} / \{\text{trivial twists}\}$

- Proof.** The Hopf algebra $\mathcal{O}_k(G)$ is dual of the Hopf algebra $k[G]$

For a finite-dimensional Hopf algebra H with dual Hopf algebra H^* , we have the identifications

$$\begin{array}{ccc} \text{two-cocycle on } H & \longleftrightarrow & \text{twist on } H^* \\ \text{lazy two-cocycle on } H & \longleftrightarrow & \text{invariant twist on } H^* \\ \text{cohomologically trivial two-cocycle on } H & \longleftrightarrow & \text{trivial twist on } H^* \end{array}$$

The second lazy cohomology group

- For the **second** lazy cohomology group $H_\ell^2(H)$ only **few computations** (for non-cocommutative Hopf algebras) had been done

Our original motivation. Compute $H_\ell^2(H)$ for **more** Hopf algebras

We decided to try to compute $H_\ell^2(H)$ for the Hopf algebras $\mathcal{O}_k(G)$

- Proposition.** For any finite group G ,

$$H_\ell^2(\mathcal{O}_k(G)) \cong H_\ell^2(G)$$

where $H_\ell^2(G) = \{\text{invariant twists on } k[G]\} / \{\text{trivial twists}\}$

- Proof.** The Hopf algebra $\mathcal{O}_k(G)$ is dual of the Hopf algebra $k[G]$

For a finite-dimensional Hopf algebra H with dual Hopf algebra H^* , we have the identifications

$$\begin{array}{ccc} \text{two-cocycle on } H & \longleftrightarrow & \text{twist on } H^* \\ \text{lazy two-cocycle on } H & \longleftrightarrow & \text{invariant twist on } H^* \\ \text{cohomologically trivial two-cocycle on } H & \longleftrightarrow & \text{trivial twist on } H^* \end{array}$$

The second lazy cohomology group

- ▶ For the **second** lazy cohomology group $H_\ell^2(H)$ only **few computations** (for non-cocommutative Hopf algebras) had been done

Our original motivation. Compute $H_\ell^2(H)$ for **more** Hopf algebras

We decided to try to compute $H_\ell^2(H)$ for the Hopf algebras $\mathcal{O}_k(G)$

- ▶ **Proposition.** For any **finite group** G ,

$$H_\ell^2(\mathcal{O}_k(G)) \cong H_\ell^2(G)$$

where $H_\ell^2(G) = \{\text{invariant twists on } k[G]\} / \{\text{trivial twists}\}$

- ▶ **Proof.** The Hopf algebra $\mathcal{O}_k(G)$ is dual of the Hopf algebra $k[G]$

For a finite-dimensional Hopf algebra H with dual Hopf algebra H^* , we have the identifications

$$\begin{array}{ccc} \text{two-cocycle on } H & \longleftrightarrow & \text{twist on } H^* \\ \text{lazy two-cocycle on } H & \longleftrightarrow & \text{invariant twist on } H^* \\ \text{cohomologically trivial two-cocycle on } H & \longleftrightarrow & \text{trivial twist on } H^* \end{array}$$

The second lazy cohomology group

- ▶ For the **second** lazy cohomology group $H_\ell^2(H)$ only **few computations** (for non-cocommutative Hopf algebras) had been done

Our original motivation. Compute $H_\ell^2(H)$ for **more** Hopf algebras

We decided to try to compute $H_\ell^2(H)$ for the Hopf algebras $\mathcal{O}_k(G)$

- ▶ **Proposition.** For any **finite group** G ,

$$H_\ell^2(\mathcal{O}_k(G)) \cong H_\ell^2(G)$$

where $H_\ell^2(G) = \{\text{invariant twists on } k[G]\} / \{\text{trivial twists}\}$

- ▶ **Proof.** The Hopf algebra $\mathcal{O}_k(G)$ is dual of the Hopf algebra $k[G]$

For a finite-dimensional Hopf algebra H with dual Hopf algebra H^* , we have the identifications

$$\begin{array}{ccc} \text{two-cocycle on } H & \longleftrightarrow & \text{twist on } H^* \\ \text{lazy two-cocycle on } H & \longleftrightarrow & \text{invariant twist on } H^* \\ \text{cohomologically trivial two-cocycle on } H & \longleftrightarrow & \text{trivial twist on } H^* \end{array}$$

The second lazy cohomology group

- ▶ For the **second** lazy cohomology group $H_\ell^2(H)$ only **few computations** (for non-cocommutative Hopf algebras) had been done

Our original motivation. Compute $H_\ell^2(H)$ for **more** Hopf algebras

We decided to try to compute $H_\ell^2(H)$ for the Hopf algebras $\mathcal{O}_k(G)$

- ▶ **Proposition.** For any **finite group** G ,

$$H_\ell^2(\mathcal{O}_k(G)) \cong H_\ell^2(G)$$

where $H_\ell^2(G) = \{\text{invariant twists on } k[G]\} / \{\text{trivial twists}\}$

- ▶ **Proof.** The Hopf algebra $\mathcal{O}_k(G)$ is dual of the Hopf algebra $k[G]$

For a **finite-dimensional** Hopf algebra H with **dual** Hopf algebra H^* , we have the **identifications**

$$\begin{array}{ccc} \text{two-cocycle on } H & \longleftrightarrow & \text{twist on } H^* \\ \text{lazy two-cocycle on } H & \longleftrightarrow & \text{invariant twist on } H^* \\ \text{cohomologically trivial two-cocycle on } H & \longleftrightarrow & \text{trivial twist on } H^* \end{array}$$

Plan

Drinfeld twists and cohomology

The main theorem

On the proof

Examples

Rationality issues

References

First ingredient: the set $\mathcal{B}(G)$

- ▶ For any **finite group G**

let $\mathcal{B}(G)$ be the set of **pairs** (A, b) where

(i) A is an **abelian normal subgroup** of G and

(ii) $b : \widehat{A} \times \widehat{A} \rightarrow k^\times$ is a k^\times -valued **G -invariant non-degenerate alternating biadditive form** on the **character group** $\widehat{A} = \text{Hom}(A, k^\times)$

- ▶ The set $\mathcal{B}(G)$ is **finite** and can be “computed in finite time”

It is **non-empty** since it always contains the trivial pair $(\{1\}, b \equiv 1)$

- ▶ There is a further restriction on the groups A such that $(A, b) \in \mathcal{B}(G)$:
Such a group is what is called a **group of central type**

In particular, it is a **square group**: $A \cong A' \times A'$ for some subgroup A'

- ▶ **Examples.** $\mathcal{B}(G)$ is trivial if G is simple, or $G = S_n$ (symmetric groups), or $G = GL_n(\mathbb{F}_q)$

First ingredient: the set $\mathcal{B}(G)$

- ▶ For any finite group G

let $\mathcal{B}(G)$ be the set of pairs (A, b) where

(i) A is an abelian normal subgroup of G and

(ii) $b : \widehat{A} \times \widehat{A} \rightarrow k^\times$ is a k^\times -valued G -invariant non-degenerate alternating biadditive form on the character group $\widehat{A} = \text{Hom}(A, k^\times)$

- ▶ The set $\mathcal{B}(G)$ is finite and can be “computed in finite time”

It is non-empty since it always contains the trivial pair $(\{1\}, b \equiv 1)$

- ▶ There is a further restriction on the groups A such that $(A, b) \in \mathcal{B}(G)$:

Such a group is what is called a group of central type

In particular, it is a square group: $A \cong A' \times A'$ for some subgroup A'

- ▶ Examples. $\mathcal{B}(G)$ is trivial if G is simple, or $G = S_n$ (symmetric groups), or $G = GL_n(\mathbb{F}_q)$

First ingredient: the set $\mathcal{B}(G)$

- ▶ For any finite group G
let $\mathcal{B}(G)$ be the set of pairs (A, b) where
 - (i) A is an abelian normal subgroup of G and
 - (ii) $b : \widehat{A} \times \widehat{A} \rightarrow k^\times$ is a k^\times -valued G -invariant non-degenerate alternating biadditive form on the character group $\widehat{A} = \text{Hom}(A, k^\times)$
- ▶ The set $\mathcal{B}(G)$ is finite and can be “computed in finite time”
It is non-empty since it always contains the trivial pair $(\{1\}, b \equiv 1)$
- ▶ There is a further restriction on the groups A such that $(A, b) \in \mathcal{B}(G)$:
Such a group is what is called a group of central type
In particular, it is a square group: $A \cong A' \times A'$ for some subgroup A'
- ▶ Examples. $\mathcal{B}(G)$ is trivial if G is simple, or $G = S_n$ (symmetric groups), or $G = GL_n(\mathbb{F}_q)$

First ingredient: the set $\mathcal{B}(G)$

- ▶ For any **finite group** G

let $\mathcal{B}(G)$ be the set of **pairs** (A, b) where

(i) A is an **abelian normal subgroup** of G and

(ii) $b : \widehat{A} \times \widehat{A} \rightarrow k^\times$ is a k^\times -valued **G -invariant non-degenerate alternating biadditive form** on the **character group** $\widehat{A} = \text{Hom}(A, k^\times)$

- ▶ The set $\mathcal{B}(G)$ is **finite** and can be “computed in finite time”

It is **non-empty** since it always contains the trivial pair $(\{1\}, b \equiv 1)$

- ▶ There is a further restriction on the groups A such that $(A, b) \in \mathcal{B}(G)$:

Such a group is what is called a **group of central type**

In particular, it is a **square group**: $A \cong A' \times A'$ for some subgroup A'

- ▶ Examples. $\mathcal{B}(G)$ is trivial if G is simple, or $G = S_n$ (symmetric groups), or $G = GL_n(\mathbb{F}_q)$

First ingredient: the set $\mathcal{B}(G)$

- ▶ For any **finite group** G

let $\mathcal{B}(G)$ be the set of **pairs** (A, b) where

(i) A is an **abelian normal subgroup** of G and

(ii) $b : \widehat{A} \times \widehat{A} \rightarrow k^\times$ is a k^\times -valued **G -invariant non-degenerate alternating biadditive form** on the **character group** $\widehat{A} = \text{Hom}(A, k^\times)$

- ▶ The set $\mathcal{B}(G)$ is **finite** and can be “computed in finite time”

It is **non-empty** since it always contains the trivial pair $(\{1\}, b \equiv 1)$

- ▶ There is a further restriction on the groups A such that $(A, b) \in \mathcal{B}(G)$:

Such a group is what is called a **group of central type**

In particular, it is a **square group**: $A \cong A' \times A'$ for some subgroup A'

- ▶ Examples. $\mathcal{B}(G)$ is trivial if G is simple, or $G = S_n$ (symmetric groups), or $G = GL_n(\mathbb{F}_q)$

First ingredient: the set $\mathcal{B}(G)$

- ▶ For any finite group G
let $\mathcal{B}(G)$ be the set of pairs (A, b) where
 - (i) A is an abelian normal subgroup of G and
 - (ii) $b : \widehat{A} \times \widehat{A} \rightarrow k^\times$ is a k^\times -valued G -invariant non-degenerate alternating biadditive form on the character group $\widehat{A} = \text{Hom}(A, k^\times)$
- ▶ The set $\mathcal{B}(G)$ is finite and can be “computed in finite time”
It is non-empty since it always contains the trivial pair $(\{1\}, b \equiv 1)$
- ▶ There is a further restriction on the groups A such that $(A, b) \in \mathcal{B}(G)$:
Such a group is what is called a group of central type
In particular, it is a square group: $A \cong A' \times A'$ for some subgroup A'
- ▶ **Examples.** $\mathcal{B}(G)$ is trivial if G is simple, or $G = S_n$ (symmetric groups), or $G = GL_n(\mathbb{F}_q)$

Second ingredient: class-preserving automorphisms

- Let $\text{Int}_k(G)$ be the group of automorphisms of G induced by the conjugation

$$\text{ad}(a) : g \mapsto aga^{-1} \quad (g \in G)$$

by some invertible element a of the group algebra $k[G]$:

$$\text{Int}_k(G) = \text{Aut}(G) \cap \text{ad}(k[G]^\times)$$

- Remarks.** (i) If $\text{ad}(a) \in \text{Int}_k(G)$, then the unit a belongs to the normalizer N of G in $k[G]^\times$

(ii) By character theory, if k is of characteristic prime to $|G|$ and is big enough (e.g., algebraically closed), then $\text{Int}_k(G)$ consists of all automorphisms preserving each conjugacy class of G

- The group $\text{Int}_k(G)$ contains the group $\text{Inn}(G)$ of inner automorphisms as a normal subgroup and we may consider the quotient group

$$\text{Int}_k(G)/\text{Inn}(G)$$

The main theorem

Assume that the ground field k is **algebraically closed of characteristic zero**

► Theorem (with P. Guillot) *There is a (set-theoretic) map*

$$\Theta : H^2_c(G) \rightarrow B(G)$$

*whose fibers are in bijection with $\text{Int}_k(G)/\text{Inn}(G)$ and
which is surjective if $|G|$ is odd*

► Consequences (a) The group $H^2_c(G)$ is finite

(b) We have $H^2_c(G) = 1$ if $B(G)$ is trivial and $\text{Int}_k(G)/\text{Inn}(G) = 1$

There are many groups with $\text{Int}_k(G)/\text{Inn}(G) = 1$ and having no normal abelian square subgroups:

e.g., G simple, $G = S_n$, and $G = SL_n(\mathbb{F}_q)$

For such groups all invariant twists are trivial

The main theorem

Assume that the ground field k is algebraically closed of characteristic zero

- ▶ **Theorem** (with P. Guillot) *There is a (set-theoretic) map*

$$\Theta : H_{\ell}^2(G) \rightarrow \mathcal{B}(G)$$

whose fibers are in bijection with $\text{Int}_k(G)/\text{Inn}(G)$ and

which is surjective if $|G|$ is odd

- ▶ **Consequences** (a) The group $H_{\ell}^2(G)$ is finite

(b) We have $H_{\ell}^2(G) = 1$ if $\mathcal{B}(G)$ is trivial and $\text{Int}_k(G)/\text{Inn}(G) = 1$

There are many groups with $\text{Int}_k(G)/\text{Inn}(G) = 1$ and having no normal abelian square subgroups:

e.g., G simple, $G = S_n$, and $G = \text{SL}_n(\mathbb{F}_q)$

For such groups all invariant twists are trivial

The main theorem

Assume that the ground field k is algebraically closed of characteristic zero

- ▶ **Theorem** (with P. Guillot) *There is a (set-theoretic) map*

$$\Theta : H_{\ell}^2(G) \rightarrow \mathcal{B}(G)$$

whose fibers are in bijection with $\text{Int}_k(G)/\text{Inn}(G)$ and

which is surjective if $|G|$ is odd

- ▶ **Consequences** (a) The group $H_{\ell}^2(G)$ is finite

(b) We have $H_{\ell}^2(G) = 1$ if $\mathcal{B}(G)$ is trivial and $\text{Int}_k(G)/\text{Inn}(G) = 1$

There are many groups with $\text{Int}_k(G)/\text{Inn}(G) = 1$ and having no normal abelian square subgroups:

e.g., G simple, $G = S_n$, and $G = \text{SL}_n(\mathbb{F}_q)$

For such groups all invariant twists are trivial

The main theorem

Assume that the ground field k is algebraically closed of characteristic zero

- ▶ **Theorem** (with P. Guillot) *There is a (set-theoretic) map*

$$\Theta : H_{\ell}^2(G) \rightarrow \mathcal{B}(G)$$

whose fibers are in bijection with $\text{Int}_k(G)/\text{Inn}(G)$ and which is surjective if $|G|$ is odd

- ▶ **Consequences** (a) The group $H_{\ell}^2(G)$ is finite

(b) We have $H_{\ell}^2(G) = 1$ if $\mathcal{B}(G)$ is trivial and $\text{Int}_k(G)/\text{Inn}(G) = 1$

There are many groups with $\text{Int}_k(G)/\text{Inn}(G) = 1$ and having no normal abelian square subgroups:

e.g., G simple, $G = S_n$, and $G = \text{SL}_n(\mathbb{F}_q)$

For such groups all invariant twists are trivial

The main theorem

Assume that the ground field k is algebraically closed of characteristic zero

- ▶ **Theorem** (with P. Guillot) *There is a (set-theoretic) map*

$$\Theta : H_{\ell}^2(G) \rightarrow \mathcal{B}(G)$$

*whose fibers are in bijection with $\text{Int}_k(G)/\text{Inn}(G)$ and
which is surjective if $|G|$ is odd*

- ▶ **Consequences** (a) The group $H_{\ell}^2(G)$ is finite

(b) We have $H_{\ell}^2(G) = 1$ if $\mathcal{B}(G)$ is trivial and $\text{Int}_k(G)/\text{Inn}(G) = 1$

There are many groups with $\text{Int}_k(G)/\text{Inn}(G) = 1$ and having no normal abelian square subgroups:

e.g., G simple, $G = S_n$, and $G = \text{SL}_n(\mathbb{F}_q)$

For such groups all invariant twists are trivial

The main theorem

Assume that the ground field k is algebraically closed of characteristic zero

- ▶ **Theorem** (with P. Guillot) *There is a (set-theoretic) map*

$$\Theta : H_{\ell}^2(G) \rightarrow \mathcal{B}(G)$$

*whose fibers are in bijection with $\text{Int}_k(G)/\text{Inn}(G)$ and
which is surjective if $|G|$ is odd*

- ▶ **Consequences** (a) The group $H_{\ell}^2(G)$ is finite

(b) We have $H_{\ell}^2(G) = 1$ if $\mathcal{B}(G)$ is trivial and $\text{Int}_k(G)/\text{Inn}(G) = 1$

There are many groups with $\text{Int}_k(G)/\text{Inn}(G) = 1$ and having no normal abelian square subgroups:

e.g., G simple, $G = S_n$, and $G = \text{SL}_n(\mathbb{F}_q)$

For such groups all invariant twists are trivial

The main theorem

Assume that the ground field k is algebraically closed of characteristic zero

- ▶ **Theorem** (with P. Guillot) *There is a (set-theoretic) map*

$$\Theta : H_{\ell}^2(G) \rightarrow \mathcal{B}(G)$$

*whose fibers are in bijection with $\text{Int}_k(G)/\text{Inn}(G)$ and
which is surjective if $|G|$ is odd*

- ▶ **Consequences** (a) The group $H_{\ell}^2(G)$ is finite

(b) We have $H_{\ell}^2(G) = 1$ if $\mathcal{B}(G)$ is trivial and $\text{Int}_k(G)/\text{Inn}(G) = 1$

There are many groups with $\text{Int}_k(G)/\text{Inn}(G) = 1$ and having no normal abelian square subgroups:

e.g., G simple, $G = S_n$, and $G = \text{SL}_n(\mathbb{F}_q)$

For such groups all invariant twists are trivial

The main theorem

Assume that the ground field k is algebraically closed of characteristic zero

- ▶ **Theorem** (with P. Guillot) *There is a (set-theoretic) map*

$$\Theta : H_{\ell}^2(G) \rightarrow \mathcal{B}(G)$$

*whose fibers are in bijection with $\text{Int}_k(G)/\text{Inn}(G)$ and
which is surjective if $|G|$ is odd*

- ▶ **Consequences** (a) The group $H_{\ell}^2(G)$ is finite

(b) We have $H_{\ell}^2(G) = 1$ if $\mathcal{B}(G)$ is trivial and $\text{Int}_k(G)/\text{Inn}(G) = 1$

There are many groups with $\text{Int}_k(G)/\text{Inn}(G) = 1$ and having no normal abelian square subgroups:

e.g., G simple, $G = S_n$, and $G = SL_n(\mathbb{F}_q)$

For such groups all invariant twists are trivial

Plan

Drinfeld twists and cohomology

The main theorem

On the proof

Examples

Rationality issues

References

The abelian case

- ▶ Before explaining the construction of the map $\Theta : H_\ell^2(G) \rightarrow \mathcal{B}(G)$ for an arbitrary group, we compute the lazy cohomology of abelian groups
- ▶ Let A be an **abelian group** and $\widehat{A} = \text{Hom}(A, k^\times)$ its group of **characters**

The following **isomorphisms** hold:

$$\begin{aligned} H_\ell^2(A) &\cong H_\ell^2(\mathcal{O}_k(A)) && \text{(by definition)} \\ &\cong H_\ell^2(k[\widehat{A}]) && \text{(discrete Fourier transform)} \\ &\cong H^2(\widehat{A}, k^\times) \\ &\cong \text{Hom}(H_2(\widehat{A}, \mathbb{Z}), k^\times) && \text{(universal coefficient theorem)} \\ &\cong \text{Hom}(\Lambda_{\mathbb{Z}}^2(\widehat{A}), k^\times) \\ &= \{ \text{alternating bicharacters on } \widehat{A} \} \end{aligned}$$

- ▶ Let us give a **direct expression** for the composite isomorphism

$$H_\ell^2(A) \xrightarrow{\cong} \{ \text{alternating bicharacters on } \widehat{A} \}$$

The abelian case

- ▶ Before explaining the construction of the map $\Theta : H_\ell^2(G) \rightarrow \mathcal{B}(G)$ for an arbitrary group, we compute the lazy cohomology of abelian groups
- ▶ Let A be an **abelian group** and $\widehat{A} = \text{Hom}(A, k^\times)$ its group of **characters**

The following **isomorphisms** hold:

$$\begin{aligned} H_\ell^2(A) &\cong H_\ell^2(\mathcal{O}_k(A)) && \text{(by definition)} \\ &\cong H_\ell^2(k[\widehat{A}]) && \text{(discrete Fourier transform)} \\ &\cong H^2(\widehat{A}, k^\times) \\ &\cong \text{Hom}(H_2(\widehat{A}, \mathbb{Z}), k^\times) && \text{(universal coefficient theorem)} \\ &\cong \text{Hom}(\Lambda_{\mathbb{Z}}^2(\widehat{A}), k^\times) \\ &= \{\text{alternating bicharacters on } \widehat{A}\} \end{aligned}$$

- ▶ Let us give a **direct expression** for the composite isomorphism

$$H_\ell^2(A) \xrightarrow{\cong} \{\text{alternating bicharacters on } \widehat{A}\}$$

The abelian case

- ▶ Before explaining the construction of the map $\Theta : H_\ell^2(G) \rightarrow \mathcal{B}(G)$ for an arbitrary group, we compute the lazy cohomology of abelian groups
- ▶ Let A be an **abelian group** and $\widehat{A} = \text{Hom}(A, k^\times)$ its group of **characters**

The following **isomorphisms** hold:

$$\begin{aligned} H_\ell^2(A) &\cong H_\ell^2(\mathcal{O}_k(A)) && \text{(by definition)} \\ &\cong H_\ell^2(k[\widehat{A}]) && \text{(discrete Fourier transform)} \\ &\cong H^2(\widehat{A}, k^\times) \\ &\cong \text{Hom}(H_2(\widehat{A}, \mathbb{Z}), k^\times) && \text{(universal coefficient theorem)} \\ &\cong \text{Hom}(\Lambda_{\mathbb{Z}}^2(\widehat{A}), k^\times) \\ &= \{\text{alternating bicharacters on } \widehat{A}\} \end{aligned}$$

- ▶ Let us give a **direct expression** for the composite isomorphism

$$H_\ell^2(A) \xrightarrow{\cong} \{\text{alternating bicharacters on } \widehat{A}\}$$

The abelian case

- ▶ Before explaining the construction of the map $\Theta : H_\ell^2(G) \rightarrow \mathcal{B}(G)$ for an arbitrary group, we compute the lazy cohomology of abelian groups
- ▶ Let A be an **abelian group** and $\widehat{A} = \text{Hom}(A, k^\times)$ its group of **characters**

The following **isomorphisms** hold:

$$\begin{aligned} H_\ell^2(A) &\cong H_\ell^2(\mathcal{O}_k(A)) && \text{(by definition)} \\ &\cong H_\ell^2(k[\widehat{A}]) && \text{(discrete Fourier transform)} \\ &\cong H^2(\widehat{A}, k^\times) \\ &\cong \text{Hom}(H_2(\widehat{A}, \mathbb{Z}), k^\times) && \text{(universal coefficient theorem)} \\ &\cong \text{Hom}(\Lambda_{\mathbb{Z}}^2(\widehat{A}), k^\times) \\ &= \{\text{alternating bicharacters on } \widehat{A}\} \end{aligned}$$

- ▶ Let us give a **direct expression** for the composite isomorphism

$$H_\ell^2(A) \xrightarrow{\cong} \{\text{alternating bicharacters on } \widehat{A}\}$$

The abelian case

- ▶ Before explaining the construction of the map $\Theta : H_\ell^2(G) \rightarrow \mathcal{B}(G)$ for an arbitrary group, we compute the lazy cohomology of abelian groups
- ▶ Let A be an **abelian group** and $\widehat{A} = \text{Hom}(A, k^\times)$ its group of **characters**

The following **isomorphisms** hold:

$$\begin{aligned} H_\ell^2(A) &\cong H_\ell^2(\mathcal{O}_k(A)) && \text{(by definition)} \\ &\cong H_\ell^2(k[\widehat{A}]) && \text{(discrete Fourier transform)} \\ &\cong H^2(\widehat{A}, k^\times) \\ &\cong \text{Hom}(H_2(\widehat{A}, \mathbb{Z}), k^\times) && \text{(universal coefficient theorem)} \\ &\cong \text{Hom}(\Lambda_{\mathbb{Z}}^2(\widehat{A}), k^\times) \\ &= \{\text{alternating bicharacters on } \widehat{A}\} \end{aligned}$$

- ▶ Let us give a **direct expression** for the composite isomorphism

$$H_\ell^2(A) \xrightarrow{\cong} \{\text{alternating bicharacters on } \widehat{A}\}$$

Explicit isomorphism

- ▶ To any **twist** $F \in k[A] \otimes k[A]$ representing an element of $H_\ell^2(A)$ we attach an **alternating bicharacter** $b_F : \widehat{A} \times \widehat{A} \rightarrow k^\times$ as follows:
- ▶ Each character $\rho \in \widehat{A}$ defines an **idempotent** of the algebra $k[A]$ by

$$e_\rho = \frac{1}{|A|} \sum_{g \in A} \rho(g) g$$

The set $\{e_\rho\}_{\rho \in \widehat{A}}$ is a basis of $k[A]$

- ▶ Let $F \in k[A] \otimes k[A]$ be a **twist** representing an element of $H_\ell^2(A)$

Consider $R_F = F_{21} F^{-1}$ and express it in the basis $\{e_\rho \otimes e_\sigma\}_{\rho, \sigma \in \widehat{A}}$

$$R_F = \sum_{\rho \in \widehat{A}} b_F(\rho, \sigma) e_\rho \otimes e_\sigma \in k[A] \otimes k[A]$$

Then b_F is a bicharacter on \widehat{A} ; it is alternating because $(R_F)^{-1} = (R_F)_{21}$

Explicit isomorphism

- ▶ To any **twist** $F \in k[A] \otimes k[A]$ representing an element of $H_\ell^2(A)$ we attach an **alternating bicharacter** $b_F : \widehat{A} \times \widehat{A} \rightarrow k^\times$ as follows:
- ▶ Each character $\rho \in \widehat{A}$ defines an **idempotent** of the algebra $k[A]$ by

$$e_\rho = \frac{1}{|A|} \sum_{g \in A} \rho(g) g$$

The set $\{e_\rho\}_{\rho \in \widehat{A}}$ is a basis of $k[A]$

- ▶ Let $F \in k[A] \otimes k[A]$ be a **twist** representing an element of $H_\ell^2(A)$

Consider $R_F = F_{21} F^{-1}$ and express it in the basis $\{e_\rho \otimes e_\sigma\}_{\rho, \sigma \in \widehat{A}}$

$$R_F = \sum_{\rho, \sigma \in \widehat{A}} b_F(\rho, \sigma) e_\rho \otimes e_\sigma \in k[A] \otimes k[A]$$

Then b_F is a bicharacter on \widehat{A} ; it is alternating because $(R_F)^{-1} = (R_F)_{21}$

Explicit isomorphism

- ▶ To any **twist** $F \in k[A] \otimes k[A]$ representing an element of $H_\ell^2(A)$ we attach an **alternating bicharacter** $b_F : \widehat{A} \times \widehat{A} \rightarrow k^\times$ as follows:
- ▶ Each character $\rho \in \widehat{A}$ defines an **idempotent** of the algebra $k[A]$ by

$$e_\rho = \frac{1}{|A|} \sum_{g \in A} \rho(g) g$$

The set $\{e_\rho\}_{\rho \in \widehat{A}}$ is a basis of $k[A]$

- ▶ Let $F \in k[A] \otimes k[A]$ be a **twist** representing an element of $H_\ell^2(A)$

Consider $R_F = F_{21} F^{-1}$ and express it in the basis $\{e_\rho \otimes e_\sigma\}_{\rho, \sigma \in \widehat{A}}$

$$R_F = \sum_{\rho \in \widehat{A}} b_F(\rho, \sigma) e_\rho \otimes e_\sigma \in k[A] \otimes k[A]$$

Then b_F is a **bicharacter** on \widehat{A} ; it is **alternating** because $(R_F)^{-1} = (R_F)_{21}$

Explicit isomorphism

- ▶ To any **twist** $F \in k[A] \otimes k[A]$ representing an element of $H_\ell^2(A)$ we attach an **alternating bicharacter** $b_F : \widehat{A} \times \widehat{A} \rightarrow k^\times$ as follows:
- ▶ Each character $\rho \in \widehat{A}$ defines an **idempotent** of the algebra $k[A]$ by

$$e_\rho = \frac{1}{|A|} \sum_{g \in A} \rho(g) g$$

The set $\{e_\rho\}_{\rho \in \widehat{A}}$ is a basis of $k[A]$

- ▶ Let $F \in k[A] \otimes k[A]$ be a **twist** representing an element of $H_\ell^2(A)$

Consider $R_F = F_{21} F^{-1}$ and express it in the basis $\{e_\rho \otimes e_\sigma\}_{\rho, \sigma \in \widehat{A}}$

$$R_F = \sum_{\rho \in \widehat{A}} b_F(\rho, \sigma) e_\rho \otimes e_\sigma \in k[A] \otimes k[A]$$

Then b_F is a **bicharacter** on \widehat{A} ; it is **alternating** because $(R_F)^{-1} = (R_F)_{21}$

Explicit isomorphism

- ▶ To any **twist** $F \in k[A] \otimes k[A]$ representing an element of $H_\ell^2(A)$ we attach an **alternating bicharacter** $b_F : \widehat{A} \times \widehat{A} \rightarrow k^\times$ as follows:
- ▶ Each character $\rho \in \widehat{A}$ defines an **idempotent** of the algebra $k[A]$ by

$$e_\rho = \frac{1}{|A|} \sum_{g \in A} \rho(g) g$$

The set $\{e_\rho\}_{\rho \in \widehat{A}}$ is a basis of $k[A]$

- ▶ Let $F \in k[A] \otimes k[A]$ be a **twist** representing an element of $H_\ell^2(A)$
Consider $R_F = F_{21} F^{-1}$ and express it in the basis $\{e_\rho \otimes e_\sigma\}_{\rho, \sigma \in \widehat{A}}$

$$R_F = \sum_{\rho \in \widehat{A}} b_F(\rho, \sigma) e_\rho \otimes e_\sigma \in k[A] \otimes k[A]$$

Then b_F is a **bicharacter** on \widehat{A} ; it is **alternating** because $(R_F)^{-1} = (R_F)_{21}$

Explicit isomorphism

- ▶ To any **twist** $F \in k[A] \otimes k[A]$ representing an element of $H_\ell^2(A)$ we attach an **alternating bicharacter** $b_F : \widehat{A} \times \widehat{A} \rightarrow k^\times$ as follows:
- ▶ Each character $\rho \in \widehat{A}$ defines an **idempotent** of the algebra $k[A]$ by

$$e_\rho = \frac{1}{|A|} \sum_{g \in A} \rho(g) g$$

The set $\{e_\rho\}_{\rho \in \widehat{A}}$ is a basis of $k[A]$

- ▶ Let $F \in k[A] \otimes k[A]$ be a **twist** representing an element of $H_\ell^2(A)$

Consider $R_F = F_{21} F^{-1}$ and express it in the basis $\{e_\rho \otimes e_\sigma\}_{\rho, \sigma \in \widehat{A}}$

$$R_F = \sum_{\rho \in \widehat{A}} b_F(\rho, \sigma) e_\rho \otimes e_\sigma \in k[A] \otimes k[A]$$

Then b_F is a **bicharacter** on \widehat{A} ; it is **alternating** because $(R_F)^{-1} = (R_F)_{21}$

The universal R -matrix attached to a twist

- ▶ Let us now explain how to construct the map

$$\Theta : \mathrm{H}_{\ell}^2(G) \rightarrow \mathcal{B}(G)$$

for an arbitrary finite group G

Start with an element of $\mathrm{H}_{\ell}^2(G)$ and
represent it by an invariant twist $F \in k[G] \otimes k[G]$

- ▶ As in the abelian case, consider

$$R_F = F_{21} F^{-1} \in k[G] \otimes k[G]$$

It is a universal R -matrix for the Hopf algebra $k[G]$, i.e., an invertible element such that

$$\Delta(a) R_F = R_F \Delta(a) \quad \text{for all } a \in k[G]$$

and

$$(\Delta \otimes \mathrm{id}_H)(R_F) = (R_F)_{13} (R_F)_{23} \quad \text{and} \quad (\mathrm{id}_H \otimes \Delta)(R_F) = (R_F)_{13} (R_F)_{12}$$

The universal R -matrix attached to a twist

- ▶ Let us now explain how to construct the map

$$\Theta : \mathrm{H}_{\ell}^2(G) \rightarrow \mathcal{B}(G)$$

for an **arbitrary finite group** G

Start with an element of $\mathrm{H}_{\ell}^2(G)$ and
represent it by an **invariant twist** $F \in k[G] \otimes k[G]$

- ▶ As in the abelian case, consider

$$R_F = F_{21} F^{-1} \in k[G] \otimes k[G]$$

It is a **universal R -matrix** for the Hopf algebra $k[G]$, i.e., an invertible element such that

$$\Delta(a) R_F = R_F \Delta(a) \quad \text{for all } a \in k[G]$$

and

$$(\Delta \otimes \mathrm{id}_H)(R_F) = (R_F)_{13} (R_F)_{23} \quad \text{and} \quad (\mathrm{id}_H \otimes \Delta)(R_F) = (R_F)_{13} (R_F)_{12}$$

The universal R -matrix attached to a twist

- ▶ Let us now explain how to construct the map

$$\Theta : \mathrm{H}_{\ell}^2(G) \rightarrow \mathcal{B}(G)$$

for an **arbitrary finite group** G

Start with an element of $\mathrm{H}_{\ell}^2(G)$ and
represent it by an **invariant twist** $F \in k[G] \otimes k[G]$

- ▶ As in the abelian case, consider

$$R_F = F_{21} F^{-1} \in k[G] \otimes k[G]$$

It is a **universal R -matrix** for the Hopf algebra $k[G]$, i.e., an invertible element such that

$$\Delta(a) R_F = R_F \Delta(a) \quad \text{for all } a \in k[G]$$

and

$$(\Delta \otimes \mathrm{id}_H)(R_F) = (R_F)_{13} (R_F)_{23} \quad \text{and} \quad (\mathrm{id}_H \otimes \Delta)(R_F) = (R_F)_{13} (R_F)_{12}$$

The universal R -matrix attached to a twist

- ▶ Let us now explain how to construct the map

$$\Theta : \mathrm{H}_{\ell}^2(G) \rightarrow \mathcal{B}(G)$$

for an arbitrary finite group G

Start with an element of $\mathrm{H}_{\ell}^2(G)$ and
represent it by an invariant twist $F \in k[G] \otimes k[G]$

- ▶ As in the abelian case, consider

$$R_F = F_{21} F^{-1} \in k[G] \otimes k[G]$$

It is a universal R -matrix for the Hopf algebra $k[G]$, i.e., an invertible element such that

$$\Delta(a) R_F = R_F \Delta(a) \quad \text{for all } a \in k[G]$$

and

$$(\Delta \otimes \mathrm{id}_H)(R_F) = (R_F)_{13} (R_F)_{23} \quad \text{and} \quad (\mathrm{id}_H \otimes \Delta)(R_F) = (R_F)_{13} (R_F)_{12}$$

The map Θ

- ▶ By work of Radford, there is a **minimal** Hopf subalgebra $H' \subset k[G]$ such that

$$R_F \in H' \otimes H'$$

Moreover, since $k[G]$ is cocommutative, H' is **bicommutative**

- One deduces that $H' = k[A]$ where A is an **abelian subgroup** of G . Since F is invariant, so is R_F , and A is **normal** in G
- ▶ By duality, the universal R -matrix $R_F \in k[A] \otimes k[A]$ corresponds to a G invariant alternating bicharacter $b_F : \hat{A} \times \hat{A} \rightarrow k^\times$
- The bicharacter b_F is non-degenerate by the minimality of A , one sets

$$\Theta(F) = (A, b_F) \in B(G)$$

- It is easy to check that $\Theta(F)$ **depends only on the class of F in $H^2_c(G)$**

The map Θ

- ▶ By work of Radford, there is a **minimal** Hopf subalgebra $H' \subset k[G]$ such that

$$R_F \in H' \otimes H'$$

Moreover, since $k[G]$ is cocommutative, H' is **bicommutative**

- One deduces that $H' = k[A]$ where A is an **abelian subgroup** of G . Since F is invariant, so is R_F , and A is **normal** in G
- ▶ By duality, the universal R -matrix $R_F \in k[A] \otimes k[A]$ corresponds to a G invariant alternating bicharacter $b_F : \hat{A} \times \hat{A} \rightarrow k^\times$
- The bicharacter b_F is non-degenerate by the minimality of A , one sets

$$\Theta(F) = (A, b_F) \in B(G)$$

- It is easy to check that $\Theta(F)$ **depends only on the class of F in $H^2_c(G)$**

The map Θ

- ▶ By work of Radford, there is a **minimal** Hopf subalgebra $H' \subset k[G]$ such that

$$R_F \in H' \otimes H'$$

Moreover, since $k[G]$ is cocommutative, H' is **bicommutative**

- One deduces that $H' = k[A]$ where A is an **abelian subgroup** of G .
Since F is invariant, so is R_F , and A is **normal** in G

- ▶ By duality, the universal R -matrix $R_F \in k[A] \otimes k[A]$ corresponds to a G invariant alternating bicharacter $b_F : \hat{A} \times \hat{A} \rightarrow k^*$
 - The bicharacter b_F is non-degenerate by the minimality of A , one sets

$$\Theta(F) = (A, b_F) \in B(G)$$

- It is easy to check that $\Theta(F)$ depends only on the class of F in $H^2_c(G)$

The map Θ

- ▶ By work of Radford, there is a **minimal** Hopf subalgebra $H' \subset k[G]$ such that

$$R_F \in H' \otimes H'$$

Moreover, since $k[G]$ is cocommutative, H' is **bicommutative**

- One deduces that $H' = k[A]$ where A is an **abelian subgroup** of G . Since F is invariant, so is R_F , and A is **normal** in G
- ▶ By duality, the universal R -matrix $R_F \in k[A] \otimes k[A]$ corresponds to a **G -invariant alternating bicharacter** $b_F : \widehat{A} \times \widehat{A} \rightarrow k^\times$
 - The bicharacter b_F is **non-degenerate** by the minimality of A ; one sets

$$\Theta(F) = (A, b_F) \in \mathcal{B}(G)$$

- It is easy to check that $\Theta(F)$ **depends only on the class of F in $H_\ell^2(G)$**

The map Θ

- ▶ By work of Radford, there is a **minimal** Hopf subalgebra $H' \subset k[G]$ such that

$$R_F \in H' \otimes H'$$

Moreover, since $k[G]$ is cocommutative, H' is **bicommutative**

- One deduces that $H' = k[A]$ where A is an **abelian subgroup** of G . Since F is invariant, so is R_F , and A is **normal** in G
- ▶ By duality, the universal R -matrix $R_F \in k[A] \otimes k[A]$ corresponds to a **G -invariant alternating bicharacter** $b_F : \widehat{A} \times \widehat{A} \rightarrow k^\times$
 - The bicharacter b_F is **non-degenerate** by the minimality of A ; one sets

$$\Theta(F) = (A, b_F) \in \mathcal{B}(G)$$

- It is easy to check that $\Theta(F)$ **depends only on the class of F in $H_\ell^2(G)$**

The map Θ

- ▶ By work of Radford, there is a **minimal** Hopf subalgebra $H' \subset k[G]$ such that

$$R_F \in H' \otimes H'$$

Moreover, since $k[G]$ is cocommutative, H' is **bicommutative**

- One deduces that $H' = k[A]$ where A is an **abelian subgroup** of G . Since F is invariant, so is R_F , and A is **normal** in G
- ▶ By duality, the universal R -matrix $R_F \in k[A] \otimes k[A]$ corresponds to a **G -invariant alternating bicharacter** $b_F : \widehat{A} \times \widehat{A} \rightarrow k^\times$
- The bicharacter b_F is **non-degenerate** by the minimality of A ; one sets

$$\Theta(F) = (A, b_F) \in \mathcal{B}(G)$$

- It is easy to check that $\Theta(F)$ **depends only on the class of F in $H_\ell^2(G)$**

The map Θ

- ▶ By work of Radford, there is a **minimal** Hopf subalgebra $H' \subset k[G]$ such that

$$R_F \in H' \otimes H'$$

Moreover, since $k[G]$ is cocommutative, H' is **bicommutative**

- One deduces that $H' = k[A]$ where A is an **abelian subgroup** of G . Since F is invariant, so is R_F , and A is **normal** in G
- ▶ By duality, the universal R -matrix $R_F \in k[A] \otimes k[A]$ corresponds to a **G -invariant alternating bicharacter** $b_F : \widehat{A} \times \widehat{A} \rightarrow k^\times$
- The bicharacter b_F is **non-degenerate** by the minimality of A ; one sets

$$\Theta(F) = (A, b_F) \in \mathcal{B}(G)$$

- It is easy to check that $\Theta(F)$ **depends only on the class of** F in $H_\ell^2(G)$

On the proof of the main theorem

- ▶ **Fibers of Θ :** To determine them, we use the following fact:

(Etingof and Gelaki, 2000) If F is a twist such that $R_F = 1 \otimes 1$, equivalently F is **symmetric**: $F = F_{21}$, then

$$F = (a \otimes a) \Delta(a^{-1})$$

for some invertible element $a \in k[G]$

Observation. The element $F = (a \otimes a) \Delta(a^{-1})$ is an **invariant** twist if and only if a belongs to the **normalizer** N , which is equivalent to $\text{ad}(a)$ belonging to $\text{Int}_k(G)$

- ▶ Etingof and Gelaki's result follows from classical **Tannakian theory**:

(Deligne and Milne, 1982) Any exact and fully faithful symmetric tensor functor from the category of $k[G]$ -modules to the category of k -vector spaces is isomorphic to the forgetful functor

A symmetric twist gives rise to a symmetric tensor functor to which Etingof and Gelaki apply this result

On the proof of the main theorem

- ▶ **Fibers of Θ :** To determine them, we use the following fact:

(Etingof and Gelaki, 2000) If F is a twist such that $R_F = 1 \otimes 1$, equivalently F is **symmetric**: $F = F_{21}$, then

$$F = (a \otimes a) \Delta(a^{-1})$$

for some invertible element $a \in k[G]$

Observation. The element $F = (a \otimes a) \Delta(a^{-1})$ is an **invariant** twist if and only if a belongs to the **normalizer** N , which is equivalent to $\text{ad}(a)$ belonging to $\text{Int}_k(G)$

- ▶ Etingof and Gelaki's result follows from classical **Tannakian theory**:

(Deligne and Milne, 1982) Any exact and fully faithful symmetric tensor functor from the category of $k[G]$ -modules to the category of k -vector spaces is isomorphic to the forgetful functor

A symmetric twist gives rise to a symmetric tensor functor to which Etingof and Gelaki apply this result

On the proof of the main theorem

- ▶ **Fibers of Θ :** To determine them, we use the following fact:

(Etingof and Gelaki, 2000) If F is a twist such that $R_F = 1 \otimes 1$, equivalently F is **symmetric**: $F = F_{21}$, then

$$F = (a \otimes a) \Delta(a^{-1})$$

for some invertible element $a \in k[G]$

Observation. The element $F = (a \otimes a) \Delta(a^{-1})$ is an **invariant** twist if and only if a belongs to the **normalizer** N , which is equivalent to $\text{ad}(a)$ belonging to $\text{Int}_k(G)$

- ▶ Etingof and Gelaki's result follows from classical **Tannakian theory**:

(Deligne and Milne, 1982) Any exact and fully faithful symmetric tensor functor from the category of $k[G]$ -modules to the category of k -vector spaces is isomorphic to the forgetful functor

A symmetric twist gives rise to a symmetric tensor functor to which Etingof and Gelaki apply this result

On the proof of the main theorem

- ▶ **Fibers of Θ :** To determine them, we use the following fact:

(Etingof and Gelaki, 2000) If F is a twist such that $R_F = 1 \otimes 1$, equivalently F is **symmetric**: $F = F_{21}$, then

$$F = (a \otimes a) \Delta(a^{-1})$$

for some invertible element $a \in k[G]$

Observation. The element $F = (a \otimes a) \Delta(a^{-1})$ is an **invariant** twist if and only if a belongs to the **normalizer** N , which is equivalent to $\text{ad}(a)$ belonging to $\text{Int}_k(G)$

- ▶ Etingof and Gelaki's result follows from classical **Tannakian theory**:

(Deligne and Milne, 1982) Any exact and fully faithful symmetric tensor functor from the category of $k[G]$ -modules to the category of k -vector spaces is **isomorphic to the forgetful functor**

A symmetric twist gives rise to a symmetric tensor functor to which Etingof and Gelaki apply this result

Plan

Drinfeld twists and cohomology

The main theorem

On the proof

Examples

Rationality issues

References

Example of groups with non-trivial $H_\ell^2(G)$

- Let p be an odd prime and let G be the **wreath product**

$$G = \mathbb{Z}/p \wr \mathbb{Z}/p = A \rtimes \mathbb{Z}/p \quad \text{with } A = \mathbb{F}_p[\mathbb{Z}/p] \quad (= (\mathbb{Z}/p)^p)$$

We have $\text{Int}_k(G)/\text{Inn}(G) = 1$

- Proposition.** *We have*

$$H_\ell^2(G) \cong H^2(\widehat{A}, k^\times)^G \cong (\mathbb{Z}/p)^{(p-1)/2}$$

- Proof.** The second isomorphism follows from a standard **cohomological calculation**

The first isomorphism is a consequence of the main theorem and the following **interpretation** of $\mathcal{B}(G)$

The set $\mathcal{B}(G)$ as a colimit

- ▶ **Theorem.** *There is a **bijection***

$$\mathcal{B}(G) \xrightarrow{\cong} \bigcup_A H^2(\widehat{A}, k^\times)^G$$

where the RHS is the **colimit** in the category whose objects are the **abelian normal subgroups** A of G and whose arrows are the inclusions

- ▶ **Corollary.** *If G is a group of odd order such that $\text{Int}_k(G)/\text{Inn}(G) = 1$ and has a unique maximal abelian normal subgroup A , then*

$$H^2(G) \cong H^2(\widehat{A}, k^\times)^G$$

The set $\mathcal{B}(G)$ as a colimit

- ▶ **Theorem.** *There is a **bijection***

$$\mathcal{B}(G) \xrightarrow{\cong} \bigcup_A H^2(\widehat{A}, k^\times)^G$$

where the RHS is the **colimit** in the category whose objects are the **abelian normal subgroups** A of G and whose arrows are the inclusions

- ▶ **Corollary.** *If G is a group of odd order such that $\text{Int}_k(G)/\text{Inn}(G) = 1$ and has a unique maximal abelian normal subgroup A , then*

$$H^2(G) \cong H^2(\widehat{A}, k^\times)^G$$

The set $\mathcal{B}(G)$ as a colimit

- **Theorem.** *There is a **bijection***

$$\mathcal{B}(G) \xrightarrow{\cong} \bigcup_A H^2(\widehat{A}, k^\times)^G$$

where the RHS is the **colimit** in the category whose objects are the **abelian normal subgroups** A of G and whose arrows are the inclusions

- **Corollary.** *If G is a group of **odd order** such that $\text{Int}_k(G)/\text{Inn}(G) = 1$ and has a **unique maximal abelian normal subgroup** A , then*

$$H_\ell^2(G) \cong H^2(\widehat{A}, k^\times)^G$$

The set $\mathcal{B}(G)$ as a colimit

- **Theorem.** *There is a **bijection***

$$\mathcal{B}(G) \xrightarrow{\cong} \bigcup_A H^2(\widehat{A}, k^\times)^G$$

where the RHS is the **colimit** in the category whose objects are the **abelian normal subgroups** A of G and whose arrows are the inclusions

- **Corollary.** *If G is a group of **odd order** such that $\text{Int}_k(G)/\text{Inn}(G) = 1$ and has a **unique maximal abelian normal subgroup** A , then*

$$H_\ell^2(G) \cong H^2(\widehat{A}, k^\times)^G$$

The set $\mathcal{B}(G)$ as a colimit

- **Theorem.** *There is a **bijection***

$$\mathcal{B}(G) \xrightarrow{\cong} \bigcup_A H^2(\widehat{A}, k^\times)^G$$

where the RHS is the **colimit** in the category whose objects are the **abelian normal subgroups** A of G and whose arrows are the inclusions

- **Corollary.** *If G is a group of **odd order** such that $\text{Int}_k(G)/\text{Inn}(G) = 1$ and has a **unique maximal abelian normal subgroup** A , then*

$$H_\ell^2(G) \cong H^2(\widehat{A}, k^\times)^G$$

The alternating group A_4

- We now consider a group of **even** order, namely the **alternating group A_4**

We have $A_4 = V_4 \rtimes \mathbb{Z}/3$ with $V_4 = \mathbb{Z}/2 \times \mathbb{Z}/2$ (Klein's *Vierergruppe*)

The set $\mathcal{B}(A_4)$ has **two elements**: ($V_4 = \mathbb{Z}/2 \times \mathbb{Z}/2$, \det) and the trivial one

We have $\text{Int}_k(A_4) = \text{Inn}(A_4)$. Thus $\Theta : H_\ell^2(A_4) \rightarrow \mathcal{B}(A_4)$ is injective; since the order of the group is **even**, we cannot use the main theorem to conclude that Θ is surjective. Nevertheless,...

- **Theorem.** $H_\ell^2(A_4) \cong \mathbb{Z}/2$

To prove the surjectivity of Θ , we exhibit an **invariant twist F** such that $\Theta(F) = (V_4, \det)$, namely

$$\begin{aligned} F = & 1 \otimes 1 - (e_1 \otimes e_1 + e_2 \otimes e_2 + e_3 \otimes e_3) \\ & + (1 \otimes e_1 + e_1 \otimes 1) + (1 \otimes e_2 + e_2 \otimes 1) + (1 \otimes e_3 + e_3 \otimes 1) \\ & + (e_1 \otimes e_2 - e_2 \otimes e_1) + (e_2 \otimes e_3 - e_3 \otimes e_2) + (e_3 \otimes e_1 - e_1 \otimes e_3) \end{aligned}$$

where e_1, e_2, e_3 are the three non-zero elements of V_4

The alternating group A_4

- We now consider a group of **even** order, namely the **alternating group A_4**

We have $A_4 = V_4 \rtimes \mathbb{Z}/3$ with $V_4 = \mathbb{Z}/2 \times \mathbb{Z}/2$ (Klein's *Vierergruppe*)

The set $\mathcal{B}(A_4)$ has **two elements**: ($V_4 = \mathbb{Z}/2 \times \mathbb{Z}/2$, \det) and the trivial one

We have $\text{Int}_k(A_4) = \text{Inn}(A_4)$. Thus $\Theta : H_\ell^2(A_4) \rightarrow \mathcal{B}(A_4)$ is injective; since the order of the group is **even**, we cannot use the main theorem to conclude that Θ is surjective. Nevertheless,...

- **Theorem.** $H_\ell^2(A_4) \cong \mathbb{Z}/2$

To prove the surjectivity of Θ , we exhibit an **invariant twist F** such that $\Theta(F) = (V_4, \det)$, namely

$$\begin{aligned} F = & 1 \otimes 1 - (e_1 \otimes e_1 + e_2 \otimes e_2 + e_3 \otimes e_3) \\ & + (1 \otimes e_1 + e_1 \otimes 1) + (1 \otimes e_2 + e_2 \otimes 1) + (1 \otimes e_3 + e_3 \otimes 1) \\ & + (e_1 \otimes e_2 - e_2 \otimes e_1) + (e_2 \otimes e_3 - e_3 \otimes e_2) + (e_3 \otimes e_1 - e_1 \otimes e_3) \end{aligned}$$

where e_1, e_2, e_3 are the three non-zero elements of V_4

The alternating group A_4

- We now consider a group of **even** order, namely the **alternating group A_4**

We have $A_4 = V_4 \rtimes \mathbb{Z}/3$ with $V_4 = \mathbb{Z}/2 \times \mathbb{Z}/2$ (Klein's *Vierergruppe*)

The set $\mathcal{B}(A_4)$ has **two elements**: ($V_4 = \mathbb{Z}/2 \times \mathbb{Z}/2$, \det) and the trivial one

We have $\text{Int}_k(A_4) = \text{Inn}(A_4)$. Thus $\Theta : H_\ell^2(A_4) \rightarrow \mathcal{B}(A_4)$ is injective; since the order of the group is **even**, we cannot use the main theorem to conclude that Θ is surjective. Nevertheless,...

- **Theorem.** $H_\ell^2(A_4) \cong \mathbb{Z}/2$

To prove the surjectivity of Θ , we exhibit an **invariant twist F** such that $\Theta(F) = (V_4, \det)$, namely

$$\begin{aligned} F = & 1 \otimes 1 - (e_1 \otimes e_1 + e_2 \otimes e_2 + e_3 \otimes e_3) \\ & + (1 \otimes e_1 + e_1 \otimes 1) + (1 \otimes e_2 + e_2 \otimes 1) + (1 \otimes e_3 + e_3 \otimes 1) \\ & + (e_1 \otimes e_2 - e_2 \otimes e_1) + (e_2 \otimes e_3 - e_3 \otimes e_2) + (e_3 \otimes e_1 - e_1 \otimes e_3) \end{aligned}$$

where e_1, e_2, e_3 are the three non-zero elements of V_4

The alternating group A_4

- We now consider a group of **even** order, namely the **alternating group A_4**

We have $A_4 = V_4 \rtimes \mathbb{Z}/3$ with $V_4 = \mathbb{Z}/2 \times \mathbb{Z}/2$ (Klein's *Vierergruppe*)

The set $\mathcal{B}(A_4)$ has **two elements**: ($V_4 = \mathbb{Z}/2 \times \mathbb{Z}/2$, \det) and the trivial one

We have $\text{Int}_k(A_4) = \text{Inn}(A_4)$. Thus $\Theta : H_\ell^2(A_4) \rightarrow \mathcal{B}(A_4)$ is injective; since the order of the group is **even**, we cannot use the main theorem to conclude that Θ is surjective. Nevertheless,...

- **Theorem.** $H_\ell^2(A_4) \cong \mathbb{Z}/2$

To prove the surjectivity of Θ , we exhibit an **invariant twist** F such that $\Theta(F) = (V_4, \det)$, namely

$$\begin{aligned} F = & 1 \otimes 1 - (e_1 \otimes e_1 + e_2 \otimes e_2 + e_3 \otimes e_3) \\ & + (1 \otimes e_1 + e_1 \otimes 1) + (1 \otimes e_2 + e_2 \otimes 1) + (1 \otimes e_3 + e_3 \otimes 1) \\ & + (e_1 \otimes e_2 - e_2 \otimes e_1) + (e_2 \otimes e_3 - e_3 \otimes e_2) + (e_3 \otimes e_1 - e_1 \otimes e_3) \end{aligned}$$

where e_1, e_2, e_3 are the three non-zero elements of V_4

The alternating group A_4

- We now consider a group of **even** order, namely the **alternating group A_4**

We have $A_4 = V_4 \rtimes \mathbb{Z}/3$ with $V_4 = \mathbb{Z}/2 \times \mathbb{Z}/2$ (Klein's *Vierergruppe*)

The set $\mathcal{B}(A_4)$ has **two elements**: ($V_4 = \mathbb{Z}/2 \times \mathbb{Z}/2$, \det) and the trivial one

We have $\text{Int}_k(A_4) = \text{Inn}(A_4)$. Thus $\Theta : H_\ell^2(A_4) \rightarrow \mathcal{B}(A_4)$ is injective; since the order of the group is **even**, we cannot use the main theorem to conclude that Θ is surjective. Nevertheless,...

- **Theorem.** $H_\ell^2(A_4) \cong \mathbb{Z}/2$

To prove the surjectivity of Θ , we exhibit an **invariant twist** F such that $\Theta(F) = (V_4, \det)$, namely

$$\begin{aligned} F = & 1 \otimes 1 - (e_1 \otimes e_1 + e_2 \otimes e_2 + e_3 \otimes e_3) \\ & + (1 \otimes e_1 + e_1 \otimes 1) + (1 \otimes e_2 + e_2 \otimes 1) + (1 \otimes e_3 + e_3 \otimes 1) \\ & + (e_1 \otimes e_2 - e_2 \otimes e_1) + (e_2 \otimes e_3 - e_3 \otimes e_2) + (e_3 \otimes e_1 - e_1 \otimes e_3) \end{aligned}$$

where e_1, e_2, e_3 are the three non-zero elements of V_4

The alternating group A_4

- We now consider a group of **even** order, namely the **alternating group A_4**

We have $A_4 = V_4 \rtimes \mathbb{Z}/3$ with $V_4 = \mathbb{Z}/2 \times \mathbb{Z}/2$ (Klein's *Vierergruppe*)

The set $\mathcal{B}(A_4)$ has **two elements**: ($V_4 = \mathbb{Z}/2 \times \mathbb{Z}/2$, \det) and the trivial one

We have $\text{Int}_k(A_4) = \text{Inn}(A_4)$. Thus $\Theta : H_\ell^2(A_4) \rightarrow \mathcal{B}(A_4)$ is injective; since the order of the group is **even**, we cannot use the main theorem to conclude that Θ is surjective. Nevertheless,...

- **Theorem.** $H_\ell^2(A_4) \cong \mathbb{Z}/2$

To prove the surjectivity of Θ , we exhibit an **invariant twist** F such that $\Theta(F) = (V_4, \det)$, namely

$$\begin{aligned} F = & 1 \otimes 1 - (e_1 \otimes e_1 + e_2 \otimes e_2 + e_3 \otimes e_3) \\ & + (1 \otimes e_1 + e_1 \otimes 1) + (1 \otimes e_2 + e_2 \otimes 1) + (1 \otimes e_3 + e_3 \otimes 1) \\ & + (e_1 \otimes e_2 - e_2 \otimes e_1) + (e_2 \otimes e_3 - e_3 \otimes e_2) + (e_3 \otimes e_1 - e_1 \otimes e_3) \end{aligned}$$

where e_1, e_2, e_3 are the three non-zero elements of V_4

Addendum to the main theorem

- ▶ In the previous examples the group $\text{Int}_k(G)/\text{Inn}(G)$ was trivial
What if it is not?

We have the following addition to the main theorem

Proposition. *The group $\text{Int}_k(G)/\text{Inn}(G)$ is a **subgroup** of $H_\ell^2(G)$*

- ▶ This result is a consequence of the following facts:
 - (a) For any $a \in N$ the element $F = (a \otimes a) \Delta(a^{-1})$ is an invariant twist on $k[G]$ and thus defines an element $\delta(a) \in H_\ell^2(G)$
 - (b) The kernel of $\delta : N \rightarrow H_\ell^2(G)$ is the subgroup $G \cdot \text{Center}(k[G]^\times)$ and

$$N/[G \cdot \text{Center}(k[G]^\times)] \cong \text{Int}_k(G)/\text{Inn}(G)$$

The proposition has an interesting application (see next slide)

Addendum to the main theorem

- ▶ In the previous examples the group $\text{Int}_k(G)/\text{Inn}(G)$ was trivial
What if it is not?

We have the following addition to the main theorem

Proposition. *The group $\text{Int}_k(G)/\text{Inn}(G)$ is a **subgroup** of $H_\ell^2(G)$*

- ▶ This result is a consequence of the following facts:
 - (a) For any $a \in N$ the element $F = (a \otimes a) \Delta(a^{-1})$ is an invariant twist on $k[G]$ and thus defines an element $\delta(a) \in H_\ell^2(G)$
 - (b) The kernel of $\delta : N \rightarrow H_\ell^2(G)$ is the subgroup $G \cdot \text{Center}(k[G]^\times)$ and

$$N/[G \cdot \text{Center}(k[G]^\times)] \cong \text{Int}_k(G)/\text{Inn}(G)$$

The proposition has an interesting application (see next slide)

Addendum to the main theorem

- ▶ In the previous examples the group $\text{Int}_k(G)/\text{Inn}(G)$ was trivial
What if it is not?

We have the following addition to the main theorem

Proposition. *The group $\text{Int}_k(G)/\text{Inn}(G)$ is a **subgroup** of $H_\ell^2(G)$*

- ▶ This result is a consequence of the following facts:
 - (a) For any $a \in N$ the element $F = (a \otimes a) \Delta(a^{-1})$ is an invariant twist on $k[G]$ and thus defines an element $\delta(a) \in H_\ell^2(G)$
 - (b) The kernel of $\delta : N \rightarrow H_\ell^2(G)$ is the subgroup $G \cdot \text{Center}(k[G])^\times$ and

$$N/[G \cdot \text{Center}(k[G])^\times] \cong \text{Int}_k(G)/\text{Inn}(G)$$

The proposition has an interesting application (see next slide)

Addendum to the main theorem

- ▶ In the previous examples the group $\text{Int}_k(G)/\text{Inn}(G)$ was trivial
What if it is not?

We have the following addition to the main theorem

Proposition. *The group $\text{Int}_k(G)/\text{Inn}(G)$ is a **subgroup** of $\text{H}_\ell^2(G)$*

- ▶ This result is a consequence of the following facts:
 - (a) For any $a \in N$ the element $F = (a \otimes a) \Delta(a^{-1})$ is an **invariant twist** on $k[G]$ and thus defines an element $\delta(a) \in \text{H}_\ell^2(G)$
 - (b) The **kernel** of $\delta : N \rightarrow \text{H}_\ell^2(G)$ is the subgroup $G \cdot \text{Center}(k[G]^\times)$ and

$$N/[G \cdot \text{Center}(k[G]^\times)] \cong \text{Int}_k(G)/\text{Inn}(G)$$

The proposition has an **interesting application** (see next slide)

Lazy cohomology is not always abelian

- ▶ (Burnside, 1912) There are groups with non-trivial $\text{Int}_k(G)/\text{Inn}(G)$ (his smallest example is of order $729 = 3^6$)

Burnside stated that $\text{Int}_k(G)/\text{Inn}(G)$ is always abelian, but...

- ▶ (Sah, 1968) There are groups with non-abelian $\text{Int}_k(G)/\text{Inn}(G)$ (his smallest example is of order $32768 = 2^{15}$)
- ▶ Since $\text{Int}_k(G)/\text{Inn}(G) \subset H^2_c(G)$ we obtain

Corollary. There are finite groups G for which $H^2_c(G)$ is non-abelian

For such a group G the algebra $\mathcal{O}_k(G)$ is the first known example of a Hopf algebra for which the lazy cohomology is non-abelian

Lazy cohomology is not always abelian

- ▶ (Burnside, 1912) There are groups with non-trivial $\text{Int}_k(G)/\text{Inn}(G)$ (his smallest example is of order $729 = 3^6$)

Burnside stated that $\text{Int}_k(G)/\text{Inn}(G)$ is always abelian, but...

- ▶ (Sah, 1968) There are groups with non-abelian $\text{Int}_k(G)/\text{Inn}(G)$ (his smallest example is of order $32768 = 2^{15}$)
- ▶ Since $\text{Int}_k(G)/\text{Inn}(G) \subset H^2_c(G)$ we obtain

Corollary. There are finite groups G for which $H^2_c(G)$ is non-abelian

For such a group G the algebra $\mathcal{O}_k(G)$ is the first known example of a Hopf algebra for which the lazy cohomology is non-abelian

Lazy cohomology is not always abelian

- ▶ (Burnside, 1912) There are groups with **non-trivial** $\text{Int}_k(G)/\text{Inn}(G)$ (his smallest example is of **order** $729 = 3^6$)

Burnside stated that $\text{Int}_k(G)/\text{Inn}(G)$ is always abelian, but...

- ▶ (Sah, 1968) There are groups with **non-abelian** $\text{Int}_k(G)/\text{Inn}(G)$ (his smallest example is of **order** $32768 = 2^{15}$)

- ▶ Since $\text{Int}_k(G)/\text{Inn}(G) \subset H^2_c(G)$ we obtain

Corollary. There are finite groups G for which $H^2_c(G)$ is non-abelian

For such a group G the algebra $\mathcal{O}_k(G)$ is the first known example of a Hopf algebra for which the **lazy cohomology** is non-abelian

Lazy cohomology is not always abelian

- ▶ (Burnside, 1912) There are groups with **non-trivial** $\text{Int}_k(G)/\text{Inn}(G)$ (his smallest example is of **order** $729 = 3^6$)

Burnside stated that $\text{Int}_k(G)/\text{Inn}(G)$ is always abelian, but...

- ▶ (Sah, 1968) There are groups with **non-abelian** $\text{Int}_k(G)/\text{Inn}(G)$ (his smallest example is of **order** $32768 = 2^{15}$)

- ▶ Since $\text{Int}_k(G)/\text{Inn}(G) \subset H^2_c(G)$ we obtain

Corollary. There are finite groups G for which $H^2_c(G)$ is non-abelian

For such a group G the algebra $\mathcal{O}_k(G)$ is the first known example of a Hopf algebra for which the **lazy cohomology** is non-abelian

Lazy cohomology is not always abelian

- ▶ (Burnside, 1912) There are groups with non-trivial $\text{Int}_k(G)/\text{Inn}(G)$ (his smallest example is of order $729 = 3^6$)

Burnside stated that $\text{Int}_k(G)/\text{Inn}(G)$ is always abelian, but...

- ▶ (Sah, 1968) There are groups with non-abelian $\text{Int}_k(G)/\text{Inn}(G)$ (his smallest example is of order $32768 = 2^{15}$)
- ▶ Since $\text{Int}_k(G)/\text{Inn}(G) \subset H_\ell^2(G)$ we obtain

Corollary. *There are finite groups G for which $H_\ell^2(G)$ is non-abelian*

For such a group G the algebra $\mathcal{O}_k(G)$ is the first known example of a Hopf algebra for which the **lazy cohomology** is non-abelian

Wall's group

- G. E. Wall (1947) improved Burnside's result by showing that for

$$G = \mathbb{Z}/8 \rtimes \text{Aut}(\mathbb{Z}/8)$$

(of order 32) the group $\text{Int}_k(G)/\text{Inn}(G)$ is **not trivial**:

$$\text{Int}_k(G)/\text{Inn}(G) \cong \mathbb{Z}/2$$

- Wall's group has the following **presentation**:

$$G = \langle s, t, u \mid s^2 = t^2 = u^8 = 1, st = ts, sus^{-1} = u^3, tut^{-1} = u^5 \rangle$$

- The set $\mathcal{B}(G)$ has **two elements**: $(\langle t, u^4 \rangle = \mathbb{Z}/2 \times \mathbb{Z}/2, \det)$ and the trivial one
- Therefore, $H_\ell^2(G)$ has order 4 or 2 according as Θ is surjective or not
We were **not able to conclude**

An invariant twist on Wall's group

- The non-trivial element of $\text{Int}_k(G)/\text{Inn}(G)$ may be represented by the **non-inner automorphism** α given by

$$\alpha(s) = u^4 s, \quad \alpha(t) = u^4 t, \quad \alpha(u) = u$$

- A computer search gave us the following invertible $a \in k[G]$ such that $\alpha = \text{ad}(a)$:

$$a = \frac{1}{2} (1 + u^4) + \frac{\sqrt{2}}{4} u (1 - u^2 - u^4 + u^6)$$

- Then

$$F = (a \otimes a) \Delta(a^{-1})$$

is a **symmetric invariant twist** representing the **non-zero element** of $H_\ell^2(G)$ **in the subgroup** $\text{Int}_k(G)/\text{Inn}(G)$; the twist F is a sum of 52 pure tensors:

$$\begin{aligned} 8F = & 2(u_{00} + u_{44}) + (u_{11} + u_{33} + u_{55} + u_{77}) \\ & + u_{01} + u_{03} + u_{04} + u_{05} + u_{07} + u_{12} + u_{17} + u_{25} + u_{35} + u_{36} + u_{67} \\ & + u_{10} + u_{30} + u_{40} + u_{50} + u_{70} + u_{21} + u_{71} + u_{52} + u_{53} + u_{63} + u_{76} \\ & - (u_{13} + u_{14} + u_{15} + u_{16} + u_{23} + u_{27} + u_{34} + u_{37} + u_{45} + u_{47} + u_{56} + u_{57}) \\ & - (u_{31} + u_{41} + u_{51} + u_{61} + u_{32} + u_{72} + u_{43} + u_{73} + u_{54} + u_{74} + u_{65} + u_{75}) \end{aligned}$$

where $u_{ij} = u^i \otimes u^j$ ($i, j \in \{0, 1, \dots, 7\}$)

Plan

Drinfeld twists and cohomology

The main theorem

On the proof

Examples

Rationality issues

References

Rationality

- ▶ A word about the case when the ground field k is **not algebraically closed** (but still of characteristic zero)

Let \bar{k} be the **algebraic closure** of k

- ▶ **Theorem.** *If all \bar{k} -representations of G can be realized over k , then there is an exact sequence*

$$1 \longrightarrow H^1(k, Z(G)) \longrightarrow H_\ell^2(G/k) \longrightarrow H_\ell^2(G/\bar{k}) \longrightarrow 1$$

where $H^1(k, Z(G))$ is the first **Galois cohomology** group of k with coefficients in the **center** of G

In particular, if G is **centerless**, then $H_\ell^2(G/k) \cong H_\ell^2(G/\bar{k})$

- ▶ **Ingredients of the proof**

- view the groups defining lazy cohomology as **algebraic groups**
- compute their tangent **Lie algebras**
- use **Hilbert's Theorem 90**

Rationality

- ▶ A word about the case when the ground field k is **not algebraically closed** (but still of characteristic zero)

Let \bar{k} be the **algebraic closure** of k

- ▶ **Theorem.** *If all \bar{k} -representations of G can be realized over k , then there is an exact sequence*

$$1 \longrightarrow H^1(k, Z(G)) \longrightarrow H_\ell^2(G/k) \longrightarrow H_\ell^2(G/\bar{k}) \longrightarrow 1$$

where $H^1(k, Z(G))$ is the first **Galois cohomology** group of k with coefficients in the **center** of G

In particular, if G is **centerless**, then $H_\ell^2(G/k) \cong H_\ell^2(G/\bar{k})$

- ▶ **Ingredients of the proof**

- view the groups defining lazy cohomology as **algebraic groups**
- compute their tangent **Lie algebras**
- use **Hilbert's Theorem 90**

Rationality

- ▶ A word about the case when the ground field k is **not algebraically closed** (but still of characteristic zero)

Let \bar{k} be the **algebraic closure** of k

- ▶ **Theorem.** *If all \bar{k} -representations of G can be realized over k , then there is an exact sequence*

$$1 \longrightarrow H^1(k, Z(G)) \longrightarrow H_\ell^2(G/k) \longrightarrow H_\ell^2(G/\bar{k}) \longrightarrow 1$$

where $H^1(k, Z(G))$ is the first **Galois cohomology** group of k with coefficients in the **center** of G

In particular, if G is **centerless**, then $H_\ell^2(G/k) \cong H_\ell^2(G/\bar{k})$

- ▶ **Ingredients of the proof**

- view the groups defining lazy cohomology as **algebraic groups**
- compute their tangent **Lie algebras**
- use **Hilbert's Theorem 90**

A final motivation for computing $H_\ell^2(G)$: torsors

- The group $H_\ell^2(G)$ classifies analogues of **torsors** in algebraic geometry
- As in algebraic geometry such torsors can be used to **twist G -algebras** (commutative or not)

Unlike what happens in the classical case, we obtain **new algebras** even over an algebraically closed field

- See **forthcoming joint paper** with Guillot where we “twist” G -algebras using explicit **invariant twists** on some group algebras (such as A_4)

Plan

Drinfeld twists and cohomology

The main theorem

On the proof

Examples

Rationality issues

References

References on Hopf algebras

J. Bichon, G. Carnovale, *Lazy cohomology: an analogue of the Schur multiplier for arbitrary Hopf algebras*, J. Pure Appl. Algebra 204 (2006), 627–665.

V. G. Drinfeld, *Quasi-Hopf algebras*, Algebra i Analiz 1 (1989), 114–148; English translation: Leningrad Math. J. 1 (1990), 1419–1457.

P. Etingof, S. Gelaki, *The classification of triangular semisimple and cosemisimple Hopf algebras over an algebraically closed field*, Internat. Math. Res. Notices 2000, no. 5, 223–234.

P. Guillot, C. Kassel, *Cohomology of invariant Drinfeld twists on group algebras*, arXiv:0903.2807.

M. Movshev, *Twisting in group algebras of finite groups*, Funktsional. Anal. Prilozhen. 27 (1993), 17–23; English translation: Funct. Anal. Appl. 27 (1993), 240–244.

D. E. Radford, *Minimal quasitriangular Hopf algebras* J. Algebra 157 (1993), no. 2, 285–315.

P. Schauenburg, *Hopf bimodules, coquasibialgebras, and an exact sequence of Kac*, Adv. Math. 165 (2002), 194–263.

M. E. Sweedler, *Cohomology of algebras over Hopf algebras*, Trans. Amer. Math. Soc. 133 (1968), 205–239.

References on groups

W. Burnside, *On the outer automorphisms of a group*, Proc. London Math. Soc. (2) 11 (1912), 225–245.

W. Feit, G. M. Seitz, *On finite rational groups and related topics*, Illinois J. Math. 33 (1989), no. 1, 103–131.

S. Jackowski, Z. Marciniak, *Group automorphisms inducing the identity map on cohomology*, J. Pure Appl. Algebra 44 (1987), 241–250.

K. W. Roggenkamp, A. Zimmermann, *A counterexample for the isomorphism-problem of polycyclic groups*, J. Pure Appl. Algebra 103 (1995), no. 1, 101–103.

C.-H. Sah, *Automorphisms of finite groups*, J. Algebra 10 (1968), 47–68.

G. E. Wall, *Finite groups with class-preserving outer automorphisms*, J. London Math. Soc. 22 (1947), 315–320.

THANK YOU FOR YOUR ATTENTION