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Introduction

I Report on joint work with Pierre Guillot (Strasbourg):
Cohomology of invariant Drinfeld twists on group algebras
arXiv:0903.2807

I Our original motivation was to compute the second lazy cohomology
group H2

`(H) of Hopf algebras that are neither cocommutative, nor
pointed such as
the Hopf algebras Ok (G) of functions on finite non-abelian groups

I We reformulate the problem in terms of invariant Drinfeld twists
and obtain a method to compute H2

`(H) when H = Ok (G)

I The answer involves the abelian normal subgroups of central type of G
as well as the group of class-preserving outer automorphisms of G

The proof uses tools from quantum group theory, mainly R-matrices

I I shall illustrate all this with several examples
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Drinfeld twists

I Let H be a Hopf algebra over some fixed field k

Definition. A Drinfeld twist on H is an invertible element F of H ⊗ H
satisfying the condition

(F ⊗ 1) (∆⊗ idH)(F ) = (1⊗ F ) (idH ⊗∆)(F ) (1)

where ∆ : H → H ⊗ H is the coproduct of H

Twists were introduced by Drinfeld in his work on quasi-Hopf algebras,
in order to “twist” the coproduct of H without changing its product. They
have become an important tool in the classification of finite-dimensional
Hopf algebras. There is now an abundant literature on twists

I “Trivial” solutions of (1) : F = (a⊗ a) ∆(a−1)

where a is an invertible element of H

Problem. Find more (all?) solutions of (1)

We shall look for special solutions of (1) as follows. . .
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Invariant twists

I Definition. A twist F is invariant

∆(a) F = F ∆(a) for all a ∈ H

In general the product of two twists is not a twist, but. . .

I Proposition. (a) Invariant twists form a group under multiplication

(b) The group of invariant twists contains as a central subgroup the
group of trivial twists, where a twist F is called trivial if

F = (a⊗ a) ∆(a−1)

for some central invertible element a ∈ H

We can thus consider the quotient group

{invariant twists on H}/{trivial twists} . . .
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The group H2
` (G)

I . . . which we consider in the special case when H = k [G] is the algebra
of a group G

Definition. Given a group G, set

H2
`(G) = {invariant twists on k [G]}/{trivial twists}

Our aim. Determine the group H2
`(G) for any finite group G

Why consider H2
`(G)?

I Because it is a first step in finding all invariant twists on k [G] and. . .

. . . the group H2
`(G) is isomorphic to the second lazy cohomology group

of the Hopf algebra Ok (G) of k -valued functions on G:

H2
`(G) ∼= H2

`(Ok (G))
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Lazy cohomology

I In the last decade Schauenburg, Bichon, Carnovale et al. defined
cohomology groups H1

`(H) and H2
`(H) for an arbitrary Hopf algebra H.

These groups are called the lazy cohomology groups of H

• On the class of cocommutative Hopf algebras the lazy cohomology
groups coincide with the cohomology groups introduced by Sweedler
(1968)

I In particular, if H = k [G] is the algebra of a group G, then lazy
cohomology coincides with group cohomology

Hi
`(H) ∼= H i (G, k×) (i = 1, 2)

where G acts trivially on k× = k − {0}

I The first lazy cohomology group for a general Hopf algebra is given by

H1
`(H) = {µ ∈ Alg(H, k) |µ ∗ idH = idH ∗µ}
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The second lazy cohomology group

I For the second lazy cohomology group H2
`(H) only few computations

(for non-cocommutative Hopf algebras) had been done

Our original motivation. Compute H2
`(H) for more Hopf algebras

We decided to try to compute H2
`(H) for the Hopf algebras Ok (G)

I Proposition. For any finite group G,

H2
`(Ok (G)) ∼= H2

`(G)

where H2
`(G) = {invariant twists on k [G]}/{trivial twists}

I Proof. The Hopf algebra Ok (G) is dual of the Hopf algebra k [G]

For a finite-dimensional Hopf algebra H with dual Hopf algebra H∗, we
have the identifications

two-cocycle on H ←→ twist on H∗

lazy two-cocycle on H ←→ invariant twist on H∗

cohomologically trivial two-cocycle on H ←→ trivial twist on H∗
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First ingredient: the set B(G)

I For any finite group G
let B(G) be the set of pairs (A, b) where

(i) A is an abelian normal subgroup of G and

(ii) b : bA× bA→ k× is a k×-valued G-invariant non-degenerate
alternating biadditive form on the character group bA = Hom(A, k×)

I The set B(G) is finite and can be “computed in finite time”

It is non-empty since it always contains the trivial pair ({1}, b ≡ 1)

I There is a further restriction on the groups A such that (A, b) ∈ B(G):
Such a group is what is called a group of central type

In particular, it is a square group: A ∼= A′ × A′ for some subgroup A′

I Examples. B(G) is trivial if G is simple, or G = Sn (symmetric groups),
or G = GLn(Fq)
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Second ingredient: class-preserving automorphisms

• Let Intk (G) be the group of automorphisms of G induced by the conjugation

ad(a) : g 7→ aga−1 (g ∈ G)

by some invertible element a of the group algebra k [G]:

Intk (G) = Aut(G)
\

ad(k [G]×)

• Remarks. (i) If ad(a) ∈ Intk (G), then the unit a belongs to the normalizer N
of G in k [G]×

(ii) By character theory, if k is of characteristic prime to |G| and is big enough
(e.g., algebraically closed), then Intk (G) consists of all automorphisms
preserving each conjugacy class of G

• The group Intk (G) contains the group Inn(G) of inner automorphisms as a
normal subgroup and we may consider the quotient group

Intk (G)/ Inn(G)



The main theorem
Assume that the ground field k is algebraically closed of characteristic zero

I Theorem (with P. Guillot) There is a (set-theoretic) map

Θ : H2
`(G)→ B(G)

whose fibers are in bijection with Intk (G)/ Inn(G) and

which is surjective if |G| is odd

I Consequences (a) The group H2
`(G) is finite

(b) We have H2
`(G) = 1 if B(G) is trivial and Intk (G)/ Inn(G) = 1

There are many groups with Intk (G)/ Inn(G) = 1 and having no normal
abelian square subgroups:

e.g., G simple, G = Sn, and G = SLn(Fq)

For such groups all invariant twists are trivial
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The abelian case
II Before explaining the construction of the map Θ : H2

`(G)→ B(G) for an
arbitrary group, we compute the lazy cohomology of abelian groups

I Let A be an abelian group and bA = Hom(A, k×) its group of characters

The following isomorphisms hold:

H2
`(A) ∼= H2

`(Ok (A)) (by definition)
∼= H2

`(k [bA]) (discrete Fourier transform)
∼= H2(bA, k×)

∼= Hom(H2(bA,Z), k×) (universal coefficient theorem)
∼= Hom(Λ2

Z(bA), k×)

= {alternating bicharacters on bA}
I Let us give a direct expression for the composite isomorphism

H2
`(A)

∼=−→ {alternating bicharacters on bA}
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Explicit isomorphism

I To any twist F ∈ k [A]⊗ k [A] representing an element of H2
`(A) we

attach an alternating bicharacter bF : bA× bA→ k× as follows:

I Each character ρ ∈ bA defines an idempotent of the algebra k [A] by

eρ =
1
|A|

X
g∈A

ρ(g) g

The set {eρ}ρ∈bA is a basis of k [A]

I Let F ∈ k [A]⊗ k [A] be a twist representing an element of H2
`(A)

Consider RF = F21 F−1 and express it in the basis {eρ ⊗ eσ}ρ,σ∈bA
RF =

X
ρ∈bA

bF (ρ, σ) eρ ⊗ eσ ∈ k [A]⊗ k [A]

Then bF is a bicharacter on bA; it is alternating because (RF )−1 = (RF )21
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The universal R-matrix attached to a twist

I Let us now explain how to construct the map

Θ : H2
`(G)→ B(G)

for an arbitrary finite group G

Start with an element of H2
`(G) and

represent it by an invariant twist F ∈ k [G]⊗ k [G]

I As in the abelian case, consider

RF = F21 F−1 ∈ k [G]⊗ k [G]

It is a universal R-matrix for the Hopf algebra k [G], i.e., an invertible
element such that

∆(a) RF = RF ∆(a) for all a ∈ k [G]

and

(∆⊗ idH)(RF ) = (RF )13 (RF )23 and (idH ⊗∆)(RF ) = (RF )13 (RF )12
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The map Θ

I By work of Radford, there is a minimal Hopf subalgebra H ′ ⊂ k [G] such
that

RF ∈ H ′ ⊗ H ′

Moreover, since k [G] is cocommutative, H ′ is bicommutative

• One deduces that H ′ = k [A] where A is an abelian subgroup of G.
Since F is invariant, so is RF , and A is normal in G

I By duality, the universal R-matrix RF ∈ k [A]⊗ k [A] corresponds to a
G-invariant alternating bicharacter bF : bA× bA→ k×

• The bicharacter bF is non-degenerate by the minimality of A; one sets

Θ(F ) = (A, bF ) ∈ B(G)

• It is easy to check that Θ(F ) depends only on the class of F in H2
`(G)
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On the proof of the main theorem
I Fibers of Θ: To determine them, we use the following fact:

(Etingof and Gelaki, 2000) If F is a twist such that RF = 1⊗ 1,
equivalently F is symmetric: F = F21, then

F = (a⊗ a) ∆(a−1)

for some invertible element a ∈ k [G]

Observation. The element F = (a⊗ a) ∆(a−1) is an invariant twist if
and only if a belongs to the normalizer N, which is equivalent to ad(a)
belonging to Intk (G)

I Etingof and Gelaki’s result follows from classical Tannakian theory:

(Deligne and Milne, 1982) Any exact and fully faithful symmetric tensor
functor from the category of k [G]-modules to the category of k -vector
spaces is isomorphic to the forgetful functor

A symmetric twist gives rise to a symmetric tensor functor to which
Etingof and Gelaki apply this result
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Example of groups with non-trivial H2
` (G)

• Let p be an odd prime and let G be the wreath product

G = Z/p o Z/p = A o Z/p with A = Fp[Z/p] (= (Z/p)p)

We have Intk (G)/ Inn(G) = 1

• Proposition. We have

H2
`(G) ∼= H2(bA, k×)G ∼= (Z/p)(p−1)/2

• Proof. The second isomorphism follows from a standard cohomological
calculation

The first isomorphism is a consequence of the main theorem and the
following interpretation of B(G)



The set B(G) as a colimit

I Theorem. There is a bijection

B(G)
∼=−→

[
A

H2(bA, k×)G

where the RHS is the colimit in the category whose objects are the
abelian normal subgroups A of G and whose arrows are the inclusions

I Corollary. If G is a group of odd order such that Intk (G)/Inn(G) = 1
and has a unique maximal abelian normal subgroup A, then

H2
`(G) ∼= H2(bA, k×)G
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The alternating group A4

I We now consider a group of even order, namely the alternating group A4

We have A4 = V4 o Z/3 with V4 = Z/2× Z/2 (Klein’s Vierergruppe)

The set B(A4) has two elements: (V4 = Z/2× Z/2, det) and the trivial
one

We have Intk (A4) = Inn(A4). Thus Θ : H2
`(A4)→ B(A4) is injective;

since the order of the group is even, we cannot use the main theorem to
conclude that Θ is surjective. Nevertheless,. . .

I Theorem. H2
`(A4) ∼= Z/2

To prove the surjectivity of Θ, we exhibit an invariant twist F such that
Θ(F ) = (V4, det), namely

F = 1⊗ 1− (e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3)

+(1⊗ e1 + e1 ⊗ 1) + (1⊗ e2 + e2 ⊗ 1) + (1⊗ e3 + e3 ⊗ 1)

+(e1 ⊗ e2 − e2 ⊗ e1) + (e2 ⊗ e3 − e3 ⊗ e2) + (e3 ⊗ e1 − e1 ⊗ e3)

where e1, e2, e3 are the three non-zero elements of V4
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Addendum to the main theorem

I In the previous examples the group Intk (G)/ Inn(G) was trivial
What if it is not?

We have the following addition to the main theorem

Proposition. The group Intk (G)/ Inn(G) is a subgroup of H2
`(G)

I This result is a consequence of the following facts:

(a) For any a ∈ N the element F = (a⊗ a) ∆(a−1) in an invariant
twist on k [G] and thus defines an element δ(a) ∈ H2

`(G)

(b) The kernel of δ : N → H2
`(G) is the subgroup G · Center(k [G]×)

and
N/[G · Center(k [G]×)] ∼= Intk (G)/ Inn(G)

The proposition has an interesting application (see next slide)
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Lazy cohomology is not always abelian

I (Burnside, 1912) There are groups with non-trivial Intk (G)/ Inn(G)

(his smallest example is of order 729 = 36)

Burnside stated that Intk (G)/ Inn(G) is always abelian, but. . .

I (Sah, 1968) There are groups with non-abelian Intk (G)/ Inn(G)

(his smallest example is of order 32768 = 215)

I Since Intk (G)/ Inn(G) ⊂ H2
`(G) we obtain

Corollary. There are finite groups G for which H2
`(G) is non-abelian

For such a group G the algebra Ok (G) is the first known example of a
Hopf algebra for which the lazy cohomology is non-abelian
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Wall’s group

• G. E. Wall (1947) improved Burnside’s result by showing that for

G = Z/8 o Aut(Z/8)

(of order 32) the group Intk (G)/ Inn(G) is not trivial:

Intk (G)/ Inn(G) ∼= Z/2

•Wall’s group has the following presentation:

G = 〈s, t , u | s2 = t2 = u8 = 1, st = ts, sus−1 = u3, tut−1 = u5〉

• The set B(G) has two elements: (〈t , u4〉 = Z/2× Z/2, det) and the trivial
one

• Therefore, H2
`(G) has order 4 or 2 according as Θ is surjective or not

We were not able to conclude



An invariant twist on Wall’s group
• The non-trivial element of Intk (G)/ Inn(G) may be represented by the non-inner
automorphism α given by

α(s) = u4s , α(t) = u4t , α(u) = u

• A computer search gave us the following invertible a ∈ k [G] such that α = ad(a):

a =
1
2

(1 + u4) +

√
2

4
u (1− u2 − u4 + u6)

• Then
F = (a⊗ a) ∆(a−1)

is a symmetric invariant twist representing the non-zero element of H2
`(G) in the

subgroup Intk (G)/ Inn(G); the twist F is a sum of 52 pure tensors:

8F = 2 (u00 + u44) + (u11 + u33 + u55 + u77)

+ u01 + u03 + u04 + u05 + u07 + u12 + u17 + u25 + u35 + u36 + u67

+ u10 + u30 + u40 + u50 + u70 + u21 + u71 + u52 + u53 + u63 + u76

− (u13 + u14 + u15 + u16 + u23 + u27 + u34 + u37 + u45 + u47 + u56 + u57)

− (u31 + u41 + u51 + u61 + u32 + u72 + u43 + u73 + u54 + u74 + u65 + u75)

where uij = ui ⊗ uj (i, j ∈ {0, 1, . . . , 7})
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Rationality

I A word about the case when the ground field k is not algebraically
closed (but still of characteristic zero)

Let k̄ be the algebraic closure of k

I Theorem. If all k̄ -representations of G can be realized over k, then
there is an exact sequence

1 −→ H1(k ,Z (G)) −→ H2
`(G/k) −→ H2

`(G/k̄) −→ 1

where H1(k ,Z (G)) is the first Galois cohomology group of k with
coefficients in the center of G

In particular, if G is centerless, then H2
`(G/k) ∼= H2

`(G/k̄)

I Ingredients of the proof

(a) view the groups defining lazy cohomology as algebraic groups

(b) compute their tangent Lie algebras

(c) use Hilbert’s Theorem 90



Rationality

I A word about the case when the ground field k is not algebraically
closed (but still of characteristic zero)

Let k̄ be the algebraic closure of k

I Theorem. If all k̄ -representations of G can be realized over k, then
there is an exact sequence

1 −→ H1(k ,Z (G)) −→ H2
`(G/k) −→ H2

`(G/k̄) −→ 1

where H1(k ,Z (G)) is the first Galois cohomology group of k with
coefficients in the center of G

In particular, if G is centerless, then H2
`(G/k) ∼= H2

`(G/k̄)

I Ingredients of the proof

(a) view the groups defining lazy cohomology as algebraic groups

(b) compute their tangent Lie algebras

(c) use Hilbert’s Theorem 90



Rationality

I A word about the case when the ground field k is not algebraically
closed (but still of characteristic zero)

Let k̄ be the algebraic closure of k

I Theorem. If all k̄ -representations of G can be realized over k, then
there is an exact sequence

1 −→ H1(k ,Z (G)) −→ H2
`(G/k) −→ H2

`(G/k̄) −→ 1

where H1(k ,Z (G)) is the first Galois cohomology group of k with
coefficients in the center of G

In particular, if G is centerless, then H2
`(G/k) ∼= H2

`(G/k̄)

I Ingredients of the proof

(a) view the groups defining lazy cohomology as algebraic groups

(b) compute their tangent Lie algebras

(c) use Hilbert’s Theorem 90



A final motivation for computing H2
` (G): torsors

• The group H2
`(G) classifies analogues of torsors in algebraic geometry

• As in in algebraic geometry such torsors can be used to twist G-algebras
(commutative or not)

Unlike what happens in the classical case, we obtain new algebras even over
an algebraically closed field

• See forthcoming joint paper with Guillot where we “twist” G-algebras using
explicit invariant twists on some group algebras (such as A4)



Plan

Drinfeld twists and cohomology

The main theorem

On the proof

Examples

Rationality issues

References



References on Hopf algebras

J. Bichon, G. Carnovale, Lazy cohomology: an analogue of the Schur multiplier for
arbitrary Hopf algebras, J. Pure Appl. Algebra 204 (2006), 627–665.

V. G. Drinfeld, Quasi-Hopf algebras, Algebra i Analiz 1 (1989), 114–148; English
translation: Leningrad Math. J. 1 (1990), 1419–1457.

P. Etingof, S. Gelaki, The classification of triangular semisimple and cosemisimple Hopf
algebras over an algebraically closed field, Internat. Math. Res. Notices 2000, no. 5,
223–234.

P. Guillot, C. Kassel, Cohomology of invariant Drinfeld twists on group algebras,
arXiv:0903.2807.

M. Movshev, Twisting in group algebras of finite groups, Funktsional. Anal. Prilozhen.
27 (1993), 17–23; English translation: Funct. Anal. Appl. 27 (1993), 240–244.

D. E. Radford, Minimal quasitriangular Hopf algebras J. Algebra 157 (1993), no. 2,
285–315.

P. Schauenburg, Hopf bimodules, coquasibialgebras, and an exact sequence of Kac,
Adv. Math. 165 (2002), 194–263.

M. E. Sweedler, Cohomology of algebras over Hopf algebras, Trans. Amer. Math. Soc.
133 (1968), 205–239.



References on groups

W. Burnside, On the outer automorphisms of a group, Proc. London Math. Soc. (2) 11
(1912), 225–245.

W. Feit, G. M. Seitz, On finite rational groups and related topics, Illinois J. Math. 33
(1989), no. 1, 103–131.

S. Jackowski, Z. Marciniak, Group automorphisms inducing the identity map on
cohomology, J. Pure Appl. Algebra 44 (1987), 241–250.

K. W. Roggenkamp, A. Zimmermann, A counterexample for the isomorphism-problem
of polycyclic groups, J. Pure Appl. Algebra 103 (1995), no. 1, 101–103.

C.-H. Sah, Automorphisms of finite groups, J. Algebra 10 (1968), 47–68.

G. E. Wall, Finite groups with class-preserving outer automorphisms, J. London Math.
Soc. 22 (1947), 315–320.



THANK YOU FOR YOUR ATTENTION


	Introduction
	Drinfeld twists and cohomology
	The main theorem
	On the proof
	Examples
	Rationality issues
	References

