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Introduction

e Report on joint work with Christophe Reutenauer (UQAM)

References :

* C. Kassel, C. Reutenauer, The zeta function of the Hilbert scheme of
n points on a two-dimensional torus, arXiv:1505.07229.

x C. Kassel, C. Reutenauer, The Fourier expansion of n(z)n(2z)n(3z)/n(6z),
arXiv:1603.06357.

e We are interested in the infinite product

(1-1t)
1 (1—qt)(1—q ')

i>1

We wish to compute its expansion as a formal power series in t.

e \Why we are interested in it will be explained later.



Notation

e Define C1(q), C2(q),Cs(q) ... by

(1-t) _ n
H (1—qgt))(1— g1t =1+ Z Co(q) t".

i>1 n>1

e Immediate observations.

(a) Each C,(q) is a Laurent polynomial with integer coefficients
Ci(q) € Z[g, g7 ']
(b) (Vanishing) Setting g = 1, we obtain C,(1) =0 for all n > 1.

(c) (Palindromicity) We have C,(q) = Cn(q™") so that we can write

Cin(q) = cno + Z Cn,i (qi + qij) .

i>1

The coefficients c,,; are integers. We will compute them explicitly.



Another observation

e If w is a root of unity of order 2, 3, 4, or 6, then w + w1 € Z, which together with

Y 1—t/)?
1+Z C"(q)t :H 17(q(+ qflgtithZi

n>1 i>1

shows that C,(w) € Z is an integer. This yields four sequences of integers, which we
will compute.

o Remark. Let w be a root of unity of order d =2, 3, 4 or 6. Then

n(z)* :
(22)? if d=2,
n(z)? if d=3
1 (@)t — n(32) ’
P2 Gl W2z L,
1(42) ’
n(z) n(22) n(32) fd—6
n(62) ’

where 7(z) = t%/2 ] -, (1 — t") (and t = €2™7) is Dedekind’s eta function.

The right-hand sides are modular forms of weight 1 and of respective levels 2, 3, 4, 6.



The first twelve Laurent polynomials C,(q)

[ ] Ca(q)
1 g l-2+¢g
2 g 2—qglr0-g+d?
3 g3 -q?-q 42 -qg-¢+4
2 T a0 _Fid
5 G gt —q 2+ +0+q— —¢* +¢°
6 g —qg P +gl—24+g-d"+¢°
7 ¢ =g —q 349 2+0+¢*—*—¢®+4’
s T ® a7 10_a 1
9 70— g g g =g 40—+ P+ - -+
10 a0 g9 g li2_q— g +ql
1 e g0 g5t 04 gt — b — g0 4 gt
12 G2 g 03 g2 10— 1P — gl B2

Observations.

* the central coefficients are 0 or £2 (for which n do we have ¢, o = £27)
* the non-central coefficients are 0 or 1.
* deg Cn(q) = n.
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Theorem 1 - The coefficients of C,(q)

The previous observations are corroborated by the following theorem obtained

together with Christophe Reutenauer.

Theorem 1. Let Cn(q) = cno + > ;5 i (@' +a77).
(a) We have ¢, ; =0 for all i > n and ch,n = 1. Thus, degCp(q) = n.

(b) For the central coefficients we have

{ 2(=1)k if n=k(k+1)/2 for some integer k > 1, (n is triangular)
Cn,0 =

0 otherwise.

(c) For the non-central coefficients (i > 1) we have

(=1)%  if n=k(k+2i+1)/2 for some integer k > 1,
cni =< (=171 if n= k(k +2i —1)/2 for some integer k > 1,

0 otherwise.

In (c) the first two conditions are mutually exclusive.



Theorem 1 - Values of C,(q) at roots of unity

Theorem 1 (sequel).
(d) (Value at g = —1) We have C,(—1) = (—1)"r(n), where

r(n) = card {(x,y) € Z*|n = x> + y*}.

(e) (Value at g = i = \/—1) We have Cy(i) = (—1)L("+1/2] ¢/(n), where

r'(n) = card {(x,y) € Z*|n = x* + 2y°} .
(f) (Value at g = j = €2™/3) We have C,(j) = —3\(n), where \(n) is a certain
multiplicative function; it is related to

r'(n) = card {(x,y) € 72| n = x? +xy+y2}‘

(g) (Value at g = —j = e*™//%) We have
(=1)"r(n) ifn=0,

Co(—j) = (—1)"@ ifn=1, (mod 3)

(—1)”+1@ ifn=2.



Values of C,(q) at roots of unity - On the proofs

o (Values at g = —1, 1, ) The Fourier expansions of the three eta-products
n(z)* n(z)? n(2)* n(22)
n(2z)2"  n(3z)’ 1(4z)

are well-known. For instance,

2 2

e (1 1-t') Gauss ST0F ] =143 K (1)

5 :
1(22) s L+ kez n>1

e (Value at ¢ = —j) The eta-product 1(z) n(2z) n(3z)/n(6z) does not appear in

G. Kohler's monography “Eta products and theta series identities”.
We computed its Fourier expansion in arXiv:1603.06357.

Remark. Kohler suggested another computation from the product of two modular
forms of weight 1/2:

n(z)n(2z)n(3z) _ n(z)* n(2z)*>n(32)

n(62) n(2z)  n(z)n(6z)
(Gauss) (V. Kac)

Reversing the computation, we obtain an elementary proof of Kac’s identity, which
Victor Kac had derived from his theory of contragredient Lie superalgebras (1978).



Theorem 2 - The polynomials P,(q)

There is another interesting family of Laurent polynomials.
We know that C,(1) = 0; therefore C,(q) is divisible by g — 1.

Theorem 2. (a) The polynomial Cn(q) is divisible by (q — 1)2. Set

Cn
Pn(q) = ﬁ C,,(q) = q*f(g)—f—q

Then P(q) is a Laurent polynomial of degree n — 1, with integer coefficients and it is
palindromic:
Pa(q) =Pa(q7") € Z[g,q7']-

(b) (to be continued)

Let us first have a look at the first twelve polynomials P,(q).



The first twelve polynomials P,(q)

[l Pu(a) [ Pu(1) |
1 1 1
2 g +1+qg 3
3 q’2+q’1+q+q2 4
4 a  +q +q ' +t1+tq+d+q 7
5 T +a 3 +q %+ +¢ +4* 6

G +q  +qg 3 +g 2 +q !

6 +24q+P++d"+¢ 12
7 R R R e R A A 8
e +q +q P +q g g2+ g !

8 1+ g+ P+ +q" +q° +° +q" 15
e +a " +q P+q P +q g !

9 +1+q+q* +¢° +¢®+q" +4° 13
e +a +q  +a P +q " +q*
+q’3+q’2+q’1+q+q2+q3
10 +d'+ PP+ +a ++° 18
g0+ g 019849 +g C+g°
11 +@+®+q +a®+¢° +q%° 12
G 4g 04 g %184+ +q 0 +g 0 +q*
+97 342972427 +24+2g+2¢% 4+ 4°
12 4+t + P+ +q + ¢+ + g0+ gt 28

Observation. The coefficients are all non-negative and P,(1) # 0

(actually, P,(1) > n).



Theorem 2 - Value of P,(q) at g =1

Theorem 2 (sequel).
(b) (Value at g = 1) We have

Po(l) =o(n) =3 d.
d

(c) (Positivity) The coefficients of Pn(q) are non-negative integers.

We may expect the coefficients of P,(q) to count something.

This is indeed so (see next slide).



Theorem 2 - Coefficients of P,(q)

Write

n—1

Po(q) =an0+ Y ani(d' +q7).

i=1
Theorem 2 (end).

(d) The coefficient ap j is the number of divisors d of n satisfying the inequalities

e
EVent e ‘2"+'<d§i+\/2n+i2

Remarks.

(a) In particular, the central coefficient an o is the number of divisors d of n
in the interval (v/2n/2,+/2n]. The sequence a, o grows very slowly:

a0 =3, ai20,0 =4, a1s00,0 =05, as800,0=19, a9200,0 = 13.

Nevertheless it is unbounded (Vatne, 2016).

(b) The sum of the coefficients of Pn(q) equals the sum of divisors of n. Hence the
above intervals overlap heavily.
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Previous work by my coauthor

o Let Fq(x,y,x 1, y71) be the algebra of non-commutative Laurent polynomials in
two variables:
FQ<X7an_17y_1> = FQ[F2]

where F is the free group on two generators and Fy is the field with g elements.
e R. Bacher and C. Reutenauer (2014): The number C,(q) of right ideals of

codimension n of Fg(x,y,x~,y~1) is a polynomial in q of the form

(g —1)"" Py(q)

where P,(q) is a polynomial whose coefficients are non-negative integers.
e Moreover, P,(1) is equal to the number of subgroups of index n in the free group F3.

Counting right ideals of codimension n of the group algebra Fq[F,] yields
a g-analogue of the number of subgroups of the group F, of index n.

o Question. What happens when one replaces F, by the free abelian group Z??

In this case, Fq[Z?] = Fq[x, y,x ™!, y~1] is the algebra of Laurent polynomials in two
variables.

Do we get a g-analogue of the number of finite index subgroups of Z2 by counting the
finite codimension ideals of Fq[x,y,x~%, y~1]?



Counting the finite codimension ideals of Fy[x,y, x™ !, y ]

Let Cn(q) be the number of ideals of codimension n of Fq[x,y,x~ 1, y~1] = Fq[Z?].

The subsequent results have been obtained with Christophe Reutenauer
(arXiv:1505.07229).

e Theorem 3. We have
Cn(q) = 9" Cn(q) € Z[q].

So Cu(q) is a palindromic polynomial of degree 2n with integer coefficients.

Its coefficients c,, ; have been determined above (Theorem 1).

e Corollary. The polynomial C,(q) is divisible by (q — 1)?. Set

Ca(q)
(q—1)%

Then Pn(q) is a palindromic polynomial of degree 2n — 2 whose coefficients ap,
(determined in Theorem 2) are non-negative integers.

Pn(q) =

e Value of P,(q) at g = 1. By Theorem 2 we have

Pu(1) = =o(n)=>_d,

d|n

which is... the number of subgroups of Z2 of index n.



Digression: zeta function

We now give an application of Theorem 3, namely we give an explicit formula for the
zeta function of the Hilbert scheme of n points on the torus G, X Gp,.

Recall:

» The zeta function of an algebraic variety X over Fq is the formal power series
tm
Zx /r, (t) = exp Z [X(Fgm) -
m>1

where | X (Fgm)| is the number of points of X over the finite extension Fgm of Fq.
> Dwork (1960) If X is quasi-projective, then Zy g (t) is a rational function.

> Deligne (1974) If X is projective, then Poincaré duality implies a
functional equation of the form

1
ZX/]Fq (E) = :I:(qd/Qt)X ZX/]Fq(t)

where d is the dimension of X and x its Euler characteristic.



Hilbert scheme of n points on the torus: zeta function

e The ideals of codimension n of Fy[x,y,x1, y 1] are the F4-points of the Hilbert

scheme
H" = Hilb"(Gm X Gm)

of n points on the two-dimensional torus (i.e., of the affine plane minus two distinct
straight lines). This scheme is smooth and quasi-projective.

e As a consequence of Theorem 1, the zeta function of H" is given by

1 u 1
G—a0me L = ara o

Zyn r, (1) =

where the exponents ¢, ; are the (integer) coefficients of the polynomial C,(q).



Functional equation for the zeta function

e Example n = 6. Since
CG(a)=q2—q"+q —2¢°+¢° —q+1,
we obtain

(1—qt)(1 - q°t)*(1 — ¢''t)
- 01— Ol — a0 —q28)

Zys yr, (1) =

e Palindromicity of Cn(q) and vanishing of C,(1) imply the functional equation

1
ZH"/]Fq (ﬁ) = ZH"/]Fq(t)'

(and yet H" is not projective!)
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Ellingsrud & Strgmme's cellular decomposition

e Ellingsrud & Strgmme (1987). The Hilbert scheme of n points in the affine plane
Hilb"(A2%)
has a decomposition into affine spaces, indexed by the partitions A of n:

(Ellingsrud-Strgmme)

{I C k[x,y]|codim | = n} [1,Cx, where Cy 22 AP+

U

{monomial ideals of k[x, y]} — {partitions of n}

Therefore, )
TN 2 _ _ n+4(\
card Hilb (A]Fq) = E card Cy = E q
Abn Abn

where £()) is the length of the partition.



Conca & Valla's parametrization
o We identify an ideal J of codimension n of k[x,y,x1, y~1] with the ideal
I'=JnNklx,y]
of k[x,y]: it is also of codimension n.

(Ellingsrud—Strgmme)

{I C k[x,y]|codim I = n} [0 Ca

U

{J Cklx,y,x 1,y |codimJ =n} = {I Ck[x,y]|codim!| =n& x,y € (k[x,y]/1)*}

= [IA-n CY C Ha-nCa

e Now Conca—Valla (2008) produced an explicit parametrization of each affine cell C.
We use it to obtain a parametrization for each C\", which is an open subset of Cj,

and then to count the elements of Ci{"’.

e Our polynomial Cy(q), counting the number of ideals of codimension n
of Fglx,y,x~1,y71], is given by

Cn(q) = Z cardCiIV.
Abn



Expressing C,(q) in terms of partitions of n

Using our parametrization of CI"V, we obtain the following expression for
the number Cpn(q) of ideals of codimension n of the algebra Fq[x,y,x~ 1, y71].

e Proposition. We have C,(q) =3, , cardCl"V, where

) qu/ -1
cardCY" = (q — 1)2V(>‘) q"_é(k) H w1
iz T

e Notation. Let A be a partition of n. Consider its Ferrers diagram: it has n boxes.
Then

* t is the number of columns of the diagram,

x*m < mp < --- < my is the sequence of heights of columns
and d;i = m; — m;_1 is the sequence of differences of heights
(by convention mg = 0),

* v(A) is the number of distinct values of the sequence m; < mp < --- < mg,

* £(A\) = my¢ is the number of parts of the partition.



Straightforward consequences

The following can be derived from the formula

2d; _ 1
SO EDDICER T il |
Nen =1 -
di>

e Since v(\) > 1, the polynomial C,(q) is divisible by (g — 1)2.

e If v(A\) = 1, then the diagram of the partition is rectangular, d» = --- = d; = 0 and
we have n = dt, where d = di. This means that d is a divisor of n. Then

. q2d —1
cardClV = (g — 1)%¢" ¢ P
G2 —

e If v(X) > 2, then card CI is divisible by (q — 1)*.

o Consequently, the value at g = 1 of Py(q) = Ca(q)/(q — 1)? is equal to

2d __
Pa1) =" (qn,d 227_11) = S d = o(n).

d|n



The generating function of the polynomials C,(q)

Let us now consider the the generating function of the polynomials Cyh(q).

e Corollary. We have

G 1—t
1+ Z Gn(@) t" = ( ) . -, «— our infinite product
q" Al 1—(q+q i+ %

Hence Cn(q) = q" Cn(q).

e Proof. The set of all partitions is the free abelian monoid on the set N\ {0} of
positive integers: any partition can be written uniquely as A = [[;~ i%. Therefore,

tie

LHS = 1+ card c'"v et T (1437 card c'"v L
b i>1 e>1
(rectangular) q e _1 tie
rec a;gu ar H 1 + Z(q 2 ,e e — 1 ?
i>1 e>1 q
- 11 (1+ (g—1)? { I D 1] (1—t')
51 q2 —-1 17qtl 17q—1tl 51 17(q+q—1)tl+t2l

QED
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Two questions

To conclude we ask the following two questions:
e Question 1. Why are the polynomials C,(q) and P,(q) palindromic?

e Question 2. Why are the coefficients of P,(q) non-negative?

“Why” means: are there geometric explanations?



Question 1 - Palindromicity

e Question 1. Why are the polynomials C,(g) and P,(q) palindromic?

T. Hausel, E. Letellier et F. Rodriguez-Villegas observed the same palindromicity in
their work on character varieties and they called it “curious Poincaré duality”.

e The character varieties they consider are GL,(C) character varieties of a
Riemann surface of genus g with k punctures of the form

M= {(A1,By,...,Ag, Bg, X1,..., Xk) € GLa(C)*6 x Cy x -~ x Ck
such that [Al7 Bl] s [Ag, Bg] X1 X = I,,}//GL,,(C).

Here Ci,..., Ck C GLy(C) are generic semisimple conjugacy classes.
They computed card M(Fq) and showed it to be a palindromic polynomial.

e De Cataldo, Hausel and Migliorini provided a sophisticated geometrical explanation
for palindromicity (based on mixed Hodge structures).



Question 2 - Positivity

Question 2. Why are the coefficients of P,(q) non-negative?

No similar phenomenon was observed for character varieties.

So is this positivity serendipitous (gliicklicher Zufall)

or is there a very subtle geometric reason?

We don’t know.



Ich danke fur lhre Aufmerksamkeit
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Conca and Valla's parametrization

e To a partition A\ we associate the (t + 1) X t-matrix

Yd1+P1,1 0 0 0 0
Pi—x  y24pa - 0 0 0
Pf. 1 Pf..z c oyl J.rPi i 0 0
Mx(x,y) = ’ ’ ’ dit1
Pi+1,1 Pit1,2 s pPit1,i —x ¥y T+ pit1iq 0
' ' A - ) S de
Pt,1 Pt,2 Pt,i Pt i+1 Yot + pete
Pt+1,1 Pt+1,2 R Pt+1,i Pt+1,i+1 ce Pt+1,t — X

where (p;;)i>; € Fgly] is a family of polynomials in the variable y such that
xdegp;; < difd; >1,

The set of all polynomials (p; ;)i forms an affine space Ty of dimension n+ £()).

o Let /) be the ideal generated by the maximal minors (of size t X t) of the matrix M.

Conca-Valla (2008) : The map (p;;)i,j — I induces a bijection Ty = Cj.



Mixed Hodge structures

e Gottsche and Soergel (1993) determined the mixed Hodge structure of the punctual
Hilbert scheme for any smooth algebraic surface over C

(using Beilinson—Bernstein—Deligne—Gabber’s decomposition theorem and its mixed
Hodge version due to Saito; intersection cohomology, perverse sheaves).

e Applying Gottsche and Soergel's results to the Hilbert scheme HZ of n points
on C*X x C*, Hausel, Letellier and Rodriguez-Villegas (2013) obtained the following
formula for the generating function of the mixed Hodge polynomials of Hg:

u2f+1 2
1+ZHC(H(C,q,u) H A+ume)” )

= i1 u2l+2qtl)(1 _ u2lq—1tl)

Note that, for g = 1, the specialization H.(HZ; 1, u) is the Poincaré polynomial of Hg
(whose coefficients are the Betti numbers of HZ).

o When we set u = —1,...



E-polynomials

e When setting u = —1 in Formula (1), we obtain

1—t)? L
1+ Z E(HE; q) H = q(t’ I —)q ) <— our infinite product
n>1

where E(HZ; q) = Hc(HE; g, —1) is the E-polynomial of H{.

e Nick Katz (2008) : when the variety Xc is of polynomial-count, i.e. when the
number of points of any reduction to a finite field Fq is given by a “universal”
polynomial in g, then

E(Xc; q) = card X(Fy).

e By our computation we know that the Hilbert scheme Hg is of polynomial-count,
hence

E(H((r;'; Q) = Cn(q):

which gives another proof for the infinite product expansion of the generating function
of the polynomials Cn(q).



Question 1 - A geometric explanation for palindromicity

e Question 1. Why are the polynomials C,(q) = E(H{; q) palindromic?

Hausel et al. observed the same palindromicity for the E-polynomials of their
character varieties and they called it “curious Poincaré duality”.

e De Cataldo, Hausel et Migliorini (2013): Consider the elliptic curve & = C/Z][i]
and a diffeomorphism ¢ : CX x C* — &£ x C (analytic, not algebraic), for instance,

7z 2
o(z1,22) = <7 —;In|z1],In \22|) .

|z1]" ||
The diffeomorphism induce an isomorphism on the cohomology of the Hilbert schemes
& H*(HE, Q) = H*(Hilb"(€ x C), Q).

The isomorphism ® does not preserve the mixed Hodge structures; it identifies the
weight filtration of H*(H{, Q) with the perverse Leray filtration of

H*(Hilb"(€ x C), Q).

The Poincaré duality on the cohomology of £ (which is projective) induces a duality
on the perverse Leray filtration, which explains why Cs(q) is palindromic.



Question 2 - Positivity

e The group C* x C* acts naturally on itself, which induces an action of C* x C*
on the Hilbert scheme H¢.

Consider the geometric quotient Itl(g = H{ //(C* x CX). Then
E(Hzia) _ Galq)

E(He:q) = -17 —(q_1p @

e Question 2. Why are the coefficients of P,(q) = E(H"; q) non-negative?

No similar phenomenon was observed for character varieties.

The fact that Fl@ has odd cohomology and a counting polynomial with non-negative
coefficients implies non-trivial cancellation for its mixed Hodge numbers.

So is this positivity serendipitous (gliicklicher Zufall)
or is there a very subtle geometric reason?

We don’t know.
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