

The Hilbert scheme of n points on a torus and modular forms

Christian Kassel

Institut de Recherche Mathématique Avancée
CNRS - Université de Strasbourg / Universität Straßburg

Oberseminar Zahlentheorie
Universität zu Köln
24 October 2016

Introduction

- Report on joint work with **Christophe Reutenauer** (UQAM)

References :

- * C. Kassel, C. Reutenauer, *The zeta function of the Hilbert scheme of n points on a two-dimensional torus*, arXiv:1505.07229.
- * C. Kassel, C. Reutenauer, *The Fourier expansion of $\eta(z)\eta(2z)\eta(3z)/\eta(6z)$* , arXiv:1603.06357.
- We are interested in the **infinite product**

$$\prod_{i \geq 1} \frac{(1 - t^i)^2}{(1 - qt^i)(1 - q^{-1}t^i)}.$$

We wish to compute its **expansion** as a formal power series in t .

- **Why** we are interested in it will be explained later.

Notation

- Define $\mathbf{C}_1(q), \mathbf{C}_2(q), \mathbf{C}_3(q) \dots$ by

$$\prod_{i \geq 1} \frac{(1 - t^i)^2}{(1 - qt^i)(1 - q^{-1}t^i)} = 1 + \sum_{n \geq 1} \mathbf{C}_n(q) t^n.$$

- **Immediate observations.**

- (a) Each $\mathbf{C}_n(q)$ is a **Laurent polynomial** with **integer coefficients**

$$\mathbf{C}_n(q) \in \mathbb{Z}[q, q^{-1}].$$

- (b) (**Vanishing**) Setting $q = 1$, we obtain $\mathbf{C}_n(1) = 0$ for all $n \geq 1$.

- (c) (**Palindromicity**) We have $\mathbf{C}_n(q) = \mathbf{C}_n(q^{-1})$ so that we can write

$$\mathbf{C}_n(q) = c_{n,0} + \sum_{i \geq 1} c_{n,i} \left(q^i + q^{-i} \right).$$

The coefficients $c_{n,i}$ are **integers**. We will **compute** them explicitly.

Another observation

- If ω is a **root of unity** of order 2, 3, 4, or 6, then $\omega + \omega^{-1} \in \mathbb{Z}$, which together with

$$1 + \sum_{n \geq 1} \mathbf{C}_n(\omega) t^n = \prod_{i \geq 1} \frac{(1 - t^i)^2}{1 - (q + q^{-1})t^i + t^{2i}}$$

shows that $\mathbf{C}_n(\omega) \in \mathbb{Z}$ is an **integer**. This yields **four sequences** of integers, which we will compute.

- **Remark.** Let ω be a root of unity of **order** $d = 2, 3, 4$ or 6 . Then

$$1 + \sum_{n \geq 1} \mathbf{C}_n(\omega) t^n = \begin{cases} \frac{\eta(z)^4}{\eta(2z)^2} & \text{if } d = 2, \\ \frac{\eta(z)^3}{\eta(3z)} & \text{if } d = 3, \\ \frac{\eta(z)^2 \eta(2z)}{\eta(4z)} & \text{if } d = 4, \\ \frac{\eta(z) \eta(2z) \eta(3z)}{\eta(6z)} & \text{if } d = 6, \end{cases}$$

where $\eta(z) = t^{1/24} \prod_{n \geq 1} (1 - t^n)$ (and $t = e^{2\pi iz}$) is **Dedekind's eta function**.

The right-hand sides are **modular forms** of **weight 1** and of respective **levels 2, 3, 4, 6**.

The first twelve Laurent polynomials $\mathbf{C}_n(q)$

n	$\mathbf{C}_n(q)$
1	$q^{-1} - 2 + q$
2	$q^{-2} - q^{-1} + 0 - q + q^2$
3	$q^{-3} - q^{-2} - q^{-1} + 2 - q - q^2 + q^3$
4	$q^{-4} - q^{-3} + 0 - q^3 + q^4$
5	$q^{-5} - q^{-4} - q^{-2} + q^{-1} + 0 + q - q^2 - q^4 + q^5$
6	$q^{-6} - q^{-5} + q^{-1} - 2 + q - q^5 + q^6$
7	$q^{-7} - q^{-6} - q^{-3} + q^{-2} + 0 + q^2 - q^3 - q^6 + q^7$
8	$q^{-8} - q^{-7} + 0 - q^7 + q^8$
9	$q^{-9} - q^{-8} - q^{-4} + q^{-3} + q^{-2} - q^{-1} + 0 - q + q^2 + q^3 - q^4 - q^8 + q^9$
10	$q^{-10} - q^{-9} - q^{-1} + 2 - q - q^9 + q^{10}$
11	$q^{-11} - q^{-10} - q^{-5} + q^{-4} + 0 + q^4 - q^5 - q^{10} + q^{11}$
12	$q^{-12} - q^{-11} + q^{-3} - q^{-2} + 0 - q^2 + q^3 - q^{11} + q^{12}$

Observations.

- * the **central** coefficients are 0 or ± 2 (for which n do we have $c_{n,0} = \pm 2$?)
- * the **non-central** coefficients are 0 or ± 1 .
- * $\deg \mathbf{C}_n(q) = n$.

Plan

Our results

Why we got interested

How we computed the number of ideals of codimension n

Concluding questions

Appendix

Theorem 1 - The coefficients of $\mathbf{C}_n(q)$

The previous observations are corroborated by the following theorem obtained together with **Christophe Reutenauer**.

Theorem 1. Let $\mathbf{C}_n(q) = c_{n,0} + \sum_{i \geq 1} c_{n,i} (q^i + q^{-i})$.

(a) We have $c_{n,i} = 0$ for all $i > n$ and $c_{n,n} = 1$. Thus, $\deg \mathbf{C}_n(q) = n$.

(b) For the **central** coefficients we have

$$c_{n,0} = \begin{cases} 2(-1)^k & \text{if } n = k(k+1)/2 \text{ for some integer } k \geq 1, \\ 0 & \text{otherwise.} \end{cases} \quad (n \text{ is } \textcolor{red}{\text{triangular}})$$

(c) For the **non-central** coefficients ($i \geq 1$) we have

$$c_{n,i} = \begin{cases} (-1)^k & \text{if } n = k(k+2i+1)/2 \text{ for some integer } k \geq 1, \\ (-1)^{k-1} & \text{if } n = k(k+2i-1)/2 \text{ for some integer } k \geq 1, \\ 0 & \text{otherwise.} \end{cases}$$

In (c) the first two conditions are **mutually exclusive**.

Theorem 1 - Values of $\mathbf{C}_n(q)$ at roots of unity

Theorem 1 (sequel).

(d) (*Value at $q = -1$*) We have $\mathbf{C}_n(-1) = (-1)^n r(n)$, where

$$r(n) = \text{card} \left\{ (x, y) \in \mathbb{Z}^2 \mid n = x^2 + y^2 \right\}.$$

(e) (*Value at $q = i = \sqrt{-1}$*) We have $\mathbf{C}_n(i) = (-1)^{\lfloor (n+1)/2 \rfloor} r'(n)$, where

$$r'(n) = \text{card} \left\{ (x, y) \in \mathbb{Z}^2 \mid n = x^2 + 2y^2 \right\}.$$

(f) (*Value at $q = j = e^{2\pi i/3}$*) We have $\mathbf{C}_n(j) = -3\lambda(n)$, where $\lambda(n)$ is a certain multiplicative function; it is related to

$$r''(n) = \text{card} \left\{ (x, y) \in \mathbb{Z}^2 \mid n = x^2 + xy + y^2 \right\}.$$

(g) (*Value at $q = -j = e^{2\pi i/6}$*) We have

$$\mathbf{C}_n(-j) = \begin{cases} (-1)^n r(n) & \text{if } n \equiv 0, \\ (-1)^n \frac{r(n)}{4} & \text{if } n \equiv 1, \pmod{3} \\ (-1)^{n+1} \frac{r(n)}{2} & \text{if } n \equiv 2. \end{cases}$$

Values of $\mathbf{C}_n(q)$ at roots of unity - On the proofs

- (Values at $q = -1, i, j$) The Fourier expansions of the three eta-products

$$\frac{\eta(z)^4}{\eta(2z)^2}, \quad \frac{\eta(z)^3}{\eta(3z)}, \quad \frac{\eta(z)^2 \eta(2z)}{\eta(4z)}$$

are well-known. For instance,

$$\frac{\eta(z)^4}{\eta(2z)^2} = \left(\prod_{i \geq 1} \frac{1 - t^i}{1 + t^i} \right)^2 \stackrel{\text{Gauss}}{=} \left(\sum_{k \in \mathbb{Z}} (-t)^{k^2} \right)^2 = 1 + \sum_{n \geq 1} r(n) (-t)^n.$$

- (Value at $q = -j$) The eta-product $\eta(z) \eta(2z) \eta(3z) / \eta(6z)$ does not appear in G. Köhler's monography "Eta products and theta series identities".
We computed its Fourier expansion in arXiv:1603.06357.

Remark. Köhler suggested another computation from the product of two modular forms of weight 1/2:

$$\frac{\eta(z) \eta(2z) \eta(3z)}{\eta(6z)} = \frac{\eta(z)^2}{\eta(2z)} \cdot \frac{\eta(2z)^2 \eta(3z)}{\eta(z) \eta(6z)}.$$

(Gauss) (V. Kac)

Reversing the computation, we obtain an elementary proof of Kac's identity, which Victor Kac had derived from his theory of contragredient Lie superalgebras (1978).

Theorem 2 - The polynomials $\mathbf{P}_n(q)$

There is **another interesting family** of Laurent polynomials.

We know that $\mathbf{C}_n(1) = 0$; therefore $\mathbf{C}_n(q)$ is divisible by $q - 1$.

Theorem 2. (a) *The polynomial $\mathbf{C}_n(q)$ is **divisible** by $(q - 1)^2$. Set*

$$\mathbf{P}_n(q) = \frac{q}{(q - 1)^2} \mathbf{C}_n(q) = \frac{\mathbf{C}_n(q)}{q^{-1} - 2 + q}$$

*Then $\mathbf{P}_n(q)$ is a Laurent polynomial of **degree $n - 1$** , with **integer coefficients** and it is **palindromic**:*

$$\mathbf{P}_n(q) = \mathbf{P}_n(q^{-1}) \in \mathbb{Z}[q, q^{-1}].$$

(b) (to be continued)

Let us first have a look at the **first twelve** polynomials $\mathbf{P}_n(q)$.

The first twelve polynomials $\mathbf{P}_n(q)$

n	$\mathbf{P}_n(q)$	$\mathbf{P}_n(1)$
1	1	1
2	$q^{-1} + 1 + q$	3
3	$q^{-2} + q^{-1} + q + q^2$	4
4	$q^{-3} + q^{-2} + q^{-1} + 1 + q + q^2 + q^3$	7
5	$q^{-4} + q^{-3} + q^{-2} + q^2 + q^3 + q^4$	6
6	$q^{-5} + q^{-4} + q^{-3} + q^{-2} + q^{-1}$ + 2 + q + q ² + q ³ + q ⁴ + q ⁵	12
7	$q^{-6} + q^{-5} + q^{-4} + q^{-3} + q^3 + q^4 + q^5 + q^6$	8
8	$q^{-7} + q^{-6} + q^{-5} + q^{-4} + q^{-3} + q^{-2} + q^{-1}$ + 1 + q + q ² + q ³ + q ⁴ + q ⁵ + q ⁶ + q ⁷	15
9	$q^{-8} + q^{-7} + q^{-6} + q^{-5} + q^{-4} + q^{-1}$ + 1 + q + q ⁴ + q ⁵ + q ⁶ + q ⁷ + q ⁸	13
10	$q^{-9} + q^{-8} + q^{-7} + q^{-6} + q^{-5} + q^{-4}$ + q ⁻³ + q ⁻² + q ⁻¹ + q + q ² + q ³ + q ⁴ + q ⁵ + q ⁶ + q ⁷ + q ⁸ + q ⁹	18
11	$q^{-10} + q^{-9} + q^{-8} + q^{-7} + q^{-6} + q^{-5}$ + q ⁵ + q ⁶ + q ⁷ + q ⁸ + q ⁹ + q ¹⁰	12
12	$q^{-11} + q^{-10} + q^{-9} + q^{-8} + q^{-7} + q^{-6} + q^{-5} + q^{-4}$ + q ⁻³ + 2 q ⁻² + 2 q ⁻¹ + 2 + 2 q + 2 q ² + q ³ + q ⁴ + q ⁵ + q ⁶ + q ⁷ + q ⁸ + q ⁹ + q ¹⁰ + q ¹¹	28

Observation. The coefficients are all **non-negative** and $\mathbf{P}_n(1) \neq 0$
(actually, $\mathbf{P}_n(1) > n$).

Theorem 2 - Value of $\mathbf{P}_n(q)$ at $q = 1$

Theorem 2 (sequel).

(b) *(Value at $q = 1$) We have*

$$\mathbf{P}_n(1) = \sigma(n) = \sum_{d|n} d.$$

(c) *(Positivity) The coefficients of $\mathbf{P}_n(q)$ are non-negative integers.*

We may expect the coefficients of $\mathbf{P}_n(q)$ to **count** something.

This is indeed so (see next slide).

Theorem 2 - Coefficients of $\mathbf{P}_n(q)$

Write

$$\mathbf{P}_n(q) = a_{n,0} + \sum_{i=1}^{n-1} a_{n,i} (q^i + q^{-i}).$$

Theorem 2 (end).

(d) The coefficient $a_{n,i}$ is the **number of divisors** d of n satisfying the inequalities

$$\frac{i + \sqrt{2n + i^2}}{2} < d \leq i + \sqrt{2n + i^2}.$$

Remarks.

(a) In particular, the **central coefficient** $a_{n,0}$ is the number of divisors d of n in the interval $(\sqrt{2n}/2, \sqrt{2n}]$. The sequence $a_{n,0}$ **grows very slowly**:

$$a_{72,0} = 3, \quad a_{120,0} = 4, \quad a_{1800,0} = 5, \quad a_{28800,0} = 9, \quad a_{259200,0} = 13.$$

Nevertheless it is **unbounded** (Vatne, 2016).

(b) The **sum of the coefficients** of $\mathbf{P}_n(q)$ equals the **sum of divisors** of n . Hence the above intervals **overlap** heavily.

Plan

Our results

Why we got interested

How we computed the number of ideals of codimension n

Concluding questions

Appendix

Previous work by my coauthor

- Let $\mathbb{F}_q\langle x, y, x^{-1}, y^{-1} \rangle$ be the algebra of **non-commutative** Laurent polynomials in two variables:

$$\mathbb{F}_q\langle x, y, x^{-1}, y^{-1} \rangle \cong \mathbb{F}_q[F_2]$$

where F_2 is the **free group** on two generators and \mathbb{F}_q is the field with q elements.

- R. Bacher and C. Reutenauer (2014):** The **number** $C_n(q)$ of **right ideals** of **codimension n** of $\mathbb{F}_q\langle x, y, x^{-1}, y^{-1} \rangle$ is a **polynomial** in q of the form

$$(q-1)^{n+1} P_n(q)$$

where $P_n(q)$ is a polynomial whose coefficients are **non-negative integers**.

- Moreover, $P_n(1)$ is equal to the number of **subgroups of index n** in the free group F_2 .

*Counting right ideals of codimension n of the group algebra $\mathbb{F}_q[F_2]$ yields a **q -analogue** of the **number of subgroups** of the group F_2 of index n .*

- Question.** What happens when one replaces F_2 by the **free abelian group \mathbb{Z}^2** ?

In this case, $\mathbb{F}_q[\mathbb{Z}^2] = \mathbb{F}_q[x, y, x^{-1}, y^{-1}]$ is the algebra of **Laurent polynomials** in two variables.

Do we get a **q -analogue** of the **number of finite index subgroups** of \mathbb{Z}^2 by counting the **finite codimension ideals** of $\mathbb{F}_q[x, y, x^{-1}, y^{-1}]$?

Counting the finite codimension ideals of $\mathbb{F}_q[x, y, x^{-1}, y^{-1}]$

Let $C_n(q)$ be the number of ideals of codimension n of $\mathbb{F}_q[x, y, x^{-1}, y^{-1}] = \mathbb{F}_q[\mathbb{Z}^2]$.

The subsequent results have been obtained with Christophe Reutenauer
(arXiv:1505.07229).

- **Theorem 3.** We have

$$C_n(q) = q^n \mathbf{C}_n(q) \in \mathbb{Z}[q].$$

So $C_n(q)$ is a *palindromic polynomial* of degree $2n$ with *integer* coefficients.

Its coefficients $c_{n,i}$ have been determined above (Theorem 1).

- **Corollary.** The polynomial $C_n(q)$ is divisible by $(q - 1)^2$. Set

$$P_n(q) = \frac{C_n(q)}{(q - 1)^2}.$$

Then $P_n(q)$ is a *palindromic polynomial* of degree $2n - 2$ whose coefficients $a_{n,i}$ (determined in Theorem 2) are *non-negative integers*.

- **Value of $P_n(q)$ at $q = 1$.** By Theorem 2 we have

$$P_n(1) = \mathbf{P}_n(1) = \sigma(n) = \sum_{d|n} d,$$

which is... the *number of subgroups* of \mathbb{Z}^2 of *index* n .

Digression: zeta function

We now give an application of Theorem 3, namely we give an explicit formula for the **zeta function** of the **Hilbert scheme** of n points on the torus $\mathbb{G}_m \times \mathbb{G}_m$.

Recall:

- ▶ The **zeta function** of an algebraic variety X over \mathbb{F}_q is the formal power series

$$Z_{X/\mathbb{F}_q}(t) = \exp \left(\sum_{m \geq 1} |X(\mathbb{F}_{q^m})| \frac{t^m}{m} \right)$$

where $|X(\mathbb{F}_{q^m})|$ is the **number of points** of X over the finite extension \mathbb{F}_{q^m} of \mathbb{F}_q .

- ▶ **Dwork (1960)** If X is **quasi-projective**, then $Z_{X/\mathbb{F}_q}(t)$ is a **rational function**.
- ▶ **Deligne (1974)** If X is **projective**, then **Poincaré duality** implies a **functional equation** of the form

$$Z_{X/\mathbb{F}_q} \left(\frac{1}{q^d t} \right) = \pm (q^{d/2} t)^\chi Z_{X/\mathbb{F}_q}(t)$$

where d is the **dimension** of X and χ its **Euler characteristic**.

Hilbert scheme of n points on the torus: zeta function

- The ideals of codimension n of $\mathbb{F}_q[x, y, x^{-1}, y^{-1}]$ are the \mathbb{F}_q -points of the **Hilbert scheme**

$$H^n = \text{Hilb}^n(\mathbb{G}_m \times \mathbb{G}_m)$$

of n points on the **two-dimensional torus** (i.e., of the affine plane minus two distinct straight lines). This scheme is **smooth** and **quasi-projective**.

- As a consequence of Theorem 1, the **zeta function** of H^n is given by

$$Z_{H^n/\mathbb{F}_q}(t) = \frac{1}{(1 - q^n t)^{c_{n,0}}} \prod_{i=1}^n \frac{1}{[(1 - q^{n+i} t)(1 - q^{n-i} t)]^{c_{n,i}}}$$

where the **exponents** $c_{n,i}$ are the (integer) coefficients of the polynomial $\mathbf{C}_n(q)$.

Functional equation for the zeta function

- **Example** $n = 6$. Since

$$C_6(q) = q^{12} - q^{11} + q^7 - 2q^6 + q^5 - q + 1,$$

we obtain

$$Z_{H^6/\mathbb{F}_q}(t) = \frac{(1 - qt)(1 - q^6t)^2(1 - q^{11}t)}{(1 - t)(1 - q^5t)(1 - q^7t)(1 - q^{12}t)}.$$

- **Palindromicity** of $C_n(q)$ and **vanishing** of $C_n(1)$ imply the **functional equation**

$$Z_{H^n/\mathbb{F}_q}\left(\frac{1}{q^{2n}t}\right) = Z_{H^n/\mathbb{F}_q}(t).$$

(and yet H^n is not projective!)

Plan

Our results

Why we got interested

How we computed the number of ideals of codimension n

Concluding questions

Appendix

Ellingsrud & Strømme's cellular decomposition

- Ellingsrud & Strømme (1987). The Hilbert scheme of n points in the affine plane

$$\mathrm{Hilb}^n(\mathbb{A}^2)$$

has a decomposition into affine spaces, indexed by the partitions λ of n :

$$\{I \subset k[x, y] \mid \mathrm{codim} I = n\} \stackrel{(\text{Ellingsrud-Strømme})}{=} \coprod_{\lambda \vdash n} \mathcal{C}_\lambda, \quad \text{where } \mathcal{C}_\lambda \cong \mathbb{A}^{n+\ell(\lambda)}$$

\cup

$$\{\text{monomial ideals of } k[x, y]\} \longleftrightarrow \{\text{partitions of } n\}$$

Therefore,

$$\mathrm{card} \ \mathrm{Hilb}^n(\mathbb{A}_{\mathbb{F}_q}^2) = \sum_{\lambda \vdash n} \mathrm{card} \ \mathcal{C}_\lambda = \sum_{\lambda \vdash n} q^{n+\ell(\lambda)}$$

where $\ell(\lambda)$ is the length of the partition.

Conca & Valla's parametrization

- We identify an ideal J of codimension n of $k[x, y, x^{-1}, y^{-1}]$ with the ideal

$$I = J \cap k[x, y]$$

of $k[x, y]$: it is also of codimension n .

$$\{I \subset k[x, y] \mid \text{codim } I = n\} \stackrel{(\text{Ellingsrud--Strømme})}{=} \coprod_{\lambda \vdash n} \mathcal{C}_\lambda$$

\cup

$$\begin{aligned} \{J \subset k[x, y, x^{-1}, y^{-1}] \mid \text{codim } J = n\} &= \{I \subset k[x, y] \mid \text{codim } I = n \text{ \& } x, y \in (k[x, y]/I)^\times\} \\ &= \coprod_{\lambda \vdash n} \mathcal{C}_\lambda^{\text{inv}} \subset \coprod_{\lambda \vdash n} \mathcal{C}_\lambda \end{aligned}$$

- Now **Conca–Valla** (2008) produced an explicit **parametrization** of each affine cell \mathcal{C}_λ . We use it to obtain a **parametrization** for each $\mathcal{C}_\lambda^{\text{inv}}$, which is an **open subset** of \mathcal{C}_λ , and then to count the elements of $\mathcal{C}_\lambda^{\text{inv}}$.

- Our polynomial $C_n(q)$, counting the number of ideals of codimension n of $\mathbb{F}_q[x, y, x^{-1}, y^{-1}]$, is given by

$$C_n(q) = \sum_{\lambda \vdash n} \text{card } \mathcal{C}_\lambda^{\text{inv}}.$$

Expressing $C_n(q)$ in terms of partitions of n

Using our parametrization of $\mathcal{C}_\lambda^{\text{inv}}$, we obtain the following expression for the **number** $C_n(q)$ of **ideals of codimension n** of the algebra $\mathbb{F}_q[x, y, x^{-1}, y^{-1}]$.

- **Proposition.** We have $C_n(q) = \sum_{\lambda \vdash n} \text{card } \mathcal{C}_\lambda^{\text{inv}}$, where

$$\text{card } \mathcal{C}_\lambda^{\text{inv}} = (q-1)^{2v(\lambda)} q^{n-\ell(\lambda)} \prod_{\substack{i=1, \dots, t \\ d_i \geq 1}} \frac{q^{2d_i} - 1}{q^2 - 1}.$$

- **Notation.** Let λ be a **partition** of n . Consider its **Ferrers diagram**: it has n boxes. Then

- * t is the number of **columns** of the diagram,
- * $m_1 \leq m_2 \leq \dots \leq m_t$ is the sequence of **heights** of columns and $d_i = m_i - m_{i-1}$ is the sequence of **differences of heights** (by convention $m_0 = 0$),
- * $v(\lambda)$ is the number of **distinct values** of the sequence $m_1 \leq m_2 \leq \dots \leq m_t$,
- * $\ell(\lambda) = m_t$ is the number of **parts** of the partition.

Straightforward consequences

The following can be derived from the formula

$$C_n(q) = \sum_{\lambda \vdash n} (q-1)^{2v(\lambda)} q^{n-\ell(\lambda)} \prod_{\substack{i=1, \dots, t \\ d_i \geq 1}} \frac{q^{2d_i} - 1}{q^2 - 1}.$$

- Since $v(\lambda) \geq 1$, the polynomial $C_n(q)$ is divisible by $(q-1)^2$.
- If $v(\lambda) = 1$, then the diagram of the partition is rectangular, $d_2 = \dots = d_t = 0$ and we have $n = dt$, where $d = d_1$. This means that d is a divisor of n . Then

$$\text{card } \mathcal{C}_\lambda^{\text{inv}} = (q-1)^2 q^{n-d} \frac{q^{2d} - 1}{q^2 - 1}.$$

- If $v(\lambda) \geq 2$, then $\text{card } \mathcal{C}_\lambda^{\text{inv}}$ is divisible by $(q-1)^4$.
- Consequently, the value at $q = 1$ of $P_n(q) = C_n(q)/(q-1)^2$ is equal to

$$P_n(1) = \sum_{d|n} \left(q^{n-d} \frac{q^{2d} - 1}{q^2 - 1} \right)_{|q=1} = \sum_{d|n} d = \sigma(n).$$

The generating function of the polynomials $C_n(q)$

Let us now consider the the **generating function** of the polynomials $C_n(q)$.

- **Corollary.** *We have*

$$1 + \sum_{n \geq 1} \frac{C_n(q)}{q^n} t^n = \prod_{i \geq 1} \frac{(1 - t^i)^2}{1 - (q + q^{-1})t^i + t^{2i}}. \quad \leftarrow \text{our infinite product}$$

Hence $C_n(q) = q^n C_n(q)$.

- **Proof.** The set of all **partitions** is the **free abelian monoid** on the set $\mathbb{N} \setminus \{0\}$ of **positive integers**: any partition can be written uniquely as $\lambda = \prod_{i \geq 1} i^{e_i}$. Therefore,

$$\begin{aligned} \text{LHS} &= 1 + \sum_{\lambda \neq \emptyset} \text{card } \mathcal{C}_\lambda^{\text{inv}} \frac{t^{|\lambda|}}{q^{|\lambda|}} \stackrel{\text{(free ab. mon.)}}{=} \prod_{i \geq 1} \left(1 + \sum_{e \geq 1} \text{card } \mathcal{C}_{ie}^{\text{inv}} \frac{t^{ie}}{q^{ie}} \right) \\ &\stackrel{\text{(rectangular)}}{=} \prod_{i \geq 1} \left(1 + \sum_{e \geq 1} (q-1)^2 q^{ie-e} \frac{q^{2e}-1}{q^2-1} \frac{t^{ie}}{q^{ie}} \right) \\ &= \prod_{i \geq 1} \left(1 + \frac{(q-1)^2}{q^2-1} \left[\frac{qt^i}{1-qt^i} - \frac{q^{-1}t^i}{1-q^{-1}t^i} \right] \right) = \prod_{i \geq 1} \frac{(1-t^i)^2}{1-(q+q^{-1})t^i + t^{2i}}. \end{aligned}$$

QED

Plan

Our results

Why we got interested

How we computed the number of ideals of codimension n

Concluding questions

Appendix

Two questions

To conclude we ask the following two questions:

- Question 1. **Why** are the polynomials $C_n(q)$ and $P_n(q)$ **palindromic**?
- Question 2. **Why** are the coefficients of $P_n(q)$ **non-negative**?

“**Why**” means: are there **geometric explanations**?

Question 1 - Palindromicity

- **Question 1. Why are the polynomials $C_n(q)$ and $P_n(q)$ palindromic?**

T. Hausel, E. Letellier et F. Rodriguez-Villegas observed the same palindromicity in their work on character varieties and they called it "*curious Poincaré duality*".

- The character varieties they consider are $GL_n(\mathbb{C})$ character varieties of a Riemann surface of genus g with k punctures of the form

$$\mathcal{M} = \{(A_1, B_1, \dots, A_g, B_g, X_1, \dots, X_k) \in GL_n(\mathbb{C})^{2g} \times C_1 \times \dots \times C_k \\ \text{such that } [A_1, B_1] \cdots [A_g, B_g] X_1 \cdots X_k = I_n\} // GL_n(\mathbb{C}).$$

Here $C_1, \dots, C_k \subset GL_n(\mathbb{C})$ are generic semisimple conjugacy classes.

They computed $\text{card } \mathcal{M}(\mathbb{F}_q)$ and showed it to be a palindromic polynomial.

- De Cataldo, Hausel and Migliorini provided a sophisticated geometrical explanation for palindromicity (based on mixed Hodge structures).

Question 2 - Positivity

Question 2. Why are the coefficients of $P_n(q)$ non-negative?

No similar phenomenon was observed for character varieties.

So is this positivity **serendipitous** (glücklicher Zufall)
or is there a very **subtle** geometric reason?

We don't know.

Ich danke für Ihre Aufmerksamkeit

References

- A. Conca, G. Valla, *Canonical Hilbert-Burch matrices for ideals of $k[x, y]$* , Michigan Math. J. 57 (2008), 157–172.
- G. Ellingsrud, S. A. Strømme, *On the homology of the Hilbert scheme of points in the plane*, Invent. Math. 87 (1987), no. 2, 343–352.
- V. G. Kac, *Infinite-dimensional algebras, Dedekind's η -function, classical Möbius function and the very strange formula*, Adv. in Math. 30 (1978), 85–136.
- C. Kassel, C. Reutenauer, *On the zeta function of a punctual Hilbert scheme of the two-dimensional torus*, arXiv:1505.07229.
- C. Kassel, C. Reutenauer, *The Fourier expansion of $\eta(z)\eta(2z)\eta(3z)/\eta(6z)$* , arXiv:1603.06357
- G. Köhler, *Eta products and theta series identities*, Springer Monographs in Mathematics, Springer, Heidelberg, 2011.

Plan

Our results

Why we got interested

How we computed the number of ideals of codimension n

Concluding questions

Appendix

Conca and Valla's parametrization

- To a partition λ we associate the $(t+1) \times t$ -matrix

$$M_\lambda(x, y) = \begin{pmatrix} y^{d_1} + p_{1,1} & 0 & \cdots & 0 & 0 & \cdots & 0 \\ p_{2,1} - x & y^{d_2} + p_{2,2} & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ p_{i,1} & p_{i,2} & \cdots & y^{d_i} + p_{i,i} & 0 & \cdots & 0 \\ p_{i+1,1} & p_{i+1,2} & \cdots & p_{i+1,i} - x & y^{d_{i+1}} + p_{i+1,i+1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ p_{t,1} & p_{t,2} & \cdots & p_{t,i} & p_{t,i+1} & \cdots & y^{d_t} + p_{t,t} \\ p_{t+1,1} & p_{t+1,2} & \cdots & p_{t+1,i} & p_{t+1,i+1} & \cdots & p_{t+1,t} - x \end{pmatrix}$$

where $(p_{i,j})_{i \geq j} \in \mathbb{F}_q[y]$ is a **family of polynomials** in the variable y such that

- * $\deg p_{i,j} < d_j$ if $d_j \geq 1$,
- * $p_{i,j} = 0$ if $d_j = 0$.

The set of all polynomials $(p_{i,j})_{i,j}$ forms an **affine space** T_λ of dimension $n + \ell(\lambda)$.

- Let I_λ be the ideal generated by the **maximal minors** (of size $t \times t$) of the matrix M_λ .

Conca–Valla (2008) : The map $(p_{i,j})_{i,j} \mapsto I_\lambda$ induces a **bijection** $T_\lambda \cong C_\lambda$.

Mixed Hodge structures

- Götsche and Soergel (1993) determined the **mixed Hodge structure** of the punctual Hilbert scheme for any smooth algebraic surface over \mathbb{C} (using Beilinson–Bernstein–Deligne–Gabber’s decomposition theorem and its mixed Hodge version due to Saito; intersection cohomology, perverse sheaves).
- Applying Götsche and Soergel’s results to the Hilbert scheme $H_{\mathbb{C}}^n$ of n points on $\mathbb{C}^{\times} \times \mathbb{C}^{\times}$, Hausel, Letellier and Rodriguez-Villegas (2013) obtained the following formula for the generating function of the **mixed Hodge polynomials** of $H_{\mathbb{C}}^n$:

$$1 + \sum_{n \geq 1} H_c(H_{\mathbb{C}}^n; q, u) \frac{t^n}{q^n} = \prod_{i \geq 1} \frac{(1 + u^{2i+1} t^i)^2}{(1 - u^{2i+2} q t^i)(1 - u^{2i} q^{-1} t^i)}. \quad (1)$$

Note that, for $q = 1$, the specialization $H_c(H_{\mathbb{C}}^n; 1, u)$ is the **Poincaré polynomial** of $H_{\mathbb{C}}^n$ (whose coefficients are the **Betti numbers** of $H_{\mathbb{C}}^n$).

- When we set $u = -1, \dots$

E -polynomials

- When setting $u = -1$ in Formula (1), we obtain

$$1 + \sum_{n \geq 1} E(H_{\mathbb{C}}^n; q) \frac{t^n}{q^n} = \prod_{i \geq 1} \frac{(1 - t^i)^2}{(1 - qt^i)(1 - q^{-1}t^i)} \quad \leftarrow \text{our infinite product}$$

where $E(H_{\mathbb{C}}^n; q) = H_c(H_{\mathbb{C}}^n; q, -1)$ is the **E -polynomial** of $H_{\mathbb{C}}^n$.

- Nick Katz** (2008) : when the variety $X_{\mathbb{C}}$ is of **polynomial-count**, i.e. when the number of points of any reduction to a finite field \mathbb{F}_q is given by a “universal” polynomial in q , then

$$E(X_{\mathbb{C}}; q) = \text{card } X(\mathbb{F}_q).$$

- By our computation we know that the **Hilbert scheme** $H_{\mathbb{C}}^n$ is of polynomial-count, hence

$$E(H_{\mathbb{C}}^n; q) = C_n(q),$$

which gives another proof for the **infinite product expansion** of the generating function of the polynomials $C_n(q)$.

Question 1 - A geometric explanation for palindromicity

- **Question 1. Why are the polynomials $C_n(q) = E(H_{\mathbb{C}}^n; q)$ palindromic?**

Hausel *et al.* observed the same palindromicity for the E -polynomials of their character varieties and they called it “*curious Poincaré duality*”.

- **De Cataldo, Hausel et Migliorini (2013):** Consider the *elliptic curve* $\mathcal{E} = \mathbb{C}/\mathbb{Z}[i]$ and a diffeomorphism $\varphi : \mathbb{C}^\times \times \mathbb{C}^\times \rightarrow \mathcal{E} \times \mathbb{C}$ (analytic, not algebraic), for instance,

$$\varphi(z_1, z_2) = \left(\frac{z_1}{|z_1|}, \frac{z_2}{|z_2|}; \ln |z_1|, \ln |z_2| \right).$$

The diffeomorphism induce an isomorphism on the *cohomology* of the Hilbert schemes

$$\Phi : H^*(H_{\mathbb{C}}^n, \mathbb{Q}) \cong H^*(\mathrm{Hilb}^n(\mathcal{E} \times \mathbb{C}), \mathbb{Q}).$$

The isomorphism Φ does not preserve the mixed Hodge structures; it identifies the *weight filtration* of $H^*(H_{\mathbb{C}}^n, \mathbb{Q})$ with the *perverse Leray filtration* of $H^*(\mathrm{Hilb}^n(\mathcal{E} \times \mathbb{C}), \mathbb{Q})$.

The *Poincaré duality* on the cohomology of \mathcal{E} (which is projective) induces a duality on the perverse Leray filtration, which explains why $C_n(q)$ is *palindromic*.

Question 2 - Positivity

- The group $\mathbb{C}^\times \times \mathbb{C}^\times$ acts naturally on itself, which induces an **action** of $\mathbb{C}^\times \times \mathbb{C}^\times$ on the Hilbert scheme $H_{\mathbb{C}}^n$.

Consider the **geometric quotient** $\tilde{H}_{\mathbb{C}}^n = H_{\mathbb{C}}^n // (\mathbb{C}^\times \times \mathbb{C}^\times)$. Then

$$E(\tilde{H}_{\mathbb{C}}^n; q) = \frac{E(H_{\mathbb{C}}^n; q)}{(q-1)^2} = \frac{C_n(q)}{(q-1)^2} = P_n(q).$$

- **Question 2. Why are the coefficients of $P_n(q) = E(\tilde{H}_{\mathbb{C}}^n; q)$ non-negative?**

No similar phenomenon was observed for character varieties.

The fact that $\tilde{H}_{\mathbb{C}}^n$ has **odd cohomology** and a counting polynomial with **non-negative** coefficients implies **non-trivial cancellation** for its mixed Hodge numbers.

So is this positivity **serendipitous** (glücklicher Zufall)
or is there a very **subtle** geometric reason?

We don't know.

References for the Appendix

- M. A. de Cataldo, T. Hausel, L. Migliorini, *Exchange between perverse and weight filtration for the Hilbert schemes of points of two surfaces*, J. Singul. 7 (2013), 23–38.
- L. Göttsche, W. Soergel, *Perverse sheaves and the cohomology of Hilbert schemes of smooth algebraic surfaces*, Math. Ann. 296 (1993), no. 2, 235–245.
- T. Hausel, F. Rodriguez-Villegas, *Mixed Hodge polynomials of character varieties. With an appendix by Nicholas M. Katz*, Invent. Math. 174 (2008), no. 3, 555–624.
- T. Hausel, E. Letellier, F. Rodriguez-Villegas, *Arithmetic harmonic analysis on character and quiver varieties*, Duke Math. J. 160 (2011), no. 2, 323–400.
- T. Hausel, E. Letellier, F. Rodriguez-Villegas, *Arithmetic harmonic analysis on character and quiver varieties II*, Adv. Math. 234 (2013), 85–128.