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Introduction

• Report on joint work with Christophe Reutenauer (UQAM)

References :

∗ C. Kassel, C. Reutenauer, The zeta function of the Hilbert scheme of
n points on a two-dimensional torus, arXiv:1505.07229.

∗ C. Kassel, C. Reutenauer, The Fourier expansion of η(z)η(2z)η(3z)/η(6z),
arXiv:1603.06357.

• We are interested in the infinite product∏
i≥1

(1− t i )2

(1− qt i )(1− q−1t i )
.

We wish to compute its expansion as a formal power series in t.

• Why we are interested in it will be explained later.



Notation

• Define C1(q),C2(q),C3(q) . . . by∏
i≥1

(1− t i )2

(1− qt i )(1− q−1t i )
= 1 +

∑
n≥1

Cn(q) tn.

• Immediate observations.

(a) Each Cn(q) is a Laurent polynomial with integer coefficients

Cn(q) ∈ Z[q, q−1].

(b) (Vanishing) Setting q = 1, we obtain Cn(1) = 0 for all n ≥ 1.

(c) (Palindromicity) We have Cn(q) = Cn(q−1) so that we can write

Cn(q) = cn,0 +
∑
i≥1

cn,i

(
qi + q−i

)
.

The coefficients cn,i are integers. We will compute them explicitly.



Another observation

• If ω is a root of unity of order 2, 3, 4, or 6, then ω + ω−1 ∈ Z, which together with

1 +
∑
n≥1

Cn(q) tn =
∏
i≥1

(1− t i )2

1− (q + q−1)t i + t2i

shows that Cn(ω) ∈ Z is an integer. This yields four sequences of integers, which we
will compute.

• Remark. Let ω be a root of unity of order d = 2, 3, 4 or 6. Then

1 +
∑
n≥1

Cn(ω) tn =



η(z)4

η(2z)2
if d = 2,

η(z)3

η(3z)
if d = 3,

η(z)2 η(2z)

η(4z)
if d = 4,

η(z) η(2z) η(3z)

η(6z)
if d = 6,

where η(z) = t1/24
∏

n≥1 (1− tn) (and t = e2πiz ) is Dedekind’s eta function.

The right-hand sides are modular forms of weight 1 and of respective levels 2, 3, 4, 6.



The first twelve Laurent polynomials Cn(q)

n Cn(q)

1 q−1 − 2 + q

2 q−2 − q−1 + 0− q + q2

3 q−3 − q−2 − q−1 + 2 − q − q2 + q3

4 q−4 − q−3 + 0− q3 + q4

5 q−5 − q−4 − q−2 + q−1 + 0 + q − q2 − q4 + q5

6 q−6 − q−5 + q−1 − 2 + q − q5 + q6

7 q−7 − q−6 − q−3 + q−2 + 0 + q2 − q3 − q6 + q7

8 q−8 − q−7 + 0− q7 + q8

9 q−9 − q−8 − q−4 + q−3 + q−2 − q−1 + 0− q + q2 + q3 − q4 − q8 + q9

10 q−10 − q−9 − q−1 + 2− q − q9 + q10

11 q−11 − q−10 − q−5 + q−4 + 0 + q4 − q5 − q10 + q11

12 q−12 − q−11 + q−3 − q−2 + 0− q2 + q3 − q11 + q12

Observations.

* the central coefficients are 0 or ±2 (for which n do we have cn,0 = ±2?)

* the non-central coefficients are 0 or ±1.

* deg Cn(q) = n.
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Theorem 1 - The coefficients of Cn(q)

The previous observations are corroborated by the following theorem obtained
together with Christophe Reutenauer.

Theorem 1. Let Cn(q) = cn,0 +
∑

i≥1 cn,i

(
qi + q−i

)
.

(a) We have cn,i = 0 for all i > n and cn,n = 1. Thus, deg Cn(q) = n.

(b) For the central coefficients we have

cn,0 =

{
2 (−1)k if n = k(k + 1)/2 for some integer k ≥ 1, (n is triangular )

0 otherwise.

(c) For the non-central coefficients (i ≥ 1) we have

cn,i =


(−1)k if n = k(k + 2i + 1)/2 for some integer k ≥ 1,

(−1)k−1 if n = k(k + 2i − 1)/2 for some integer k ≥ 1,

0 otherwise.

In (c) the first two conditions are mutually exclusive.



Theorem 1 - Values of Cn(q) at roots of unity

Theorem 1 (sequel).

(d) (Value at q = −1) We have Cn(−1) = (−1)nr(n), where

r(n) = card
{

(x , y) ∈ Z2 | n = x2 + y2
}
.

(e) (Value at q = i =
√
−1) We have Cn(i) = (−1)b(n+1)/2c r ′(n), where

r ′(n) = card
{

(x , y) ∈ Z2 | n = x2 + 2y2
}
.

(f) (Value at q = j = e2πi/3) We have Cn(j) = −3λ(n), where λ(n) is a certain
multiplicative function; it is related to

r ′′(n) = card
{

(x , y) ∈ Z2 | n = x2 + xy + y2
}
.

(g) (Value at q = −j = e2πi/6) We have

Cn(−j) =



(−1)nr(n) if n ≡ 0,

(−1)n r(n)

4
if n ≡ 1, (mod 3)

(−1)n+1 r(n)

2
if n ≡ 2.



Values of Cn(q) at roots of unity - On the proofs

• (Values at q = −1, i , j) The Fourier expansions of the three eta-products

η(z)4

η(2z)2
,

η(z)3

η(3z)
,

η(z)2 η(2z)

η(4z)

are well-known. For instance,

η(z)4

η(2z)2
=

∏
i≥1

1− t i

1 + t i

2

Gauss
=

∑
k∈Z

(−t)k2

2

= 1 +
∑
n≥1

r(n) (−t)n.

• (Value at q = −j) The eta-product η(z) η(2z) η(3z)/η(6z) does not appear in
G. Köhler’s monography “Eta products and theta series identities”.
We computed its Fourier expansion in arXiv:1603.06357.

Remark. Köhler suggested another computation from the product of two modular
forms of weight 1/2:

η(z) η(2z) η(3z)

η(6z)
=

η(z)2

η(2z)
·
η(2z)2 η(3z)

η(z) η(6z)
.

(Gauss) (V. Kac)

Reversing the computation, we obtain an elementary proof of Kac’s identity, which
Victor Kac had derived from his theory of contragredient Lie superalgebras (1978).



Theorem 2 - The polynomials Pn(q)

There is another interesting family of Laurent polynomials.

We know that Cn(1) = 0; therefore Cn(q) is divisible by q − 1.

Theorem 2. (a) The polynomial Cn(q) is divisible by (q − 1)2. Set

Pn(q) =
q

(q − 1)2
Cn(q) =

Cn(q)

q−1 − 2 + q

Then Pn(q) is a Laurent polynomial of degree n − 1, with integer coefficients and it is
palindromic:

Pn(q) = Pn(q−1) ∈ Z[q, q−1].

(b) (to be continued)

Let us first have a look at the first twelve polynomials Pn(q).



The first twelve polynomials Pn(q)

n Pn(q) Pn(1)

1 1 1

2 q−1 + 1 + q 3

3 q−2 + q−1 + q + q2 4

4 q−3 + q−2 + q−1 + 1 + q + q2 + q3 7

5 q−4 + q−3 + q−2 + q2 + q3 + q4 6

q−5 + q−4 + q−3 + q−2 + q−1

6 + 2 + q + q2 + q3 + q4 + q5 12

7 q−6 + q−5 + q−4 + q−3 + q3 + q4 + q5 + q6 8

q−7 + q−6 + q−5 + q−4 + q−3 + q−2 + q−1

8 +1 + q + q2 + q3 + q4 + q5 + q6 + q7 15

q−8 + q−7 + q−6 + q−5 + q−4 + q−1

9 +1 + q + q4 + q5 + q6 + q7 + q8 13

q−9 + q−8 + q−7 + q−6 + q−5 + q−4

+q−3 + q−2 + q−1 + q + q2 + q3

10 +q4 + q5 + q6 + q7 + q8 + q9 18

q−10 + q−9 + q−8 + q−7 + q−6 + q−5

11 +q5 + q6 + q7 + q8 + q9 + q10 12

q−11 + q−10 + q−9 + q−8 + q−7 + q−6 + q−5 + q−4

+q−3 + 2 q−2 + 2 q−1 + 2 + 2 q + 2 q2 + q3

12 +q4 + q5 + q6 + q7 + q8 + q9 + q10 + q11 28

Observation. The coefficients are all non-negative and Pn(1) 6= 0

(actually, Pn(1) > n).



Theorem 2 - Value of Pn(q) at q = 1

Theorem 2 (sequel).

(b) (Value at q = 1) We have

Pn(1) = σ(n) =
∑
d|n

d .

(c) (Positivity) The coefficients of Pn(q) are non-negative integers.

We may expect the coefficients of Pn(q) to count something.

This is indeed so (see next slide).



Theorem 2 - Coefficients of Pn(q)

Write

Pn(q) = an,0 +

n−1∑
i=1

an,i (qi + q−i ).

Theorem 2 (end).

(d) The coefficient an,i is the number of divisors d of n satisfying the inequalities

i +
√

2n + i2

2
< d ≤ i +

√
2n + i2 .

Remarks.

(a) In particular, the central coefficient an,0 is the number of divisors d of n

in the interval (
√

2n/2,
√

2n]. The sequence an,0 grows very slowly:

a72,0 = 3, a120,0 = 4, a1800,0 = 5, a28800,0 = 9, a259200,0 = 13.

Nevertheless it is unbounded (Vatne, 2016).

(b) The sum of the coefficients of Pn(q) equals the sum of divisors of n. Hence the
above intervals overlap heavily.
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Previous work by my coauthor

• Let Fq〈x , y , x−1, y−1〉 be the algebra of non-commutative Laurent polynomials in
two variables:

Fq〈x , y , x−1, y−1〉 ∼= Fq [F2]

where F2 is the free group on two generators and Fq is the field with q elements.

• R. Bacher and C. Reutenauer (2014): The number Cn(q) of right ideals of
codimension n of Fq〈x , y , x−1, y−1〉 is a polynomial in q of the form

(q − 1)n+1 Pn(q)

where Pn(q) is a polynomial whose coefficients are non-negative integers.

• Moreover, Pn(1) is equal to the number of subgroups of index n in the free group F2.

Counting right ideals of codimension n of the group algebra Fq [F2] yields
a q-analogue of the number of subgroups of the group F2 of index n.

• Question. What happens when one replaces F2 by the free abelian group Z2?

In this case, Fq [Z2] = Fq [x , y , x−1, y−1] is the algebra of Laurent polynomials in two
variables.

Do we get a q-analogue of the number of finite index subgroups of Z2 by counting the
finite codimension ideals of Fq [x , y , x−1, y−1]?



Counting the finite codimension ideals of Fq[x , y , x−1, y−1]

Let Cn(q) be the number of ideals of codimension n of Fq [x , y , x−1, y−1] = Fq [Z2].

The subsequent results have been obtained with Christophe Reutenauer
(arXiv:1505.07229).

• Theorem 3. We have
Cn(q) = qn Cn(q) ∈ Z[q].

So Cn(q) is a palindromic polynomial of degree 2n with integer coefficients.

Its coefficients cn,i have been determined above (Theorem 1).

• Corollary. The polynomial Cn(q) is divisible by (q − 1)2. Set

Pn(q) =
Cn(q)

(q − 1)2
.

Then Pn(q) is a palindromic polynomial of degree 2n − 2 whose coefficients an,i

(determined in Theorem 2) are non-negative integers.

• Value of Pn(q) at q = 1. By Theorem 2 we have

Pn(1) = Pn(1) = σ(n) =
∑
d|n

d ,

which is... the number of subgroups of Z2 of index n.



Digression: zeta function

We now give an application of Theorem 3, namely we give an explicit formula for the
zeta function of the Hilbert scheme of n points on the torus Gm × Gm.

Recall:

I The zeta function of an algebraic variety X over Fq is the formal power series

ZX/Fq
(t) = exp

∑
m≥1

|X (Fqm )|
tm

m


where |X (Fqm )| is the number of points of X over the finite extension Fqm of Fq .

I Dwork (1960) If X is quasi-projective, then ZX/Fq
(t) is a rational function.

I Deligne (1974) If X is projective, then Poincaré duality implies a
functional equation of the form

ZX/Fq

(
1

qd t

)
= ±(qd/2t)χ ZX/Fq

(t)

where d is the dimension of X and χ its Euler characteristic.



Hilbert scheme of n points on the torus: zeta function

• The ideals of codimension n of Fq [x , y , x−1, y−1] are the Fq-points of the Hilbert
scheme

Hn = Hilbn(Gm × Gm)

of n points on the two-dimensional torus (i.e., of the affine plane minus two distinct
straight lines). This scheme is smooth and quasi-projective.

• As a consequence of Theorem 1, the zeta function of Hn is given by

ZHn/Fq
(t) =

1

(1− qnt)cn,0

n∏
i=1

1

[(1− qn+i t)(1− qn−i t)]cn,i

where the exponents cn,i are the (integer) coefficients of the polynomial Cn(q).



Functional equation for the zeta function

• Example n = 6. Since

C6(q) = q12 − q11 + q7 − 2q6 + q5 − q + 1,

we obtain

ZH6/Fq
(t) =

(1− qt)(1− q6t)2(1− q11t)

(1− t)(1− q5t)(1− q7t)(1− q12t)
.

• Palindromicity of Cn(q) and vanishing of Cn(1) imply the functional equation

ZHn/Fq

(
1

q2nt

)
= ZHn/Fq

(t).

(and yet Hn is not projective!)
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Ellingsrud & Strømme’s cellular decomposition

• Ellingsrud & Strømme (1987). The Hilbert scheme of n points in the affine plane

Hilbn(A2)

has a decomposition into affine spaces, indexed by the partitions λ of n:

{I ⊂ k[x , y ]| codim I = n} (Ellingsrud–Strømme)
=

∐
λ`n Cλ , where Cλ ∼= An+`(λ)

⋃
{monomial ideals of k[x , y ]} ←→ {partitions of n}

Therefore,
card Hilbn(A2

Fq
) =

∑
λ`n

card Cλ =
∑
λ`n

qn+`(λ)

where `(λ) is the length of the partition.



Conca & Valla’s parametrization

• We identify an ideal J of codimension n of k[x , y , x−1, y−1] with the ideal

I = J ∩ k[x , y ]

of k[x , y ]: it is also of codimension n.

{I ⊂ k[x , y ] | codim I = n} (Ellingsrud–Strømme)
=

∐
λ`n Cλ⋃

{J ⊂ k[x , y , x−1, y−1] | codim J = n} = {I ⊂ k[x , y ] | codim I = n & x , y ∈ (k[x , y ]/I )×}

=
∐
λ`n Cinv

λ ⊂
∐
λ`n Cλ

• Now Conca–Valla (2008) produced an explicit parametrization of each affine cell Cλ.
We use it to obtain a parametrization for each Cinv

λ , which is an open subset of Cλ,

and then to count the elements of Cinv
λ .

• Our polynomial Cn(q), counting the number of ideals of codimension n
of Fq [x , y , x−1, y−1], is given by

Cn(q) =
∑
λ`n

card Cinv
λ .



Expressing Cn(q) in terms of partitions of n

Using our parametrization of Cinv
λ , we obtain the following expression for

the number Cn(q) of ideals of codimension n of the algebra Fq [x , y , x−1, y−1].

• Proposition. We have Cn(q) =
∑
λ`n card Cinv

λ , where

card Cinv
λ = (q − 1)2v(λ) qn−`(λ)

∏
i=1,...,t

di ≥1

q2di − 1

q2 − 1
.

• Notation. Let λ be a partition of n. Consider its Ferrers diagram: it has n boxes.
Then

∗ t is the number of columns of the diagram,

∗ m1 ≤ m2 ≤ · · · ≤ mt is the sequence of heights of columns
and di = mi −mi−1 is the sequence of differences of heights
(by convention m0 = 0),

∗ v(λ) is the number of distinct values of the sequence m1 ≤ m2 ≤ · · · ≤ mt ,

∗ `(λ) = mt is the number of parts of the partition.



Straightforward consequences

The following can be derived from the formula

Cn(q) =
∑
λ`n

(q − 1)2v(λ) qn−`(λ)
∏

i=1,...,t
di ≥1

q2di − 1

q2 − 1
.

• Since v(λ) ≥ 1, the polynomial Cn(q) is divisible by (q − 1)2.

• If v(λ) = 1, then the diagram of the partition is rectangular, d2 = · · · = dt = 0 and
we have n = dt, where d = d1. This means that d is a divisor of n. Then

card Cinv
λ = (q − 1)2qn−d q2d − 1

q2 − 1
.

• If v(λ) ≥ 2, then card Cinv
λ is divisible by (q − 1)4.

• Consequently, the value at q = 1 of Pn(q) = Cn(q)/(q − 1)2 is equal to

Pn(1) =
∑
d|n

(
qn−d q2d − 1

q2 − 1

)
|q=1

=
∑
d|n

d = σ(n).



The generating function of the polynomials Cn(q)

Let us now consider the the generating function of the polynomials Cn(q).

• Corollary. We have

1 +
∑
n≥1

Cn(q)

qn
tn =

∏
i≥1

(1− t i )2

1− (q + q−1)t i + t2i
. ←− our infinite product

Hence Cn(q) = qn Cn(q).

• Proof. The set of all partitions is the free abelian monoid on the set N \ {0} of
positive integers: any partition can be written uniquely as λ =

∏
i≥1 iei . Therefore,

LHS = 1 +
∑
λ6=∅

card Cinv
λ

t|λ|

q|λ|
(free ab. mon.)

=
∏
i≥1

1 +
∑
e≥1

card Cinv
ie

t ie

qie


(rectangular)

=
∏
i≥1

1 +
∑
e≥1

(q − 1)2qie−e q2e − 1

q2 − 1

t ie

qie


=

∏
i≥1

(
1 +

(q − 1)2

q2 − 1

[
qt i

1− qt i
−

q−1t i

1− q−1t i

])
=
∏
i≥1

(1− t i )2

1− (q + q−1)t i + t2i
.

QED
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Two questions

To conclude we ask the following two questions:

• Question 1. Why are the polynomials Cn(q) and Pn(q) palindromic?

• Question 2. Why are the coefficients of Pn(q) non-negative?

“Why” means: are there geometric explanations?



Question 1 - Palindromicity

• Question 1. Why are the polynomials Cn(q) and Pn(q) palindromic?

T. Hausel, E. Letellier et F. Rodriguez-Villegas observed the same palindromicity in
their work on character varieties and they called it “curious Poincaré duality”.

• The character varieties they consider are GLn(C) character varieties of a
Riemann surface of genus g with k punctures of the form

M =
{

(A1,B1, . . . ,Ag ,Bg ,X1, . . . ,Xk ) ∈ GLn(C)2g × C1 × · · · × Ck

such that [A1,B1] · · · [Ag ,Bg ] X1 · · ·Xk = In} //GLn(C).

Here C1, . . . ,Ck ⊂ GLn(C) are generic semisimple conjugacy classes.

They computed card M(Fq) and showed it to be a palindromic polynomial.

• De Cataldo, Hausel and Migliorini provided a sophisticated geometrical explanation
for palindromicity (based on mixed Hodge structures).



Question 2 - Positivity

Question 2. Why are the coefficients of Pn(q) non-negative?

No similar phenomenon was observed for character varieties.

So is this positivity serendipitous (glücklicher Zufall)

or is there a very subtle geometric reason?

We don’t know.



Ich danke für Ihre Aufmerksamkeit
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• G. Köhler, Eta products and theta series identities, Springer Monographs in
Mathematics, Springer, Heidelberg, 2011.



Plan

Our results

Why we got interested

How we computed the number of ideals of codimension n

Concluding questions

Appendix



Conca and Valla’s parametrization

• To a partition λ we associate the (t + 1)× t-matrix

Mλ(x, y) =



yd1 + p1,1 0 · · · 0 0 · · · 0

p2,1 − x yd2 + p2,2 · · · 0 0 · · · 0

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

pi,1 pi,2 · · · ydi + pi,i 0 · · · 0

pi+1,1 pi+1,2 · · · pi+1,i − x ydi+1 + pi+1,i+1 · · · 0

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

pt,1 pt,2 · · · pt,i pt,i+1 · · · ydt + pt,t
pt+1,1 pt+1,2 · · · pt+1,i pt+1,i+1 · · · pt+1,t − x



where (pi,j )i≥j ∈ Fq [y ] is a family of polynomials in the variable y such that

∗ deg pi,j < dj if dj ≥ 1,

∗ pi,j = 0 if dj = 0.

The set of all polynomials (pi,j )i,j forms an affine space Tλ of dimension n + `(λ).

• Let Iλ be the ideal generated by the maximal minors (of size t× t) of the matrix Mλ.

Conca–Valla (2008) : The map (pi,j )i,j 7→ Iλ induces a bijection Tλ ∼= Cλ.



Mixed Hodge structures

• Göttsche and Soergel (1993) determined the mixed Hodge structure of the punctual
Hilbert scheme for any smooth algebraic surface over C
(using Beilinson–Bernstein–Deligne–Gabber’s decomposition theorem and its mixed
Hodge version due to Saito; intersection cohomology, perverse sheaves).

• Applying Göttsche and Soergel’s results to the Hilbert scheme Hn
C of n points

on C× × C×, Hausel, Letellier and Rodriguez-Villegas (2013) obtained the following
formula for the generating function of the mixed Hodge polynomials of Hn

C:

1 +
∑
n≥1

Hc (Hn
C; q, u)

tn

qn
=
∏
i≥1

(1 + u2i+1t i )2

(1− u2i+2qt i )(1− u2i q−1t i )
. (1)

Note that, for q = 1, the specialization Hc (Hn
C; 1, u) is the Poincaré polynomial of Hn

C
(whose coefficients are the Betti numbers of Hn

C).

• When we set u = −1,...



E -polynomials

• When setting u = −1 in Formula (1), we obtain

1 +
∑
n≥1

E(Hn
C; q)

tn

qn
=
∏
i≥1

(1− t i )2

(1− qt i )(1− q−1t i )
←− our infinite product

where E(Hn
C; q) = Hc (Hn

C; q,−1) is the E -polynomial of Hn
C.

• Nick Katz (2008) : when the variety XC is of polynomial-count, i.e. when the
number of points of any reduction to a finite field Fq is given by a “universal”
polynomial in q, then

E(XC; q) = card X (Fq).

• By our computation we know that the Hilbert scheme Hn
C is of polynomial-count,

hence
E(Hn

C; q) = Cn(q),

which gives another proof for the infinite product expansion of the generating function
of the polynomials Cn(q).



Question 1 - A geometric explanation for palindromicity

• Question 1. Why are the polynomials Cn(q) = E(Hn
C; q) palindromic?

Hausel et al. observed the same palindromicity for the E -polynomials of their
character varieties and they called it “curious Poincaré duality”.

• De Cataldo, Hausel et Migliorini (2013): Consider the elliptic curve E = C/Z[i ]
and a diffeomorphism ϕ : C× × C× → E × C (analytic, not algebraic), for instance,

ϕ(z1, z2) =

(
z1

|z1|
,

z2

|z2|
; ln |z1|, ln |z2|

)
.

The diffeomorphism induce an isomorphism on the cohomology of the Hilbert schemes

Φ : H∗(Hn
C,Q) ∼= H∗(Hilbn(E × C),Q).

The isomorphism Φ does not preserve the mixed Hodge structures; it identifies the
weight filtration of H∗(Hn

C,Q) with the perverse Leray filtration of
H∗(Hilbn(E × C),Q).

The Poincaré duality on the cohomology of E (which is projective) induces a duality
on the perverse Leray filtration, which explains why Cn(q) is palindromic.



Question 2 - Positivity

• The group C× × C× acts naturally on itself, which induces an action of C× × C×
on the Hilbert scheme Hn

C.

Consider the geometric quotient H̃n
C = Hn

C //(C× × C×). Then

E(H̃n
C; q) =

E(Hn
C; q)

(q − 1)2
=

Cn(q)

(q − 1)2
= Pn(q).

• Question 2. Why are the coefficients of Pn(q) = E(H̃n
C; q) non-negative?

No similar phenomenon was observed for character varieties.

The fact that H̃n
C has odd cohomology and a counting polynomial with non-negative

coefficients implies non-trivial cancellation for its mixed Hodge numbers.

So is this positivity serendipitous (glücklicher Zufall)
or is there a very subtle geometric reason?

We don’t know.
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