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e The idea of considering non-commutative G-torsors comes from quantum
group theory as well as the proofs of the main results

We obtain a new (quantum) invariant for finite groups
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Classical G-torsors

e Recall: Let G be an algebraic group defined over a field k. A right G-torsor
is a right G-variety T (over k) such that the map

TxG — TxT
(t,g) — (t19)

is an isomorphism

This means that for any t,t' € T there is a unique g € Gsuch thatt’ = tg



Classical G-torsors

e Recall: Let G be an algebraic group defined over a field k. A right G-torsor
is a right G-variety T (over k) such that the map

TxG — TxT
(t,g) — (t19)

is an isomorphism
This means that for any t,t' € T there is a unique g € Gsuch thatt’ = tg

o If k = k is algebraically closed, then any torsor is isomorphicto T = G
with G acting by right translations



Galois cohomology

e When k +# k, torsors are classified by Serre’s non-abelian Galois
cohomology set:

{G-torsors} /(isomorphism) =~ H'(Gal(k/k), G)

This is a pointed set, not a group (unless G is abelian)



Galois cohomology

e When k +# k, torsors are classified by Serre’s non-abelian Galois
cohomology set:

{G-torsors} /(isomorphism) =~ H'(Gal(k/k), G)
This is a pointed set, not a group (unless G is abelian)
o If Gis a finite group, then H'(Gal(k/k), G)
= {continuous homomorphisms ¢ : Gal(k/k) — G} /(conjugacy)

Recall: a homomorphism Gal(k/k) — G is continuous if it factors
through Gal(k’/k) for some finite Galois extension k' of k

Remark. The set H'(Gal(k/k), G) is an arithmetical analogue of the
topologists’ classifying set for flat G-connections

Hom(71(S), G)/(conjugacy)



Bitorsors

e A G-bitorsor is both a left and right G-torsor such the left and right actions
commute



Bitorsors

e A G-bitorsor is both a left and right G-torsor such the left and right actions
commute

e Bitorsors can be multiplied: if T, T’ are bitorsors, then so is

T+«T' =TxgT = (T xTY/{(tg,t') = (t,gt"))

e Under this product, the set of isomorphism classes of bitorsors becomes a
group,



Bitorsors

e A G-bitorsor is both a left and right G-torsor such the left and right actions
commute

e Bitorsors can be multiplied: if T, T’ are bitorsors, then so is
T+«T' =TxgT = (T xTY/{(tg,t') = (t,gt"))
e Under this product, the set of isomorphism classes of bitorsors becomes a
group, which is isomorphic to the Galois cohomology group
{G-bitorsors} /(isomorphism) = H'(Gal(k/k), Z(G))

where Z(G) is the center of G
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Non-commutative geometry

e In the spirit of non-commutative geometry, replace

k-variety <+— k-algebra
groupG <«+— Hopf algebra
group actionG +— Hopf algebra coaction
torsor condition G +— Galois condition
left and right action G +— left and right coaction

e Using this dictionary, one can define non-commutative bitorsors for any
Hopf algebra

e As in the classical case, the set of isomorphism classes of
non-commutative bitorsors forms a group



Non-commutative H-torsors

e Given a Hopf algebra H, a right non-commutative H-torsor (also called a
right H-Galois object) is an associative unital algebra A together with an
algebra morphism

6:A—-ARH (coaction)
satisfying the coassociativity and the counitarity conditions:

(6 ®idy) 00 = (idy®A) 05 and (idy®e) 08 = idy
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Non-commutative H-torsors

e Given a Hopf algebra H, a right non-commutative H-torsor (also called a
right H-Galois object) is an associative unital algebra A together with an
algebra morphism

6:A—>ARH (coaction)
satisfying the coassociativity and the counitarity conditions:
(d®idy)od = (ldy®A)od and (idy®e)od =idy
and the Galois condition: the map
ARA—A®H; agad — (a®1y)i(d)
is an isomorphism
e Why it is called “Galois condition”:

If K/k is a Galois extension of fields with finite Galois group G, then K is a
non-commutative H-torsor for H = (kG)*

e Similarly one defines left non-commutative H-torsors (with left coaction
0 : A— H® A) and non-commutative H-bitorsors



Non-commutative G-bitorsors

Let G be a finite group

e By definition, a non-commutative G-bitorsor is a non-commutative
H-bitorsor for the Hopf algebra (kG)™ of k-valued functions on G

e The set of isomorphism classes of non-commutative G-bitorsors forms a

group we denote by
H?(G/k)



Non-commutative G-bitorsors

Let G be a finite group

e By definition, a non-commutative G-bitorsor is a non-commutative
H-bitorsor for the Hopf algebra (kG)™ of k-valued functions on G

e The set of isomorphism classes of non-commutative G-bitorsors forms a

group we denote by
H?(G/k)

o Our aim: To compute the group H2(G/k) of non-commutative G-bitorsors
and to compare it with the group H'(Gal(k/k), Z(G)) of classical G-bitorsors
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Invariant Drinfeld twists

The following facts can be proved.

e Fact 1. Any non-commutative G-bitorsor is an algebra Ag
indexed by an invariant Drinfeld twist F on the group algebra kG
(the definition of Ar is given in the Appendix)

Definition. (a) A Drinfeld twist on kG is an invertible element F € kG ® kG
satisfying the condition

(F1)(A®Iid)(F)=(1® F)(i[d®A)(F) € kG ® kG ® kG
(b) An element F € kG ® kG is invariant if
A(a)F = FA(a) (a € kG)
Recall that the coproduct A of kG is defined by A(g) =g® gforallg e G

e Fact 2. Two non-commutative bitorsors Ar, A are isomorphic as bitorsors
if and only if there exists a central invertible element a € kG such that

F =Fa® a)A(a)' = (a® a)A(a)"'F



A description of H2(G/k)

e Consequently,

the group H2(G/k) of isomorphism classes of non-commutative G-bitorsors
is isomorphic to the group of invariant Drinfeld twists on kG modulo the frivial
twists, i.e., those of the form (a® a)A(a)~", where a € kG is central and
invertible

H?(G/k) = {invariant Drinfeld twists on kG} / {trivial twists}
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A description of H?(G/k)

e Consequently,

the group H2(G/k) of isomorphism classes of non-commutative G-bitorsors
is isomorphic to the group of invariant Drinfeld twists on kG modulo the trivial
twists, i.e., those of the form (a® a)A(a)~", where a € kG is central and
invertible

H?(G/k) = {invariant Drinfeld twists on kG} / {trivial twists}

e Using this interpretation in terms of Drinfeld twists, the group #?(G/k) can
be defined for any group G, not only finite groups

S. Neshveyev and L. Tuset (Oslo) computed #?(G/k) for any connected
compact group Gand k =C

o We next show how to compute #2(G/k) for any finite group G
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The rationality exact sequence

Assume that k is of characteristic zero with algebraic closure k

Theorem 1. Let G be a finite group. If all irreducible k-representations of G
can be realized over K,

In particular, if G is , then H2(G/k) = H?(G/k)



The rationality exact sequence

Assume that k is of characteristic zero with algebraic closure k

Theorem 1. Let G be a finite group. If all irreducible k-representations of G
can be realized over k, then there is an exact sequence of groups

1 — H'(Gal(k/k),Z(G)) — H*(G/k) —  H?*(G/k) — 1
(classical bitorsors) (non-comm. bitorsors)

(ARITHMETIC) (GEOMETRIC)

In particular, if G is centerless, then H2(G/k) = H?(G/k)



On the proof of Theorem 1
e H2(G/k) appears as a “cohomology group” in the short cochain complex:

15 [(kG)*1° 25 [(KG @ kG)*1® "Ll [(kG ® kG @ kG)*1°
where §'(a) = (a® a) A(a ') and
S(F)=(Fo1)(A®id)(F) and &4(F)=(1® F)(id®A)(F)

Then
H?(G/k) = Equalizer(6Z, 63)/ Im(6")
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On the proof of Theorem 1

e H2(G/k) appears as a “cohomology group” in the short cochain complex:

15 [(kG)*1° 25 [(KG @ kG)*1® "Ll [(kG ® kG @ kG)*1°
where §'(a) = (a® a) A(a ') and
S(F)=(Fo1)(A®id)(F) and &4(F)=(1® F)(id®A)(F)

Then
H?(G/k) = Equalizer(6Z, 63)/ Im(6")

e The groups in the cochain complex are algebraic groups:

[(kG)*1® = ] Aute(V,)= [ k* (splittorus)
p€Elrrep(G) p€Elrrep(G)
(kG2 kG)*)¢ = I[I Aute(V,® V) (product of GLn(k)’s)
p,o€lrrep(G)

o Apply the functor H°(Gal(k/k), —) and use Hilbert’s Theorem 90
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The algebraically closed case

o We are now reduced to computing H?(G/k) over an algebraically closed
ground field k

e We need two ingredients :
x a set B(G) obtained as a colimit over normal abelian subgroups of G

* a group Outc(G) of outer automorphisms of G



First ingredient: the pointed set B(G)

e Definition. Let A be the category whose objects are the normal abelian
subgroups A of G and whose arrows are the inclusions. Define

G) = |J H* (A K*)° (a colimit of pointed sets)
ACA

Here A = Hom(A, k*) is the group of characters of A and
H2(A k*) is the second cohomology group of A
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First ingredient: the pointed set B(G)

e Definition. Let A be the category whose objects are the normal abelian
subgroups A of G and whose arrows are the inclusions. Define

G) = |J H* (A K*)° (a colimit of pointed sets)
ACA

Here A = Hom(A, k*) is the group of characters of A and
H2(A k*) is the second cohomology group of A

e The set B(G) is
* non-empty: it is pointed by the zero element 0 lying in all H2(2\, k>*)€
x it is finite

e If G has a unique maximal normal abelian subgroup A, then

B(G) = H*(A, k*)°®



Second ingredient: class-preserving automorphisms

e Let Aut:(G) be the group of automorphisms ¢ of G such that forall g € G
©(g) =hgh™'  forsomehe G

The group Inn(G) of inner automorphism is normal in Autc(G)

o Definition.
Outc(G) = Aute(G)/ Inn(G)
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Second ingredient: class-preserving automorphisms

e Let Aut:(G) be the group of automorphisms ¢ of G such that forall g € G
©(g) =hgh™'  forsomehe G
The group Inn(G) of inner automorphism is normal in Autc(G)
e Definition.
Outc(G) = Aute(G)/ Inn(G)
e Examples. Out:(G) =1 if

x G = S, (symmetric group)
x G = SLy(Fq)
x G is simple (Feit-Seitz, 1989)

e Finding finite groups with Out.(G) # 1 is not straightforward

Nevertheless, there are groups G with non-trivial Outc(G),
even with non-abelian Out:(G)
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Non-trivial Out.(G)

e Burnside (1912) was the first one to construct groups with Out.(G) # 1
(his smallest example is of order 729 = 3°%)

¢ G. E. Wall (1947) proved that Out.(G) = Z/2 for
G=17/8 x Aut(Z/8)

which is of order 32
e Burnside stated that Out.(G) is always abelian, but. . .

e C.-H. Sah (1968): There are groups such that Out.(G) is non-abelian
(his smallest example is of order 2'°)
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Determining H2(G/k)

Now our main result in the algebraically closed case
Assume that the field k is algebraically closed of characteristic prime to |G|

Theorem 2. There is a set-theoretic map © : H2(G/k) — B(G) such that
(a) Ho = ©~1({0}) is a subgroup of H?(G/k) with
Ho =2 Outc(G)
(b) All fibers of © are in bijection with H,; more precisely,

Oa)=0(8) = Bcate (a,8€H(G/K))

(c) If |G| is odd, then © is surjective
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Immediate consequences of Theorem 2

o The group H2(G/k) is finite: it sits between Out.(G) and B(G)
e The group #?(G/k) can be non-abelian since H2(G/k) D Ho = Oute(G)
o If Outs(G) = 1 and B(G) is trivial, then #2(G/k) = 1

« Examples of groups with trivial %%(G/k):
x G = S, or G is simple (no normal abelian subgroup)

x G= SLn(Fq)
(all normal abelian subgroups are cyclic and H?(cyclic, k) = 0)



An example with non-trivial %2(G/k)

e Let p be an odd prime and let G be the wreath product
G=17/p1Z/p=AxL/p
with Z/p acting cyclically on A = (Z/p)”

The subgroup A is the unique maximal normal abelian subgroup of G
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An example with non-trivial %2(G/k)

e Let p be an odd prime and let G be the wreath product
G=17/p1Z/p=AxL/p
with Z/p acting cyclically on A = (Z/p)”
The subgroup A is the unique maximal normal abelian subgroup of G
e For this group Out;(G) = 1 and |G| is odd:
© : H3(G/k) — B(G) = H*(A, k*)®
is bijective by Theorem 2

« Proposition. 12(G/k) = H*(A, k)¢ = (z/p)P—"/2

The second isomorphism follows from a standard cohomological calculation
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To be or not to be surjective in the even case

If |G| is even, then © may or may not be surjective

e Example 1. For p = 2 the wreath product G = Z/p 1 Z/p is the dihedral
group of order 8: it has two maximal normal abelian subgroups. In this case,

H?(G/k) =1 although |B(G) =3
and the map © : #%(G/k) — B(G) is not surjective

e Example 2. If G = A, is the alternating group, then Out:(A4) = 1 so that
the map © : H?(As/k) — B(As) is injective

Proposition. The map © is bijective and H?(As/ k) = B(As) = 7./2

To prove the surjectivity of ©, we exhibit an element o € H2(A4/k)
such that ©(«) is the non-trivial element of B(As)
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On the proof of Theorem 2

e Theorem 2 (Extract). There is a set-theoretic map
© : H?*(G/k) — B(G/k)
such that Ho = ©~'({0}) is a subgroup of H?(G/k) with
Ho =2 Oute(G)

e The proof uses quantum group theory

Let us first explain the construction of the map ©
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The universal R-matrix attached to a Drinfeld twist

 Represent an element of H2(G/k) by an invariant Drinfeld twist
F e kG® kG

e Consider
Rr = F» F~' ¢ kG® kG

This is a universal R-matrix for kG, i.e., an invertible element satisfying
A(a) Rr = Rr A(a) foralla € kG
and

(A®id)(RF) = (Re)13 (Rr)2s and  (id®@A)(Rr) = (AF)13 (RF)i2

e The universal R-matrix Rr induces a braiding ~ on the tensor category of
G-modules

ww: VoW = WeV
voaw — (Re(vew)),,
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Reec H®H

This Hopf algebra is self-dual: H* =~ H
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Constructing the map ©: Part 1

e By work of Radford, there is a minimal Hopf subalgebra H C kG such that
Reec H®H

This Hopf algebra is self-dual: H* = H

e Since kG is cocommutative, so is H. From self-duality, H is bicommutative

One deduces that H = kA for the abelian subgroup A of G given by
A={acH|A(a)=a®a and ¢(a) =1}

e Since F is G-invariant, so is Rr, and Ais normal in G
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Constructing the map ©: Part 2
e By duality, Rr € kA ® kA corresponds to a bilinear form
(KA)* x (KA)" — k
o Now the discrete Fourier transform induces a Hopf algebra isomorphism
(KA)* = kA
(where A= Hom(A, k*)) so that we obtain a bilinear form KA x kA — k
o Restricting to A x A, we obtain a G-invariant 2-cocycle
br:Ax A kX

which represents an element [br] € H2(7\7 k*)@



Constructing the map ©: Part 2
e By duality, Rr € kA ® kA corresponds to a bilinear form
(KA)* x (KA)" — k
o Now the discrete Fourier transform induces a Hopf algebra isomorphism
(KA)* = kA

(where A= Hom(A, k*)) so that we obtain a bilinear form KA x kA — k

o Restricting to A x A, we obtain a G-invariant 2-cocycle
bF : 7\ X 7\ — kx
which represents an element [br] € H2(7\7 k*)@

o We define R
O(F) = [brl € B(G) = | J H*(A. k)¢

AcA

One checks that ©(F) depends only on the class of F in #2(G/k)
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The “kernel” of ©

To determine Ho = ©'(({1}, b)) = Outc(G), we use the following results:

o Etingof and Gelaki (2000): /f F is a Drinfeld twist such that Re =1 ® 1, or
equivalently F is symmetric: F = F»q, then

F=(awa)A(a")
for some invertible element a € kG
Their result follows from classical Tannakian theory:
Deligne and Milne (1982): Any exact and fully faithful symmetric tensor

functor from the category of kG-modules to the category of k-vector spaces
is isomorphic to the forgetful functor

A symmetric Drinfeld twist gives rise to a symmetric tensor functor, to which
Etingof and Gelaki apply Deligne and Milne’s result

e A symmetric Drinfeld twist F = (a® a) A(a™') is invariant if and only if the
automorphism x — axa~' preserves G and is an element of Aut¢(G)

From these remarks it is easy to deduce that Ho = Out:(G)



Appendix. The definition of A

o The Hopf algebra (kG)*, dual of the group algebra kG, has a basis (&g)¢ca
of orthogonal idempotents defined by (&g, h) = dg.n (g, h € G)

e The non-commutative G-bitorsor Ar associated to an invariant Drinfeld
twist F € kG ® kG is a deformation of (kG)™: it has a basis (ug)geq in which
the product of Ar is given by

Uglih =Y a(gs™', hs™") us

seG

where the scalars «a(g, h) are the coefficients of F:

F=> alg,hgah

g,heG
e The coaction ¢ : Ar — Ar ® (kG)™ is given by
UQ) Z Ugs_1 ® es

seG
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Takk for oppmerksomheten!

Thank you for your attention!



