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• The idea of considering non-commutative G-torsors comes from quantum
group theory as well as the proofs of the main results

We obtain a new (quantum) invariant for finite groups
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Classical G-torsors

• Recall: Let G be an algebraic group defined over a field k . A right G-torsor
is a right G-variety T (over k ) such that the map

T ×G −→ T × T

(t , g) 7−→ (t , tg)

is an isomorphism

This means that for any t , t ′ ∈ T there is a unique g ∈ G such that t ′ = tg

• If k = k̄ is algebraically closed, then any torsor is isomorphic to T = G
with G acting by right translations
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Galois cohomology

•When k 6= k̄ , torsors are classified by Serre’s non-abelian Galois
cohomology set:

{G-torsors} /(isomorphism) ∼= H1(Gal(k̄/k),G)

This is a pointed set, not a group (unless G is abelian)

• If G is a finite group, then H1(Gal(k̄/k),G)

∼=
{

continuous homomorphisms ϕ : Gal(k̄/k)→ G
}
/(conjugacy)

Recall: a homomorphism Gal(k̄/k)→ G is continuous if it factors
through Gal(k ′/k) for some finite Galois extension k ′ of k

Remark. The set H1(Gal(k̄/k),G) is an arithmetical analogue of the
topologists’ classifying set for flat G-connections

Hom(π1(S),G)/(conjugacy)
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Bitorsors

• A G-bitorsor is both a left and right G-torsor such the left and right actions
commute

• Bitorsors can be multiplied: if T ,T ′ are bitorsors, then so is

T ∗ T ′ = T ×G T ′ = (T × T ′)/〈(tg, t ′) = (t , gt ′)〉

• Under this product, the set of isomorphism classes of bitorsors becomes a
group, which is isomorphic to the Galois cohomology group

{G-bitorsors} /(isomorphism) ∼= H1(Gal(k̄/k),Z (G))

where Z (G) is the center of G
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Non-commutative geometry

• In the spirit of non-commutative geometry, replace

k -variety ←→ k -algebra

group G ←→ Hopf algebra

group action G ←→ Hopf algebra coaction

torsor condition G ←→ Galois condition

left and right action G ←→ left and right coaction

• Using this dictionary, one can define non-commutative bitorsors for any
Hopf algebra

• As in the classical case, the set of isomorphism classes of
non-commutative bitorsors forms a group



Non-commutative H-torsors
• Given a Hopf algebra H, a right non-commutative H-torsor (also called a
right H-Galois object) is an associative unital algebra A together with an
algebra morphism

δ : A→ A⊗ H (coaction)

satisfying the coassociativity and the counitarity conditions:

(δ ⊗ idH) ◦ δ = (idH ⊗∆) ◦ δ and (idH ⊗ε) ◦ δ = idH

and the Galois condition: the map

A⊗ A→ A⊗ H ; a⊗ a′ 7→ (a⊗ 1H) δ(a′)

is an isomorphism

•Why it is called “Galois condition”:
If K/k is a Galois extension of fields with finite Galois group G, then K is a
non-commutative H-torsor for H = (kG)∗

• Similarly one defines left non-commutative H-torsors (with left coaction
δ : A→ H ⊗ A) and non-commutative H-bitorsors
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Non-commutative G-bitorsors

Let G be a finite group

• By definition, a non-commutative G-bitorsor is a non-commutative
H-bitorsor for the Hopf algebra (kG)∗ of k -valued functions on G

• The set of isomorphism classes of non-commutative G-bitorsors forms a
group we denote by

H2(G/k)

• Our aim: To compute the group H2(G/k) of non-commutative G-bitorsors

and to compare it with the group H1(Gal(k̄/k),Z (G)) of classical G-bitorsors
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Invariant Drinfeld twists
The following facts can be proved.

• Fact 1. Any non-commutative G-bitorsor is an algebra AF

indexed by an invariant Drinfeld twist F on the group algebra kG
(the definition of AF is given in the Appendix)

Definition. (a) A Drinfeld twist on kG is an invertible element F ∈ kG ⊗ kG
satisfying the condition

(F ⊗ 1) (∆⊗ id)(F ) = (1⊗ F ) (id⊗∆)(F ) ∈ kG ⊗ kG ⊗ kG

(b) An element F ∈ kG ⊗ kG is invariant if

∆(a)F = F∆(a) (a ∈ kG)

Recall that the coproduct ∆ of kG is defined by ∆(g) = g ⊗ g for all g ∈ G

• Fact 2. Two non-commutative bitorsors AF ,AF ′ are isomorphic as bitorsors
if and only if there exists a central invertible element a ∈ kG such that

F ′ = F (a⊗ a)∆(a)−1 = (a⊗ a)∆(a)−1F
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A description of H2(G/k)

• Consequently,

the group H2(G/k) of isomorphism classes of non-commutative G-bitorsors
is isomorphic to the group of invariant Drinfeld twists on kG modulo the trivial
twists, i.e., those of the form (a⊗ a)∆(a)−1, where a ∈ kG is central and
invertible

H2(G/k) ∼= {invariant Drinfeld twists on kG} / {trivial twists}

• Using this interpretation in terms of Drinfeld twists, the group H2(G/k) can
be defined for any group G, not only finite groups

S. Neshveyev and L. Tuset (Oslo) computed H2(G/k) for any connected
compact group G and k = C

•We next show how to compute H2(G/k) for any finite group G
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The rationality exact sequence

Assume that k is of characteristic zero with algebraic closure k̄

Theorem 1. Let G be a finite group. If all irreducible k̄-representations of G
can be realized over k, then there is an exact sequence of groups

1 −→ H1(Gal(k̄/k),Z (G)) −→ H2(G/k) −→ H2(G/k̄) −→ 1

(classical bitorsors) (non-comm. bitorsors)

(ARITHMETIC) (GEOMETRIC)

In particular, if G is centerless, then H2(G/k) ∼= H2(G/k̄)
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On the proof of Theorem 1

• H2(G/k) appears as a “cohomology group” in the short cochain complex:

1→ [(kG)×]G δ1
−→ [(kG ⊗ kG)×]G δ2

L ,δ
2
R=⇒ [(kG ⊗ kG ⊗ kG)×]G

where δ1(a) = (a⊗ a) ∆(a−1) and

δ2
L(F ) = (F ⊗ 1) (∆⊗ id)(F ) and δ2

R(F ) = (1⊗ F ) (id⊗∆)(F )

Then
H2(G/k) ∼= Equalizer(δ2

L , δ
2
R)/ Im(δ1)

• The groups in the cochain complex are algebraic groups:

[(k̄G)×]G ∼=
∏

ρ∈Irrep(G)

AutG(Vρ) ∼=
∏

ρ∈Irrep(G)

k̄× (split torus)

((k̄G ⊗ k̄G)×)G ∼=
∏

ρ,σ∈Irrep(G)

AutG(Vρ ⊗ Vσ) (product of GLn(k̄)’s)

• Apply the functor H0(Gal(k̄/k),−) and use Hilbert’s Theorem 90
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The algebraically closed case

•We are now reduced to computing H2(G/k) over an algebraically closed
ground field k

•We need two ingredients :

∗ a set B(G) obtained as a colimit over normal abelian subgroups of G

∗ a group Outc(G) of outer automorphisms of G
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First ingredient: the pointed set B(G)

• Definition. Let A be the category whose objects are the normal abelian
subgroups A of G and whose arrows are the inclusions. Define

B(G) =
⋃

A∈A

H2(Â, k×)G (a colimit of pointed sets)

Here Â = Hom(A, k×) is the group of characters of A and
H2(Â, k×) is the second cohomology group of Â

• The set B(G) is

∗ non-empty: it is pointed by the zero element 0 lying in all H2(Â, k×)G

∗ it is finite

• If G has a unique maximal normal abelian subgroup A, then

B(G) = H2(Â, k×)G
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Second ingredient: class-preserving automorphisms

• Let Autc(G) be the group of automorphisms ϕ of G such that for all g ∈ G

ϕ(g) = hgh−1 for some h ∈ G

The group Inn(G) of inner automorphism is normal in Autc(G)

• Definition.
Outc(G) = Autc(G)/ Inn(G)

• Examples. Outc(G) = 1 if

∗ G = Sn (symmetric group)

∗ G = SLn(Fq)

∗ G is simple (Feit-Seitz, 1989)

• Finding finite groups with Outc(G) 6= 1 is not straightforward

Nevertheless, there are groups G with non-trivial Outc(G),
even with non-abelian Outc(G)
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Non-trivial Outc(G)

• Burnside (1912) was the first one to construct groups with Outc(G) 6= 1
(his smallest example is of order 729 = 36)

• G. E. Wall (1947) proved that Outc(G) = Z/2 for

G = Z/8 o Aut(Z/8)

which is of order 32

• Burnside stated that Outc(G) is always abelian, but. . .

• C.-H. Sah (1968): There are groups such that Outc(G) is non-abelian
(his smallest example is of order 215)
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Determining H2(G/k)

Now our main result in the algebraically closed case

Assume that the field k is algebraically closed of characteristic prime to |G|

Theorem 2. There is a set-theoretic map Θ : H2(G/k)→ B(G) such that

(a) H0 = Θ−1({0}) is a subgroup of H2(G/k) with

H0 ∼= Outc(G)

(b) All fibers of Θ are in bijection with H0; more precisely,

Θ(α) = Θ(β)⇐⇒ β ∈ αH0 (α, β ∈ H2(G/k))

(c) If |G| is odd, then Θ is surjective
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Immediate consequences of Theorem 2

• The group H2(G/k) is finite: it sits between Outc(G) and B(G)

• The group H2(G/k) can be non-abelian since H2(G/k) ⊃ H0 ∼= Outc(G)

• If Outc(G) = 1 and B(G) is trivial, then H2(G/k) = 1

• Examples of groups with trivial H2(G/k):

∗ G = Sn or G is simple (no normal abelian subgroup)

∗ G = SLn(Fq)
(all normal abelian subgroups are cyclic and H2(cyclic, k×) = 0)
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An example with non-trivial H2(G/k)

• Let p be an odd prime and let G be the wreath product

G = Z/p o Z/p = A o Z/p

with Z/p acting cyclically on A = (Z/p)p

The subgroup A is the unique maximal normal abelian subgroup of G

• For this group Outc(G) = 1 and |G| is odd:

Θ : H2(G/k) −→ B(G) = H2(Â, k×)G

is bijective by Theorem 2

• Proposition. H2(G/k) = H2(Â, k×)G ∼= (Z/p)(p−1)/2

The second isomorphism follows from a standard cohomological calculation
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To be or not to be surjective in the even case

If |G| is even, then Θ may or may not be surjective

• Example 1. For p = 2 the wreath product G = Z/p o Z/p is the dihedral
group of order 8: it has two maximal normal abelian subgroups. In this case,

H2(G/k) = 1 although |B(G)| = 3

and the map Θ : H2(G/k)→ B(G) is not surjective

• Example 2. If G = A4 is the alternating group, then Outc(A4) = 1 so that
the map Θ : H2(A4/k)→ B(A4) is injective

Proposition. The map Θ is bijective and H2(A4/k) ∼= B(A4) ∼= Z/2

To prove the surjectivity of Θ, we exhibit an element α ∈ H2(A4/k)
such that Θ(α) is the non-trivial element of B(A4)
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I. Torsors and bitorsors

II. Non-commutative torsors

III. Main results

IV. A proof using quantum group theory



On the proof of Theorem 2

• Theorem 2 (Extract). There is a set-theoretic map

Θ : H2(G/k)→ B(G/k)

such that H0 = Θ−1({0}) is a subgroup of H2(G/k) with

H0 ∼= Outc(G)

• The proof uses quantum group theory

Let us first explain the construction of the map Θ



The universal R-matrix attached to a Drinfeld twist

• Represent an element of H2(G/k) by an invariant Drinfeld twist

F ∈ kG ⊗ kG

• Consider
RF = F21 F−1 ∈ kG ⊗ kG

This is a universal R-matrix for kG, i.e., an invertible element satisfying

∆(a) RF = RF ∆(a) for all a ∈ kG

and

(∆⊗ id)(RF ) = (RF )13 (RF )23 and (id⊗∆)(RF ) = (RF )13 (RF )12

• The universal R-matrix RF induces a braiding γ on the tensor category of
G-modules

γV ,W : V ⊗W
∼=−→ W ⊗ V

v ⊗ w 7−→
(
RF (v ⊗ w)

)
21
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Constructing the map Θ: Part 1

• By work of Radford, there is a minimal Hopf subalgebra H ⊂ kG such that

RF ∈ H ⊗ H

This Hopf algebra is self-dual: H∗ ∼= H

• Since kG is cocommutative, so is H. From self-duality, H is bicommutative

One deduces that H = kA for the abelian subgroup A of G given by

A = {a ∈ H | ∆(a) = a⊗ a and ε(a) = 1}

• Since F is G-invariant, so is RF , and A is normal in G
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Constructing the map Θ: Part 2

• By duality, RF ∈ kA⊗ kA corresponds to a bilinear form

(kA)∗ × (kA)∗ → k

• Now the discrete Fourier transform induces a Hopf algebra isomorphism

(kA)∗ ∼= kÂ

(where Â = Hom(A, k×)) so that we obtain a bilinear form kÂ× kÂ→ k

• Restricting to Â× Â, we obtain a G-invariant 2-cocycle

bF : Â× Â→ k×

which represents an element [bF ] ∈ H2(Â, k×)G

•We define
Θ(F ) = [bF ] ∈ B(G) =

⋃
A∈A

H2(Â, k×)G

One checks that Θ(F ) depends only on the class of F in H2(G/k)
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The “kernel” of Θ

To determine H0 = Θ−1(({1}, b0)) ∼= Outc(G), we use the following results:

• Etingof and Gelaki (2000): If F is a Drinfeld twist such that RF = 1⊗ 1, or
equivalently F is symmetric: F = F21, then

F = (a⊗ a) ∆(a−1)

for some invertible element a ∈ kG

Their result follows from classical Tannakian theory:

Deligne and Milne (1982): Any exact and fully faithful symmetric tensor
functor from the category of kG-modules to the category of k-vector spaces
is isomorphic to the forgetful functor

A symmetric Drinfeld twist gives rise to a symmetric tensor functor, to which
Etingof and Gelaki apply Deligne and Milne’s result

• A symmetric Drinfeld twist F = (a⊗ a) ∆(a−1) is invariant if and only if the
automorphism x 7→ axa−1 preserves G and is an element of Autc(G)

From these remarks it is easy to deduce that H0 ∼= Outc(G)
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Appendix. The definition of AF

• The Hopf algebra (kG)∗, dual of the group algebra kG, has a basis (eg)g∈G

of orthogonal idempotents defined by 〈eg , h〉 = δg,h (g, h ∈ G)

• The non-commutative G-bitorsor AF associated to an invariant Drinfeld
twist F ∈ kG ⊗ kG is a deformation of (kG)∗: it has a basis (ug)g∈G in which
the product of AF is given by

uguh =
∑
s∈G

α(gs−1, hs−1) us

where the scalars α(g, h) are the coefficients of F :

F =
∑

g,h∈G

α(g, h) g ⊗ h

• The coaction δ : AF → AF ⊗ (kG)∗ is given by

δ(ug) =
∑
s∈G

ugs−1 ⊗ es
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