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A simple-minded problem:

Let 0 an automorphism o of order 4 of a ring R and
x € R such that

T+ o*(x) = 1.
Find y € R such that

y+o(y)+o’(y) +o°(y) = 1.

Answer: y = zo(x). Indeed, we have

y+o(y)+o°(y)+o°(y)
= 20 (x) + o(x)0*(x) + o (z)0” (z) + 0°(x)a
= zo(x) +o(z)(1 — )

1—

+(1—2)1—-o(2)+ (1 —o(x)
=1+ 2 (zo(z) — o(x)x)
=1 if R is commutative.



Surjectivity of the norm map:

Let GG be a finite group acting on a ring R by ring
automorphisms. The norm (sometimes called trace)

N¢ : R — R® (subring of invariant elements)

is defined for all z € R by

Na(z) = g(x).

geG
Question: When is Ng : R — R surjective?

o If card(G) is invertible in R (e. ¢g., R D Q).

e [.et L be a finite Galois extension of a number field
K (D Q) with Galois group G.

L D Op (ring of algebraic integers in L)

I I

K D Og (ring of algebraic integers in K)

The group G acts on O and O = Ok. The norm
N¢g : O — OF = Ok is surjective if and only if the
extension L/K is “tame”.



A theorem by Aljadeff and Ginosar (1994):

Theorem. Ng : R — RC is surjective if and only if
Ny : R — RY is surjective for any elementary abelian
subgroup U of G.

e U is elementary abelian if U = Z/p x ... x Z/p for
some prime p

e Aljadeff (1992): If R is commutative, one may replace
“elementary abelian subgroup” by “cyclic subgroup of
prime order” (& Z/p for some prime p) in previous
theorem.

Counterexample. The group G = Z/2(c) X Z/2(T) acts
on R = M5 (F5(X)) such that, for any U = Z/2 C G,
Ny @ R — RY is surjective, but Ng : R — RS is not
surjective.

The action is given by

(2204 )

(c+d)X+(a+b) (a4cX)X+(b+dX)
- (CL b) _ ( X+1 X+1 )

c d at+btctd (a4c) X +(b+d)
X1 X1




An effective version of the surjectivity problem:
e The norm map is R%-linear:

Na(zy) = xNg(y) ifz € RE and y € R.
Hence,

N¢ : R — RY surjective < Jz¢ € R with Ng(zqg) = 1.

e By Aljadeff-Ginosar’s theorem

dxg € RINg(ibg) =1 day € RZNU<ZEU> =1
for any elementary abelian subgroup U of G.
Problem: Given a family (zy )y such that Ny (xy) =

1 for any elementary abelian subgroup U of G, find
ra € R such that Ng(zg) = 1.



What was known about the problem:

e In 1992 Aljadeftf gave a formula for ¢ when R is
commutative.

¢ When R is not commutative, not much was known:

(a) Shelah: there is always a formula x¢ = F(g(zy))
where F'is a noncommutative polynomial with integer
coefficients in the variables g(xy).

(b) Problem solved by Aljadeff-Ginosar when R is a
noncommutative Fy-algebra and G is an abelian 2-

group

(c) For an arbitrary noncommutative ring R and the
group G = Z/4 Péter P. Pélfy gave the formula

rq = zyo(zy) +rpo(zy)rey — xho(zy). (1)
Remark: When R i1s commutative, we can take
ra =xyo(zy). (2)

The difference between (1) and (2) shows that the non-
commutative case is much more difficult.



Our results:

We solved the problem for noncommutative rings
when G is any abelian group.

Three steps in our proof:
(a) G = Z/p™ with p prime number and n > 2
(b) From cyclic p-groups to abelian p-groups
(c) From abelian p-groups to arbitrary abelian groups

The difficulty lies in Step (a).

Plan of lecture:
e Theorem for G = Z/p"
e Idea of proof in the p-cyclic case

e How to deduce the general case from the p-cyclic
case



Our formula for G =Z/9:

For a ring automorphism o of order 9 of the ring
R and an element x € R such that

x40’ (x) +0%(x) =1,

we have

for

y=—x° +20(x)r — 0’ (x)x + o*(x)x
+ z0®(z)x + zo* (z)x + 20°(x)
)

S(2)a + z0"(z)x + 20%(x
() — o(x)o’(z)x

X
+ xo X

(
—o(x)o*(z)x — o(x)o
)

(RHS has 22 monomials)



The case of cyclic p-groups

e G =7/p" with generator o (p prime number)

o U =2 Z/p" % C G generated by apk, where n, k are
integers such that n > 2 and 1 < k <n/2, i. e.,

card(U) > /card(G).

Theorem 1.— Let x € R satisfy Ny(x) = 1. Define
Z, Wiy..., Wyn—k_1, and a € R by

c=p" (140402 +- 40" V) -1,

w; = (1 o 4o 4o J(i_l)pk) (2o~ (2)),

’rL—k:_l

a:p”_Qkx+(1—0)<pZ wi)>

=1

and y = ax. Then Ng(y) = 1.



Idea of proof of Theorem 1

1. Natural idea: Follow the proof of Aljadeff-Ginosar’s
theorem and make each step explicit.

e Aljadeff-Ginosar’s proof relies on the following result
by Chouinard (1976):

A finitely generated R|G|-module is projective if and
only if it is projective as a R|U]-module for every ele-
mentary abelian subgroup U of GG,

e Chouinard’s theorem relies on the following result by
Serre (1965). Denote

B:HYG,Z/p) — H*(G,Z/p) (Bockstein)

the boundary map in the long exact cohomology se-
quence associated to the short exact sequence of trivial

G-modules 0 — Z/p — Z/p* — Z/p — 0.

If G 1s a p-group that is not elementary abelian, there
exist nonzero 1, ...,x € HY(G,Z/p) such that

Blx)U---UPB(xx) =0 € H*(G,Z/p).

If G is an elementary abelian p-group, then the
vector space 3(H' (G, Z/p)) generates a polynomial al-
gebra (without zero-divisors) in H**(G,Z/p).
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2. Our actual proof is based on two facts:
e A general fact inspired from Proposition XII.1.3 in
Cartan-Eilenberg’s book “Homological algebra”

e The explicit computation of the cohomology groups
of a cyclic group

Lemma 1. Let U be a finite group acting on a ming R.
If 3z € R satisfying Ny(x) = 1, then every element
z € R such that Ny (z) =0 can be written as

z = Z (9—1) (xg_l(z)).

gelU

Proof. RHS = Z g(z) g(g7(2)) — Z g (2)
= Ny(x)z —x Ny(z) = 2.

Corollary 1. If U is cyclic and Ny : R — RY s
surjective, then H1(U, R) = 0 for all ¢ > 0.

Proof. H*(U,R) = RY /Ny (R) and
HY'(U,R) = Ker Ny /Iy (R)

where I;;(R) C R is spanned by (g — 1)R (g € R).
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New idea: Replace surjectivity of the norm, ¢. e., vanish-
ing of H?(—, R), by vanishing of some H! using cohomo-
logical exact sequence.

Embed R into the co-induced G-module
B = HOmz(Z[G], R)

by © — (¢, : g — g(x)). The group G acts on B by
(gp)(s) = p(sg) for g,s € G and ¢ € B. We have

H'(G,B)=0 (i>0).
Define G-module C by short exact sequence
0—-R—B—C—0. (3)

The boundary map § : HY(G,C) — H?*(G,R) is an
iIsomorphism.
Applying H*(U, —) to (3) yields an exact sequence
of Z|G /U]-modules
0—-RY—-BY -—CcY - HY U,R)=0. (4)

BY =~ Homgz(Z[G /U], R) is a co-induced G /U-module.
Hence H*(G/U,BY) = 0 for i > 0 and boundary map
6: HY(G/U,CY) — H?*(G/U, RY) is an isomorphism.
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Commutative square

HY(G/u,cvy 2 HYG,C)

5l = 51 = (5)
H2(G/U,RY) H%(G, R)

lIIZ

Inf

e “Inflation maps” Inf : E2Y — H™(G, M) come up in
Hochschild-Serre’s spectral sequences

EP = HP(G/U, HY(U, M)) = H*(G, M).

HY(U,R) = 0 for all ¢ > 0 (Cor. 1) implies that
Inf : H*(G/U,RY) — H?*(G, R) is an isomorphism.

e All groups in (5) vanish: they are isomorphic to
H?(G,R) = RY/Ng(R), which is zero by Aljadeff-

Ginosar’s theorem. We now work in

H'(G/U,CY) =Ker(Ng,y: CY — CY) /(o —1)(CY).

1 ifgelU,
90(9)2{ nY

0 otherwise.

defines ¢ € BY with Ng i (¢) = 1. Its image ¢ in CY
induces an element [¢] in H(G/U,CY).

Claim. 6([@]) = [1] € H*(G/U, RY) = R® /Ng(R).
Proof. Lift ¢ to ¢ € BY and apply Ngju.
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From cyclic p-groups to abelian p-groups

e (7 abelian p-group (p prime number)
o G = Gy x Gy with G; cyclic of order p™ (n > 2)
o U =Gy x U; with Uy C G cyclic of order p

o If xy € R such that Ny(zy) =1, then

NU1 (NGO (.%U)) p— NU(CIZ‘U) p— 1

e By repeated use of Theorem 1, we get zg, € R
(explicit in terms of Ng,(xy)) with Ng, (zg,) = 1.

e Set x¢ = x¢, Ny, (xy). Then Ng(xg) = 1.

From abelian p-groups to general abelian groups

e (G finite abelian group of order n = p{* ... p% (r > 2)
e S; the Sylow subgroup of G of order p;"
e di,...,d, such that dyn/pi' +---+d,n/pi~ =1

Lemma 2. For z1,...,x, € R such that Ng,(z;) = 1
for each1=1,...,r, set

rqg=dix1+ - +d,x,.
Then Ng(wg) = 1.
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