

**Explicit norm one elements for ring
actions of finite abelian groups**

CHRISTIAN KASSEL

Institut de Recherche Mathématique Avancée
Strasbourg

Joint work with Eli Aljadeff (Technion, Haifa)

E. Aljadeff, C. Kassel, *Explicit norm one elements for ring actions of finite abelian groups*, preprint IRMA Strasbourg 2001/31, to appear in Israel J. Math.

www-irma.u-strasbg.fr/irma/publications/2001/00031.shtml

A simple-minded problem:

Let σ an automorphism σ of order 4 of a ring R and $x \in R$ such that

$$x + \sigma^2(x) = 1.$$

Find $y \in R$ such that

$$y + \sigma(y) + \sigma^2(y) + \sigma^3(y) = 1.$$

Answer: $y = x\sigma(x)$. Indeed, we have

$$\begin{aligned} y + \sigma(y) + \sigma^2(y) + \sigma^3(y) &= \\ &= x\sigma(x) + \sigma(x)\sigma^2(x) + \sigma^2(x)\sigma^3(x) + \sigma^3(x)x \\ &= x\sigma(x) + \sigma(x)(1 - x) \\ &\quad + (1 - x)(1 - \sigma(x)) + (1 - \sigma(x))x \\ &= 1 + 2(x\sigma(x) - \sigma(x)x) \\ &= 1 \quad \text{if } R \text{ is commutative.} \end{aligned}$$

Surjectivity of the norm map:

Let G be a finite group acting on a ring R by ring automorphisms. The norm (sometimes called trace)

$$N_G : R \rightarrow R^G \text{ (subring of invariant elements)}$$

is defined for all $x \in R$ by

$$N_G(x) = \sum_{g \in G} g(x).$$

Question: When is $N_G : R \rightarrow R^G$ surjective?

- If $\text{card}(G)$ is invertible in R (e. g., $R \supset \mathbf{Q}$).
- Let L be a finite Galois extension of a number field K ($\supset \mathbf{Q}$) with Galois group G .

$$\begin{array}{ccc} L & \supset & \mathcal{O}_L \quad (\text{ring of algebraic integers in } L) \\ \uparrow & & \uparrow \\ K & \supset & \mathcal{O}_K \quad (\text{ring of algebraic integers in } K) \end{array}$$

The group G acts on \mathcal{O}_L and $\mathcal{O}_L^G = \mathcal{O}_K$. The norm $N_G : \mathcal{O}_L \rightarrow \mathcal{O}_L^G = \mathcal{O}_K$ is surjective if and only if the extension L/K is “tame”.

A theorem by Aljadeff and Ginosar (1994):

Theorem. $N_G : R \rightarrow R^G$ is surjective if and only if $N_U : R \rightarrow R^U$ is surjective for any elementary abelian subgroup U of G .

- U is elementary abelian if $U \cong \mathbf{Z}/p \times \dots \times \mathbf{Z}/p$ for some prime p
- Aljadeff (1992): If R is commutative, one may replace “elementary abelian subgroup” by “cyclic subgroup of prime order” ($\cong \mathbf{Z}/p$ for some prime p) in previous theorem.

Counterexample. The group $G = \mathbf{Z}/2\langle\sigma\rangle \times \mathbf{Z}/2\langle\tau\rangle$ acts on $R = M_2(\mathbf{F}_2(X))$ such that, for any $U \cong \mathbf{Z}/2 \subset G$, $N_U : R \rightarrow R^U$ is surjective, but $N_G : R \rightarrow R^G$ is not surjective.

The action is given by

$$\sigma \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} d & cX \\ b/X & a \end{pmatrix}$$

$$\tau \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} \frac{(c+d)X + (a+b)}{X+1} & \frac{(a+cX)X + (b+dX)}{X+1} \\ \frac{a+b+c+d}{X+1} & \frac{(a+c)X + (b+d)}{X+1} \end{pmatrix}$$

An effective version of the surjectivity problem:

- The norm map is R^G -linear:

$$N_G(xy) = xN_G(y) \quad \text{if } x \in R^G \text{ and } y \in R.$$

Hence,

$$N_G : R \rightarrow R^G \text{ surjective} \Leftrightarrow \exists x_G \in R \text{ with } N_G(x_G) = 1.$$

- By Aljadeff-Ginosar's theorem

$$\exists x_G \in R : N_G(x_G) = 1 \Leftrightarrow \exists x_U \in R : N_U(x_U) = 1$$

for any elementary abelian subgroup U of G .

Problem: Given a family $(x_U)_U$ such that $N_U(x_U) = 1$ for any elementary abelian subgroup U of G , find $x_G \in R$ such that $N_G(x_G) = 1$.

What was known about the problem:

- In 1992 Aljadeff gave a formula for x_G when R is *commutative*.
- When R is not commutative, not much was known:
 - (a) Shelah: there is always a formula $x_G = F(g(x_U))$ where F is a noncommutative polynomial with integer coefficients in the variables $g(x_U)$.
 - (b) Problem solved by Aljadeff-Ginosar when R is a noncommutative \mathbf{F}_2 -algebra and G is an abelian 2-group
 - (c) For an arbitrary noncommutative ring R and the group $G = \mathbf{Z}/4$ Péter P. Pálfy gave the formula

$$x_G = x_U \sigma(x_U) + x_U \sigma(x_U) x_U - x_U^2 \sigma(x_U). \quad (1)$$

Remark: When R is commutative, we can take

$$x_G = x_U \sigma(x_U). \quad (2)$$

The difference between (1) and (2) shows that the non-commutative case is much more difficult.

Our results:

We solved the problem for *noncommutative* rings when G is any *abelian* group.

Three steps in our proof:

- (a) $G = \mathbf{Z}/p^n$ with p prime number and $n \geq 2$
- (b) From cyclic p -groups to abelian p -groups
- (c) From abelian p -groups to arbitrary abelian groups

The difficulty lies in Step (a).

Plan of lecture:

- Theorem for $G = \mathbf{Z}/p^n$
- Idea of proof in the p -cyclic case
- How to deduce the general case from the p -cyclic case

Our formula for $G = \mathbf{Z}/9$:

For a ring automorphism σ of order 9 of the ring R and an element $x \in R$ such that

$$x + \sigma^3(x) + \sigma^6(x) = 1,$$

we have

$$\sum_{i=0}^8 \sigma^i(y) = 1$$

for

$$\begin{aligned} y = & -x^2 + 2\sigma(x)x - \sigma^3(x)x + \sigma^4(x)x \\ & + x\sigma^3(x)x + x\sigma^4(x)x + x\sigma^5(x)x \\ & + x\sigma^6(x)x + x\sigma^7(x)x + x\sigma^8(x)x \\ & - \sigma(x)\sigma^4(x)x - \sigma(x)\sigma^5(x)x - \sigma(x)\sigma^6(x)x \\ & - \sigma(x)\sigma^7(x)x - \sigma(x)\sigma^8(x)x - \sigma(x)x^2 \\ & + \sigma^3(x)\sigma^6(x)x + \sigma^3(x)\sigma^7(x)x + \sigma^3(x)\sigma^8(x)x \\ & - \sigma^4(x)\sigma^7(x)x - \sigma^4(x)\sigma^8(x)x - \sigma^4(x)x^2. \end{aligned}$$

(RHS has 22 monomials)

The case of cyclic p -groups

- $G = \mathbf{Z}/p^n$ with generator σ (p prime number)
- $U \cong \mathbf{Z}/p^{n-k} \subset G$ generated by σ^{p^k} , where n, k are integers such that $n \geq 2$ and $1 \leq k \leq n/2$, *i. e.*,

$$\text{card}(U) \geq \sqrt{\text{card}(G)}.$$

Theorem 1.— *Let $x \in R$ satisfy $N_U(x) = 1$. Define $z, w_1, \dots, w_{p^{n-k}-1}$, and $a \in R$ by*

$$z = p^{n-2k} (1 + \sigma + \sigma^2 + \dots + \sigma^{p^k-1})(x) - 1,$$

$$w_i = (1 + \sigma^{p^k} + \sigma^{2p^k} + \dots + \sigma^{(i-1)p^k})(x\sigma^{-ip^k}(z)),$$

$$a = p^{n-2k}x + (1 - \sigma) \left(\sum_{i=1}^{p^{n-k}-1} w_i \right),$$

and $y = ax$. Then $N_G(y) = 1$.

Idea of proof of Theorem 1

1. *Natural idea:* Follow the proof of Aljadeff-Ginosar's theorem and make each step explicit.

- Aljadeff-Ginosar's proof relies on the following result by Chouinard (1976):

A finitely generated $R[G]$ -module is projective if and only if it is projective as a $R[U]$ -module for every elementary abelian subgroup U of G .

- Chouinard's theorem relies on the following result by Serre (1965). Denote

$$\beta : H^1(G, \mathbf{Z}/p) \rightarrow H^2(G, \mathbf{Z}/p) \quad (\text{Bockstein})$$

the boundary map in the long exact cohomology sequence associated to the short exact sequence of trivial G -modules $0 \rightarrow \mathbf{Z}/p \rightarrow \mathbf{Z}/p^2 \rightarrow \mathbf{Z}/p \rightarrow 0$.

If G is a p -group that is not elementary abelian, there exist nonzero $x_1, \dots, x_k \in H^1(G, \mathbf{Z}/p)$ such that

$$\beta(x_1) \cup \dots \cup \beta(x_k) = 0 \in H^{2k}(G, \mathbf{Z}/p).$$

If G is an elementary abelian p -group, then the vector space $\beta(H^1(G, \mathbf{Z}/p))$ generates a polynomial algebra (without zero-divisors) in $H^{**}(G, \mathbf{Z}/p)$.

2. Our actual proof is based on two facts:

- A general fact inspired from Proposition XII.1.3 in Cartan-Eilenberg's book "Homological algebra"
- The explicit computation of the cohomology groups of a cyclic group

Lemma 1. *Let U be a finite group acting on a ring R . If $\exists x \in R$ satisfying $N_U(x) = 1$, then every element $z \in R$ such that $N_U(z) = 0$ can be written as*

$$z = \sum_{g \in U} (g - 1)(xg^{-1}(z)).$$

$$\begin{aligned} \text{Proof.} \quad \text{RHS} &= \sum_{g \in U} g(x) g(g^{-1}(z)) - \sum_{g \in U} xg^{-1}(z) \\ &= N_U(x) z - x N_U(z) = z. \end{aligned}$$

Corollary 1. *If U is cyclic and $N_U : R \rightarrow R^U$ is surjective, then $H^q(U, R) = 0$ for all $q > 0$.*

Proof. $H^2(U, R) = R^U / N_U(R)$ and

$$H^1(U, R) = \text{Ker } N_U / I_U(R)$$

where $I_U(R) \subset R$ is spanned by $(g - 1)R$ ($g \in R$).

New idea: Replace surjectivity of the norm, *i. e.*, vanishing of $H^2(-, R)$, by vanishing of some H^1 using cohomological exact sequence.

Embed R into the co-induced G -module

$$B = \text{Hom}_{\mathbf{Z}}(\mathbf{Z}[G], R)$$

by $x \mapsto (\varphi_x : g \mapsto g(x))$. The group G acts on B by $(g\varphi)(s) = \varphi(sg)$ for $g, s \in G$ and $\varphi \in B$. We have

$$H^i(G, B) = 0 \quad (i > 0).$$

Define G -module C by short exact sequence

$$0 \rightarrow R \rightarrow B \rightarrow C \rightarrow 0. \quad (3)$$

The boundary map $\delta : H^1(G, C) \rightarrow H^2(G, R)$ is an isomorphism.

Applying $H^*(U, -)$ to (3) yields an exact sequence of $\mathbf{Z}[G/U]$ -modules

$$0 \rightarrow R^U \rightarrow B^U \rightarrow C^U \rightarrow H^1(U, R) = 0. \quad (4)$$

$B^U \cong \text{Hom}_{\mathbf{Z}}(\mathbf{Z}[G/U], R)$ is a co-induced G/U -module. Hence $H^i(G/U, B^U) = 0$ for $i > 0$ and boundary map $\delta : H^1(G/U, C^U) \rightarrow H^2(G/U, R^U)$ is an isomorphism.

Commutative square

$$\begin{array}{ccc}
 H^1(G/U, C^U) & \xrightarrow{\text{Inf}} & H^1(G, C) \\
 \delta \downarrow \cong & & \delta \downarrow \cong \\
 H^2(G/U, R^U) & \xrightarrow[\text{Inf}]{\cong} & H^2(G, R)
 \end{array} \tag{5}$$

- “Inflation maps” $\text{Inf} : E_2^{n0} \rightarrow H^n(G, M)$ come up in Hochschild-Serre’s spectral sequences

$$E_2^{pq} = H^p(G/U, H^q(U, M)) \implies H^*(G, M).$$

$H^q(U, R) = 0$ for all $q > 0$ (Cor. 1) implies that $\text{Inf} : H^2(G/U, R^U) \rightarrow H^2(G, R)$ is an isomorphism.

- All groups in (5) vanish: they are isomorphic to $H^2(G, R) = R^G/N_G(R)$, which is zero by Aljadeff-Ginosar’s theorem. We now work in

$$H^1(G/U, C^U) = \text{Ker}(N_{G/U} : C^U \rightarrow C^U) / (\sigma - 1)(C^U).$$

$$\varphi(g) = \begin{cases} 1 & \text{if } g \in U, \\ 0 & \text{otherwise.} \end{cases}$$

defines $\varphi \in B^U$ with $N_{G/U}(\varphi) = 1$. Its image $\bar{\varphi}$ in C^U induces an element $[\bar{\varphi}]$ in $H^1(G/U, C^U)$.

Claim. $\delta([\bar{\varphi}]) = [1] \in H^2(G/U, R^U) = R^G/N_G(R)$.

Proof. Lift $\bar{\varphi}$ to $\varphi \in B^U$ and apply $N_{G/U}$.

From cyclic p -groups to abelian p -groups

- G abelian p -group (p prime number)
- $G = G_0 \times G_1$ with G_1 cyclic of order p^n ($n \geq 2$)
- $U = G_0 \times U_1$ with $U_1 \subset G_1$ cyclic of order p
- If $x_U \in R$ such that $N_U(x_U) = 1$, then

$$N_{U_1}(N_{G_0}(x_U)) = N_U(x_U) = 1.$$

- By repeated use of Theorem 1, we get $x_{G_1} \in R$ (explicit in terms of $N_{G_0}(x_U)$) with $N_{G_1}(x_{G_1}) = 1$.
- Set $x_G = x_{G_1} N_{U_1}(x_U)$. Then $N_G(x_G) = 1$.

From abelian p -groups to general abelian groups

- G finite abelian group of order $n = p_1^{a_1} \dots p_r^{a_r}$ ($r \geq 2$)
- S_i the Sylow subgroup of G of order $p_i^{a_i}$
- d_1, \dots, d_r such that $d_1 n/p_1^{a_1} + \dots + d_r n/p_r^{a_r} = 1$

Lemma 2. *For $x_1, \dots, x_r \in R$ such that $N_{S_i}(x_i) = 1$ for each $i = 1, \dots, r$, set*

$$x_G = d_1 x_1 + \dots + d_r x_r.$$

Then $N_G(x_G) = 1$.

References

- E. Aljadeff, *On the surjectivity of some trace maps*, Israel J. Math. 86 (1994), 221–232.
- E. Aljadeff, Y. Ginosar, *Induction from elementary abelian subgroups*, J. of Algebra 179 (1996), 599–606.
- E. Aljadeff, C. Kassel, *Explicit norm one elements for ring actions of finite abelian groups*, preprint IRMA Strasbourg 2001/31, to appear in Israel J. Math.
www-irma.u-strasbg.fr/irma/publications/2001/00031.shtml
- L. G. Chouinard, *Projectivity and relative projectivity over group rings* J. Pure Appl. Algebra 7 (1976), 278–302.
- J.-P. Serre, *Sur la dimension cohomologique des groupes profinis*, Topology 3 (1965), 413–420.