

Quantum principal fiber bundles and polynomial identities

Christian Kassel

Institut de Recherche Mathématique Avancée
CNRS - Université Louis Pasteur
Strasbourg, France

Conference on Noncommutative Structures
in Mathematics and Physics
Brussels, Belgium
23 July 2008

Introduction

- We are interested in the noncommutative analogues of **principal fiber bundles**. For these “quantum principal fiber bundles”, the structural group is a **Hopf algebra**
- Our ultimate goal is to **classify** them; we approach this goal by constructing certain **universal objects**
- *Idea:* Use an adequate theory of **polynomial identities**
 - This is a report on joint results with **Eli Aljadeff** (Technion) published in *Polynomial identities and noncommutative versal torsors*, arXiv:0708.4108, Adv. Math. 218 (2008), 1453–1495.

Introduction

- We are interested in the noncommutative analogues of **principal fiber bundles**. For these “quantum principal fiber bundles”, the structural group is a **Hopf algebra**
- Our ultimate goal is to **classify** them; we approach this goal by constructing certain **universal objects**
- *Idea:* Use an adequate theory of **polynomial identities**
 - This is a report on joint results with **Eli Aljadeff** (Technion) published in ***Polynomial identities and noncommutative versal torsors***, arXiv:0708.4108, Adv. Math. 218 (2008), 1453–1495.

Basic dictionary of noncommutative geometry

- **Replacing spaces by associative algebras**

space X \longleftrightarrow algebra $A(X)$ (= functions on X)

map $f : X \rightarrow Y$ \longleftrightarrow algebra map $f^* : A(Y) \rightarrow A(X)$

product $f : X \times Y$ \longleftrightarrow tensor product $A(X) \otimes A(Y)$

point $X = \{*\}$ \longleftrightarrow ground field $A(*) = k$

Groups in noncommutative geometry

- **Groups.** Let G be a group and $H = A(G)$

$$\begin{array}{ccc} \text{product } G \times G \rightarrow G & \longleftrightarrow & \text{coproduct } \Delta : H \rightarrow H \otimes H \\ \text{unit } \{*\} \rightarrow G & \longleftrightarrow & \text{counit } \varepsilon : H \rightarrow k \\ \text{inverse } G \rightarrow G & \longleftrightarrow & \text{antipode } S : H \rightarrow H \end{array}$$

So H is a **Hopf algebra**

- **Group actions.** We also need the concept of an H -comodule algebra

$$\begin{array}{ccc} \text{action } X \times G \rightarrow X & \longleftrightarrow & \text{coaction } \delta : A \rightarrow A \otimes H \\ \text{orbit set } Y = X/G & \longleftrightarrow & \text{coinvariants } B = \{a \in A \mid \delta(a) = a \otimes 1_H\} \end{array}$$

Comodule algebras

- Given a Hopf algebra H , an H -comodule algebra is an associative unital algebra A together with an algebra morphism

$$\delta : A \rightarrow A \otimes H$$

called the **coaction** and satisfying

$$(\delta \otimes \text{id}_H) \circ \delta = (\text{id}_H \otimes \Delta) \circ \delta \quad \text{and} \quad (\text{id}_H \otimes \varepsilon) \circ \delta = \text{id}_H$$

- Coinvariants:

$$A^H = \{a \in A \mid \delta(a) = a \otimes 1_H\}$$

is a subalgebra and a subcomodule of A

- Examples of comodule algebras. Given a group G ,

(a) a **G -graded algebra** $A = \bigoplus_{g \in G} A_g$ is the same as an H -comodule algebra with $H = k[G]$

(b) a **G -algebra**, i.e., an algebra on which G acts by algebra automorphisms, is the same as an H -comodule algebra with $H = \{\text{functions on } G\}$

Comodule algebras

- Given a Hopf algebra H , an H -comodule algebra is an associative unital algebra A together with an algebra morphism

$$\delta : A \rightarrow A \otimes H$$

called the **coaction** and satisfying

$$(\delta \otimes \text{id}_H) \circ \delta = (\text{id}_H \otimes \Delta) \circ \delta \quad \text{and} \quad (\text{id}_H \otimes \varepsilon) \circ \delta = \text{id}_H$$

- Coinvariants:**

$$A^H = \{a \in A \mid \delta(a) = a \otimes 1_H\}$$

is a subalgebra and a subcomodule of A

- Examples of comodule algebras.** Given a group G ,

(a) a **G -graded algebra** $A = \bigoplus_{g \in G} A_g$ is the same as an H -comodule algebra with $H = k[G]$

(b) a **G -algebra**, i.e., an algebra on which G acts by algebra automorphisms, is the same as an H -comodule algebra with $H = \{\text{functions on } G\}$

Comodule algebras

- Given a Hopf algebra H , an H -comodule algebra is an associative unital algebra A together with an algebra morphism

$$\delta : A \rightarrow A \otimes H$$

called the **coaction** and satisfying

$$(\delta \otimes \text{id}_H) \circ \delta = (\text{id}_H \otimes \Delta) \circ \delta \quad \text{and} \quad (\text{id}_H \otimes \varepsilon) \circ \delta = \text{id}_H$$

- Coinvariants:**

$$A^H = \{a \in A \mid \delta(a) = a \otimes 1_H\}$$

is a subalgebra and a subcomodule of A

- Examples of comodule algebras.** Given a group G ,

(a) a **G -graded algebra** $A = \bigoplus_{g \in G} A_g$ is the same as an H -comodule algebra with $H = k[G]$

(b) a **G -algebra**, i.e., an algebra on which G acts by algebra automorphisms, is the same as an H -comodule algebra with $H = \{\text{functions on } G\}$

POLYNOMIAL IDENTITIES FOR COMODULE ALGEBRAS

A place where polynomial identities will live

- From now on we assume that the ground field k is infinite
- Polynomial identities are noncommutative polynomials. We take variables indexed by a basis of a Hopf algebra

Let H be a Hopf algebra and X_H a copy of H together with a linear isomorphism $x \mapsto X_x$

- Consider the tensor algebra

$$T(X_H) = \bigoplus_{r \geq 0} X_H^{\otimes r}$$

on the vector space X_H . If $\{x_i\}_{i \in I}$ is a basis of H , then

$$T(X_H) \cong k\langle X_{x_i} \mid i \in I \rangle$$

is the algebra of noncommutative polynomials in X_{x_i} ($i \in I$)

Identities for comodule algebras

- ▶ The algebra $T(X_H)$ is an H -comodule algebra with coaction $\delta : T(X_H) \rightarrow T(X_H) \otimes H$ given by

$$\delta(X_x) = \sum_{(x)} X_{x(1)} \otimes X_{(2)},$$

where $\Delta(x) = \sum_{(x)} x(1) \otimes x(2)$

- ▶ Let A be an H -comodule algebra

Definition. An element $P \in T(X_H)$ is an H -identity of A if $\mu(P) = 0$ for all comodule algebra morphisms $\mu : T(X_H) \rightarrow A$

Recall: An algebra morphism $\mu : T(X_H) \rightarrow A$ is a comodule algebra morphism if it preserves the coactions, i.e.,

$$(\mu \otimes \text{id}_H) \circ \delta = \delta \circ \mu$$

Identities for comodule algebras

- ▶ The algebra $T(X_H)$ is an H -comodule algebra with coaction $\delta : T(X_H) \rightarrow T(X_H) \otimes H$ given by

$$\delta(X_x) = \sum_{(x)} X_{x(1)} \otimes X_{(2)},$$

where $\Delta(x) = \sum_{(x)} x(1) \otimes x(2)$

- ▶ Let A be an H -comodule algebra

Definition. An element $P \in T(X_H)$ is an H -identity of A if $\mu(P) = 0$ for all comodule algebra morphisms $\mu : T(X_H) \rightarrow A$

Recall: An algebra morphism $\mu : T(X_H) \rightarrow A$ is a comodule algebra morphism if it preserves the coactions, i.e.,

$$(\mu \otimes \text{id}_H) \circ \delta = \delta \circ \mu$$

The ideal of identities

- Let A be an H -comodule algebra for some Hopf algebra H and consider the vector space $I_H(A)$ of all H -identities of A
- **Proposition.** (a) $I_H(A)$ is a *two-sided ideal* of $T(X_H)$ such that

$$\delta(I_H(A)) \subset I_H(A) \otimes H$$

- (b) The ideal $I_H(A)$ is *graded* and

$$I_H(A) \subset \bigoplus_{r \geq 2} X_H^{\otimes r}$$

The universal comodule algebra

- **Definition.** The *universal comodule algebra* for identities of the H -comodule algebra A is the quotient-algebra

$$\mathcal{U}_H(A) = T(X_H)/I_H(A)$$

- **Properties.**

- $\mathcal{U}_H(A)$ is a *graded* algebra coinciding with $T(X_H)$ in degrees 0 and 1
- $\mathcal{U}_H(A)$ is an *H -comodule algebra*
- All H -identities of A *vanish* in $\mathcal{U}_H(A)$

Questions

- Can we determine the **universal comodule algebra** for identities $\mathcal{U}_H(A)$, or its **center** $\mathcal{Z}_H(A)$, or its **subalgebra of coinvariants** $\mathcal{U}_H(A)^H$, or say something about their **structure**?
- Is $\mathcal{U}_H(A)$ **free** as a module over $\mathcal{U}_H(A)^H$? Do we have a $\mathcal{U}_H(A)^H$ -linear comodule isomorphism

$$\mathcal{U}_H(A) \cong \mathcal{U}_H(A)^H \otimes H?$$

- We give a **positive answer** to these questions for a **special class** of comodule algebras after having performed some **central localization**

THE SWEEDLER ALGEBRA

An example: the Sweedler algebra

- The Sweedler algebra is the **smallest noncommutative noncocommutative Hopf algebra**

As an **algebra**,

$$H_4 = k\langle x, y \mid x^2 = 1, \ xy + yx = 0, \ y^2 = 0 \rangle$$

- **Hopf algebra structure:**

Coproduct: $\Delta(x) = x \otimes x, \quad \Delta(y) = 1 \otimes y + y \otimes x$

Counit: $\varepsilon(x) = 1, \quad \varepsilon(y) = 0$

Antipode: $S(x) = x, \quad S(y) = xy$

- The algebra H_4 is **four-dimensional** with basis $\{1, x, y, z\}$, where $z = xy$

A three-parameter family of comodule algebras

- Given scalars a, b, c with $a \neq 0$, consider the **algebra**

$$A_{a,b,c} = k\langle u_x, u_y \mid u_x^2 = a, \quad u_x u_y + u_y u_x = b, \quad u_y^2 = c \rangle$$

- The algebra $A_{a,b,c}$ is a **comodule algebra** over the Sweedler algebra H_4 with coaction $\delta : A_{a,b,c} \rightarrow A_{a,b,c} \otimes H_4$ given by

$$\delta(u_x) = u_x \otimes x \quad \text{and} \quad \delta(u_y) = 1 \otimes y + u_y \otimes x$$

- The subalgebra of coinvariants is **trivial**: $(A_{a,b,c})^H = k1$

Identities for the comodule algebras $A_{a,b,c}$

- We have $T(X_{H_4}) = k\langle E, X, Y, Z \rangle$, where

$$E = X_1, \quad X = X_x, \quad Y = X_y, \quad Z = X_z$$

We keep the same notation for their images in $\mathcal{U}_{a,b,c} = \mathcal{U}_{H_4}(A_{a,b,c})$

- **Theorem.**

1. The *center* $\mathcal{Z}_{a,b,c}$ of $\mathcal{U}_{a,b,c}$ coincides with the *subalgebra of coinvariants*:

$$\mathcal{Z}_{a,b,c} = (\mathcal{U}_{a,b,c})^H$$

2. The following polynomials are *central* elements of $\mathcal{U}_{a,b,c}$:

$$E, \quad R = X^2, \quad S = Y^2, \quad T = XY + YX, \quad U = X(XZ + ZX) \in \mathcal{Z}_{a,b,c}$$

3. After inverting E and R , there is an *algebra isomorphism*

$$\mathcal{Z}_{a,b,c}[E^{-1}, R^{-1}] \cong k[E^{\pm 1}, R^{\pm 1}, S, U][T]/(P_{a,b,c}),$$

where

$$P_{a,b,c} = T^2 - 4RS - \frac{b^2 - 4ac}{a} E^2 R$$

Identities for the comodule algebras $A_{a,b,c}$

- We have $T(X_{H_4}) = k\langle E, X, Y, Z \rangle$, where

$$E = X_1, \quad X = X_x, \quad Y = X_y, \quad Z = X_z$$

We keep the same notation for their images in $\mathcal{U}_{a,b,c} = \mathcal{U}_{H_4}(A_{a,b,c})$

- **Theorem.**

1. The *center* $\mathcal{Z}_{a,b,c}$ of $\mathcal{U}_{a,b,c}$ coincides with the *subalgebra of coinvariants*:

$$\mathcal{Z}_{a,b,c} = (\mathcal{U}_{a,b,c})^H$$

2. The following polynomials are *central* elements of $\mathcal{U}_{a,b,c}$:

$$E, \quad R = X^2, \quad S = Y^2, \quad T = XY + YX, \quad U = X(XZ + ZX) \in \mathcal{Z}_{a,b,c}$$

3. After inverting E and R , there is an *algebra isomorphism*

$$\mathcal{Z}_{a,b,c}[E^{-1}, R^{-1}] \cong k[E^{\pm 1}, R^{\pm 1}, S, U][T]/(P_{a,b,c}),$$

where

$$P_{a,b,c} = T^2 - 4RS - \frac{b^2 - 4ac}{a} E^2 R$$

Identities for the comodule algebras $A_{a,b,c}$

- We have $T(X_{H_4}) = k\langle E, X, Y, Z \rangle$, where

$$E = X_1, \quad X = X_x, \quad Y = X_y, \quad Z = X_z$$

We keep the same notation for their images in $\mathcal{U}_{a,b,c} = \mathcal{U}_{H_4}(A_{a,b,c})$

- **Theorem.**

1. The *center* $\mathcal{Z}_{a,b,c}$ of $\mathcal{U}_{a,b,c}$ coincides with the *subalgebra of coinvariants*:

$$\mathcal{Z}_{a,b,c} = (\mathcal{U}_{a,b,c})^H$$

2. The following polynomials are *central* elements of $\mathcal{U}_{a,b,c}$:

$$E, \quad R = X^2, \quad S = Y^2, \quad T = XY + YX, \quad U = X(XZ + ZX) \in \mathcal{Z}_{a,b,c}$$

3. After inverting E and R , there is an *algebra isomorphism*

$$\mathcal{Z}_{a,b,c}[E^{-1}, R^{-1}] \cong k[E^{\pm 1}, R^{\pm 1}, S, U][T]/(P_{a,b,c}),$$

where

$$P_{a,b,c} = T^2 - 4RS - \frac{b^2 - 4ac}{a} E^2 R$$

The universal comodule algebra of $A_{a,b,c}$

- Recall $R = X^2$, $S = Y^2$, $T = XY + YX$, $U = X(XZ + ZX)$

Theorem. After inverting E and R ,

1. there is a $\mathcal{Z}_{a,b,c}[E^{-1}, R^{-1}]$ -linear comodule isomorphism

$$\mathcal{U}_{a,b,c}[E^{-1}, R^{-1}] \cong \mathcal{Z}_{a,b,c}[E^{-1}, R^{-1}] \otimes H_4$$

2. and $\mathcal{U}_{a,b,c}[E^{-1}, R^{-1}]$ is isomorphic as an algebra to

$$\mathcal{Z}_{a,b,c}[E^{-1}, R^{-1}]\langle X, Y \mid X^2 = R, XY + YX = T, Y^2 = S \rangle$$

- In $\mathcal{U}_{a,b,c}$ we have

$$ERZ = RXY + \frac{EU - RT}{2}$$

(The elements in red are central)

The universal comodule algebra of $A_{a,b,c}$

- Recall $R = X^2$, $S = Y^2$, $T = XY + YX$, $U = X(XZ + ZX)$

Theorem. After inverting E and R ,

1. there is a $\mathcal{Z}_{a,b,c}[E^{-1}, R^{-1}]$ -linear comodule isomorphism

$$\mathcal{U}_{a,b,c}[E^{-1}, R^{-1}] \cong \mathcal{Z}_{a,b,c}[E^{-1}, R^{-1}] \otimes H_4$$

2. and $\mathcal{U}_{a,b,c}[E^{-1}, R^{-1}]$ is isomorphic as an algebra to

$$\mathcal{Z}_{a,b,c}[E^{-1}, R^{-1}]\langle X, Y \mid X^2 = R, XY + YX = T, Y^2 = S \rangle$$

- In $\mathcal{U}_{a,b,c}$ we have

$$ERZ = RXY + \frac{EU - RT}{2}$$

(The elements in red are central)

How did we determine the identities in the Sweedler case?

- The comodule algebras $A_{a,b,c}$ belong to a special class of comodule algebras, called **twisted algebras**
- In the case of a twisted algebra A we can **detect** the H -identities of A and embed $\mathcal{U}_H(A)$ into an easily **controllable algebra**

• **Plan of the sequel**

- (a) Define the **twisted algebras**
- (b) Define the **controllable algebra** and embed $\mathcal{U}_H(A)$ into it
- (c) What **localization** is needed?
- (d) **Results** on $\mathcal{U}_H(A)$ after localization

TWISTED ALGEBRAS

Twisting the product with a cocycle

- Let H be a Hopf algebra and $\alpha : H \times H \rightarrow k$ be a **two-cocycle**, i.e., a bilinear form such that for all $x, y \in H$,

$$\sum_{(x),(y)} \alpha(x_{(1)}, y_{(1)}) \alpha(x_{(2)}y_{(2)}, z) = \sum_{(y),(z)} \alpha(y_{(1)}, z_{(1)}) \alpha(x, y_{(2)}z_{(2)})$$

where $\Delta(x) = \sum_{(x)} x_{(1)} \otimes x_{(2)}, \dots$

Also assume α **normalized**: $\alpha(1, x) = \alpha(x, 1) = \varepsilon(x)$ for all $x \in H$

- Let ${}^\alpha H$ be a vector space isomorphic to H via a linear isomorphism $x \in H \mapsto u_x \in {}^\alpha H$. Equip ${}^\alpha H$ with the **product**

$$u_x u_y = \sum_{(x),(y)} \alpha(x_{(1)}, y_{(1)}) u_{x_{(2)}y_{(2)}}$$

This product is **associative** with u_1 as **unit**

- The algebra ${}^\alpha H$ is called a **twisted algebra**

Twisted algebras are comodule algebras

- ${}^\alpha H$ is an H -comodule algebra with coaction $\delta : {}^\alpha H \rightarrow {}^\alpha H \otimes H$ given by

$$\delta(u_x) = \sum_{(x)} u_{x(1)} \otimes x_{(2)}$$

where $\Delta(x) = \sum_{(x)} x_{(1)} \otimes x_{(2)}$

- The subalgebra of coinvariants of ${}^\alpha H$ is trivial: $({}^\alpha H)^H = k 1$

The symbols t_x

- Let t_H be a copy of H with linear isomorphism $x \in H \mapsto t_x \in t_H$
- Consider the **symmetric algebra**

$$\text{Sym}(t_H) = \bigoplus_{r \geq 0} \text{Sym}^r(t_H)$$

on the vector space t_H . If $\{x_i\}_{i \in I}$ is a basis of H , then

$$\text{Sym}(t_H) \cong k[t_{x_i} \mid i \in I]$$

is the **polynomial algebra** in the (commuting) variables t_{x_i}

The symbols t_x^{-1}

- We also need “inverse variables” t_x^{-1} . Let $\text{Frac Sym}(t_H)$ be the **field of fractions** of $\text{Sym}(t_H)$

Lemma. *There is a unique linear map $x \mapsto t_x^{-1}$ from H to $\text{Frac Sym}(t_H)$ such that for all $x \in H$,*

$$\sum_{(x)} t_{x_{(1)}} t_{x_{(2)}}^{-1} = \sum_{(x)} t_{x_{(1)}}^{-1} t_{x_{(2)}} = \varepsilon(x) 1$$

- If x is **grouplike**, i.e., $\Delta(x) = x \otimes x$, then $\varepsilon(x) = 1$ and

$$t_x t_x^{-1} = 1, \quad \text{hence} \quad t_x^{-1} = \frac{1}{t_x}$$

- If x is **skew-primitive**, i.e., $\Delta(x) = g \otimes x + x \otimes h$ for some grouplike elements g, h , then $\varepsilon(x) = 0$ and

$$t_g t_x^{-1} + t_x t_h^{-1} = 0, \quad \text{hence} \quad t_x^{-1} = -\frac{t_x}{t_g t_h}$$

The symbols t_x^{-1}

- We also need “inverse variables” t_x^{-1} . Let $\text{Frac Sym}(t_H)$ be the **field of fractions** of $\text{Sym}(t_H)$

Lemma. *There is a unique linear map $x \mapsto t_x^{-1}$ from H to $\text{Frac Sym}(t_H)$ such that for all $x \in H$,*

$$\sum_{(x)} t_{x_{(1)}} t_{x_{(2)}}^{-1} = \sum_{(x)} t_{x_{(1)}}^{-1} t_{x_{(2)}} = \varepsilon(x) 1$$

- If x is **grouplike**, i.e., $\Delta(x) = x \otimes x$, then $\varepsilon(x) = 1$ and

$$t_x t_x^{-1} = 1, \quad \text{hence} \quad t_x^{-1} = \frac{1}{t_x}$$

- If x is **skew-primitive**, i.e., $\Delta(x) = g \otimes x + x \otimes h$ for some grouplike elements g, h , then $\varepsilon(x) = 0$ and

$$t_g t_x^{-1} + t_x t_h^{-1} = 0, \quad \text{hence} \quad t_x^{-1} = -\frac{t_x}{t_g t_h}$$

The symbols t_x^{-1}

- We also need “inverse variables” t_x^{-1} . Let $\text{Frac Sym}(t_H)$ be the **field of fractions** of $\text{Sym}(t_H)$

Lemma. *There is a unique linear map $x \mapsto t_x^{-1}$ from H to $\text{Frac Sym}(t_H)$ such that for all $x \in H$,*

$$\sum_{(x)} t_{x_{(1)}} t_{x_{(2)}}^{-1} = \sum_{(x)} t_{x_{(1)}}^{-1} t_{x_{(2)}} = \varepsilon(x) 1$$

- If x is **grouplike**, i.e., $\Delta(x) = x \otimes x$, then $\varepsilon(x) = 1$ and

$$t_x t_x^{-1} = 1, \quad \text{hence} \quad t_x^{-1} = \frac{1}{t_x}$$

- If x is **skew-primitive**, i.e., $\Delta(x) = g \otimes x + x \otimes h$ for some grouplike elements g, h , then $\varepsilon(x) = 0$ and

$$t_g t_x^{-1} + t_x t_h^{-1} = 0, \quad \text{hence} \quad t_x^{-1} = -\frac{t_x}{t_g t_h}$$

The universal evaluation map

- Let ${}^\alpha H$ be a **twisted algebra** and consider the **algebra morphism**

$$\begin{aligned}\mu_\alpha : T(X_H) &\longrightarrow \text{Sym}(t_H) \otimes {}^\alpha H \\ X_x &\longmapsto \sum_{(x)} t_{x(1)} \otimes u_{x(2)}\end{aligned}$$

- Lemma.**

- The map μ_α is an H -comodule algebra morphism*
- For every H -comodule algebra morphism $\mu : T(X_H) \rightarrow {}^\alpha H$, there is a unique algebra morphism $\chi : \text{Sym}(t_H) \rightarrow k$ such that*

$$\mu = (\chi \otimes \text{id}) \circ \mu_\alpha$$

In other words, any comodule algebra morphism $T(X_H) \rightarrow {}^\alpha H$ is a specialization of μ_α

We call μ_α the **universal evaluation map** for ${}^\alpha H$

The universal evaluation map

- Let ${}^\alpha H$ be a **twisted algebra** and consider the **algebra morphism**

$$\begin{aligned}\mu_\alpha : T(X_H) &\longrightarrow \text{Sym}(t_H) \otimes {}^\alpha H \\ X_x &\longmapsto \sum_{(x)} t_{x(1)} \otimes u_{x(2)}\end{aligned}$$

- Lemma.**

- The map μ_α is an H -comodule algebra morphism*
- For every H -comodule algebra morphism $\mu : T(X_H) \rightarrow {}^\alpha H$, there is a unique algebra morphism $\chi : \text{Sym}(t_H) \rightarrow k$ such that*

$$\mu = (\chi \otimes \text{id}) \circ \mu_\alpha$$

In other words, any comodule algebra morphism $T(X_H) \rightarrow {}^\alpha H$ is a **specialization** of μ_α

We call μ_α the **universal evaluation map** for ${}^\alpha H$

The universal evaluation map

- Let ${}^\alpha H$ be a **twisted algebra** and consider the **algebra morphism**

$$\begin{aligned}\mu_\alpha : T(X_H) &\longrightarrow \text{Sym}(t_H) \otimes {}^\alpha H \\ X_x &\longmapsto \sum_{(x)} t_{x(1)} \otimes u_{x(2)}\end{aligned}$$

- Lemma.**

- The map μ_α is an H -comodule algebra morphism*
- For every H -comodule algebra morphism $\mu : T(X_H) \rightarrow {}^\alpha H$, there is a unique algebra morphism $\chi : \text{Sym}(t_H) \rightarrow k$ such that*

$$\mu = (\chi \otimes \text{id}) \circ \mu_\alpha$$

In other words, any comodule algebra morphism $T(X_H) \rightarrow {}^\alpha H$ is a **specialization** of μ_α

We call μ_α the **universal evaluation map** for ${}^\alpha H$

The universal evaluation map

- Let ${}^\alpha H$ be a **twisted algebra** and consider the **algebra morphism**

$$\begin{aligned}\mu_\alpha : T(X_H) &\longrightarrow \text{Sym}(t_H) \otimes {}^\alpha H \\ X_x &\longmapsto \sum_{(x)} t_{x(1)} \otimes u_{x(2)}\end{aligned}$$

- Lemma.**

- The map μ_α is an H -comodule algebra morphism*
- For every H -comodule algebra morphism $\mu : T(X_H) \rightarrow {}^\alpha H$, there is a unique algebra morphism $\chi : \text{Sym}(t_H) \rightarrow k$ such that*

$$\mu = (\chi \otimes \text{id}) \circ \mu_\alpha$$

In other words, any comodule algebra morphism $T(X_H) \rightarrow {}^\alpha H$ is a **specialization** of μ_α

We call μ_α the **universal evaluation map** for ${}^\alpha H$

Detecting the identities for twisted algebras

- **Theorem.** We have $I_H({}^\alpha H) = \text{Ker } \mu_\alpha$

In other words, the map μ_α detects the H -identities of ${}^\alpha H$

- Set $\mathcal{U}_H^\alpha = T(X_H)/I_H({}^\alpha H)$. Then the map μ_α induces an embedding

$$\mathcal{U}_H^\alpha \hookrightarrow \text{Sym}(t_H) \otimes {}^\alpha H$$

of the universal comodule algebra into a twisted algebra with extended scalars

- $u \in \mathcal{U}_H^\alpha$ is coinvariant if and only if $\mu_\alpha(u)$ belongs to $\text{Sym}(t_H) \otimes 1$
- $u \in \mathcal{U}_H^\alpha$ is central if and only if $\mu_\alpha(u)$ belongs to $\text{Sym}(t_H) \otimes Z({}^\alpha H)$, where $Z({}^\alpha H)$ is the center of ${}^\alpha H$
- The center \mathcal{Z}_H^α of \mathcal{U}_H^α is a domain if $Z({}^\alpha H)$ is a domain

Detecting the identities for twisted algebras

- **Theorem.** We have $I_H({}^\alpha H) = \text{Ker } \mu_\alpha$

In other words, the map μ_α detects the H -identities of ${}^\alpha H$

- Set $\mathcal{U}_H^\alpha = T(X_H)/I_H({}^\alpha H)$. Then the map μ_α induces an **embedding**

$$\mathcal{U}_H^\alpha \hookrightarrow \text{Sym}(t_H) \otimes {}^\alpha H$$

of the **universal comodule algebra** into a twisted algebra with extended scalars

- $u \in \mathcal{U}_H^\alpha$ is **coinvariant** if and only if $\mu_\alpha(u)$ belongs to $\text{Sym}(t_H) \otimes 1$
- $u \in \mathcal{U}_H^\alpha$ is **central** if and only if $\mu_\alpha(u)$ belongs to $\text{Sym}(t_H) \otimes Z({}^\alpha H)$, where $Z({}^\alpha H)$ is the center of ${}^\alpha H$
- The **center** \mathcal{Z}_H^α of \mathcal{U}_H^α is a **domain** if $Z({}^\alpha H)$ is a domain

Detecting the identities for twisted algebras

- **Theorem.** We have $I_H({}^\alpha H) = \text{Ker } \mu_\alpha$

In other words, the map μ_α detects the H -identities of ${}^\alpha H$

- Set $\mathcal{U}_H^\alpha = T(X_H)/I_H({}^\alpha H)$. Then the map μ_α induces an **embedding**

$$\mathcal{U}_H^\alpha \hookrightarrow \text{Sym}(t_H) \otimes {}^\alpha H$$

of the **universal comodule algebra** into a twisted algebra with extended scalars

- $u \in \mathcal{U}_H^\alpha$ is **coinvariant** if and only if $\mu_\alpha(u)$ belongs to $\text{Sym}(t_H) \otimes 1$
- $u \in \mathcal{U}_H^\alpha$ is **central** if and only if $\mu_\alpha(u)$ belongs to $\text{Sym}(t_H) \otimes Z({}^\alpha H)$, where $Z({}^\alpha H)$ is the center of ${}^\alpha H$
- The **center** \mathcal{Z}_H^α of \mathcal{U}_H^α is a **domain** if $Z({}^\alpha H)$ is a domain

Detecting the identities for twisted algebras

- **Theorem.** We have $I_H({}^\alpha H) = \text{Ker } \mu_\alpha$

In other words, the map μ_α detects the H -identities of ${}^\alpha H$

- Set $\mathcal{U}_H^\alpha = T(X_H)/I_H({}^\alpha H)$. Then the map μ_α induces an **embedding**

$$\mathcal{U}_H^\alpha \hookrightarrow \text{Sym}(t_H) \otimes {}^\alpha H$$

of the **universal comodule algebra** into a twisted algebra with extended scalars

- $u \in \mathcal{U}_H^\alpha$ is **coinvariant** if and only if $\mu_\alpha(u)$ belongs to $\text{Sym}(t_H) \otimes 1$
- $u \in \mathcal{U}_H^\alpha$ is **central** if and only if $\mu_\alpha(u)$ belongs to $\text{Sym}(t_H) \otimes Z({}^\alpha H)$, where $Z({}^\alpha H)$ is the center of ${}^\alpha H$
- The **center** \mathcal{Z}_H^α of \mathcal{U}_H^α is a **domain** if $Z({}^\alpha H)$ is a domain

Detecting the identities for twisted algebras

- **Theorem.** We have $I_H({}^\alpha H) = \text{Ker } \mu_\alpha$

In other words, the map μ_α detects the H -identities of ${}^\alpha H$

- Set $\mathcal{U}_H^\alpha = T(X_H)/I_H({}^\alpha H)$. Then the map μ_α induces an **embedding**

$$\mathcal{U}_H^\alpha \hookrightarrow \text{Sym}(t_H) \otimes {}^\alpha H$$

of the **universal comodule algebra** into a twisted algebra with extended scalars

- $u \in \mathcal{U}_H^\alpha$ is **coinvariant** if and only if $\mu_\alpha(u)$ belongs to $\text{Sym}(t_H) \otimes 1$
- $u \in \mathcal{U}_H^\alpha$ is **central** if and only if $\mu_\alpha(u)$ belongs to $\text{Sym}(t_H) \otimes Z({}^\alpha H)$, where $Z({}^\alpha H)$ is the center of ${}^\alpha H$
- The **center** \mathcal{Z}_H^α of \mathcal{U}_H^α is a **domain** if $Z({}^\alpha H)$ is a domain

LOCALIZATION

The generic base algebra

- ▶ Let ${}^\alpha H$ be a **twisted algebra**. The bilinear map
 $\sigma : H \times H \rightarrow \text{Frac Sym}(t_H)$

$$\sigma(x, y) = \sum_{(x), (y)} t_{x_{(1)}} t_{y_{(1)}} \alpha(x_{(2)}, y_{(2)}) t_{x_{(3)} y_{(3)}}^{-1}$$

is a **two-cocycle**

- ▶ **Definition.** The *generic base algebra* is the subalgebra \mathcal{B}_H^α of $\text{Frac Sym}(t_H)$ generated by the values of the generic two-cocycle σ and of its convolution inverse σ^{-1}
- ▶ **Immediate properties:**
 - (a) \mathcal{B}_H^α is a **domain**
 - (b) Transcendence degree of $\text{Frac } \mathcal{B}_H^\alpha \leq \dim H$
 - (c) \mathcal{B}_H^α is **finitely generated** if $\dim H < \infty$

The generic base algebra

- ▶ Let ${}^\alpha H$ be a **twisted algebra**. The bilinear map
 $\sigma : H \times H \rightarrow \text{Frac Sym}(t_H)$

$$\sigma(x, y) = \sum_{(x), (y)} t_{x_{(1)}} t_{y_{(1)}} \alpha(x_{(2)}, y_{(2)}) t_{x_{(3)} y_{(3)}}^{-1}$$

is a **two-cocycle**

- ▶ **Definition.** The **generic base algebra** is the subalgebra \mathcal{B}_H^α of $\text{Frac Sym}(t_H)$ generated by the values of the generic two-cocycle σ and of its convolution inverse σ^{-1}
- ▶ Immediate properties:
 - (a) \mathcal{B}_H^α is a **domain**
 - (b) Transcendence degree of $\text{Frac } \mathcal{B}_H^\alpha \leq \dim H$
 - (c) \mathcal{B}_H^α is **finitely generated** if $\dim H < \infty$

The generic base algebra

- ▶ Let ${}^\alpha H$ be a **twisted algebra**. The bilinear map
 $\sigma : H \times H \rightarrow \text{Frac Sym}(t_H)$

$$\sigma(x, y) = \sum_{(x), (y)} t_{x_{(1)}} t_{y_{(1)}} \alpha(x_{(2)}, y_{(2)}) t_{x_{(3)} y_{(3)}}^{-1}$$

is a **two-cocycle**

- ▶ **Definition.** The **generic base algebra** is the subalgebra \mathcal{B}_H^α of $\text{Frac Sym}(t_H)$ generated by the values of the generic two-cocycle σ and of its convolution inverse σ^{-1}
- ▶ **Immediate properties:**
 - (a) \mathcal{B}_H^α is a **domain**
 - (b) Transcendence degree of $\text{Frac } \mathcal{B}_H^\alpha \leq \dim H$
 - (c) \mathcal{B}_H^α is **finitely generated** if $\dim H < \infty$

The generic base algebra in the Sweedler case

- Each comodule algebra $A_{a,b,c}$ is a **twisted algebra** for some two-cocycle α
- Recall $R = X^2$, $S = Y^2$, $T = XY + YX$, $U = X(XZ + ZX) \in \mathcal{Z}_{H_4}^\alpha$
- **Presentation of $\mathcal{B}_{H_4}^\alpha$ by generators and relations:**

$$\mathcal{B}_{H_4}^\alpha \cong k[\widehat{E}^{\pm 1}, \widehat{R}^{\pm 1}, \widehat{S}, \widehat{T}, \widehat{U}] / (P_{a,b,c})$$

with

$$P_{a,b,c} = \widehat{T}^2 - 4\widehat{R}\widehat{S} - \frac{b^2 - 4ac}{a} \widehat{E}^2\widehat{R}$$

Here

$$\begin{aligned}\widehat{E} &= \mu_\alpha(E) = t_1 \otimes 1 \\ \widehat{R} &= \mu_\alpha(R) = a t_x^2 \otimes 1 \\ \widehat{S} &= \mu_\alpha(S) = a t_y^2 + b t_1 t_y + c t_1^2 \otimes 1 \\ \widehat{T} &= \mu_\alpha(T) = t_x (2a t_y + b t_1) \otimes 1 \\ \widehat{U} &= \mu_\alpha(U) = a t_x^2 (2 t_z + b t_x) \otimes 1\end{aligned}$$

Relating the center of the universal comodule algebra and the generic base algebra

- Let ${}^\alpha H$ be a **twisted algebra** and \mathcal{Z}_H^α be the **center** of the universal comodule algebra \mathcal{U}_H^α

Theorem. *If $Z({}^\alpha H) = k$, then $\mathcal{Z}_H^\alpha \hookrightarrow \mathcal{B}_H^\alpha$*

- In the sequel we assume that $Z({}^\alpha H) = k$ and that \mathcal{B}_H^α is a **localization** of \mathcal{Z}_H^α

The universal comodule algebra after localization

- ▶ **Definition.** The *generic twisted algebra* is the comodule algebra

$$\mathcal{A}_H^\alpha = \mathcal{B}_H^\alpha \otimes_{\mathcal{Z}_H^\alpha} \mathcal{U}_H^\alpha$$

with center $\mathcal{B}_H^\alpha = (\mathcal{A}_H^\alpha)^H$

- ▶ **Theorem.** (a) *There is an H -comodule algebra isomorphism*

$$\mathcal{A}_H^\alpha \cong \mathcal{B}_H^\alpha \otimes {}^\sigma H$$

(b) There is a maximal ideal \mathfrak{m}_0 of \mathcal{B}_H^α such that

$$\mathcal{A}_H^\alpha / \mathfrak{m}_0 \mathcal{A}_H^\alpha \cong {}^\alpha H$$

as comodule algebras

After localization, the universal comodule algebra \mathcal{U}_H^α becomes a *flat deformation* of the comodule algebra A

The universal comodule algebra after localization

- ▶ **Definition.** The *generic twisted algebra* is the comodule algebra

$$\mathcal{A}_H^\alpha = \mathcal{B}_H^\alpha \otimes_{\mathcal{Z}_H^\alpha} \mathcal{U}_H^\alpha$$

with center $\mathcal{B}_H^\alpha = (\mathcal{A}_H^\alpha)^H$

- ▶ **Theorem.** (a) *There is an H -comodule algebra isomorphism*

$$\mathcal{A}_H^\alpha \cong \mathcal{B}_H^\alpha \otimes {}^\sigma H$$

(b) There is a maximal ideal \mathfrak{m}_0 of \mathcal{B}_H^α such that

$$\mathcal{A}_H^\alpha / \mathfrak{m}_0 \mathcal{A}_H^\alpha \cong {}^\alpha H$$

as comodule algebras

After localization, the universal comodule algebra \mathcal{U}_H^α becomes a *flat deformation* of the comodule algebra A

Forms

- ▶ A twisted algebra ${}^{\beta}H$ is a **form** of ${}^{\alpha}H$ if there is a field extension $K \supset k$ and a K -linear isomorphism of H -comodule algebras

$$K \otimes {}^{\beta}H \cong K \otimes {}^{\alpha}H.$$

- ▶ **Theorem.** If ${}^{\beta}H$ is a form of ${}^{\alpha}H$, then there is an algebra morphism $\chi : \mathcal{B}_H^{\alpha} \rightarrow k$ such that

$$k_{\chi} \otimes_{\mathcal{B}_H^{\alpha}} \mathcal{A}_H^{\alpha} \cong {}^{\beta}H$$

In other words, any form of ${}^{\alpha}H$ is obtained from the generic Galois extension \mathcal{A}_H^{α} by a **central specialization**.

- ▶ There is a converse to the previous theorem; it requires an **additional condition**

Theorem If the algebra $\text{Frac Sym}(t_H)$ is **integral** over the subalgebra \mathcal{B}_H^{α} , then for any algebra morphism $\chi : \mathcal{B}_H^{\alpha} \rightarrow k$, the algebra $k_{\chi} \otimes_{\mathcal{B}_H^{\alpha}} \mathcal{A}_H^{\alpha}$ is a form of ${}^{\alpha}H$

Forms

- ▶ A twisted algebra ${}^\beta H$ is a **form** of ${}^\alpha H$ if there is a field extension $K \supset k$ and a K -linear isomorphism of H -comodule algebras

$$K \otimes {}^\beta H \cong K \otimes {}^\alpha H.$$

- ▶ **Theorem.** If ${}^\beta H$ is a form of ${}^\alpha H$, then there is an algebra morphism $\chi : \mathcal{B}_H^\alpha \rightarrow k$ such that

$$k_\chi \otimes_{\mathcal{B}_H^\alpha} \mathcal{A}_H^\alpha \cong {}^\beta H$$

In other words, any form of ${}^\alpha H$ is obtained from the generic Galois extension \mathcal{A}_H^α by a **central specialization**.

- ▶ There is a converse to the previous theorem; it requires an **additional condition**

Theorem If the algebra $\text{Frac Sym}(t_H)$ is **integral** over the subalgebra \mathcal{B}_H^α , then for any algebra morphism $\chi : \mathcal{B}_H^\alpha \rightarrow k$, the algebra $k_\chi \otimes_{\mathcal{B}_H^\alpha} \mathcal{A}_H^\alpha$ is a form of ${}^\alpha H$

Forms

- ▶ A twisted algebra ${}^\beta H$ is a **form** of ${}^\alpha H$ if there is a field extension $K \supset k$ and a K -linear isomorphism of H -comodule algebras

$$K \otimes {}^\beta H \cong K \otimes {}^\alpha H.$$

- ▶ **Theorem.** If ${}^\beta H$ is a form of ${}^\alpha H$, then there is an algebra morphism $\chi : \mathcal{B}_H^\alpha \rightarrow k$ such that

$$k_\chi \otimes_{\mathcal{B}_H^\alpha} \mathcal{A}_H^\alpha \cong {}^\beta H$$

In other words, any form of ${}^\alpha H$ is obtained from the generic Galois extension \mathcal{A}_H^α by a **central specialization**.

- ▶ There is a converse to the previous theorem; it requires an **additional condition**

Theorem If the algebra $\text{Frac Sym}(t_H)$ is **integral** over the subalgebra \mathcal{B}_H^α , then for any algebra morphism $\chi : \mathcal{B}_H^\alpha \rightarrow k$, the algebra $k_\chi \otimes_{\mathcal{B}_H^\alpha} \mathcal{A}_H^\alpha$ is a form of ${}^\alpha H$

Versal deformation space

- If $\text{Frac Sym}(t_H)$ is integral over \mathcal{B}_H^α , then the map

$$\begin{aligned}\text{Alg}(\mathcal{B}_H^\alpha, k) &\longrightarrow \text{Forms}({}^\alpha H) \\ \chi &\mapsto k_\chi \otimes_{\mathcal{B}_H^\alpha} \mathcal{A}_H^\alpha\end{aligned}$$

is a **surjection** from the set of algebra morphisms $\mathcal{B}_H^\alpha \rightarrow k$ to the set of isomorphism classes of forms of ${}^\alpha H$

Thus the set $\text{Alg}(\mathcal{B}_H^\alpha, k)$ **parametrizes** the forms of ${}^\alpha H$.

The extension $\mathcal{B}_H^\alpha \subset \mathcal{A}_H^\alpha$ is a **versal deformation space** for the forms of ${}^\alpha H$

- *Remark.* To determine the set $\text{Alg}(\mathcal{B}_H^\alpha, k)$, it is important to find a **presentation by generators and relations** of \mathcal{B}_H^α

The integrality condition

- ▶ **Question.** Under which condition on (H, α) is the algebra $\text{Frac Sym}(t_H)$ **integral** over the subalgebra \mathcal{B}_H^α ?
- ▶ **Proposition.** If H is a *finite-dimensional Hopf algebra generated by grouplike and skew-primitive elements*, and α is any two-cocycle, then $\text{Frac Sym}(t_H)$ is integral over the subalgebra \mathcal{B}_H^α
- ▶ **Negative answer.** For $H = k[\mathbb{Z}]$ and α trivial, $\text{Frac Sym}(t_H)$ is **transcendental** (of degree 1) over $\text{Frac } \mathcal{B}_H^\alpha$

The integrality condition

- ▶ **Question.** Under which condition on (H, α) is the algebra $\text{Frac Sym}(t_H)$ **integral** over the subalgebra \mathcal{B}_H^α ?
- ▶ **Proposition.** If H is a **finite-dimensional Hopf algebra generated by grouplike and skew-primitive elements**, and α is any two-cocycle, then $\text{Frac Sym}(t_H)$ is **integral** over the subalgebra \mathcal{B}_H^α
- ▶ **Negative answer.** For $H = k[\mathbb{Z}]$ and α trivial, $\text{Frac Sym}(t_H)$ is **transcendental** (of degree 1) over $\text{Frac } \mathcal{B}_H^\alpha$

The integrality condition

- ▶ **Question.** Under which condition on (H, α) is the algebra $\text{Frac Sym}(t_H)$ **integral** over the subalgebra \mathcal{B}_H^α ?
- ▶ **Proposition.** If H is a **finite-dimensional Hopf algebra generated by grouplike and skew-primitive elements**, and α is any two-cocycle, then $\text{Frac Sym}(t_H)$ is **integral** over the subalgebra \mathcal{B}_H^α
- ▶ **Negative answer.** For $H = k[\mathbb{Z}]$ and α trivial, $\text{Frac Sym}(t_H)$ is **transcendental** (of degree 1) over $\text{Frac } \mathcal{B}_H^\alpha$

Rigidity properties of \mathcal{A}_H^α

- **Theorem.** Assume that $\text{char}(k) = 0$ and $\dim(H) < \infty$.
If ${}^\alpha H$ is **simple**, then so is

$$\text{Frac } \mathcal{B}_H^\alpha \otimes_{\mathcal{B}_H^\alpha} \mathcal{A}_H^\alpha$$

- **Theorem.** Under the previous integrality condition, if ${}^\alpha H$ is **simple**, then \mathcal{A}_H^α is an **Azumaya algebra**

An algebra A is **Azumaya** if A/\mathfrak{m} is simple for any maximal ideal \mathfrak{m} of its center. E.g. $A = M_n(R)$, where R is a commutative ring

References

E. Aljadeff, D. Haile, M. Natapov, *Graded identities of matrix algebras and the universal graded algebra*, arXiv:0710.5568, Trans. Amer. Math. Soc. (2008).

E. Aljadeff, C. Kassel, *Polynomial identities and noncommutative versal torsors*, arXiv:0708.4108, Adv. Math. 218 (2008), 1453–1495.

C. Kassel, *Quantum principal bundles up to homotopy equivalence*, The Legacy of Niels Henrik Abel, Springer-Verlag 2004, 737–748, arXiv:math.QA/0507221.

C. Kassel, H.-J. Schneider, *Homotopy theory of Hopf Galois extensions*, Ann. Inst. Fourier (Grenoble) 55 (2005), 2521–2550.

THANK YOU FOR YOUR ATTENTION