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Introduction

I •We are interested in the noncommutative analogues of principal fiber
bundles. For these “quantum principal fiber bundles”, the structural
group is a Hopf algebra

• Our ultimate goal is to classify them; we approach this goal by
constructing certain universal objects

I • Idea: Use an adequate theory of polynomial identities

• This is a report on joint results with Eli Aljadeff (Technion) published in
Polynomial identities and noncommutative versal torsors,
arXiv:0708.4108, Adv. Math. 218 (2008), 1453–1495.
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Basic dictionary of noncommutative geometry

• Replacing spaces by associative algebras

space X ←→ algebra A(X ) (= functions on X )

map f : X → Y ←→ algebra map f ∗ : A(Y )→ A(X )

product f : X × Y ←→ tensor product A(X )⊗ A(Y )

point X = {∗} ←→ ground field A(∗) = k



Groups in noncommutative geometry

• Groups. Let G be a group and H = A(G)

product G ×G→ G ←→ coproduct ∆ : H → H ⊗ H

unit {∗} → G ←→ counit ε : H → k

inverse G→ G ←→ antipode S : H → H

So H is a Hopf algebra

• Group actions. We also need the concept of an H-comodule algebra

action X ×G→ X ←→ coaction δ : A→ A⊗ H

orbit set Y = X/G ←→ coinvariants B = {a ∈ A | δ(a) = a⊗ 1H}



Comodule algebras

I Given a Hopf algebra H, an H-comodule algebra is an associative unital
algebra A together with an algebra morphism

δ : A→ A⊗ H

called the coaction and satisfying

(δ ⊗ idH) ◦ δ = (idH ⊗∆) ◦ δ and (idH ⊗ε) ◦ δ = idH

I Coinvariants:
AH = {a ∈ A | δ(a) = a⊗ 1H}

is a subalgebra and a subcomodule of A

I Examples of comodule algebras. Given a group G,

(a) a G-graded algebra A =
L

g∈G Ag is the same as an
H-comodule algebra with H = k [G]

(b) a G-algebra, i.e., an algebra on which G acts by algebra
automorphisms, is the same as an H-comodule algebra with
H = {functions on G}
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POLYNOMIAL IDENTITIES

FOR COMODULE ALGEBRAS



A place where polynomial identities will live

• From now on we assume that the ground field k is infinite

• Polynomial identities are noncommutative polynomials. We take variables
indexed by a basis of a Hopf algebra

Let H be a Hopf algebra and XH a copy of H together with a linear
isomorphism x 7→ Xx

• Consider the tensor algebra

T (XH) =
M
r≥0

X⊗r
H

on the vector space XH . If {xi}i∈I is a basis of H, then

T (XH) ∼= k〈Xxi | i ∈ I 〉

is the algebra of noncommutative polynomials in Xxi (i ∈ I)



Identities for comodule algebras

I The algebra T (XH) is an H-comodule algebra with coaction
δ : T (XH)→ T (XH)⊗ H given by

δ(Xx ) =
X
(x)

Xx(1)
⊗ x(2) ,

where ∆(x) =
P

(x) x(1) ⊗ x(2)

I Let A be an H-comodule algebra

Definition. An element P ∈ T (XH) is an H-identity of A if µ(P) = 0 for
all comodule algebra morphisms µ : T (XH)→ A

Recall: An algebra morphism µ : T (XH)→ A is a comodule algebra
morphism if it preserves the coactions, i.e.,

(µ⊗ idH) ◦ δ = δ ◦ µ
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The ideal of identities

• Let A be an H-comodule algebra for some Hopf algebra H and consider the
vector space IH(A) of all H-identities of A

• Proposition. (a) IH(A) is a two-sided ideal of T (XH) such that

δ
`
IH(A)

´
⊂ IH(A)⊗ H

(b) The ideal IH(A) is graded and

IH(A) ⊂
M
r≥2

X⊗r
H



The universal comodule algebra

• Definition. The universal comodule algebra for identities of the
H-comodule algebra A is the quotient-algebra

UH(A) = T (XH)/IH(A)

• Properties.

(a) UH(A) is a graded algebra coinciding with T (XH) in degrees 0 and 1

(b) UH(A) is an H-comodule algebra

(c) All H-identities of A vanish in UH(A)



Questions

• Can we determine the universal comodule algebra for identities UH(A), or
its center ZH(A), or its subalgebra of coinvariants UH(A)H , or say something
about their structure?

• Is UH(A) free as a module over UH(A)H ? Do we have a UH(A)H -linear
comodule isomorphism

UH(A) ∼= UH(A)H ⊗ H?

•We give a positive answer to these questions for a special class of
comodule algebras after having performed some central localization



THE SWEEDLER ALGEBRA



An example: the Sweedler algebra

• The Sweedler algebra is the smallest noncommutative noncocommutative
Hopf algebra

As an algebra,

H4 = k〈 x , y | x2 = 1 , xy + yx = 0 , y2 = 0 〉

• Hopf algebra structure:

Coproduct: ∆(x) = x ⊗ x , ∆(y) = 1⊗ y + y ⊗ x

Coünit: ε(x) = 1, ε(y) = 0

Antipode: S(x) = x , S(y) = xy

• The algebra H4 is four-dimensional with basis {1, x , y , z}, where z = xy



A three-parameter family of comodule algebras

• Given scalars a, b, c with a 6= 0, consider the algebra

Aa,b,c = k〈 ux , uy | u2
x = a , ux uy + uy ux = b , u2

y = c 〉

• The algebra Aa,b,c is a comodule algebra over the Sweedler algebra H4 with
coaction δ : Aa,b,c → Aa,b,c ⊗ H4 given by

δ(ux ) = ux ⊗ x and δ(uy ) = 1⊗ y + uy ⊗ x

• The subalgebra of coinvariants is trivial: (Aa,b,c)H = k 1



Identities for the comodule algebras Aa,b,c
•We have T (XH4 ) = k〈E ,X ,Y ,Z 〉 , where

E = X1 , X = Xx , Y = Xy , Z = Xz

We keep the same notation for their images in Ua,b,c = UH4 (Aa,b,c)

• Theorem.

1. The center Za,b,c of Ua,b,c coincides with the subalgebra of coinvariants:

Za,b,c = (Ua,b,c)H

2. The following polynomials are central elements of Ua,b,c :

E , R = X 2 , S = Y 2 , T = XY + YX , U = X (XZ + ZX ) ∈ Za,b,c

3. After inverting E and R, there is an algebra isomorphism

Za,b,c [E−1,R−1] ∼= k [E±1,R±1,S,U][T ]/(Pa,b,c) ,

where

Pa,b,c = T 2 − 4RS − b2 − 4ac
a

E2R
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The universal comodule algebra of Aa,b,c

• Recall R = X 2, S = Y 2, T = XY + YX , U = X (XZ + ZX )

Theorem. After inverting E and R,

1. there is a Za,b,c [E−1,R−1]-linear comodule isomorphism

Ua,b,c [E−1,R−1] ∼= Za,b,c [E−1,R−1]⊗ H4

2. and Ua,b,c [E−1,R−1] is isomorphic as an algebra to

Za,b,c [E−1,R−1]〈X ,Y |X 2 = R , XY + YX = T , Y 2 = S 〉

• In Ua,b,c we have

ERZ = RXY +
EU − RT

2
(The elements in red are central)
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How did we determine the identities in the Sweedler
case?

• The comodule algebras Aa,b,c belong to a special class of comodule
algebras, called twisted algebras

• In the case of a twisted algebra A we can detect the H-identities of A and
embed UH(A) into an easily controllable algebra

• Plan of the sequel

(a) Define the twisted algebras

(b) Define the controllable algebra and embed UH(A) into it

(c) What localization is needed?

(d) Results on UH(A) after localization



TWISTED ALGEBRAS



Twisting the product with a cocycle

• Let H be a Hopf algebra and α : H × H → k be a two-cocycle, i.e., a
bilinear form such that for all x , y ∈ H,X

(x),(y)

α(x(1), y(1))α(x(2)y(2), z) =
X

(y),(z)

α(y(1), z(1))α(x , y(2)z(2))

where ∆(x) =
P

(x) x(1) ⊗ x(2),. . .

Also assume α normalized: α(1, x) = α(x , 1) = ε(x) for all x ∈ H

• Let αH be a vector space isomorphic to H via a linear isomorphism
x ∈ H 7→ ux ∈ αH. Equip αH with the product

ux uy =
X

(x),(y)

α(x(1), y(1)) ux(2)y(2)

This product is associative with u1 as unit

• The algebra αH is called a twisted algebra



Twisted algebras are comodule algebras

• αH is an H-comodule algebra with coaction δ : αH → αH ⊗ H given by

δ(ux ) =
X
(x)

ux(1)
⊗ x(2)

where ∆(x) =
P

(x) x(1) ⊗ x(2)

• The subalgebra of coinvariants of αH is trivial: (αH)H = k 1



The symbols tx

• Let tH be a copy of H with linear isomorphism x ∈ H 7→ tx ∈ tH

• Consider the symmetric algebra

Sym(tH) =
M
r≥0

Symr (tH)

on the vector space tH . If {xi}i∈I is a basis of H, then

Sym(tH) ∼= k [txi | i ∈ I ]

is the polynomial algebra in the (commuting) variables txi



The symbols t−1
x

I We also need “inverse variables” t−1
x . Let Frac Sym(tH) be the field of

fractions of Sym(tH)

Lemma. There is a unique linear map x 7→ t−1
x from H to Frac Sym(tH)

such that for all x ∈ H,X
(x)

tx(1)
t−1
x(2)

=
X
(x)

t−1
x(1)

tx(2)
= ε(x) 1

I If x is grouplike, i.e., ∆(x) = x ⊗ x , then ε(x) = 1 and

tx t−1
x = 1 , hence t−1

x =
1
tx

I If x is skew-primitive, i.e., ∆(x) = g ⊗ x + x ⊗ h for some grouplike
elements g, h, then ε(x) = 0 and

tg t−1
x + tx t−1

h = 0 , hence t−1
x = − tx

tg th
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The universal evaluation map

I Let αH be a twisted algebra and consider the algebra morphism

µα : T (XH) −→ Sym(tH)⊗ αH

Xx 7−→
X
(x)

tx(1)
⊗ ux(2)

I Lemma.

1. The map µα is an H-comodule algebra morphism

2. For every H-comodule algebra morphism µ : T (XH)→ αH,
there is a unique algebra morphism χ : Sym(tH)→ k such
that

µ = (χ⊗ id) ◦ µα

In other words, any comodule algebra morphism
T (XH)→ αH is a specialization of µα

We call µα the universal evaluation map for αH
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Detecting the identities for twisted algebras

I Theorem. We have IH(αH) = Ker µα

In other words, the map µα detects the H-identities of αH

I Set UαH = T (XH)/IH(αH). Then the map µα induces an embedding

UαH ↪→ Sym(tH)⊗ αH

of the universal comodule algebra into a twisted algebra with extended
scalars

I u ∈ UαH is coinvariant if and only if µα(u) belongs to Sym(tH)⊗ 1

I u ∈ UαH is central if and only if µα(u) belongs to Sym(tH)⊗ Z (αH),
where Z (αH) is the center of αH

I The center ZαH of UαH is a domain if Z (αH) is a domain
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LOCALIZATION



The generic base algebra

I Let αH be a twisted algebra. The bilinear map
σ : H × H → Frac Sym(tH)

σ(x , y) =
X

(x),(y)

tx(1)
ty(1)

α(x(2), y(2)) t−1
x(3)y(3)

is a two-cocycle

I Definition. The generic base algebra is the subalgebra BαH of
Frac Sym(tH) generated by the values of the generic two-cocycle σ and
of its convolution inverse σ−1

I Immediate properties:

(a) BαH is a domain

(b) Transcendence degree of FracBαH ≤ dim H

(c) BαH is finitely generated if dim H <∞



The generic base algebra

I Let αH be a twisted algebra. The bilinear map
σ : H × H → Frac Sym(tH)

σ(x , y) =
X

(x),(y)

tx(1)
ty(1)

α(x(2), y(2)) t−1
x(3)y(3)

is a two-cocycle

I Definition. The generic base algebra is the subalgebra BαH of
Frac Sym(tH) generated by the values of the generic two-cocycle σ and
of its convolution inverse σ−1

I Immediate properties:

(a) BαH is a domain

(b) Transcendence degree of FracBαH ≤ dim H

(c) BαH is finitely generated if dim H <∞



The generic base algebra

I Let αH be a twisted algebra. The bilinear map
σ : H × H → Frac Sym(tH)

σ(x , y) =
X

(x),(y)

tx(1)
ty(1)

α(x(2), y(2)) t−1
x(3)y(3)

is a two-cocycle

I Definition. The generic base algebra is the subalgebra BαH of
Frac Sym(tH) generated by the values of the generic two-cocycle σ and
of its convolution inverse σ−1

I Immediate properties:

(a) BαH is a domain

(b) Transcendence degree of FracBαH ≤ dim H

(c) BαH is finitely generated if dim H <∞



The generic base algebra in the Sweedler case
• Each comodule algebra Aa,b,c is a twisted algebra for some two-cocycle α

• Recall R = X 2, S = Y 2, T = XY + YX , U = X (XZ + ZX ) ∈ ZαH4

• Presentation of BαH4
by generators and relations:

BαH4
∼= k [bE±1, bR±1, bS, bT , bU]/(Pa,b,c)

with

Pa,b,c = bT 2 − 4bRbS − b2 − 4ac
a

bE2bR
Here bE = µα(E) = t1 ⊗ 1bR = µα(R) = a t2

x ⊗ 1bS = µα(S) = a t2
y + b t1ty + c t2

1 ⊗ 1bT = µα(T ) = tx (2a ty + b t1)⊗ 1bU = µα(U) = a t2
x (2 tz + b tx )⊗ 1



Relating the center of the universal comodule algebra
and the generic base algebra

• Let αH be a twisted algebra and ZαH be the center of the universal
comodule algebra UαH

Theorem. If Z (αH) = k, then ZαH ↪→ BαH

• In the sequel we assume that Z (αH) = k and that BαH is a localization of ZαH



The universal comodule algebra after localization

I Definition. The generic twisted algebra is the comodule algebra

AαH = BαH ⊗Zα
H
UαH

with center BαH = (AαH )H

I Theorem. (a) There is an H-comodule algebra isomorphism

AαH ∼= BαH ⊗ σH

(b) There is a maximal ideal m0 of BαH such that

AαH/m0AαH ∼= αH

as comodule algebras

After localization, the universal comodule algebra UαH becomes a flat
deformation of the comodule algebra A
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Forms

I A twisted algebra βH is a form of αH if there is a field extension K ⊃ k
and a K -linear isomorphism of H-comodule algebras

K ⊗ βH ∼= K ⊗ αH .

I Theorem. If βH is a form of αH, then there is an algebra morphism
χ : BαH → k such that

kχ ⊗Bα
H
AαH ∼= βH

In other words, any form of αH is obtained from the generic Galois
extension AαH by a central specialization.

I There is a converse to the previous theorem; it requires an additional
condition

Theorem If the algebra Frac Sym(tH) is integral over the
subalgebra BαH , then for any algebra morphism χ : BαH → k, the algebra
kχ ⊗Bα

H
AαH is a form of αH
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Versal deformation space

• If Frac Sym(tH) is integral over BαH , then the map

Alg(BαH , k) −→ Forms(αH)

χ 7→ kχ ⊗Bα
H
AαH

is a surjection from the set of algebra morphisms BαH → k to the set of
isomorphism classes of forms of αH

Thus the set Alg(BαH , k) parametrizes the forms of αH.

The extension BαH ⊂ AαH is a versal deformation space for the forms of αH

• Remark. To determine the set Alg(BαH , k), it is important to find a
presentation by generators and relations of BαH



The integrality condition

I Question. Under which condition on (H, α) is the algebra Frac Sym(tH)
integral over the subalgebra BαH ?

I Proposition. If H is a finite-dimensional Hopf algebra generated by
grouplike and skew-primitive elements, and α is any two-cocycle, then
Frac Sym(tH) is integral over the subalgebra BαH

I Negative answer. For H = k [Z] and α trivial, Frac Sym(tH) is
transcendental (of degree 1) over FracBαH
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Rigidity properties of AαH

• Theorem. Assume that char(k) = 0 and dim(H) <∞.
If αH is simple, then so is

FracBαH ⊗Bα
H
AαH

• Theorem. Under the previous integrality condition, if αH is simple, then AαH
is an Azumaya algebra

An algebra A is Azumaya if A/m is simple for any maximal ideal m of its
center. E.g. A = Mn(R), where R is a commutative ring
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