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Introductory quotation

F. Patras, C. Reutenauer, On descent algebras and twisted
algebras, Moscow Math. J. 4 (2004), 199–216:

Many phenomena in algebraic combinatorics can be
explained, and sometimes are discovered, using a
suitable bialgebra structure.



Work on graded (co)commutative bialgebras

• Some references:

- A. M. Garsia, C. Reutenauer, A decomposition of Solomon’s
descent algebra, Adv. Math. 77 (1989), 189–262.

- F. Patras, L’algèbre des descentes d’une bigèbre graduée,
J. Algebra 170 (1994), 547–566.

- C. Reutenauer, Free Lie algebras, Clarendon, Oxford, 1993.

• Identities for graded (co)commutative bialgebras

• Models: Tensor bialgebras or their duals, “combinatorial Hopf
algebras”

• Formulas often live in the algebra of the symmetric groups,
related to descents,...



By contrast, my joint work with E. Aljadeff

• I now report on joint work with Eli Aljadeff (Technion, Haifa)

•We work with arbitrary Hopf algebras, e.g., finite dimensional
Hopf algebras, not combinatorial Hopf algebras

• Motivation: From Noncommutative geometry and quantum
groups

• Models: The Hopf algebra of a (finite) group or its dual

•We construct universal algebras associated to each Hopf
algebra

•We get
– identities
– deformations

of the given Hopf algebra

• So far no connection with symmetric groups



Part One

COMBINATORICS FROM A COALGEBRA



The free commutative Hopf algebra on a coalgebra

• Recall work by Takeuchi:
M. Takeuchi, Free Hopf algebras generated by coalgebras,
J. Math. Soc. Japan 23 (1971), 561–582.

• Given a coalgebra C, the free commutative Hopf algebra on C
is a commutative Hopf algebra H(C) together with a coalgebra
morphism i : C → H(C) such that, for any commutative Hopf
algebra H and any coalgebra morphism f : C → H, there is a
unique Hopf algebra morphism f : H(C)→ H with f = f ◦ i :

C
i //

f
""DD

DD
DD

DD
D H(C)

f
��

H

• Construction of H(C) comes next



The bialgebra S(tC)

• Let t : C → tC be a linear isomorphism

• Consider the symmetric algebra S(tC) =
⊕

r≥0 Sr (tc) on the
vector space tC ∼= C

• The algebra S(tC) is a commutative bialgebra with
coproduct ∆ and coünit ε extended from C:

if ∆(x) =
∑
(x)

x(1) ⊗ x(2) , then ∆(tx) =
∑
(x)

tx(1)
⊗ tx(2)

and ε(tx) = ε(x) for all x ∈ C.

• Any coalgebra morphism f : C → B into a commutative
bialgebra B factors through t : C → S(tC):

C
t //

f
""DD

DD
DD

DD
D S(tC)

f
��

B



The Hopf algebra H(C)

• Let Frac S(tC) be the field of fractions of S(tC)

• Lemma . The map t ∈ Hom(C, S(tC)) is convolution invertible
in Hom(C, Frac S(tC)), i.e., there is a map t−1 : C → Frac S(tC)
such that ∑

(x)

tx(1)
t−1
x(2)

=
∑
(x)

t−1
x(1)

tx(2)
= ε(x) 1

• Definition . H(C) is the subalgebra of Frac S(tC) generated
by t(C) and t−1(C)

• H(C) is a commutative Hopf algebra with antipode S given by

S(tx) = t−1
x and S(t−1

x ) = tx

• If x ∈ C is grouplike, then t−1
x = 1/tx

• If x ∈ C is primitive, then t−1
x = −tx



H(C) as a localization of S(tC)

• Theorem (Takeuchi) . (a) If dim C <∞, then there is
ΘC ∈ S(tC) such that

H(C) = S(tC)

[
1

ΘC

]
.

• (b) If dim C =∞, in which case C is the union of a family
(Cκ)κ of finite-dimensional subcoalgebras,

H(C) = S(tC)

[(
1

ΘCκ

)
κ

]
.

• From now on, we write S(tC)Θ instead of H(C)

• Construction of ΘC comes next



The polynomial ΘC

• Let C be a coalgebra. Then C∗ = Hom(C, k) is an algebra
over the ground field k . Assume that C is a finite-dimensional.

• Definition of ΘC : image of t under the maps

t ∈ Hom(C, S(tC))
∼=←− C∗ ⊗ S(tC)

N−→ S(tC) 3 ΘC ,

where N is the norm map: N(ω) = determinant of the left
multiplication by ω

• Properties: (a) If C is a simple coalgebra, then the polynomial
ΘC is irreducible

(b) If C = C1 × C2, then

ΘC = ΘC1
⊗ΘC2

in S(tC1
)⊗ S(tC2

) = S(tC)

(c) ΘC is grouplike in the bialgebra S(tC)



Computation of ΘC: two basic examples

• If C = Mn(k)∗ (simple coalgebra), then

ΘC ∈ S(tC) = det
(
ti,j

)
1≤i, j≤n

[determinant of the “generic” matrix]

• Let C = k [G] with a basis G of grouplike elements. Then

S(tC)Θ = k [ g, g−1 |g ∈ G ]

is an algebra of Laurent polynomials. If G is finite, then

ΘC =
∏
g∈G

tg



Dedekind’s “Gruppen-Determinanten”

• For a finite group G, let C = kG = k [G]∗ be the coalgebra of
functions on G with coproduct ∆(f )(g, h) = f (gh). Then ΘC is
equal to Dedekind’s group determinant ΘG defined by

ΘG = det
(
tgh−1

)
g, h∈G

• Frobenius (1896) factorized ΘG into irreducible polynomials:

ΘG =
∏

ρ∈Irrep G

(Θρ)
dρ ,

where for each representation ρ : G→ GLdρ
(C),

Θρ = det
(∑

g∈G

tg ρ(g)
)



ΘG for two non-abelian groups
• If G = 〈g, x |g2 = x3 = e, gxg = x−1〉 is the dihedral group
(or the symmetric group) of order 6, then

ΘG = −(a + b + c + A + B + C)

×(a + b + c − A− B − C)

×
(
a2 + b2 + c2 + ab + bc + ac

− A2 − B2 − C2 − AB − BC − AC
)2

,

where a = t1, b = tx , c = tx2 , A = tg , B = tgx , C = tgx2 .

• If G = {±1,±i ,±j ,±k} is the quaternionic group, then

ΘG = −(t1 + ti + tj + tk + t−1 + t−i + t−j + t−k )

×(t1 + ti − tj − tk + t−1 + t−i − t−j − t−k )

×(t1 − ti + tj − tk + t−1 − t−i + t−j − t−k

×(t1 − ti − tj + tk + t−1 − t−i − t−j + t−k )

×
(
(t1 − t−1)

2 + (ti − t−i)
2 + (tj − t−j)

2 + (tk − t−k )2)2



Part Two

HOPF ALGEBRAS AND COCYCLES

(All results joint with Eli Aljadeff)



Group-graded algebras

• Given a group G, consider strongly G-graded algebras:

A =
⊕
g∈G

Ag

with Ag Ah = Agh and dim Ag = 1

• Suppose ug spans Ag . Then

ug uh = α(g, h) ugh

for some α(g, h) ∈ k× = k − {0}

• The map α : G ×G→ k× is a two-cocycle

• {strongly graded algebras}/(isomorphism) ∼= H2(G, k×)



Twisted algebras

• Let H be a Hopf algebra and α : H × H → k a bilinear map

• Let αH be a vector space isomorphic to H. We fix a linear
isomorphism x ∈ H 7→ ux ∈ αH. Equip αH with product

ux ·α uy =
∑

(x),(y)

α(x(1), y(1)) ux(2)y(2)

This product is associative iff α is a two-cocycle, i.e., satisfies∑
(x),(y)

α(x(1), y(1)) α(x(2)y(2), z) =
∑

(y),(z)

α(y(1), z(1)) α(x , y(2)z(2))

It has u1 as unit if α is normalized, i.e., α(1, x) = α(x , 1) = ε(x)

• If G is a group, H = k [G], and α is an invertible two-cocycle,
then αH is a strongly G-graded algebra (as in previous slide)



The H-comodule algebra Uα
H

• Let H be a Hopf algebra and α a normalized two-cocycle.
Consider the extended twisted algebra S(tH)⊗ αH
(Now S(tH) plays the rôle of scalars)

• For x ∈ H, define (dropping tensor product signs)

Xx =
∑
(x)

tx(1)
ux(2)

∈ S(tH)⊗ αH

In case G is a group and H = k [G], then Xg = tg ug (g ∈ G)

• Our first “universal algebra” attached to (H, α):

Definition. Let Uα
H be the subalgebra of S(tH)⊗ αH generated

by all elements Xx , where x ∈ H



Properties of Uα
H

• Uα
H is a positively graded algebra with deg Xx = 1

• Uα
H is an H-comodule algebra with coaction δ : Uα

H → U
α
H ⊗ H:

δ(Xx) =
∑
(x)

Xx(1)
⊗ x(2)

• (An important property not to be developed here)

Uα
H is the universal quotient of T (H) in which all identities

satisfied by αH as an H-comodule algebra vanish

• Center of Uα
H : if Z (αH) is the center of αH, then

Zα
H = Uα

H

⋂ (
S(tH)⊗ Z (αH)

)
In particular, if ω ∈ Uα

H

⋂
(S(tH) u1), then ω ∈ Zα

H



The Sweedler algebra

• The smallest non-commutative non-cocommutative Hopf
algebra

H = k〈x , y | x2 = 1 , xy + yx = 0 , y2 = 0〉

Comultiplication: ∆(x) = x ⊗ x , ∆(y) = 1⊗ y + y ⊗ x

Coünit: ε(x) = 1, ε(y) = 0

It is four-dimensional with basis {1, x , y , z}, where z = xy

•We have S(tH) = k [t1, tx , ty , tz ] and

t−1
1 =

1
t1

, t−1
x =

1
tx

, t−1
y = −

ty
t1tx

, t−1
z = − tz

t1tx
.

Thus, S(tH)Θ = k [t±1
1 , t±1

x , ty , tz ]. Note that ΘH = (t1tx)2 .



Twisted Sweedler algebras

• For any normalized invertible two-cocycle α, the twisted
algebra αH is of the form

αH = k〈ux , uy |u2
x = a , uxuy + uyux = b , u2

y = c〉

for some scalars a, b, c with a 6= 0 (u1 is the unit of αH)

• Generators of Uα
H :

E = X1 , X = Xx , Y = Xy , Z = Xz ∈ S(tH)⊗ αH

defined by
E = t1 u1 , X = tx ux ,

Y = t1 uy + ty ux , Z = tx uz + tz u1

Thus, E ∈ Zα
H (the center of Uα

H )



Computations in Uα
H

• Degree two central elements of Uα
H :

X 2 = (txux)2 = t2
x u2

x = at2
x ∈ Zα

H

Y 2 = (t1uy + tyux)2 = at2
y + bt1ty + ct2

1 ∈ Zα
H

T = XY + YX = tx(2aty + bt1) ∈ Zα
H

• Degree three central element:

U = X (XZ + ZX ) = at2
x (2tz + btx) ∈ Zα

H

• Degree four relation in Zα
H :

T 2 − 4X 2Y 2 =
b2 − 4ac

a
E2X 2

• Degree four relation in Uα
H : [elements in red belong to Zα

H ]

2X 2(EZ − XY ) = EU − X 2T



The generic two-cocycle cohomologous to α

• Let H be a Hopf algebra H and α : H × H → k an invertible
two-cocycle. Define new invertible cocycle σ : H × H → S(tH)Θ
by

σ(x , y) =
∑

(x),(y)

tx(1)
ty(1)

α(x(2), y(2)) t−1
x(3)y(3)

The cocycles σ and α are cohomologous over S(tH)Θ

• In case H = k [G] is a group algebra and g, h ∈ G,

σ(g, h) = α(g, h)
tg th
tgh

• Our second “universal algebra” attached to (H, α):

Definition. Let Bα
H be the subalgebra of S(tH)Θ generated by

all σ(x , y) and σ−1(x , y), where x , y ∈ H

The algebra Bα
H is a domain



The algebra Bα
H in the Sweedler case - Generators

• Generators of Bα
H :

σ(1, 1) = t1 = E ,

σ(x , x) =
at2

x

t1
=

X 2

E
,

σ(y , y) =
at2

y + bt1ty + ct2
1

t1
=

Y 2

E
,

σ(x , y) =
atx ty − t1tz

t1
=

X 2T − EU
2EX 2 ,

σ(y , x) =
bt1tx + atx ty + t1tz

t1
=

X 2T + EU
2EX 2 ,

σ(z, z) = − t2
z + btx tz + act2

x

t1
=

U2

4EX 4 −
b2 − 4ac

4a
X 2

E



The algebra Bα
H in the Sweedler case - Presentation

Theorem. (a) Bα
H is a localization of Zα

H :

Bα
H = Zα

H [E−1, (X 2)−1] .

(b) Presentation of Bα
H by generators and relations:

Bα
H
∼= k [E±1, (X 2)±1, Y 2, T , U]/(Pa,b,c) ,

where

Pa,b,c = T 2 − 4X 2Y 2 − b2 − 4ac
a

E2X 2 .



Relationship between Zα
H and Bα

H in general case

• Theorem. If Z (αH) = k, then Zα
H ⊂ B

α
H (⊂ S(tH)Θ)

• Question. Under which condition is Bα
H a localization of Zα

H?

If H is the Sweedler algebra or if H = k [G], then Bα
H is a

localization of Zα
H

• Proof for H = k [G]: Consider the following elements of Zα
H :

Zg = Xg Xg−1 = (tg ug) (tg−1 ug−1) = α(g, g−1) tg tg−1

Zg,h = Xg Xh X(gh)−1 = α(g, g−1) α(h, (gh)−1) tg th t(gh)−1

Now, for the generators σ(g, h) of Bα
H , we have

σ(g, h) =
α(g, h) α(gh, (gh)−1)

α(g, g−1) α(h, (gh)−1)
·

Zg,h

Zgh



The universal algebra Aα
H

Assume that Zα
H ⊂ B

α
H and that Bα

H is a localization of Zα
H

• Our third “universal algebra” attached to (H, α):

Definition. Let Aα
H = Bα

H ⊗Zα
H
Uα

H (central localization of Uα
H )

• Theorem. (a) The center of Aα
H is Bα

H

(b) If the algebra αH is simple, then so is FracBα
H ⊗Bα

H
Aα

H

(c) Aα
H is a twisted algebra: Aα

H
∼= Bα

H ⊗
σH (cleft H-Galois

extension)

(d) If βH is a form of αH (they are isomorphic as comodule
algebras after extension of scalars) for some two-cocycle
β : H × H → K ⊃ k, then there is an algebra map λ : Bα

H → K
such that K ⊗Bα

H
Aα

H
∼= βH



Computation of Aα
H for the Sweedler algebra

If H is the Sweedler algebra, then

Aα
H
∼= Bα

H 〈ξ, η〉/(ξ2 − X 2, η2 − Y 2, ξη + ηξ − T ) .

Recall

Bα
H
∼= k [E±1, (X 2)±1, Y 2, T , U]/(T 2 − 4X 2Y 2 − d E2X 2) ,

where

d =
b2 − 4ac

a
.



Computation of Aα
H for a group algebra

(By D. Haile and M. Natapov)

Let G = 〈g, h |g9 = h9 = 1, gh = h4g〉 = Z/9 o Z/9
and H = k [G]

Set X = Xg and Y = Xh. Then

Bα
H
∼= k [(X 9)±1, (Y 9)±1, Z ]/(Z 3 − ω (X 9)3 (Y 9)2) ,

where Z = XYX 8Y 5 and ω is a primitive third root of 1, and

Aα
H = Bα

H〈X , Y 〉/I ,

where I is the two-sided ideal generated by

X 3Y − ω YX 3, Y 3X − ω2 XY 3,

XYXY − ω2 Y 2X 2, YXYX − X 2Y 2, XY 2X − ω2 YX 2Y



Reference for results of Part Two

E. Aljadeff, C. Kassel,
Polynomial identities and noncommutative versal torsors,
Preprint arXiv:0708.4108


