

Some universal constructions on Hopf algebras

Christian Kassel

Institut de Recherche Mathématique Avancée
CNRS - Université Louis Pasteur
Strasbourg, France

Conference “Shuffles, descents and representations”
Nice - 12 September 2007

Introductory quotation

F. Patras, C. Reutenauer, *On descent algebras and twisted algebras*, Moscow Math. J. 4 (2004), 199–216:

Many phenomena in algebraic combinatorics can be explained, and sometimes are discovered, using a suitable bialgebra structure.

Work on graded (co)commutative bialgebras

- Some references:
 - A. M. Garsia, C. Reutenauer, *A decomposition of Solomon's descent algebra*, Adv. Math. 77 (1989), 189–262.
 - F. Patras, *L'algèbre des descentes d'une bigèbre graduée*, J. Algebra 170 (1994), 547–566.
 - C. Reutenauer, *Free Lie algebras*, Clarendon, Oxford, 1993.
- Identities for graded (co)commutative bialgebras
- Models: Tensor bialgebras or their duals, “combinatorial Hopf algebras”
- Formulas often live in the algebra of the symmetric groups, related to descents,...

By contrast, my joint work with E. Aljadeff

- I now report on joint work with **Eli Aljadeff** (Technion, Haifa)
- We work with **arbitrary Hopf algebras**, e.g., finite dimensional Hopf algebras, *not combinatorial Hopf algebras*
- *Motivation:* From **Noncommutative geometry** and **quantum groups**
- *Models:* The **Hopf algebra** of a (finite) group or its dual
- We construct **universal algebras** associated to each Hopf algebra
- We get
 - **identities**
 - **deformations**of the given Hopf algebra
- **So far** no connection with symmetric groups

Part One

COMBINATORICS FROM A COALGEBRA

The free commutative Hopf algebra on a coalgebra

- Recall work by **Takeuchi**:

M. Takeuchi, *Free Hopf algebras generated by coalgebras*,
J. Math. Soc. Japan 23 (1971), 561–582.

- Given a coalgebra C , the **free commutative Hopf algebra** on C is a commutative Hopf algebra $H(C)$ together with a coalgebra morphism $i : C \rightarrow H(C)$ such that, for any commutative Hopf algebra H and any coalgebra morphism $f : C \rightarrow H$, there is a unique Hopf algebra morphism $\bar{f} : H(C) \rightarrow H$ with $f = \bar{f} \circ i$:

$$\begin{array}{ccc} C & \xrightarrow{i} & H(C) \\ & \searrow f & \downarrow \bar{f} \\ & & H \end{array}$$

- Construction of $H(C)$ comes next

The bialgebra $S(t_C)$

- Let $t : C \rightarrow t_C$ be a linear isomorphism
- Consider the **symmetric algebra** $S(t_C) = \bigoplus_{r \geq 0} S^r(t_C)$ on the vector space $t_C \cong C$
- The algebra $S(t_C)$ is a **commutative bialgebra** with coproduct Δ and counit ε extended from C :

$$\text{if } \Delta(x) = \sum_{(x)} x_{(1)} \otimes x_{(2)}, \text{ then } \Delta(t_x) = \sum_{(x)} t_{x_{(1)}} \otimes t_{x_{(2)}}$$

and $\varepsilon(t_x) = \varepsilon(x)$ for all $x \in C$.

- Any coalgebra morphism $f : C \rightarrow B$ into a **commutative bialgebra** B factors through $t : C \rightarrow S(t_C)$:

$$\begin{array}{ccc} C & \xrightarrow{t} & S(t_C) \\ & \searrow f & \downarrow \bar{f} \\ & & B \end{array}$$

The Hopf algebra $H(C)$

- Let $\text{Frac } S(t_C)$ be the **field of fractions** of $S(t_C)$
- Lemma.** *The map $t \in \text{Hom}(C, S(t_C))$ is convolution invertible in $\text{Hom}(C, \text{Frac } S(t_C))$, i.e., there is a map $t^{-1} : C \rightarrow \text{Frac } S(t_C)$ such that*

$$\sum_{(x)} t_{x_{(1)}} t_{x_{(2)}}^{-1} = \sum_{(x)} t_{x_{(1)}}^{-1} t_{x_{(2)}} = \varepsilon(x) 1$$

- Definition.** $H(C)$ is the **subalgebra** of $\text{Frac } S(t_C)$ generated by $t(C)$ and $t^{-1}(C)$
- $H(C)$ is a **commutative Hopf algebra** with **antipode** S given by

$$S(t_x) = t_x^{-1} \quad \text{and} \quad S(t_x^{-1}) = t_x$$

- If $x \in C$ is **grouplike**, then $t_x^{-1} = 1/t_x$
- If $x \in C$ is **primitive**, then $t_x^{-1} = -t_x$

$H(C)$ as a localization of $S(t_C)$

- **Theorem (Takeuchi).** (a) If $\dim C < \infty$, then there is $\Theta_C \in S(t_C)$ such that

$$H(C) = S(t_C) \left[\frac{1}{\Theta_C} \right].$$

- (b) If $\dim C = \infty$, in which case C is the *union of a family* $(C_\kappa)_{\kappa}$ of finite-dimensional subcoalgebras,

$$H(C) = S(t_C) \left[\left(\frac{1}{\Theta_{C_\kappa}} \right)_\kappa \right].$$

- From now on, we write $S(t_C)_\Theta$ instead of $H(C)$
- Construction of Θ_C comes next

The polynomial Θ_C

- Let C be a coalgebra. Then $C^* = \text{Hom}(C, k)$ is an **algebra** over the ground field k . Assume that C is a finite-dimensional.
- Definition of Θ_C :** image of t under the maps

$$t \in \text{Hom}(C, S(t_C)) \xleftarrow{\cong} C^* \otimes S(t_C) \xrightarrow{N} S(t_C) \ni \Theta_C,$$

where N is the **norm map**: $N(\omega) = \text{determinant of the left multiplication by } \omega$

- Properties:** (a) If C is a **simple** coalgebra, then the polynomial Θ_C is **irreducible**

- (b) If $C = C_1 \times C_2$, then

$$\Theta_C = \Theta_{C_1} \otimes \Theta_{C_2} \text{ in } S(t_{C_1}) \otimes S(t_{C_2}) = S(t_C)$$

- (c) Θ_C is **grouplike** in the bialgebra $S(t_C)$

Computation of Θ_C : two basic examples

- If $C = M_n(k)^*$ (simple coalgebra), then

$$\Theta_C \in S(t_C) = \det(t_{i,j})_{1 \leq i, j \leq n}$$

[determinant of the “generic” matrix]

- Let $C = k[G]$ with a basis G of grouplike elements. Then

$$S(t_C)_\Theta = k[g, g^{-1} \mid g \in G]$$

is an algebra of Laurent polynomials. If G is finite, then

$$\Theta_C = \prod_{g \in G} t_g$$

Dedekind's "Gruppen-Determinanten"

- For a **finite group** G , let $C = k^G = k[G]^*$ be the coalgebra of functions on G with coproduct $\Delta(f)(g, h) = f(gh)$. Then Θ_C is equal to **Dedekind's group determinant** Θ_G defined by

$$\Theta_G = \det(t_{gh^{-1}})_{g, h \in G}$$

- **Frobenius** (1896) **factorized** Θ_G into irreducible polynomials:

$$\Theta_G = \prod_{\rho \in \text{Irrep } G} (\Theta_\rho)^{d_\rho},$$

where for each representation $\rho : G \rightarrow GL_{d_\rho}(\mathbb{C})$,

$$\Theta_\rho = \det \left(\sum_{g \in G} t_g \rho(g) \right)$$

Θ_G for two non-abelian groups

- If $G = \langle g, x \mid g^2 = x^3 = e, gxg = x^{-1} \rangle$ is the **dihedral group** (or the **symmetric group**) of order 6, then

$$\begin{aligned}\Theta_G = & -(a + b + c + A + B + C) \\ & \times (a + b + c - A - B - C) \\ & \times (a^2 + b^2 + c^2 + ab + bc + ac \\ & - A^2 - B^2 - C^2 - AB - BC - AC)^2,\end{aligned}$$

where $a = t_1$, $b = t_x$, $c = t_{x^2}$, $A = t_g$, $B = t_{gx}$, $C = t_{gx^2}$.

- If $G = \{\pm 1, \pm i, \pm j, \pm k\}$ is the **quaternionic group**, then

$$\begin{aligned}\Theta_G = & -(t_1 + t_i + t_j + t_k + t_{-1} + t_{-i} + t_{-j} + t_{-k}) \\ & \times (t_1 + t_i - t_j - t_k + t_{-1} + t_{-i} - t_{-j} - t_{-k}) \\ & \times (t_1 - t_i + t_j - t_k + t_{-1} - t_{-i} + t_{-j} - t_{-k}) \\ & \times (t_1 - t_i - t_j + t_k + t_{-1} - t_{-i} - t_{-j} + t_{-k}) \\ & \times ((t_1 - t_{-1})^2 + (t_i - t_{-i})^2 + (t_j - t_{-j})^2 + (t_k - t_{-k})^2)^2\end{aligned}$$

Part Two

HOPF ALGEBRAS AND COCYCLES

(All results joint with Eli Aljadeff)

Group-graded algebras

- Given a group G , consider **strongly G -graded algebras**:

$$A = \bigoplus_{g \in G} A_g$$

with $A_g A_h = A_{gh}$ and $\dim A_g = 1$

- Suppose u_g spans A_g . Then

$$u_g u_h = \alpha(g, h) u_{gh}$$

for some $\alpha(g, h) \in k^\times = k - \{0\}$

- The map $\alpha : G \times G \rightarrow k^\times$ is a **two-cocycle**
- $\{\text{strongly graded algebras}\}/(\text{isomorphism}) \cong H^2(G, k^\times)$

Twisted algebras

- Let H be a Hopf algebra and $\alpha : H \times H \rightarrow k$ a bilinear map
- Let ${}^\alpha H$ be a vector space isomorphic to H . We fix a linear isomorphism $x \in H \mapsto u_x \in {}^\alpha H$. Equip ${}^\alpha H$ with product

$$u_x \cdot_\alpha u_y = \sum_{(x),(y)} \alpha(x_{(1)}, y_{(1)}) u_{x_{(2)} y_{(2)}}$$

This product is **associative** iff α is a **two-cocycle**, i.e., satisfies

$$\sum_{(x),(y)} \alpha(x_{(1)}, y_{(1)}) \alpha(x_{(2)} y_{(2)}, z) = \sum_{(y),(z)} \alpha(y_{(1)}, z_{(1)}) \alpha(x, y_{(2)} z_{(2)})$$

It has u_1 as **unit** if α is **normalized**, i.e., $\alpha(1, x) = \alpha(x, 1) = \varepsilon(x)$

- If G is a group, $H = k[G]$, and α is an invertible two-cocycle, then ${}^\alpha H$ is a strongly G -graded algebra (as in previous slide)

The H -comodule algebra \mathcal{U}_H^α

- Let H be a Hopf algebra and α a normalized two-cocycle.
Consider the **extended twisted algebra** $S(t_H) \otimes {}^\alpha H$
(Now $S(t_H)$ plays the rôle of scalars)
- For $x \in H$, define (dropping tensor product signs)

$$X_x = \sum_{(x)} t_{x(1)} u_{x(2)} \in S(t_H) \otimes {}^\alpha H$$

In case G is a group and $H = k[G]$, then $X_g = t_g u_g$ ($g \in G$)

- Our first “**universal algebra**” attached to (H, α) :

Definition. Let \mathcal{U}_H^α be the **subalgebra** of $S(t_H) \otimes {}^\alpha H$ **generated** by all elements X_x , where $x \in H$

Properties of \mathcal{U}_H^α

- \mathcal{U}_H^α is a positively graded algebra with $\deg X_x = 1$
- \mathcal{U}_H^α is an **H -comodule algebra** with **coaction** $\delta : \mathcal{U}_H^\alpha \rightarrow \mathcal{U}_H^\alpha \otimes H$:

$$\delta(X_x) = \sum_{(x)} X_{x(1)} \otimes x_{(2)}$$

- *(An important property not to be developed here)*
 \mathcal{U}_H^α is the **universal** quotient of $T(H)$ in which **all identities** satisfied by ${}^\alpha H$ as an H -comodule algebra **vanish**
- **Center** of \mathcal{U}_H^α : if $Z({}^\alpha H)$ is the center of ${}^\alpha H$, then

$$\mathcal{Z}_H^\alpha = \mathcal{U}_H^\alpha \bigcap (S(t_H) \otimes Z({}^\alpha H))$$

In particular, if $\omega \in \mathcal{U}_H^\alpha \bigcap (S(t_H) u_1)$, then $\omega \in \mathcal{Z}_H^\alpha$

The Sweedler algebra

- The smallest **non-commutative non-cocommutative Hopf algebra**

$$H = k\langle x, y \mid x^2 = 1, \ xy + yx = 0, \ y^2 = 0 \rangle$$

Comultiplication: $\Delta(x) = x \otimes x, \ \Delta(y) = 1 \otimes y + y \otimes x$

Coünit: $\varepsilon(x) = 1, \ \varepsilon(y) = 0$

It is **four-dimensional** with basis $\{1, x, y, z\}$, where $z = xy$

- We have $S(t_H) = k[t_1, t_x, t_y, t_z]$ and

$$t_1^{-1} = \frac{1}{t_1}, \quad t_x^{-1} = \frac{1}{t_x}, \quad t_y^{-1} = -\frac{t_y}{t_1 t_x}, \quad t_z^{-1} = -\frac{t_z}{t_1 t_x}.$$

Thus, $S(t_H)_\Theta = k[t_1^{\pm 1}, t_x^{\pm 1}, t_y, t_z]$. Note that $\Theta_H = (t_1 t_x)^2$.

Twisted Sweedler algebras

- For any normalized invertible two-cocycle α , the **twisted algebra** ${}^\alpha H$ is of the form

$${}^\alpha H = k\langle u_x, u_y \mid u_x^2 = a, \ u_x u_y + u_y u_x = b, \ u_y^2 = c \rangle$$

for some scalars a, b, c with $a \neq 0$ (u_1 is the unit of ${}^\alpha H$)

- **Generators** of \mathcal{U}_H^α :

$$E = X_1, \ X = X_x, \ Y = X_y, \ Z = X_z \in S(t_H) \otimes {}^\alpha H$$

defined by

$$E = t_1 u_1, \quad X = t_x u_x,$$

$$Y = t_1 u_y + t_y u_x, \quad Z = t_x u_z + t_z u_1$$

Thus, $E \in \mathcal{Z}_H^\alpha$ (the center of \mathcal{U}_H^α)

Computations in \mathcal{U}_H^α

- Degree two central elements of \mathcal{U}_H^α :

$$X^2 = (t_x u_x)^2 = t_x^2 u_x^2 = a t_x^2 \in \mathcal{Z}_H^\alpha$$

$$Y^2 = (t_1 u_y + t_y u_x)^2 = a t_y^2 + b t_1 t_y + c t_1^2 \in \mathcal{Z}_H^\alpha$$

$$T = XY + YX = t_x(2at_y + bt_1) \in \mathcal{Z}_H^\alpha$$

- Degree three central element:

$$U = X(XZ + ZX) = a t_x^2 (2t_z + bt_x) \in \mathcal{Z}_H^\alpha$$

- Degree four relation in \mathcal{Z}_H^α :

$$T^2 - 4X^2 Y^2 = \frac{b^2 - 4ac}{a} E^2 X^2$$

- Degree four relation in \mathcal{U}_H^α : [elements in red belong to \mathcal{Z}_H^α]

$$2X^2(EZ - XY) = EU - X^2T$$

The generic two-cocycle cohomologous to α

- Let H be a Hopf algebra H and $\alpha : H \times H \rightarrow k$ an invertible two-cocycle. Define **new invertible cocycle** $\sigma : H \times H \rightarrow S(t_H)_\Theta$ by

$$\sigma(x, y) = \sum_{(x), (y)} t_{x_{(1)}} t_{y_{(1)}} \alpha(x_{(2)}, y_{(2)}) t_{x_{(3)} y_{(3)}}^{-1}$$

The cocycles σ and α are cohomologous over $S(t_H)_\Theta$

- In case $H = k[G]$ is a **group algebra** and $g, h \in G$,

$$\sigma(g, h) = \alpha(g, h) \frac{t_g t_h}{t_{gh}}$$

- Our second “**universal algebra**” attached to (H, α) :

Definition. Let \mathcal{B}_H^α be the **subalgebra** of $S(t_H)_\Theta$ generated by all $\sigma(x, y)$ and $\sigma^{-1}(x, y)$, where $x, y \in H$

The algebra \mathcal{B}_H^α is a **domain**

The algebra \mathcal{B}_H^α in the Sweedler case - Generators

- Generators of \mathcal{B}_H^α :

$$\sigma(1, 1) = t_1 = E,$$

$$\sigma(x, x) = \frac{at_x^2}{t_1} = \frac{X^2}{E},$$

$$\sigma(y, y) = \frac{at_y^2 + bt_1t_y + ct_1^2}{t_1} = \frac{Y^2}{E},$$

$$\sigma(x, y) = \frac{at_xt_y - t_1t_z}{t_1} = \frac{X^2T - EU}{2EX^2},$$

$$\sigma(y, x) = \frac{bt_1t_x + at_xt_y + t_1t_z}{t_1} = \frac{X^2T + EU}{2EX^2},$$

$$\sigma(z, z) = -\frac{t_z^2 + bt_xt_z + act_x^2}{t_1} = \frac{U^2}{4EX^4} - \frac{b^2 - 4ac}{4a} \frac{X^2}{E}$$

The algebra \mathcal{B}_H^α in the Sweedler case - Presentation

Theorem. (a) \mathcal{B}_H^α is a *localization* of \mathcal{Z}_H^α :

$$\mathcal{B}_H^\alpha = \mathcal{Z}_H^\alpha [E^{-1}, (X^2)^{-1}].$$

(b) *Presentation of \mathcal{B}_H^α by generators and relations*:

$$\mathcal{B}_H^\alpha \cong k[E^{\pm 1}, (X^2)^{\pm 1}, Y^2, T, U]/(P_{a,b,c}),$$

where

$$P_{a,b,c} = T^2 - 4X^2Y^2 - \frac{b^2 - 4ac}{a} E^2 X^2.$$

Relationship between \mathcal{Z}_H^α and \mathcal{B}_H^α in general case

- **Theorem.** If $Z(\alpha H) = k$, then $\mathcal{Z}_H^\alpha \subset \mathcal{B}_H^\alpha$ ($\subset S(t_H)_\Theta$)

- **Question.** Under which condition is \mathcal{B}_H^α a **localization** of \mathcal{Z}_H^α ?

If H is the Sweedler algebra or if $H = k[G]$, then \mathcal{B}_H^α is a localization of \mathcal{Z}_H^α

- **Proof for $H = k[G]$:** Consider the following elements of \mathcal{Z}_H^α :

$$Z_g = X_g X_{g^{-1}} = (t_g u_g) (t_{g^{-1}} u_{g^{-1}}) = \alpha(g, g^{-1}) t_g t_{g^{-1}}$$

$$Z_{g,h} = X_g X_h X_{(gh)^{-1}} = \alpha(g, g^{-1}) \alpha(h, (gh)^{-1}) t_g t_h t_{(gh)^{-1}}$$

Now, for the generators $\sigma(g, h)$ of \mathcal{B}_H^α , we have

$$\sigma(g, h) = \frac{\alpha(g, h) \alpha(gh, (gh)^{-1})}{\alpha(g, g^{-1}) \alpha(h, (gh)^{-1})} \cdot \frac{Z_{g,h}}{Z_{gh}}$$

The universal algebra \mathcal{A}_H^α

Assume that $\mathcal{Z}_H^\alpha \subset \mathcal{B}_H^\alpha$ and that \mathcal{B}_H^α is a localization of \mathcal{Z}_H^α

- Our third “universal algebra” attached to (H, α) :

Definition. Let $\mathcal{A}_H^\alpha = \mathcal{B}_H^\alpha \otimes_{\mathcal{Z}_H^\alpha} \mathcal{U}_H^\alpha$ (central localization of \mathcal{U}_H^α)

- **Theorem.** (a) The *center* of \mathcal{A}_H^α is \mathcal{B}_H^α
(b) If the algebra ${}^\alpha H$ is *simple*, then so is $\text{Frac } \mathcal{B}_H^\alpha \otimes_{\mathcal{B}_H^\alpha} \mathcal{A}_H^\alpha$
(c) \mathcal{A}_H^α is a *twisted algebra*: $\mathcal{A}_H^\alpha \cong \mathcal{B}_H^\alpha \otimes {}^\sigma H$ (*cleft H-Galois extension*)
(d) If ${}^\beta H$ is a *form* of ${}^\alpha H$ (they are isomorphic as comodule algebras after extension of scalars) for some two-cocycle $\beta : H \times H \rightarrow K \supset k$, then there is an algebra map $\lambda : \mathcal{B}_H^\alpha \rightarrow K$ such that $K \otimes_{\mathcal{B}_H^\alpha} \mathcal{A}_H^\alpha \cong {}^\beta H$

Computation of \mathcal{A}_H^α for the Sweedler algebra

If H is the **Sweedler algebra**, then

$$\mathcal{A}_H^\alpha \cong \mathcal{B}_H^\alpha \langle \xi, \eta \rangle / (\xi^2 - X^2, \eta^2 - Y^2, \xi\eta + \eta\xi - T).$$

Recall

$$\mathcal{B}_H^\alpha \cong k[E^{\pm 1}, (X^2)^{\pm 1}, Y^2, T, U] / (T^2 - 4X^2Y^2 - dE^2X^2),$$

where

$$d = \frac{b^2 - 4ac}{a}.$$

Computation of \mathcal{A}_H^α for a group algebra

(By D. Haile and M. Natapov)

Let $G = \langle g, h \mid g^9 = h^9 = 1, gh = h^4g \rangle = \mathbb{Z}/9 \rtimes \mathbb{Z}/9$
and $H = k[G]$

Set $X = X_g$ and $Y = X_h$. Then

$$\mathcal{B}_H^\alpha \cong k[(X^9)^{\pm 1}, (Y^9)^{\pm 1}, Z]/(Z^3 - \omega(X^9)^3(Y^9)^2),$$

where $Z = XYX^8Y^5$ and ω is a primitive third root of 1, and

$$\mathcal{A}_H^\alpha = \mathcal{B}_H^\alpha \langle X, Y \rangle / I,$$

where I is the two-sided ideal generated by

$$X^3Y - \omega YX^3, \quad Y^3X - \omega^2 XY^3,$$

$$XYXY - \omega^2 Y^2X^2, \quad YXYX - X^2Y^2, \quad XY^2X - \omega^2 YX^2Y$$

Reference for results of Part Two

E. Aljadeff, C. Kassel,

Polynomial identities and noncommutative versal torsors,
Preprint arXiv:0708.4108