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Introductory quotation

F. Patras, C. Reutenauer, On descent algebras and twisted
algebras, Moscow Math. J. 4 (2004), 199-216:

Many phenomena in algebraic combinatorics can be
explained, and sometimes are discovered, using a
suitable bialgebra structure.



Work on graded (co)commutative bialgebras

e Some references:

- A. M. Garsia, C. Reutenauer, A decomposition of Solomon’s
descent algebra, Adv. Math. 77 (1989), 189-262.

- F. Patras, Lalgebre des descentes d’une bigebre graduée,
J. Algebra 170 (1994), 547-566.

- C. Reutenauer, Free Lie algebras, Clarendon, Oxford, 1993.
e |dentities for graded (co)commutative bialgebras

e Models: Tensor bialgebras or their duals, “combinatorial Hopf
algebras”

e Formulas often live in the algebra of the symmetric groups,
related to descents,...



By contrast, my joint work with E. Aljadeff

¢ | now report on joint work with Eli Aljadeff (Technion, Haifa)

e We work with arbitrary Hopf algebras, e.g., finite dimensional
Hopf algebras, not combinatorial Hopf algebras

e Motivation: From Noncommutative geometry and quantum
groups
e Models: The Hopf algebra of a (finite) group or its dual

e We construct universal algebras associated to each Hopf
algebra
e We get
— identities
— deformations
of the given Hopf algebra

e S0 far no connection with symmetric groups



Part One

COMBINATORICS FROM A COALGEBRA



The free commutative Hopf algebra on a coalgebra

¢ Recall work by Takeuchi:
M. Takeuchi, Free Hopf algebras generated by coalgebras,
J. Math. Soc. Japan 23 (1971), 561-582.

¢ Given a coalgebra C, the free commutative Hopf algebra on C
is a commutative Hopf algebra H(C) together with a coalgebra
morphism i : C — H(C) such that, for any commutative Hopf
algebra H and any coalgebra morphism f : C — H, there is a
unique Hopf algebra morphism f : H(C) — H with f =f oi:

e Construction of H(C) comes next



The bialgebra S(tc)

e Lett: C — tc be alinear isomorphism

o Consider the symmetric algebra S(tc) = B, S'(tc) on the
vector space tc = C

e The algebra S(tc) is a commutative bialgebra with
coproduct A and counit ¢ extended from C:

(x) (x)
and e(tx) = ¢(x) for all x € C.
e Any coalgebra morphism f : C — B into a commutative
bialgebra B factors through t : C — S(t¢):

C —-S(te)

N

B



The Hopf algebra H(C)

e Let Frac S(tc) be the field of fractions of S(tc)

e Lemma. The map t € Hom(C, S(tc)) is convolution invertible
in Hom(C, Frac S(t¢)), i.e., there isamap t—! : C — Frac S(t¢)

such that
-1 _ -1 _
Z tX(l) tX(z) - Z tX(l) tX(Z) - g(x) 1
(x) (x)

e Definition . H(C) is the subalgebra of Frac S(tc) generated
by t(C) and t~1(C)

e H(C) is a commutative Hopf algebra with antipode S given by
S(ty) =t 1 and S(t 1) =t
e If x € C is grouplike, then tg1 = 1/t

e If x € C is primitive, then t; 1 = —t,



H(C) as a localization of S(tc)

e Theorem (Takeuchi) . (a) If dimC < oo, then there is
©¢ € S(tc) such that

H(C) = S(tc){elc} .

e (b) If dim C = o0, in which case C is the union of a family
(Cx ), of finite-dimensional subcoalgebras,

e1=50) (g ) |

e From now on, we write S(tc)e instead of H(C)

e Construction of ©c comes next



The polynomial ©¢

e Let C be a coalgebra. Then C* = Hom(C, k) is an algebra
over the ground field k. Assume that C is a finite-dimensional.

¢ Definition of ©¢: image of t under the maps

t € Hom(C, S(tc)) «— C* ® S(tc) - S(tc) 3 O¢,

where N is the norm map: N(w) = determinant of the left
multiplication by w

e Properties: (a) If C is a simple coalgebra, then the polynomial
O©c isirreducible

(b) If C = C; x Cy, then
©¢ = O¢, ® Oc, In S(tc,) ® S(tc,) = S(tc)

(c) ©¢ is grouplike in the bialgebra S(tc)



Computation of ©¢: two basic examples

e If C = Mp(k)* (simple coalgebra), then
O©c € S(te) = det(ti,j)lgi,an

[determinant of the “generic” matrix]
e Let C = k[G] with a basis G of grouplike elements. Then
S(tc)e =k[9,97"|g € G]

is an algebra of Laurent polynomials. If G is finite, then

oc =[] t

9eG



Dedekind’s “Gruppen-Determinanten”

e For a finite group G, let C = k® = k[G]* be the coalgebra of
functions on G with coproduct A(f)(g, h) = f(gh). Then ©¢ is
equal to Dedekind’s group determinant ©¢ defined by

Og = det(tghfl)g’heG

e Frobenius (1896) factorized ©g into irreducible polynomials:

@G = H (ep)dp )

p€Elrrep G

where for each representation p : G — GLq,(C),

0, = det (> tg.0(0))

geG



O©¢ for two non-abelian groups
e If G =(g,x |g? =x3 =e, gxg = x~1) is the dihedral group
(or the symmetric group) of order 6, then
©c = —(a+b+c+A+B+C)
x(a+b+c—A—-B-C)
x (a® +b? 4+ c? +ab + bc + ac
— A?-B?-C? - AB—BC —AC)?,
wherea=t;,b=1t,c =t A=ty B =1y, C= tox2-
o If G = {1, +i, £, £k} is the quaternionic group, then
O = —(t1+t +H+t+tg+t+t +1t k)
X (ty + t; —f-tt+ta+ty -t —t )
X(ty — t; +4 -+t -t +t -ty
X(ty — t; — G+ttt -t -t +1t k)
2
x((ty = toa)? + (6 — )% + (G — ) + (b — tx)?)



Part Two

HOPF ALGEBRAS AND COCYCLES

(All results joint with Eli Aljadeff)



Group-graded algebras

e Given a group G, consider strongly G-graded algebras:
A=P Ay

with Ag A, = Agh and dimAg = 1
e Suppose ug spans Ag. Then
Ug Up = (g, h) ugn
for some a(g,h) e k* =k — {0}
e Themap a: G x G — k* is a two-cocycle

e {strongly graded algebras}/(isomorphism) = H?(G, k*)



Twisted algebras

e Let H be a Hopf algebra and o : H x H — k a bilinear map
e Let “H be a vector space isomorphic to H. We fix a linear
isomorphism x € H — uy € “H. Equip “H with product
Ucally = D alX) Y1) Uxaye
(x):(y)

This product is associative iff « is a two-cocycle, i.e., satisfies

D alx) Yoy ex@)Ye)»2) = D alya) Ze) aX,Y2)Z@)
(x):(y) (¥):(2)
It has u; as unit if « is normalized, i.e., a(1,x) = a(x,1) = &(x)

e If G is a group, H = k[G], and « is an invertible two-cocycle,
then “H is a strongly G-graded algebra (as in previous slide)



The H-comodule algebra U4

e Let H be a Hopf algebra and « a normalized two-cocycle.
Consider the extended twisted algebra S(ty) ® *H
(Now S(ty) plays the réle of scalars)

e For x € H, define (dropping tensor product signs)
Xx =D ey Uxg € S(tn) ® *H
(x)
In case G is a group and H = k[G], then Xg =ty ug (g € G)

e Our first “universal algebra” attached to (H, «):

Definition. Let /] be the subalgebra of S(ty) ® “H generated
by all elements Xy, where x € H



Properties of U/

e U is a positively graded algebra with deg Xy = 1

e U4 is an H-comodule algebra with coaction ¢ : Uy — U3 ® H:

(%) = 3 Xey @ X
(x)

¢ (An important property not to be developed here)

Uy is the universal quotient of T (H) in which all identities
satisfied by “H as an H-comodule algebra vanish

e Center of U5: if Z(*H) is the center of “H, then

25 = Ui () (S(tw) © Z(“H))

In particular, if w € U5 () (S(th) u1), thenw € 25



The Sweedler algebra
e The smallest non-commutative non-cocommutative Hopf
algebra
H=k{x,y[x?=1, xy +yx =0, y?>=0)

Comultiplication: A(Xx) =x®Xx, A(y)=1®y+y ®X
Counit: e(x) =1, ¢(y)=0

It is four-dimensional with basis {1,x,y,z}, where z = xy
e We have S(ty) = k|ty, t, ty, t;] and

S L M
tx ’ y t1tx ’ z t1tx '

Thus, S(th)e = K[t t1, by, t,]. Note that Oy = (titx)? .



Twisted Sweedler algebras

e For any normalized invertible two-cocycle «, the twisted
algebra “H is of the form

“H =k(uy,Uy |Uf =a, Uxly +UyUx =b, ui=c)
for some scalars a, b, c witha # 0 (uq is the unit of *H)
e Generators of [4:

E=X1, X=X, Y=Xy, Z=2X, €S(ty)®°H

defined by
E=tu, X = tx Ux,

Y:t1Uy+tyuX, Z:txuz+tzu1

Thus, E € Z (the center of 147)



Computations in U4

e Degree two central elements of 145:
X2 = (teuyx)? = t2u? = at? € 25

Y2 = (tyuy +tyuy)? = at? + btyty + ct? € 25

e Degree three central element:
U = X(XZ + ZX) = at?(2t, + bty) € 25
e Degree four relation in Z5:

b2 — 4ac

T? —4X?Y? = E2X?

e Degree four relation in /3. [elements in red belong to 2]

2X%(EZ —XY) =EU — X°T



The generic two-cocycle cohomologous to «

e Let H be a Hopf algebraH and o : H x H — k an invertible
two-cocycle. Define new invertible cocycle o : H x H — S(ty)e

by

Z tx o by, @(X(2) y(z))t
(x),(y)

The cocycles o and « are cohomologous over S(ty)e
e In case H = k[G] is a group algebra and g, h € G,

gh

(9,h) = afg,h) =

e Our second “universal algebra” attached to (H, «):

Definition. Let Bf} be the subalgebra of S(ty)e generated by
all o(x,y) and o—1(x,y), where x,y € H

The algebra By is a domain



The algebra By} in the Sweedler case - Generators

e Generators of B:

o(1,1) = 4 =E,

o(x,x) = itf:)l(;’

oyy) = BT bttlltv et YEZ

a(x,y) = atXtytl_ = XzzTEszU,

o(y,x) = btity + attlxty + t1t, _ XZZTE;EU |

o(z,z) = _t24btt +act? U2 b2 —dac X?

t1 T 4EX4  4a E



The algebra By in the Sweedler case - Presentation

Theorem. (a) By is a localization of Z:
q=Z5[E (x2) Y.
(b) Presentation of BY by generators and relations:
Bﬁ = k[Eilv (Xz)ilv Y27 T ) U]/(Pa,b,c) )

where

b2 — 4ac

Pab,c = T2 - 4X2y2 - E2X2.



Relationship between Zj and By} in general case
e Theorem. If Z(“H) =k, then Z5 C By (C S(tH)e)

¢ Question. Under which condition is B} a localization of Z5?

If H is the Sweedler algebra or if H = k[G], then By is a
localization of Z

e Proof for H = k[G]: Consider the following elements of Z5:
Zg == Xg ngl - (tg Ug) (tg—l Ug—l) - a(g, g_l)tg tgfl

Zgh = Xg XnX(ghy-1 = (9,97 ) e(h, (gh) ) tg th trgn)—
Now, for the generators o(g, h) of Bf;, we have

_ a(g,h) a(gh,(gh)™") Zgn
701 = (g.07D) alh (Gh) D) Zgy




The universal algebra A,

Assume that 235 C By} and that By} is a localization of 2
e Our third “universal algebra” attached to (H, «):
Definition. Let A} = Bj ®z« U5 (central localization of 143)

e Theorem. (a) The center of A} is B
(b) If the algebra *H is simple, then so is Frac B} ®@pa Aj

(c) A is atwisted algebra: A} = B ® “H (cleft H-Galois
extension)

(d) If H is a form of *H (they are isomorphic as comodule
algebras after extension of scalars) for some two-cocycle
B:H xH — K DKk, then there is an algebra map A : B} — K
such that K ®@pe AR = AH



Computation of A{, for the Sweedler algebra

If H is the Sweedler algebra, then
AR = B (Em) /(62 = X2 0P = Y2 &ntng = T).
Recall
By = K[E*L, (X)L, Y2, T, U]/(T? — 4X2Y? — d E?X?),
where

b2 — 4ac
—

d=—



Computation of A{} for a group algebra
(By D. Haile and M. Natapov)

LetG =(g,h|g° =h%=1 gh=h*) =2Z/9 xZ/9
and H = k[G]

Set X =XgandY = Xy. Then
By = K[(X2)F (YO Z]/(Z° —w (XO)*(Y®)?),
where Z = XYX®8Y® and w is a primitive third root of 1, and
o =BRX.Y)/1,
where | is the two-sided ideal generated by
X3Y —wYX3, Y3X —w?XY?3,

XYXY —w?Y2X2, YXYX — X2Y2, XY2X —w?YX2Y



Reference for results of Part Two

E. Aljadeff, C. Kassel,
Polynomial identities and noncommutative versal torsors,
Preprint arXiv:0708.4108



