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Introduction

I Joint work with Eli Aljadeff (Technion): arXiv:0708.4108,
Adv. Math. (2008), doi:10.1016/j.aim.2008.03.014

I We are interested in the concept of principal fiber bundles in
noncommutative geometry

For these “quantum principal fiber bundles”, the structural group is a
Hopf algebra

I Motivations:

(a) Many interesting examples coming from quantum groups

(b) A well-known algebraic language to describe “quantum principal
fiber bundles”, that of Hopf Galois extensions

(c) This leads to new questions on Hopf algebras



Introduction

I Joint work with Eli Aljadeff (Technion): arXiv:0708.4108,
Adv. Math. (2008), doi:10.1016/j.aim.2008.03.014

I We are interested in the concept of principal fiber bundles in
noncommutative geometry

For these “quantum principal fiber bundles”, the structural group is a
Hopf algebra

I Motivations:

(a) Many interesting examples coming from quantum groups

(b) A well-known algebraic language to describe “quantum principal
fiber bundles”, that of Hopf Galois extensions

(c) This leads to new questions on Hopf algebras



Introduction

I Joint work with Eli Aljadeff (Technion): arXiv:0708.4108,
Adv. Math. (2008), doi:10.1016/j.aim.2008.03.014

I We are interested in the concept of principal fiber bundles in
noncommutative geometry

For these “quantum principal fiber bundles”, the structural group is a
Hopf algebra

I Motivations:

(a) Many interesting examples coming from quantum groups

(b) A well-known algebraic language to describe “quantum principal
fiber bundles”, that of Hopf Galois extensions

(c) This leads to new questions on Hopf algebras



Genesis of the results

• In August 2005 at the XVIo Coloquio Latinoamericano de Álgebra in
Colonia del Sacramento, Uruguay, I reported results on the classification of
Hopf Galois extensions (some joint with Hans-Jürgen Schneider)

In topology there are universal principal fiber bundles. In the context of
noncommutative geometry I raised the question of the existence and the
construction of universal Hopf Galois extensions.

• Eli Aljadeff suggested to use an appropriate theory of polynomial identities
in order to answer this question. During his three-month stay in Strasbourg in
Fall 2005, we made his idea work.

We obtained answers for a special class of Hopf Galois extensions,
subsequently called twisted algebras, which are obtained from a Hopf
algebra H and a cocycle α



What we actually do

To each pair (H, α), where H is a Hopf algebra and α is a cocycle, and to the
corresponding twisted algebra A we associate the following algebras:

I A commutative algebra Bα
H constructed from what we call the generic

cocycle cohomologous to the cocycle α.

The algebra Bα
H is a natural parameter space for a class of deformations

of A. The affine variety Spec(Bα
H ) is a natural geometrical object

associated to the “noncommutative” pair (H, α)

I A noncommutative Hopf Galois extension Aα
H over the commutative

algebra Bα
H .

The algebra Aα
H is a flat deformation of A over the “parameter space”

Spec(Bα
H )

I An algebra Uα
H built out of the polynomial identities satisfied by the

twisted algebra A

We establish a connection between the noncommutative algebras Aα
H and Uα

H
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Plan

• Part One: Hopf Galois extensions, twisted algebras, the classification
problem

• Part Two: The generic cocycle and the “parameter space”

• Part Three: An example: the Sweedler algebra

• Part Four: The generic Galois extension

• Part Five: Polynomial identities and the universal comodule algebra



Part One

HOPF GALOIS EXTENSIONS



Basic dictionary of noncommutative geometry

• Replacing spaces by associative algebras

space X ←→ algebra A(X ) (= functions on X )

map f : X → Y ←→ algebra map f ∗ : A(Y )→ A(X )

product f : X × Y ←→ tensor product A(X )⊗ A(Y )

point X = {∗} ←→ ground field A(∗) = k



Groups in noncommutative geometry

• Groups . Let G be a group and H = A(G)

product G ×G→ G ←→ coproduct H → H ⊗ H

unit {∗} → G ←→ counit H → k

inverse G→ G ←→ antipode S : H → H

So H is a Hopf algebra

• Group actions . We also need the concept of an H-comodule algebra

action X ×G→ X ←→ coaction δ : A→ A⊗ H

orbit set Y = X/G ←→ coinvariants B = {a ∈ A | δ(a) = a⊗ 1H}



Definition of a Hopf algebra

Fix a field k . A Hopf algebra is an associative unital k -algebra H together with

• (Coproduct) an algebra morphism ∆ : H → H ⊗ H

• (Coünit) an algebra morphism ε : H → k

• (Antipode) an algebra antimorphism S : H → H such that

(∆⊗ idH) ◦∆ = (idH ⊗∆) ◦∆ ,X
(x)

x(1) ε(x(2)) =
X
(x)

ε(x(1)) x(2) = x ,

X
(x)

x(1) S(x(2)) =
X
(x)

S(x(1)) x(2) = ε(x) 1 ,

where we use the Sweedler notation

∆(x) =
X
(x)

x(1) ⊗ x(2)



Examples of Hopf algebras

Example 1: The algebra H = kG of k -valued functions on a finite group G is a
Hopf algebra with

∆(f )(g, h) = f (gh) , ε(f ) = f (e) , S(f )(g) = f (g−1)

(f ∈ H, g, h ∈ G; e is the unit of the group).

Example 2: The algebra H = k [G] of a group G is a Hopf algebra with

∆(g) = g ⊗ g , ε(g) = 1 , S(g) = g−1

(g ∈ G).



Comodule algebras

Let H be a Hopf algebra

• An H-comodule algebra is an associative unital algebra A together with an
algebra morphism

δ : A→ A⊗ H

called the coaction and satisfying

(δ ⊗ idH) ◦ δ = (idH ⊗∆) ◦ δ and (idH ⊗ε) ◦ δ = idH

• Coinvariants:
AH = {a ∈ A | δ(a) = a⊗ 1H}

is a subalgebra and a subcomodule of A



Hopf Galois extensions

• The noncommutative analogue of a principal fiber bundle, or a G-torsor, is
a Hopf Galois extension

• Let H be a Hopf algebra and B an associative algebra

Definition . An H-Galois extension A of B is an H-comodule algebra A such
that

(a) B is the subalgebra of coinvariants of A, i.e., B = AH

(b) the Galois condition is satisfied: the map a⊗ b 7→ (a⊗ 1H) δ(b)
induces a bijection

A⊗B A→ A⊗ H

(c) as a left B-module, A is faithfully flat



Central Hopf Galois extensions

•We consider only central Hopf Galois extensions, i.e., H-Galois extensions
A of B such that B is central in A

• Functoriality property: If A is a central H-Galois extension of B and
f : B → B′ is a morphism of commutative algebras, then

f∗A = B′ ⊗B A

is a central H-Galois extension of B′



Twisted algebras

• Let H be a Hopf algebra and α : H × H → k a bilinear form

• Let αH be a vector space isomorphic to H via a linear isomorphism
x ∈ H 7→ ux ∈ αH. Equip αH with the product

ux uy =
X

(x),(y)

α(x(1), y(1)) ux(2)y(2)
(1)

This product is associative if α is a two-cocycle: for all x , y ∈ H,X
(x),(y)

α(x(1), y(1)) α(x(2)y(2), z) =
X

(y),(z)

α(y(1), z(1)) α(x , y(2)z(2)) (2)

• The algebra αH has u1 as unit if α is normalized: for all x ∈ H,

α(1, x) = α(x , 1) = ε(x)



Invertible cocycles

We shall consider only invertible two-cocycles

• A two-cocycle α : H × H → k is invertible if there is a bilinear form
α−1 : H × H → k such that for all x , y ∈ H,X

(x),(y)

α(x(1), y(1)) α−1(x(2), y(2)) = ε(x) ε(y)

and X
(x),(y)

α−1(x(1), y(1)) α(x(2), y(2)) = ε(x) ε(y)

• If G is a group, H = k [G], and α is an invertible two-cocycle of H, then

(a) the restriction of α to G is a group-cocycle with values
in k× = k − {0}

(b) the algebra αH is a so-called strongly G-graded algebra and the
product is given for all g, h ∈ G by

ug uh = α(g, h) ugh



Twisted algebras are Galois extensions

• For any two-cocycle α, the twisted algebra αH is an H-comodule algebra
with coaction

δ : αH → αH ⊗ H

δ(ux) =
X
(x)

ux(1)
⊗ x(2)

• The coinvariants of αH are trivial:

(αH)H = k 1

• The Galois condition is satisfied: for each cocycle α, the twisted algebra αH
is an H-Galois extension of k



The classification problem

• Problem: Classify all H-Galois extensions of B up to isomorphism

Recall: Two H-Galois extensions A, A′ of B are isomorphic if there is an
algebra isomorphism f : A→ A′ preserving the coactions, i.e.,

(f ⊗ idH) ◦ δ = δ′ ◦ f

• Reformulation: Determine the set CGalH(B) of isomorphism classes of
central H-Galois extensions of B

This is a difficult problem in general



Universal classifying algebra

Let H be a Hopf algebra

• Definition . A central H-Galois extension AH of BH is called (uni)versal if for
any commutative algebra B, the map

Alg(BH , B) −→ CGalH(B)

f 7−→f∗AH = B ⊗BH AH

is surjective (bijective)

• Universal central H-Galois extensions are unique up to isomorphism, but
may not exist

•We shall construct versal Galois extensions for twisted algebras



Doi’s classification of twisted algebras

• Lemma (Doi) . Two twisted algebras αH and βH are isomorphic as
H-comodule algebras if and only if α and β are cohomologous in the
following sense

• Definition. Two-cocycles α and β of H are cohomologous, α ∼ β, if there is
an invertible linear form λ : H → k with inverse λ−1 : H → k such that for all
x , y ∈ H,

β(x , y) =
X

(x),(y)

λ(x(1)) λ(y(1)) α(x(2), y(2)) λ−1(x(3)y(3))

• A linear form λ : H → k is invertible with inverse λ−1 : H → k ifX
(x)

λ(x(1)) λ−1(x(2)) =
X
(x)

λ−1(x(1)) λ(x(2)) = ε(x) 1

for all x ∈ H (An invertible linear form has a unique inverse)



Classifying twisted algebras

• By Doi’s lemma, there is a bijection

{twisted algebras}/(comodule algebra isomorphisms)

∼= {two-cocycles of H}/∼

• In general, the set {two-cocycles of H}/∼ is not a group

• Only in special cases is {two-cocycles of H}/∼ a group, e.g., if H is
cocommutative: X

(x)

x(1) ⊗ x(2) =
X
(x)

x(2) ⊗ x(1)

The group Hopf algebra k [G] is cocommutative and

{two-cocycles of k [G]}/∼ ∼= H2(G, k×)



Part Two

THE GENERIC COCYCLE

(All results in the sequel are joint with Eli Aljadeff)



Towards a generic cocycle

• Objective. Let H be a Hopf algebra and α a normalized invertible
two-cocycle. We want to define a generic two-cocycle on H that is
cohomologous to α.

• To this end, we “emulate” the equations

β(x , y) =
X

(x),(y)

λ(x(1)) λ(y(1)) α(x(2), y(2)) λ−1(x(3)y(3))

and X
(x)

λ(x(1)) λ−1(x(2)) =
X
(x)

λ−1(x(1)) λ(x(2)) = ε(x) 1

(expressing that α, β are cohomologous)

by replacing the scalars λ(x), λ−1(x) by commuting symbols tx , t−1
x



The symbols tx

Let tH be a copy of H with linear isomorphism x ∈ H 7→ tx ∈ tH

Consider the symmetric algebra

Sym(tH) =
M
r≥0

Symr (tH)

on the vector space tH . If {xi}i∈I is a basis of H, then

Sym(tH) ∼= k [txi | i ∈ I ]

is the polynomial algebra in the (commuting) variables txi



The symbols t−1
x

•We also need variables t−1
x to deal with the equationsX

(x)

λ(x(1)) λ−1(x(2)) =
X
(x)

λ−1(x(1)) λ(x(2)) = ε(x) 1

• Let Frac Sym(tH) be the field of fractions of Sym(tH)

Lemma. There is a unique linear map x 7→ t−1
x from H to Frac Sym(tH) such

that for all x ∈ H, X
(x)

tx(1)
t−1
x(2)

=
X
(x)

t−1
x(1)

tx(2)
= ε(x) 1



Computing t−1
x

• If x is grouplike, i.e., ∆(x) = x ⊗ x , then ε(x) = 1 and

tx t−1
x = 1 , hence t−1

x =
1
tx

• If x is skew-primitive, i.e., ∆(x) = g ⊗ x + x ⊗ h for some grouplike
elements g, h, then ε(x) = 0 and

tg t−1
x + tx t−1

h = 0 , hence t−1
x = − tx

tg th



The generic two-cocycle cohomologous to α

• Let H be a Hopf algebra and α : H × H → k a normalized invertible
two-cocycle

Define the generic two-cocycle σ : H × H → Frac Sym(tH) by

σ(x , y) =
X

(x),(y)

tx(1)
ty(1)

α(x(2), y(2)) t−1
x(3)y(3)

• The cocycle σ is cohomologous to α over the fraction field Frac Sym(tH)

• In case H = k [G] is a group algebra and g, h ∈ G,

σ(g, h) = α(g, h)
tg th
tgh



The generic base algebra

• Let H be a Hopf algebra and α : H × H → k a normalized invertible
two-cocycle

• Definition. Let Bα
H be the subalgebra of Frac Sym(tH) generated by the

values of the generic two-cocycle σ and of its inverse σ−1

We call Bα
H the generic base algebra

• Immediate properties :

(a) Bα
H is a domain

(b) Transcendence degree of FracBα
H ≤ dim H

(c) Bα
H is finitely generated if dim H <∞



Computation of Bα
H - the infinite cyclic case

• Consider the Hopf algebra of the group of integers H = k [x , x−1] with

∆(x) = x ⊗ x , ε(x) = 1 , S(x) = x−1

together with the trivial two-cocycle: α(xm, xn) = 1 (m, n ∈ Z)

• Here Sym(tH) = k [tm |m ∈ Z]. For the generic cocycle,

σ(xm, xn) =
tmtn
tm+n

=
ymyn

ym+n
(m, n ∈ Z)

where ym = tm/tm
1 (note that y1 = 1 and y0 = t0)

• The algebra Bα
H is the Laurent polynomial algebra

Bα
H = k [ y±1

m |m ∈ Z− {1} ]

inside the Laurent polynomial algebra k [t±1
m |m ∈ Z]

• Is k [t±1
m |m ∈ Z] much bigger than Bα

H ? Answer:

k [t±1
m |m ∈ Z] = Bα

H [t±1
1 ]



Computation of Bα
H - the finite cyclic case

• For the Hopf algebra H = k [x ]/(xN − 1) of the cyclic group of order N ≥ 2
with trivial two-cocycle,

Sym(tH) = k [t0, t1, . . . , tN−1]

and the algebra Bα
H is a Laurent polynomial algebra on N variables:

Bα
H = k [y±1

0 , y±1
2 , . . . , y±1

N ] ⊂ k [t±1
0 , t±1

1 , . . . , t±1
N−1]

where yN = t0/tN
1

• Here k [t±1
0 , t±1

1 , . . . , t±1
N−1] is an integral extension of Bα

H :

k [t±1
0 , t±1

1 , . . . , t±1
N−1] = Bα

H [t1]/(tN
1 − y0/yN)



Part Three

THE SWEEDLER ALGEBRA



The Sweedler algebra: definition

• The Sweedler algebra is the smallest noncommutative noncocommutative
Hopf algebra

As an algebra,

H = k〈 x , y | x2 = 1 , xy + yx = 0 , y2 = 0 〉

Its radical is the ideal (y) and H/(y) ∼= k [Z/2]

• Hopf algebra structure:

Coproduct: ∆(x) = x ⊗ x , ∆(y) = 1⊗ y + y ⊗ x

Coünit: ε(x) = 1, ε(y) = 0

Antipode: S(x) = x , S(y) = xy

• The algebra H is four-dimensional with basis {1, x , y , z}, where z = xy



The Sweedler algebra: the variables tx and t−1
x

We need the variables t1, tx , ty , tz and t−1
1 , t−1

x , t−1
y , t−1

z .

They satisfy the equations

t1 t−1
1 = 1 , tx t−1

x = 1 ,

t1 t−1
y + ty t−1

x = 0 , tx t−1
z + tz t−1

1 = 0

Hence,

t−1
1 =

1
t1

, t−1
x =

1
tx

, t−1
y = − ty

t1tx
, t−1

z = − tz
t1tx



Twisted Sweedler algebras

• (Masuoka) For any normalized invertible two-cocycle α, the twisted algebra
αH is up to isomorphism of the form

αH = k〈ux , uy | u2
x = a , ux uy + uy ux = b , u2

y = c〉

for some scalars a, b, c with a 6= 0 (u1 is the unit of αH)

• Recall: The generic two cocycle σ is given by

σ(x , y) =
X

(x),(y)

tx(1)
ty(1)

α(x(2), y(2)) t−1
x(3)y(3)

Since dim H = 4, we have to compute the 32 values of σ and σ−1 on the
basis



Values of the generic cocycle

Values of σ :

σ(1, 1) = t1 ,

σ(x , x) =
a t2

x

t1
,

σ(y , y) =
a t2

y + b t1ty + c t2
1

t1
,

σ(x , y) =
a tx ty − t1tz

t1
,

σ(y , x) =
b t1tx + a tx ty + t1tz

t1
,

σ(z, z) = − t2
z + b tx tz + ac t2

x

t1

These rational fractions together with the values of σ−1 generate the
algebra Bα

H



Generators of Bα
H in the Sweedler case

If we set
E = t1 , R = a t2

x , S = a t2
y + b t1ty + c t2

1 ,

T = tx (2a ty + b t1) , U = a t2
x (2 tz + b tx) ,

then

σ(1, 1) = E , σ(x , y) =
RT − EU

2ER
,

σ(x , x) =
R
E

, σ(y , x) =
RT + EU

2ER
,

σ(y , y) =
S
E

, σ(z, z) =
a U2 − (b2 − 4ac) R3

4a ER2

Consequence. The elements E, E−1, R, R−1, S, T , U belong to Bα
H and

generate it as an algebra. Moreover, E, R, S, U are algebraically
independent.



The generic base algebra in the Sweedler case

Theorem. Presentation of Bα
H by generators and relations:

Bα
H
∼= k [E±1, R±1, S, T , U]/(Pa,b,c) ,

where

Pa,b,c = T 2 − 4RS − b2 − 4ac
a

E2R



Part Four

THE GENERIC GALOIS EXTENSION



The generic Galois extension

I Since the generic cocycle takes values in Bα
H , we can consider the

twisted algebra
Aα

H = Bα
H ⊗ σH

As a vector space, Aα
H = Bα

H ⊗ H ; it is equipped with the product

(a⊗ ux) (b ⊗ uy ) =
X

(x),(y)

a b σ(x(1), y(1))⊗ ux(2) y(2)

(a, b ∈ Bα
H , x , y ∈ H)

The twisted algebra Aα
H is called the generic Galois extension

I Proposition. (a) The map δ = idBα
H
⊗∆ is a coaction, turning Aα

H into
an H-comodule algebra whose subalgebra of coinvariants is Bα

H :

Bα
H =

˘
a ∈ Aα

H | δ(a) = a⊗ 1H
¯

(b) Bα
H is a central subalgebra of Aα

H

Thus Aα
H is a central H-Galois extension of Bα

H
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A rigidity propery

I Aα
H is a flat deformation of αH over the commutative algebra Bα

H :

Proposition. There is a comodule algebra isomorphism

Aα
H/m0Aα

H
∼= αH

for some maximal ideal m0 of Bα
H

The ideal m0 is the kernel of an algebra morphism χ0 : Bα
H → k sending

each element σ(x , y) to α(x , y)

I If αH is (semi)simple, then Aα
H is generically (semi)simple. More

precisely

Theorem. Assume that char(k) = 0 and dim(H) <∞.
If αH is (semi)simple, then so is

FracBα
H ⊗Bα

H
Aα

H = FracBα
H ⊗ σH
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Forms

• Let β : H × H → K ⊃ k be a normalized invertible two-cocycle. The twisted
algebra K ⊗ βH is a K -form of αH if there is a field L ⊃ K and an L-linear
isomorphism of H-comodule algebras

L⊗K (K ⊗ βH) ∼= L⊗k
αH .

• Theorem. If K ⊗ βH is a K -form of αH, then there is an algebra morphism
χ : Bα

H → K such that
Kχ ⊗Bα

H
Aα

H
∼= βH

In other words, any form of αH is obtained from the generic Galois
extension Aα

H by a central specialization

There is a converse to the previous theorem; it requires an additional
condition



Azumaya

I Theorem If the algebra Frac Sym(tH) is integral over the
subalgebra Bα

H , then for any algebra morphism χ : Bα
H → K ⊃ k, the

algebra Kχ ⊗Bα
H
Aα

H is a K -form of αH

I Theorem. Under the previous integrality condition, if the algebra αH is
simple, then the generic extension Aα

H is an Azumaya algebra with
center Bα

H

An algebra A is Azumaya if A/m is simple for any maximal ideal m of its
center. E.g. A = Mn(R), where R is a commutative ring
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simple, then the generic extension Aα

H is an Azumaya algebra with
center Bα

H

An algebra A is Azumaya if A/m is simple for any maximal ideal m of its
center. E.g. A = Mn(R), where R is a commutative ring



Versal deformation space

• If Frac Sym(tH) is integral over Bα
H , then the map

Alg(Bα
H , K ) −→ K - Forms(αH)

χ 7→ Kχ ⊗Bα
H
Aα

H

is a surjection from the set of algebra morphisms Bα
H → K to the set of

isomorphism classes of K -forms of αH

• Thus the set Alg(Bα
H , K ) parametrizes the K -forms of αH.

The extension Bα
H ⊂ Aα

H is a versal deformation space for the forms of αH

• Remark. To determine the set Alg(Bα
H , K ), it is important to find a

presentation by generators and relations of Bα
H



The integrality condition
• Question. Under which condition on (H, α) is the algebra Frac Sym(tH)
integral over the subalgebra Bα

H ?

• Proposition. If H is a finite-dimensional Hopf algebra that is generated by
grouplike and skew-primitive elements, and α is any two-cocycle, then
Frac Sym(tH) is integral over the subalgebra Bα

H

Proof in the case H is the algebra of a finite group G. It suffices to show that
each tg (g ∈ G) is integral over Bα

H . Since

σ(g, h) = α(g, h)
tg th
tgh
∈ Bα

H ,

we have tg th = b tgh for some b ∈ Bα
H . Consequently for all n ≥ 2,

tn
g = b′ tgn

for some b′ ∈ Bα
H . If n is the order of g, then since σ(1, 1) = t1,

tn
g = b′ tgn = b′ t1 = b′ σ(1, 1) ,

which shows that tn
g belongs to Bα

H . QED



The generic Galois extension in the Sweedler case

Theorem The generic Galois extension Aα
H is given by

Aα
H
∼= Bα

H 〈X , Y 〉/(X 2 − R , XY + YX − T , Y 2 − S)

Compare with

αH = k〈 ux , uy 〉/(u2
x − a , ux uy + uy ux − b , u2

y − c)

Recall:
Bα

H
∼= k [E±1, R±1, S, T , U]/(Pa,b,c) ,

where

Pa,b,c = T 2 − 4RS − b2 − 4ac
a

E2R



Computation of Aα
H for a group algebra

(By D. Haile and M. Natapov)

I Let G = 〈g, h | g9 = h9 = 1, gh = h4g〉 = Z/9 o Z/9

I Let H = k [G] and set X = Xg and Y = Xh. Then

Bα
H
∼= k [(X 9)±1, (Y 9)±1, Z ]/(Z 3 − ω (X 9)3 (Y 9)2) ,

where Z = XYX 8Y 5 and ω is a primitive third root of 1

I The generic Galois extension: Aα
H = Bα

H 〈X , Y 〉/I , where I is the
two-sided ideal generated by

X 3Y − ω YX 3, Y 3X − ω2 XY 3,

XYXY − ω2 Y 2X 2, YXYX − X 2Y 2, XY 2X − ω2 YX 2Y
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Part Five

POLYNOMIAL IDENTITIES



How to find generators for Bα
H

• In the Sweedler case, how did we find the generators

E = t1 , R = a t2
x , S = a t2

y + b t1ty + c t2
1 ,

T = tx (2a ty + b t1) , U = a t2
x (2 tz + b tx) ,

of Bα
H ?

• To explain this we need a new set of symbols



The symbols Xx and the tensor algebra

•We now assume that the ground field k is infinite. Let H be a Hopf algebra

• Let XH be a copy of H with a linear isomorphism x 7→ Xx

• Consider the tensor algebra

T (XH) =
M
r≥0

T r (XH)

on the vector space XH . If {xi}i∈I is a basis of H, then

T (XH) ∼= k〈Xxi | i ∈ I 〉

is the algebra of noncommutative polynomials in Xxi (i ∈ I)

• The algebra T (XH) is an H-comodule algebra with coaction
δ : T (XH)→ T (XH)⊗ H given by

δ(Xx) =
X
(x)

Xx(1)
⊗ x(2)



The universal evaluation map

• Let H be a Hopf algebra, α : H × H → k a normalized invertible
two-cocycle, and αH the corresponding twisted algebra

• Consider the algebra morphism

µα : T (XH) −→ Sym(tH)⊗ αH

Xx 7−→
X
(x)

tx(1)
⊗ ux(2)

We call µα the universal evaluation map for αH



Properties of the map µα

Lemma. (a) The map µα : T (XH)→ Sym(tH)⊗ αH is an H-comodule
algebra morphism

(b) For every H-comodule algebra morphism µ : T (XH)→ αH, there is a
unique algebra morphism χ : Sym(tH)→ k such that

µ = (χ⊗ id) ◦ µα

In other words, any comodule algebra morphism T (XH)→ αH is a
specialization of µα, and Sym(tH) parametrizes the set of such comodule
algebra morphisms



Constructing elements of Bα
H using µα

I Proposition. If P ∈ T (XH) is coinvariant, i. e., δ(P) = P ⊗ 1H , then
µα(P) belongs to Bα

H

I The following “universal” formulas provide coinvariant elements
of T (XH) (where x , y ∈ H):

Px =
X
(x)

Xx(1)
XS(x(2))

Px,y =
X

(x),(y)

Xx(1)
Xy(1)

XS(x(2)y(2))

I Example: For the Sweedler algebra:

R = µα(Px) , T = µα(Py−z) ,

U = µα(Px,z) , ES = µα(Py,y )
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A theory of identities for comodule algebras

I Let A be an H-comodule algebra for some Hopf algebra H

Definition. An element P ∈ T (XH) is an H-identity of A if µ(P) = 0 for
all comodule algebra morphisms µ : T (XH)→ A

I Let IH(A) be the vector space of all H-identities of A

Proposition. (a) IH(A) is a two-sided ideal of T (XH) such that

δ
`
IH(A)

´
⊂ IH(A)⊗ H

(b) The ideal IH(A) is graded and

IH(A) ⊂
M
r≥2

T r (XH)
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The universal comodule algebra

• Definition. The universal comodule algebra of identities of the H-comodule
algebra A is the quotient-algebra

UH(A) = T (XH)/IH(A)

• Properties.

(a) UH(A) is a graded algebra coinciding with T (XH) in degrees 0 and 1

(b) UH(A) is an H-comodule algebra

(c) All H-identities of A vanish in UH(A)



Detecting the identities for twisted algebras

I Let αH be a twisted algebra for some Hopf algebra H and some
normalized invertible two-cocycle α

Recall the universal evaluation map

µα : T (XH)→ Sym(tH)⊗ αH

I Theorem. We have IH(αH) = Ker µα

In other words, the map µα detects the H-identities of αH
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Embedding Uα
H into a controllable algebra

Consequences of the previous theorem: Set Uα
H = T (XH)/IH(αH)

I Since Ker µα = Ker(T (XH)→ Uα
H ), the map µα induces an embedding

Uα
H ↪→ Sym(tH)⊗ αH

of the universal comodule algebra into a twisted product

I u ∈ Uα
H is coinvariant if and only if µα(u) belongs to Sym(tH)⊗ 1

I u ∈ Uα
H is central if and only if µα(u) belongs to Sym(tH)⊗ Z (αH),

where Z (αH) is the center of αH

I The center Zα
H of Uα

H is a domain if Z (αH) is a domain
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Identities in the Sweedler case

Consider the Sweedler algebra H and the twisted algebra

αH = k〈ux , uy | u2
x = a , ux uy + uy ux = b , u2

y = c〉

The following are examples of H-identities for αH:

(Xx Xy + Xy Xx)
2 − 4X 2

x X 2
y −

b2 − 4ac
a

X 2
1 X 2

x

2X 2
x (X1Xz − Xx Xy )− X1Xx(Xx Xz + XzXx) + X 2

x (Xx Xy + Xy Xx)

(Check using the universal evaluation map)



Relating Uα
H and Aα

H

• To (H, α) we associated

(a) the generic Galois extension

Aα
H = Bα

H ⊗ σH

built from the generic cocycle σ

(b) the universal comodule algebra

Uα
H = T (XH)/IH(αH)

built out of the H-identities of αH ; its center is Zα
H

• Theorem. (a) There is an embedding of H-comodule algebras

Uα
H ↪→ Aα

H

(b) If Z (αH) = k, then Zα
H ↪→ Bα

H



Structure of Uα
H after central localization

•We assume that Z (αH) = k , so that µα embeds Zα
H into Bα

H

Theorem. If in addition Bα
H is a localization of Zα

H , then there is an
isomorphism of H-comodule algebras

Bα
H ⊗Zα

H
Uα

H
∼= Aα

H

In other words, after localization of the center, the universal comodule
algebra Uα

H becomes the generic Galois extension Aα
H
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Strongly graded algebras

• Given a group G, consider a strongly G-graded algebra:

A =
M
g∈G

Ag

with Ag Ah = Agh and dim Ag = 1

• Let ug be a spanning vector of Ag . Then

ug uh = α(g, h) ugh (3)

for some α(g, h) ∈ k× = k − {0}

• The associativity of the product of A implies that the map α : G ×G→ k×

is a group-cocycle:

α(g, h) α(gh, k) = α(h, k) α(g, hk) (4)



Isomorphism classes and group cohomology

• If vg = λ(g) ug with λ(g) 6= 0, then

vg vh = β(g, h) vgh ,

where

β(g, h) = α(g, h)
λ(g) λ(h)

λ(gh)
(5)

• Call α, β cohomologous, α ∼ β, if they are related by (5)

• The set {group-cocycles of G}/∼ is the cohomology group H2(G, k×)

• Isomorphism classes of strongly graded algebras:

{strongly G-graded algebras}/(isomorphisms) ∼= H2(G, k×)
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