

Polynomial identities in noncommutative geometry

Christian Kassel

Institut de Recherche Mathématique Avancée
CNRS - Université Louis Pasteur
Strasbourg, France

Colloque d'algèbre non commutative
Université de Sherbrooke, Québec, Canada
12 & 13 juin 2008

Introduction

- ▶ Joint work with **Eli Aljadeff** (Technion): arXiv:0708.4108,
Adv. Math. (2008), doi:10.1016/j.aim.2008.03.014
- ▶ We are interested in the concept of **principal fiber bundles** in
noncommutative geometry
For these “quantum principal fiber bundles”, the structural group is a
Hopf algebra
- ▶ *Motivations:*
 - (a) Many interesting examples coming from **quantum groups**
 - (b) A well-known algebraic language to describe “quantum principal fiber bundles”, that of **Hopf Galois extensions**
 - (c) This leads to **new questions** on Hopf algebras

Introduction

- ▶ Joint work with **Eli Aljadeff** (Technion): arXiv:0708.4108,
Adv. Math. (2008), doi:10.1016/j.aim.2008.03.014
- ▶ We are interested in the concept of **principal fiber bundles** in
noncommutative geometry
For these “quantum principal fiber bundles”, the structural group is a
Hopf algebra
- ▶ *Motivations:*
 - (a) Many interesting examples coming from **quantum groups**
 - (b) A well-known algebraic language to describe “quantum principal fiber bundles”, that of **Hopf Galois extensions**
 - (c) This leads to **new questions** on Hopf algebras

Introduction

- ▶ Joint work with **Eli Aljadeff** (Technion): arXiv:0708.4108,
Adv. Math. (2008), doi:10.1016/j.aim.2008.03.014
- ▶ We are interested in the concept of **principal fiber bundles** in
noncommutative geometry
For these “quantum principal fiber bundles”, the structural group is a
Hopf algebra
- ▶ *Motivations:*
 - (a) Many interesting examples coming from **quantum groups**
 - (b) A well-known algebraic language to describe “quantum principal fiber bundles”, that of **Hopf Galois extensions**
 - (c) This leads to **new questions** on Hopf algebras

Genesis of the results

- In August 2005 at the **XVIº Coloquio Latinoamericano de Álgebra** in Colonia del Sacramento, Uruguay, I reported results on the classification of Hopf Galois extensions (some joint with Hans-Jürgen Schneider)

In topology there are universal principal fiber bundles. In the context of noncommutative geometry I raised the question of the existence and the construction of **universal** Hopf Galois extensions.

- Eli Aljadeff suggested to use an appropriate **theory of polynomial identities** in order to answer this question. During his three-month stay in Strasbourg in Fall 2005, we made his idea work.

We obtained answers for a special class of Hopf Galois extensions, subsequently called **twisted algebras**, which are obtained from a **Hopf algebra H** and a **cocycle α**

What we actually do

To each pair (H, α) , where H is a Hopf algebra and α is a cocycle, and to the corresponding twisted algebra A we associate the following algebras:

- ▶ A commutative algebra \mathcal{B}_H^α constructed from what we call the **generic cocycle** cohomologous to the cocycle α .

The algebra \mathcal{B}_H^α is a natural **parameter space** for a class of deformations of A . The affine variety $\text{Spec}(\mathcal{B}_H^\alpha)$ is a natural geometrical object associated to the “noncommutative” pair (H, α)

- ▶ A noncommutative **Hopf Galois extension** \mathcal{A}_H^α over the commutative algebra \mathcal{B}_H^α .

The algebra \mathcal{A}_H^α is a flat deformation of A over the “parameter space” $\text{Spec}(\mathcal{B}_H^\alpha)$

- ▶ An algebra \mathcal{U}_H^α built out of the **polynomial identities** satisfied by the twisted algebra A

We establish a connection between the noncommutative algebras \mathcal{A}_H^α and \mathcal{U}_H^α

What we actually do

To each pair (H, α) , where H is a Hopf algebra and α is a cocycle, and to the corresponding twisted algebra A we associate the following algebras:

- ▶ A commutative algebra \mathcal{B}_H^α constructed from what we call the **generic cocycle** cohomologous to the cocycle α .
The algebra \mathcal{B}_H^α is a natural **parameter space** for a class of deformations of A . The affine variety $\text{Spec}(\mathcal{B}_H^\alpha)$ is a natural geometrical object associated to the “noncommutative” pair (H, α)
- ▶ A noncommutative **Hopf Galois extension** \mathcal{A}_H^α over the commutative algebra \mathcal{B}_H^α .
The algebra \mathcal{A}_H^α is a flat deformation of A over the “parameter space” $\text{Spec}(\mathcal{B}_H^\alpha)$
- ▶ An algebra \mathcal{U}_H^α built out of the **polynomial identities** satisfied by the twisted algebra A

We establish a connection between the noncommutative algebras \mathcal{A}_H^α and \mathcal{U}_H^α

What we actually do

To each pair (H, α) , where H is a Hopf algebra and α is a cocycle, and to the corresponding twisted algebra A we associate the following algebras:

- ▶ A commutative algebra \mathcal{B}_H^α constructed from what we call the **generic cocycle** cohomologous to the cocycle α .
The algebra \mathcal{B}_H^α is a natural **parameter space** for a class of deformations of A . The affine variety $\text{Spec}(\mathcal{B}_H^\alpha)$ is a natural geometrical object associated to the “noncommutative” pair (H, α)
- ▶ A noncommutative **Hopf Galois extension** \mathcal{A}_H^α over the commutative algebra \mathcal{B}_H^α .
The algebra \mathcal{A}_H^α is a flat deformation of A over the “parameter space” $\text{Spec}(\mathcal{B}_H^\alpha)$
- ▶ An algebra \mathcal{U}_H^α built out of the **polynomial identities** satisfied by the twisted algebra A

We establish a connection between the noncommutative algebras \mathcal{A}_H^α and \mathcal{U}_H^α

Plan

- **Part One:** Hopf Galois extensions, twisted algebras, the classification problem
- **Part Two:** The generic cocycle and the “parameter space”
- **Part Three:** An example: the Sweedler algebra
- **Part Four:** The generic Galois extension
- **Part Five:** Polynomial identities and the universal comodule algebra

Part One

HOPF GALOIS EXTENSIONS

Basic dictionary of noncommutative geometry

- **Replacing spaces by associative algebras**

space X \longleftrightarrow algebra $A(X)$ (= functions on X)

map $f : X \rightarrow Y$ \longleftrightarrow algebra map $f^* : A(Y) \rightarrow A(X)$

product $f : X \times Y$ \longleftrightarrow tensor product $A(X) \otimes A(Y)$

point $X = \{*\}$ \longleftrightarrow ground field $A(*) = k$

Groups in noncommutative geometry

- **Groups.** Let G be a group and $H = A(G)$

$$\begin{array}{ccc} \text{product } G \times G \rightarrow G & \longleftrightarrow & \text{coproduct } H \rightarrow H \otimes H \\ \text{unit } \{*\} \rightarrow G & \longleftrightarrow & \text{counit } H \rightarrow k \\ \text{inverse } G \rightarrow G & \longleftrightarrow & \text{antipode } S : H \rightarrow H \end{array}$$

So H is a **Hopf algebra**

- **Group actions.** We also need the concept of an H -comodule algebra

$$\begin{array}{ccc} \text{action } X \times G \rightarrow X & \longleftrightarrow & \text{coaction } \delta : A \rightarrow A \otimes H \\ \text{orbit set } Y = X/G & \longleftrightarrow & \text{coinvariants } B = \{a \in A \mid \delta(a) = a \otimes 1_H\} \end{array}$$

Definition of a Hopf algebra

Fix a field k . A **Hopf algebra** is an associative unital k -algebra H together with

- (*Coproduct*) an algebra morphism $\Delta : H \rightarrow H \otimes H$
- (*Co-unit*) an algebra morphism $\varepsilon : H \rightarrow k$
- (*Antipode*) an algebra antimorphism $S : H \rightarrow H$ such that

$$(\Delta \otimes \text{id}_H) \circ \Delta = (\text{id}_H \otimes \Delta) \circ \Delta,$$

$$\sum_{(x)} x_{(1)} \varepsilon(x_{(2)}) = \sum_{(x)} \varepsilon(x_{(1)}) x_{(2)} = x,$$

$$\sum_{(x)} x_{(1)} S(x_{(2)}) = \sum_{(x)} S(x_{(1)}) x_{(2)} = \varepsilon(x) 1,$$

where we use the Sweedler notation

$$\Delta(x) = \sum_{(x)} x_{(1)} \otimes x_{(2)}$$

Examples of Hopf algebras

Example 1: The algebra $H = k^G$ of k -valued functions on a finite group G is a Hopf algebra with

$$\Delta(f)(g, h) = f(gh), \quad \varepsilon(f) = f(e), \quad S(f)(g) = f(g^{-1})$$

($f \in H$, $g, h \in G$; e is the unit of the group).

Example 2: The algebra $H = k[G]$ of a group G is a Hopf algebra with

$$\Delta(g) = g \otimes g, \quad \varepsilon(g) = 1, \quad S(g) = g^{-1}$$

($g \in G$).

Comodule algebras

Let H be a Hopf algebra

- An H -comodule algebra is an associative unital algebra A together with an algebra morphism

$$\delta : A \rightarrow A \otimes H$$

called the **coaction** and satisfying

$$(\delta \otimes \text{id}_H) \circ \delta = (\text{id}_H \otimes \Delta) \circ \delta \quad \text{and} \quad (\text{id}_H \otimes \varepsilon) \circ \delta = \text{id}_H$$

- **Coinvariants:**

$$A^H = \{a \in A \mid \delta(a) = a \otimes 1_H\}$$

is a subalgebra and a subcomodule of A

Hopf Galois extensions

- The noncommutative analogue of a **principal fiber bundle**, or a **G -torsor**, is a *Hopf Galois extension*
- Let H be a Hopf algebra and B an associative algebra

Definition. An H -**Galois extension** A of B is an H -comodule algebra A such that

(a) B is the subalgebra of coinvariants of A , i.e., $B = A^H$

(b) the **Galois condition** is satisfied: the map $a \otimes b \mapsto (a \otimes 1_H) \delta(b)$ induces a bijection

$$A \otimes_B A \rightarrow A \otimes H$$

(c) as a left B -module, A is faithfully flat

Central Hopf Galois extensions

- We consider only **central** Hopf Galois extensions, i.e., H -Galois extensions A of B such that B is central in A
- *Functoriality property:* If A is a central H -Galois extension of B and $f : B \rightarrow B'$ is a morphism of **commutative** algebras, then

$$f_* A = B' \otimes_B A$$

is a central H -Galois extension of B'

Twisted algebras

- Let H be a Hopf algebra and $\alpha : H \times H \rightarrow k$ a bilinear form
- Let ${}^\alpha H$ be a vector space isomorphic to H via a linear isomorphism $x \in H \mapsto u_x \in {}^\alpha H$. Equip ${}^\alpha H$ with the **product**

$$u_x u_y = \sum_{(x),(y)} \alpha(x_{(1)}, y_{(1)}) u_{x_{(2)} y_{(2)}} \quad (1)$$

This product is **associative** if α is a **two-cocycle**: for all $x, y \in H$,

$$\sum_{(x),(y)} \alpha(x_{(1)}, y_{(1)}) \alpha(x_{(2)} y_{(2)}, z) = \sum_{(y),(z)} \alpha(y_{(1)}, z_{(1)}) \alpha(x, y_{(2)} z_{(2)}) \quad (2)$$

- The algebra ${}^\alpha H$ has u_1 as **unit** if α is **normalized**: for all $x \in H$,

$$\alpha(1, x) = \alpha(x, 1) = \varepsilon(x)$$

Invertible cocycles

We shall consider only **invertible** two-cocycles

- A two-cocycle $\alpha : H \times H \rightarrow k$ is **invertible** if there is a bilinear form $\alpha^{-1} : H \times H \rightarrow k$ such that for all $x, y \in H$,

$$\sum_{(x),(y)} \alpha(x_{(1)}, y_{(1)}) \alpha^{-1}(x_{(2)}, y_{(2)}) = \varepsilon(x) \varepsilon(y)$$

and

$$\sum_{(x),(y)} \alpha^{-1}(x_{(1)}, y_{(1)}) \alpha(x_{(2)}, y_{(2)}) = \varepsilon(x) \varepsilon(y)$$

- If G is a **group**, $H = k[G]$, and α is an **invertible two-cocycle** of H , then
 - (a) the restriction of α to G is a **group-cocycle** with values in $k^\times = k - \{0\}$
 - (b) the algebra ${}^\alpha H$ is a so-called **strongly G -graded algebra** and the product is given for all $g, h \in G$ by

$$u_g u_h = \alpha(g, h) u_{gh}$$

Twisted algebras are Galois extensions

- For any two-cocycle α , the twisted algebra ${}^\alpha H$ is an H -comodule algebra with **coaction**

$$\begin{aligned}\delta : {}^\alpha H &\rightarrow {}^\alpha H \otimes H \\ \delta(u_x) &= \sum_{(x)} u_{x(1)} \otimes x_{(2)}\end{aligned}$$

- The **coinvariants** of ${}^\alpha H$ are **trivial**:

$$({}^\alpha H)^H = k \mathbf{1}$$

- The **Galois condition** is satisfied: for each cocycle α , the twisted algebra ${}^\alpha H$ is an H -Galois extension of k

The classification problem

- **Problem:** *Classify all H -Galois extensions of B up to isomorphism*

Recall: Two H -Galois extensions A, A' of B are **isomorphic** if there is an algebra isomorphism $f : A \rightarrow A'$ preserving the coactions, i.e.,

$$(f \otimes \text{id}_H) \circ \delta = \delta' \circ f$$

- **Reformulation:** Determine the set $\text{CGal}_H(B)$ of isomorphism classes of central H -Galois extensions of B

This is a **difficult** problem in general

Universal classifying algebra

Let H be a Hopf algebra

- **Definition.** A central H -Galois extension \mathcal{A}_H of \mathcal{B}_H is called **(uni)versal** if for any commutative algebra B , the map

$$\begin{aligned}\text{Alg}(\mathcal{B}_H, B) &\longrightarrow \text{CGal}_H(B) \\ f &\longmapsto f_*\mathcal{A}_H = B \otimes_{\mathcal{B}_H} \mathcal{A}_H\end{aligned}$$

is surjective (bijective)

- Universal central H -Galois extensions are **unique** up to isomorphism, but may not exist
- We shall construct **versal** Galois extensions for **twisted algebras**

Doi's classification of twisted algebras

- **Lemma (Doi).** Two twisted algebras ${}^\alpha H$ and ${}^\beta H$ are isomorphic as H -comodule algebras if and only if α and β are **cohomologous** in the following sense
- **Definition.** Two-cocycles α and β of H are **cohomologous**, $\alpha \sim \beta$, if there is an invertible linear form $\lambda : H \rightarrow k$ with inverse $\lambda^{-1} : H \rightarrow k$ such that for all $x, y \in H$,

$$\beta(x, y) = \sum_{(x), (y)} \lambda(x_{(1)}) \lambda(y_{(1)}) \alpha(x_{(2)}, y_{(2)}) \lambda^{-1}(x_{(3)} y_{(3)})$$

- A linear form $\lambda : H \rightarrow k$ is **invertible** with **inverse** $\lambda^{-1} : H \rightarrow k$ if

$$\sum_{(x)} \lambda(x_{(1)}) \lambda^{-1}(x_{(2)}) = \sum_{(x)} \lambda^{-1}(x_{(1)}) \lambda(x_{(2)}) = \varepsilon(x) 1$$

for all $x \in H$ (An invertible linear form has a **unique** inverse)

Classifying twisted algebras

- By Doi's lemma, there is a **bijection**

$$\begin{aligned}\{\text{twisted algebras}\}/(\text{comodule algebra isomorphisms}) \\ \cong \{\text{two-cocycles of } H\}/\sim\end{aligned}$$

- In general, the set $\{\text{two-cocycles of } H\}/\sim$ is **not a group**
- Only in special cases is $\{\text{two-cocycles of } H\}/\sim$ a group, e.g., if H is **cocommutative**:

$$\sum_{(x)} x_{(1)} \otimes x_{(2)} = \sum_{(x)} x_{(2)} \otimes x_{(1)}$$

The **group Hopf algebra** $k[G]$ is cocommutative and

$$\{\text{two-cocycles of } k[G]\}/\sim \cong H^2(G, k^\times)$$

Part Two

THE GENERIC COCYCLE

(All results in the sequel are joint with Eli Aljadeff)

Towards a generic cocycle

- **Objective.** Let H be a Hopf algebra and α a normalized invertible two-cocycle. We want to define a **generic two-cocycle** on H that is **cohomologous** to α .
- To this end, we “emulate” the equations

$$\beta(x, y) = \sum_{(x),(y)} \lambda(x_{(1)}) \lambda(y_{(1)}) \alpha(x_{(2)}, y_{(2)}) \lambda^{-1}(x_{(3)} y_{(3)})$$

and

$$\sum_{(x)} \lambda(x_{(1)}) \lambda^{-1}(x_{(2)}) = \sum_{(x)} \lambda^{-1}(x_{(1)}) \lambda(x_{(2)}) = \varepsilon(x) 1$$

(expressing that α, β are cohomologous)

by replacing the scalars $\lambda(x), \lambda^{-1}(x)$ by commuting **symbols** t_x, t_x^{-1}

The symbols t_x

Let t_H be a copy of H with linear isomorphism $x \in H \mapsto t_x \in t_H$

Consider the **symmetric algebra**

$$\text{Sym}(t_H) = \bigoplus_{r \geq 0} \text{Sym}'(t_H)$$

on the vector space t_H . If $\{x_i\}_{i \in I}$ is a basis of H , then

$$\text{Sym}(t_H) \cong k[t_{x_i} \mid i \in I]$$

is the **polynomial algebra** in the (commuting) variables t_{x_i}

The symbols t_x^{-1}

- We also need variables t_x^{-1} to deal with the equations

$$\sum_{(x)} \lambda(x_{(1)}) \lambda^{-1}(x_{(2)}) = \sum_{(x)} \lambda^{-1}(x_{(1)}) \lambda(x_{(2)}) = \varepsilon(x) 1$$

- Let $\text{Frac Sym}(t_H)$ be the **field of fractions** of $\text{Sym}(t_H)$

Lemma. *There is a unique linear map $x \mapsto t_x^{-1}$ from H to $\text{Frac Sym}(t_H)$ such that for all $x \in H$,*

$$\sum_{(x)} t_{x_{(1)}} t_{x_{(2)}}^{-1} = \sum_{(x)} t_{x_{(1)}}^{-1} t_{x_{(2)}} = \varepsilon(x) 1$$

Computing t_x^{-1}

- If x is **grouplike**, i.e., $\Delta(x) = x \otimes x$, then $\varepsilon(x) = 1$ and

$$t_x t_x^{-1} = 1, \quad \text{hence} \quad t_x^{-1} = \frac{1}{t_x}$$

- If x is **skew-primitive**, i.e., $\Delta(x) = g \otimes x + x \otimes h$ for some grouplike elements g, h , then $\varepsilon(x) = 0$ and

$$t_g t_x^{-1} + t_x t_h^{-1} = 0, \quad \text{hence} \quad t_x^{-1} = -\frac{t_g}{t_g t_h}$$

The generic two-cocycle cohomologous to α

- Let H be a Hopf algebra and $\alpha : H \times H \rightarrow k$ a normalized invertible two-cocycle

Define the **generic two-cocycle** $\sigma : H \times H \rightarrow \text{Frac Sym}(t_H)$ by

$$\sigma(x, y) = \sum_{(x), (y)} t_{x_{(1)}} t_{y_{(1)}} \alpha(x_{(2)}, y_{(2)}) t_{x_{(3)} y_{(3)}}^{-1}$$

- The cocycle σ is **cohomologous** to α over the fraction field $\text{Frac Sym}(t_H)$
- In case $H = k[G]$ is a **group algebra** and $g, h \in G$,

$$\sigma(g, h) = \alpha(g, h) \frac{t_g t_h}{t_{gh}}$$

The generic base algebra

- Let H be a Hopf algebra and $\alpha : H \times H \rightarrow k$ a normalized invertible two-cocycle
- **Definition.** Let \mathcal{B}_H^α be the **subalgebra** of $\text{Frac Sym}(t_H)$ **generated by the values of the generic two-cocycle** σ and of its inverse σ^{-1}

We call \mathcal{B}_H^α the **generic base algebra**

- **Immediate properties:**

- \mathcal{B}_H^α is a **domain**
- Transcendence degree** of $\text{Frac } \mathcal{B}_H^\alpha \leq \dim H$
- \mathcal{B}_H^α is **finitely generated** if $\dim H < \infty$

Computation of \mathcal{B}_H^α - the infinite cyclic case

- Consider the Hopf algebra of the **group of integers** $H = k[x, x^{-1}]$ with

$$\Delta(x) = x \otimes x, \quad \varepsilon(x) = 1, \quad S(x) = x^{-1}$$

together with the **trivial** two-cocycle: $\alpha(x^m, x^n) = 1 \quad (m, n \in \mathbb{Z})$

- Here $\text{Sym}(t_H) = k[t_m \mid m \in \mathbb{Z}]$. For the **generic cocycle**,

$$\sigma(x^m, x^n) = \frac{t_m t_n}{t_{m+n}} = \frac{y_m y_n}{y_{m+n}} \quad (m, n \in \mathbb{Z})$$

where $y_m = t_m/t_1^m$ (note that $y_1 = 1$ and $y_0 = t_0$)

- The algebra \mathcal{B}_H^α is the **Laurent polynomial algebra**

$$\mathcal{B}_H^\alpha = k[y_m^{\pm 1} \mid m \in \mathbb{Z} - \{1\}]$$

inside the Laurent polynomial algebra $k[t_m^{\pm 1} \mid m \in \mathbb{Z}]$

- Is $k[t_m^{\pm 1} \mid m \in \mathbb{Z}]$ much **bigger** than \mathcal{B}_H^α ? *Answer:*

$$k[t_m^{\pm 1} \mid m \in \mathbb{Z}] = \mathcal{B}_H^\alpha[t_1^{\pm 1}]$$

Computation of \mathcal{B}_H^α - the finite cyclic case

- For the Hopf algebra $H = k[x]/(x^N - 1)$ of the **cyclic group** of order $N \geq 2$ with **trivial** two-cocycle,

$$\text{Sym}(t_H) = k[t_0, t_1, \dots, t_{N-1}]$$

and the algebra \mathcal{B}_H^α is a **Laurent polynomial algebra** on N variables:

$$\mathcal{B}_H^\alpha = k[y_0^{\pm 1}, y_2^{\pm 1}, \dots, y_N^{\pm 1}] \subset k[t_0^{\pm 1}, t_1^{\pm 1}, \dots, t_{N-1}^{\pm 1}]$$

where $y_N = t_0/t_1^N$

- Here $k[t_0^{\pm 1}, t_1^{\pm 1}, \dots, t_{N-1}^{\pm 1}]$ is an **integral** extension of \mathcal{B}_H^α :

$$k[t_0^{\pm 1}, t_1^{\pm 1}, \dots, t_{N-1}^{\pm 1}] = \mathcal{B}_H^\alpha[t_1]/(t_1^N - y_0/y_N)$$

Part Three

THE SWEEDLER ALGEBRA

The Sweedler algebra: definition

- The Sweedler algebra is the smallest noncommutative noncocommutative Hopf algebra

As an algebra,

$$H = k\langle x, y \mid x^2 = 1, \ xy + yx = 0, \ y^2 = 0 \rangle$$

Its radical is the ideal (y) and $H/(y) \cong k[\mathbb{Z}/2]$

- Hopf algebra structure:

Coproduct: $\Delta(x) = x \otimes x, \ \Delta(y) = 1 \otimes y + y \otimes x$

Counit: $\varepsilon(x) = 1, \ \varepsilon(y) = 0$

Antipode: $S(x) = x, \ S(y) = xy$

- The algebra H is four-dimensional with basis $\{1, x, y, z\}$, where $z = xy$

The Sweedler algebra: the variables t_x and t_x^{-1}

We need the variables t_1, t_x, t_y, t_z and $t_1^{-1}, t_x^{-1}, t_y^{-1}, t_z^{-1}$.

They satisfy the equations

$$t_1 t_1^{-1} = 1, \quad t_x t_x^{-1} = 1,$$

$$t_1 t_y^{-1} + t_y t_x^{-1} = 0, \quad t_x t_z^{-1} + t_z t_1^{-1} = 0$$

Hence,

$$t_1^{-1} = \frac{1}{t_1}, \quad t_x^{-1} = \frac{1}{t_x}, \quad t_y^{-1} = -\frac{t_y}{t_1 t_x}, \quad t_z^{-1} = -\frac{t_z}{t_1 t_x}$$

Twisted Sweedler algebras

- **(Masuoka)** For any normalized invertible two-cocycle α , the **twisted algebra** ${}^\alpha H$ is up to isomorphism of the form

$${}^\alpha H = k\langle u_x, u_y \mid u_x^2 = a, \quad u_x u_y + u_y u_x = b, \quad u_y^2 = c \rangle$$

for some scalars a, b, c with $a \neq 0$ (u_1 is the unit of ${}^\alpha H$)

- *Recall:* The **generic two cocycle** σ is given by

$$\sigma(x, y) = \sum_{(x), (y)} t_{x_{(1)}} t_{y_{(1)}} \alpha(x_{(2)}, y_{(2)}) t_{x_{(3)} y_{(3)}}^{-1}$$

Since $\dim H = 4$, we have to compute the 32 values of σ and σ^{-1} on the basis

Values of the generic cocycle

Values of σ :

$$\sigma(1, 1) = t_1,$$

$$\sigma(x, x) = \frac{a t_x^2}{t_1},$$

$$\sigma(y, y) = \frac{a t_y^2 + b t_1 t_y + c t_1^2}{t_1},$$

$$\sigma(x, y) = \frac{a t_x t_y - t_1 t_z}{t_1},$$

$$\sigma(y, x) = \frac{b t_1 t_x + a t_x t_y + t_1 t_z}{t_1},$$

$$\sigma(z, z) = -\frac{t_z^2 + b t_x t_z + a c t_x^2}{t_1}$$

These rational fractions together with the values of σ^{-1} generate the algebra \mathcal{B}_H^α

Generators of \mathcal{B}_H^α in the Sweedler case

If we set

$$E = t_1, \quad R = a t_x^2, \quad S = a t_y^2 + b t_1 t_y + c t_1^2,$$

$$T = t_x (2a t_y + b t_1), \quad U = a t_x^2 (2 t_z + b t_x),$$

then

$$\sigma(1, 1) = E, \quad \sigma(x, y) = \frac{RT - EU}{2ER},$$

$$\sigma(x, x) = \frac{R}{E}, \quad \sigma(y, x) = \frac{RT + EU}{2ER},$$

$$\sigma(y, y) = \frac{S}{E}, \quad \sigma(z, z) = \frac{a U^2 - (b^2 - 4ac) R^3}{4a ER^2}$$

Consequence. The elements $E, E^{-1}, R, R^{-1}, S, T, U$ belong to \mathcal{B}_H^α and generate it as an algebra. Moreover, E, R, S, U are algebraically independent.

The generic base algebra in the Sweedler case

Theorem. *Presentation of \mathcal{B}_H^α by generators and relations:*

$$\mathcal{B}_H^\alpha \cong k[E^{\pm 1}, R^{\pm 1}, S, T, U]/(P_{a,b,c}),$$

where

$$P_{a,b,c} = T^2 - 4RS - \frac{b^2 - 4ac}{a} E^2 R$$

Part Four

THE GENERIC GALOIS EXTENSION

The generic Galois extension

- ▶ Since the generic cocycle takes values in \mathcal{B}_H^α , we can consider the twisted algebra

$$\mathcal{A}_H^\alpha = \mathcal{B}_H^\alpha \otimes {}^\sigma H$$

As a vector space, $\mathcal{A}_H^\alpha = \mathcal{B}_H^\alpha \otimes H$; it is equipped with the product

$$(a \otimes u_x)(b \otimes u_y) = \sum_{(x),(y)} ab \sigma(x_{(1)}, y_{(1)}) \otimes u_{x_{(2)} y_{(2)}}$$

$(a, b \in \mathcal{B}_H^\alpha, x, y \in H)$

The twisted algebra \mathcal{A}_H^α is called the generic Galois extension

- ▶ **Proposition.** (a) The map $\delta = \text{id}_{\mathcal{B}_H^\alpha} \otimes \Delta$ is a coaction, turning \mathcal{A}_H^α into an H -comodule algebra whose subalgebra of coinvariants is \mathcal{B}_H^α :

$$\mathcal{B}_H^\alpha = \{a \in \mathcal{A}_H^\alpha \mid \delta(a) = a \otimes 1_H\}$$

(b) \mathcal{B}_H^α is a central subalgebra of \mathcal{A}_H^α

Thus \mathcal{A}_H^α is a central H -Galois extension of \mathcal{B}_H^α

The generic Galois extension

- ▶ Since the generic cocycle takes values in \mathcal{B}_H^α , we can consider the twisted algebra

$$\mathcal{A}_H^\alpha = \mathcal{B}_H^\alpha \otimes {}^\sigma H$$

As a vector space, $\mathcal{A}_H^\alpha = \mathcal{B}_H^\alpha \otimes H$; it is equipped with the product

$$(a \otimes u_x)(b \otimes u_y) = \sum_{(x),(y)} a b \sigma(x_{(1)}, y_{(1)}) \otimes u_{x_{(2)} y_{(2)}}$$

$(a, b \in \mathcal{B}_H^\alpha, x, y \in H)$

The twisted algebra \mathcal{A}_H^α is called the generic Galois extension

- ▶ **Proposition.** (a) The map $\delta = \text{id}_{\mathcal{B}_H^\alpha} \otimes \Delta$ is a coaction, turning \mathcal{A}_H^α into an H -comodule algebra whose subalgebra of coinvariants is \mathcal{B}_H^α :

$$\mathcal{B}_H^\alpha = \{a \in \mathcal{A}_H^\alpha \mid \delta(a) = a \otimes 1_H\}$$

(b) \mathcal{B}_H^α is a central subalgebra of \mathcal{A}_H^α

Thus \mathcal{A}_H^α is a central H -Galois extension of \mathcal{B}_H^α

A rigidity property

- ▶ \mathcal{A}_H^α is a **flat deformation** of ${}^\alpha H$ over the commutative algebra \mathcal{B}_H^α :

Proposition. *There is a comodule algebra isomorphism*

$$\mathcal{A}_H^\alpha / \mathfrak{m}_0 \mathcal{A}_H^\alpha \cong {}^\alpha H$$

for some maximal ideal \mathfrak{m}_0 of \mathcal{B}_H^α

The ideal \mathfrak{m}_0 is the kernel of an algebra morphism $\chi_0 : \mathcal{B}_H^\alpha \rightarrow k$ sending each element $\sigma(x, y)$ to $\alpha(x, y)$

- ▶ If ${}^\alpha H$ is (semi)simple, then \mathcal{A}_H^α is **generically** (semi)simple. More precisely

Theorem. *Assume that $\text{char}(k) = 0$ and $\dim(H) < \infty$.*

*If ${}^\alpha H$ is **(semi)simple**, then so is*

$$\text{Frac } \mathcal{B}_H^\alpha \otimes_{\mathcal{B}_H^\alpha} \mathcal{A}_H^\alpha = \text{Frac } \mathcal{B}_H^\alpha \otimes {}^\sigma H$$

A rigidity property

- \mathcal{A}_H^α is a **flat deformation** of ${}^\alpha H$ over the commutative algebra \mathcal{B}_H^α :

Proposition. *There is a comodule algebra isomorphism*

$$\mathcal{A}_H^\alpha / \mathfrak{m}_0 \mathcal{A}_H^\alpha \cong {}^\alpha H$$

for some maximal ideal \mathfrak{m}_0 of \mathcal{B}_H^α

The ideal \mathfrak{m}_0 is the kernel of an algebra morphism $\chi_0 : \mathcal{B}_H^\alpha \rightarrow k$ sending each element $\sigma(x, y)$ to $\alpha(x, y)$

- If ${}^\alpha H$ is (semi)simple, then \mathcal{A}_H^α is **generically** (semi)simple. More precisely

Theorem. *Assume that $\text{char}(k) = 0$ and $\dim(H) < \infty$.*

*If ${}^\alpha H$ is **(semi)simple**, then so is*

$$\text{Frac } \mathcal{B}_H^\alpha \otimes_{\mathcal{B}_H^\alpha} \mathcal{A}_H^\alpha = \text{Frac } \mathcal{B}_H^\alpha \otimes {}^\sigma H$$

Forms

- Let $\beta : H \times H \rightarrow K \supset k$ be a normalized invertible two-cocycle. The twisted algebra $K \otimes^{\beta} H$ is a **K -form** of ${}^{\alpha}H$ if there is a field $L \supset K$ and an L -linear isomorphism of H -comodule algebras

$$L \otimes_K (K \otimes^{\beta} H) \cong L \otimes_k {}^{\alpha}H.$$

- Theorem.** If $K \otimes^{\beta} H$ is a K -form of ${}^{\alpha}H$, then there is an algebra morphism $\chi : \mathcal{B}_H^{\alpha} \rightarrow K$ such that

$$K_{\chi} \otimes_{\mathcal{B}_H^{\alpha}} \mathcal{A}_H^{\alpha} \cong {}^{\beta}H$$

In other words, any form of ${}^{\alpha}H$ is obtained from the generic Galois extension \mathcal{A}_H^{α} by a **central specialization**

There is a converse to the previous theorem; it requires an **additional condition**

Azumaya

- ▶ **Theorem** *If the algebra $\text{Frac Sym}(t_H)$ is integral over the subalgebra \mathcal{B}_H^α , then for any algebra morphism $\chi : \mathcal{B}_H^\alpha \rightarrow K \supset k$, the algebra $K_\chi \otimes_{\mathcal{B}_H^\alpha} \mathcal{A}_H^\alpha$ is a K -form of ${}^\alpha H$*
- ▶ **Theorem.** *Under the previous integrality condition, if the algebra ${}^\alpha H$ is simple, then the generic extension \mathcal{A}_H^α is an Azumaya algebra with center \mathcal{B}_H^α*

An algebra A is **Azumaya** if A/\mathfrak{m} is simple for any maximal ideal \mathfrak{m} of its center. E.g. $A = M_n(R)$, where R is a commutative ring

Azumaya

- ▶ **Theorem** *If the algebra $\text{Frac Sym}(t_H)$ is integral over the subalgebra \mathcal{B}_H^α , then for any algebra morphism $\chi : \mathcal{B}_H^\alpha \rightarrow K \supset k$, the algebra $K_\chi \otimes_{\mathcal{B}_H^\alpha} \mathcal{A}_H^\alpha$ is a K -form of ${}^\alpha H$*
- ▶ **Theorem.** *Under the previous integrality condition, if the algebra ${}^\alpha H$ is simple, then the generic extension \mathcal{A}_H^α is an Azumaya algebra with center \mathcal{B}_H^α*

An algebra A is **Azumaya** if A/\mathfrak{m} is simple for any maximal ideal \mathfrak{m} of its center. E.g. $A = M_n(R)$, where R is a commutative ring

Versal deformation space

- If $\text{Frac Sym}(t_H)$ is integral over \mathcal{B}_H^α , then the map

$$\begin{array}{ccc} \text{Alg}(\mathcal{B}_H^\alpha, K) & \longrightarrow & K\text{-Forms}({}^\alpha H) \\ \chi & \mapsto & K_\chi \otimes_{\mathcal{B}_H^\alpha} \mathcal{A}_H^\alpha \end{array}$$

is a **surjection** from the set of algebra morphisms $\mathcal{B}_H^\alpha \rightarrow K$ to the set of isomorphism classes of K -forms of ${}^\alpha H$

- Thus the set $\text{Alg}(\mathcal{B}_H^\alpha, K)$ **parametrizes** the K -forms of ${}^\alpha H$.

The extension $\mathcal{B}_H^\alpha \subset \mathcal{A}_H^\alpha$ is a **versal deformation space** for the forms of ${}^\alpha H$

- *Remark.* To determine the set $\text{Alg}(\mathcal{B}_H^\alpha, K)$, it is important to find a **presentation by generators and relations** of \mathcal{B}_H^α

The integrality condition

- **Question.** Under which condition on (H, α) is the algebra $\text{Frac Sym}(t_H)$ **integral** over the subalgebra \mathcal{B}_H^α ?
- **Proposition.** If H is a finite-dimensional Hopf algebra that is **generated by grouplike and skew-primitive elements**, and α is any two-cocycle, then $\text{Frac Sym}(t_H)$ is integral over the subalgebra \mathcal{B}_H^α

Proof in the case H is the algebra of a finite group G . It suffices to show that each t_g ($g \in G$) is integral over \mathcal{B}_H^α . Since

$$\sigma(g, h) = \alpha(g, h) \frac{t_g t_h}{t_{gh}} \in \mathcal{B}_H^\alpha,$$

we have $t_g t_h = b t_{gh}$ for some $b \in \mathcal{B}_H^\alpha$. Consequently for all $n \geq 2$,

$$t_g^n = b' t_{g^n}$$

for some $b' \in \mathcal{B}_H^\alpha$. If n is the order of g , then since $\sigma(1, 1) = t_1$,

$$t_g^n = b' t_{g^n} = b' t_1 = b' \sigma(1, 1),$$

which shows that t_g^n belongs to \mathcal{B}_H^α . QED

The generic Galois extension in the Sweedler case

Theorem The generic Galois extension \mathcal{A}_H^α is given by

$$\mathcal{A}_H^\alpha \cong \mathcal{B}_H^\alpha \langle X, Y \rangle / (X^2 - R, XY + YX - T, Y^2 - S)$$

Compare with

$${}^\alpha H = k\langle u_x, u_y \rangle / (u_x^2 - a, u_x u_y + u_y u_x - b, u_y^2 - c)$$

Recall:

$$\mathcal{B}_H^\alpha \cong k[E^{\pm 1}, R^{\pm 1}, S, T, U] / (P_{a,b,c}),$$

where

$$P_{a,b,c} = T^2 - 4RS - \frac{b^2 - 4ac}{a} E^2 R$$

Computation of \mathcal{A}_H^α for a group algebra

(By D. Haile and M. Natapov)

- ▶ Let $G = \langle g, h \mid g^9 = h^9 = 1, gh = h^4g \rangle = \mathbb{Z}/9 \rtimes \mathbb{Z}/9$

- ▶ Let $H = k[G]$ and set $X = X_g$ and $Y = X_h$. Then

$$\mathcal{B}_H^\alpha \cong k[(X^9)^{\pm 1}, (Y^9)^{\pm 1}, Z]/(Z^3 - \omega(X^9)^3(Y^9)^2),$$

where $Z = XYX^8Y^5$ and ω is a primitive third root of 1

- ▶ The generic Galois extension: $\mathcal{A}_H^\alpha = \mathcal{B}_H^\alpha \langle X, Y \rangle / I$, where I is the two-sided ideal generated by

$$X^3Y - \omega YX^3, \quad Y^3X - \omega^2 XY^3,$$

$$XYXY - \omega^2 Y^2X^2, \quad YXYX - X^2Y^2, \quad XY^2X - \omega^2 YX^2Y$$

Computation of \mathcal{A}_H^α for a group algebra

(By D. Haile and M. Natapov)

- ▶ Let $G = \langle g, h \mid g^9 = h^9 = 1, gh = h^4g \rangle = \mathbb{Z}/9 \rtimes \mathbb{Z}/9$
- ▶ Let $H = k[G]$ and set $X = X_g$ and $Y = X_h$. Then

$$\mathcal{B}_H^\alpha \cong k[(X^9)^{\pm 1}, (Y^9)^{\pm 1}, Z]/(Z^3 - \omega(X^9)^3(Y^9)^2),$$

where $Z = XYX^8Y^5$ and ω is a primitive third root of 1

- ▶ The generic Galois extension: $\mathcal{A}_H^\alpha = \mathcal{B}_H^\alpha \langle X, Y \rangle / I$, where I is the two-sided ideal generated by

$$X^3Y - \omega YX^3, \quad Y^3X - \omega^2 XY^3,$$

$$XYXY - \omega^2 Y^2X^2, \quad YXYX - X^2Y^2, \quad XY^2X - \omega^2 YX^2Y$$

Computation of \mathcal{A}_H^α for a group algebra

(By D. Haile and M. Natapov)

- ▶ Let $G = \langle g, h \mid g^9 = h^9 = 1, gh = h^4g \rangle = \mathbb{Z}/9 \rtimes \mathbb{Z}/9$
- ▶ Let $H = k[G]$ and set $X = X_g$ and $Y = X_h$. Then

$$\mathcal{B}_H^\alpha \cong k[(X^9)^{\pm 1}, (Y^9)^{\pm 1}, Z]/(Z^3 - \omega(X^9)^3(Y^9)^2),$$

where $Z = XYX^8Y^5$ and ω is a primitive third root of 1

- ▶ The generic Galois extension: $\mathcal{A}_H^\alpha = \mathcal{B}_H^\alpha \langle X, Y \rangle / I$, where I is the two-sided ideal generated by

$$X^3Y - \omega YX^3, \quad Y^3X - \omega^2 XY^3,$$

$$XYXY - \omega^2 Y^2X^2, \quad YXYX - X^2Y^2, \quad XY^2X - \omega^2 YX^2Y$$

Part Five

POLYNOMIAL IDENTITIES

How to find generators for \mathcal{B}_H^α

- In the Sweedler case, **how did we find** the generators

$$E = t_1, \quad R = a t_x^2, \quad S = a t_y^2 + b t_1 t_y + c t_1^2,$$

$$T = t_x (2a t_y + b t_1), \quad U = a t_x^2 (2 t_z + b t_x),$$

of \mathcal{B}_H^α ?

- To explain this we need a **new set of symbols**

The symbols X_x and the tensor algebra

- We now assume that the ground field k is **infinite**. Let H be a Hopf algebra
- Let X_H be a copy of H with a linear isomorphism $x \mapsto X_x$
- Consider the **tensor algebra**

$$T(X_H) = \bigoplus_{r \geq 0} T^r(X_H)$$

on the vector space X_H . If $\{x_i\}_{i \in I}$ is a basis of H , then

$$T(X_H) \cong k\langle X_{x_i} \mid i \in I \rangle$$

is the algebra of **noncommutative polynomials in X_{x_i}** ($i \in I$)

- The algebra $T(X_H)$ is an **H -comodule algebra** with coaction $\delta : T(X_H) \rightarrow T(X_H) \otimes H$ given by

$$\delta(X_x) = \sum_{(x)} X_{x_{(1)}} \otimes x_{(2)}$$

The universal evaluation map

- Let H be a Hopf algebra, $\alpha : H \times H \rightarrow k$ a normalized invertible two-cocycle, and ${}^\alpha H$ the corresponding **twisted algebra**
- Consider the **algebra morphism**

$$\begin{aligned}\mu_\alpha : T(X_H) &\longrightarrow \text{Sym}(t_H) \otimes {}^\alpha H \\ X_x &\longmapsto \sum_{(x)} t_{x(1)} \otimes u_{x(2)}\end{aligned}$$

We call μ_α the **universal evaluation map** for ${}^\alpha H$

Properties of the map μ_α

Lemma. (a) The map $\mu_\alpha : T(X_H) \rightarrow \text{Sym}(t_H) \otimes {}^\alpha H$ is an **H -comodule algebra morphism**

(b) For every H -comodule algebra morphism $\mu : T(X_H) \rightarrow {}^\alpha H$, there is a unique algebra morphism $\chi : \text{Sym}(t_H) \rightarrow k$ such that

$$\mu = (\chi \otimes \text{id}) \circ \mu_\alpha$$

In other words, any comodule algebra morphism $T(X_H) \rightarrow {}^\alpha H$ is a specialization of μ_α , and $\text{Sym}(t_H)$ **parametrizes** the set of such comodule algebra morphisms

Constructing elements of \mathcal{B}_H^α using μ_α

- ▶ **Proposition.** If $P \in T(X_H)$ is coinvariant, i. e., $\delta(P) = P \otimes 1_H$, then $\mu_\alpha(P)$ belongs to \mathcal{B}_H^α
- ▶ The following “universal” formulas provide coinvariant elements of $T(X_H)$ (where $x, y \in H$):

$$P_x = \sum_{(x)} X_{x_{(1)}} X_{S(x_{(2)})}$$

$$P_{x,y} = \sum_{(x),(y)} X_{x_{(1)}} X_{y_{(1)}} X_{S(x_{(2)}y_{(2)})}$$

- ▶ **Example:** For the Sweedler algebra:

$$R = \mu_\alpha(P_x), \quad T = \mu_\alpha(P_{y-z}),$$

$$U = \mu_\alpha(P_{x,z}), \quad ES = \mu_\alpha(P_{y,y})$$

Constructing elements of \mathcal{B}_H^α using μ_α

- ▶ **Proposition.** If $P \in T(X_H)$ is coinvariant, i. e., $\delta(P) = P \otimes 1_H$, then $\mu_\alpha(P)$ belongs to \mathcal{B}_H^α
- ▶ The following “universal” formulas provide **coinvariant** elements of $T(X_H)$ (where $x, y \in H$):

$$P_x = \sum_{(x)} X_{x_{(1)}} X_{S(x_{(2)})}$$

$$P_{x,y} = \sum_{(x),(y)} X_{x_{(1)}} X_{y_{(1)}} X_{S(x_{(2)}y_{(2)})}$$

- ▶ Example: For the **Sweedler algebra**:

$$R = \mu_\alpha(P_x), \quad T = \mu_\alpha(P_{y-z}),$$

$$U = \mu_\alpha(P_{x,z}), \quad ES = \mu_\alpha(P_{y,y})$$

Constructing elements of \mathcal{B}_H^α using μ_α

- ▶ **Proposition.** If $P \in T(X_H)$ is coinvariant, i. e., $\delta(P) = P \otimes 1_H$, then $\mu_\alpha(P)$ belongs to \mathcal{B}_H^α
- ▶ The following “universal” formulas provide **coinvariant** elements of $T(X_H)$ (where $x, y \in H$):

$$P_x = \sum_{(x)} X_{x_{(1)}} X_{S(x_{(2)})}$$

$$P_{x,y} = \sum_{(x),(y)} X_{x_{(1)}} X_{y_{(1)}} X_{S(x_{(2)}y_{(2)})}$$

- ▶ **Example:** For the **Sweedler algebra**:

$$R = \mu_\alpha(P_x), \quad T = \mu_\alpha(P_{y-z}),$$

$$U = \mu_\alpha(P_{x,z}), \quad ES = \mu_\alpha(P_{y,y})$$

A theory of identities for comodule algebras

- ▶ Let A be an H -comodule algebra for some Hopf algebra H

Definition. An element $P \in T(X_H)$ is an H -**identity** of A if $\mu(P) = 0$ for all comodule algebra morphisms $\mu : T(X_H) \rightarrow A$

- ▶ Let $I_H(A)$ be the vector space of all H -identities of A

Proposition. (a) $I_H(A)$ is a **two-sided ideal** of $T(X_H)$ such that

$$\delta(I_H(A)) \subset I_H(A) \otimes H$$

(b) The ideal $I_H(A)$ is **graded** and

$$I_H(A) \subset \bigoplus_{r \geq 2} T^r(X_H)$$

A theory of identities for comodule algebras

- ▶ Let A be an H -comodule algebra for some Hopf algebra H

Definition. An element $P \in T(X_H)$ is an H -**identity** of A if $\mu(P) = 0$ for all comodule algebra morphisms $\mu : T(X_H) \rightarrow A$

- ▶ Let $I_H(A)$ be the vector space of all H -identities of A

Proposition. (a) $I_H(A)$ is a **two-sided ideal** of $T(X_H)$ such that

$$\delta(I_H(A)) \subset I_H(A) \otimes H$$

(b) The ideal $I_H(A)$ is **graded** and

$$I_H(A) \subset \bigoplus_{r \geq 2} T^r(X_H)$$

The universal comodule algebra

- **Definition.** The *universal comodule algebra* of identities of the H -comodule algebra A is the quotient-algebra

$$\mathcal{U}_H(A) = T(X_H)/I_H(A)$$

- **Properties.**

- $\mathcal{U}_H(A)$ is a *graded* algebra coinciding with $T(X_H)$ in degrees 0 and 1
- $\mathcal{U}_H(A)$ is an *H -comodule algebra*
- All H -identities of A *vanish* in $\mathcal{U}_H(A)$

Detecting the identities for twisted algebras

- ▶ Let ${}^\alpha H$ be a twisted algebra for some Hopf algebra H and some normalized invertible two-cocycle α

Recall the universal evaluation map

$$\mu_\alpha : T(X_H) \rightarrow \text{Sym}(t_H) \otimes {}^\alpha H$$

- ▶ **Theorem.** We have $I_H({}^\alpha H) = \text{Ker } \mu_\alpha$

In other words, the map μ_α detects the H -identities of ${}^\alpha H$

Detecting the identities for twisted algebras

- Let ${}^\alpha H$ be a twisted algebra for some Hopf algebra H and some normalized invertible two-cocycle α

Recall the universal evaluation map

$$\mu_\alpha : T(X_H) \rightarrow \text{Sym}(t_H) \otimes {}^\alpha H$$

- Theorem.** We have $I_H({}^\alpha H) = \text{Ker } \mu_\alpha$

In other words, the map μ_α detects the H -identities of ${}^\alpha H$

Embedding \mathcal{U}_H^α into a controllable algebra

Consequences of the previous theorem: Set $\mathcal{U}_H^\alpha = T(X_H)/I_H({}^\alpha H)$

- ▶ Since $\text{Ker } \mu_\alpha = \text{Ker}(T(X_H) \rightarrow \mathcal{U}_H^\alpha)$, the map μ_α induces an **embedding**

$$\mathcal{U}_H^\alpha \hookrightarrow \text{Sym}(t_H) \otimes {}^\alpha H$$

of the **universal comodule algebra** into a twisted product

- ▶ $u \in \mathcal{U}_H^\alpha$ is **coinvariant** if and only if $\mu_\alpha(u)$ belongs to $\text{Sym}(t_H) \otimes 1$
- ▶ $u \in \mathcal{U}_H^\alpha$ is **central** if and only if $\mu_\alpha(u)$ belongs to $\text{Sym}(t_H) \otimes Z({}^\alpha H)$, where $Z({}^\alpha H)$ is the center of ${}^\alpha H$
- ▶ The **center** \mathcal{Z}_H^α of \mathcal{U}_H^α is a **domain** if $Z({}^\alpha H)$ is a domain

Embedding \mathcal{U}_H^α into a controllable algebra

Consequences of the previous theorem: Set $\mathcal{U}_H^\alpha = T(X_H)/I_H({}^\alpha H)$

- ▶ Since $\text{Ker } \mu_\alpha = \text{Ker}(T(X_H) \rightarrow \mathcal{U}_H^\alpha)$, the map μ_α induces an **embedding**

$$\mathcal{U}_H^\alpha \hookrightarrow \text{Sym}(t_H) \otimes {}^\alpha H$$

of the **universal comodule algebra** into a twisted product

- ▶ $u \in \mathcal{U}_H^\alpha$ is **coinvariant** if and only if $\mu_\alpha(u)$ belongs to $\text{Sym}(t_H) \otimes 1$
- ▶ $u \in \mathcal{U}_H^\alpha$ is **central** if and only if $\mu_\alpha(u)$ belongs to $\text{Sym}(t_H) \otimes Z({}^\alpha H)$, where $Z({}^\alpha H)$ is the center of ${}^\alpha H$
- ▶ The **center** Z_H^α of \mathcal{U}_H^α is a **domain** if $Z({}^\alpha H)$ is a domain

Embedding \mathcal{U}_H^α into a controllable algebra

Consequences of the previous theorem: Set $\mathcal{U}_H^\alpha = T(X_H)/I_H({}^\alpha H)$

- ▶ Since $\text{Ker } \mu_\alpha = \text{Ker}(T(X_H) \rightarrow \mathcal{U}_H^\alpha)$, the map μ_α induces an **embedding**

$$\mathcal{U}_H^\alpha \hookrightarrow \text{Sym}(t_H) \otimes {}^\alpha H$$

of the **universal comodule algebra** into a twisted product

- ▶ $u \in \mathcal{U}_H^\alpha$ is **coinvariant** if and only if $\mu_\alpha(u)$ belongs to $\text{Sym}(t_H) \otimes 1$
- ▶ $u \in \mathcal{U}_H^\alpha$ is **central** if and only if $\mu_\alpha(u)$ belongs to $\text{Sym}(t_H) \otimes Z({}^\alpha H)$, where $Z({}^\alpha H)$ is the center of ${}^\alpha H$
- ▶ The **center** \mathcal{Z}_H^α of \mathcal{U}_H^α is a **domain** if $Z({}^\alpha H)$ is a domain

Embedding \mathcal{U}_H^α into a controllable algebra

Consequences of the previous theorem: Set $\mathcal{U}_H^\alpha = T(X_H)/I_H({}^\alpha H)$

- ▶ Since $\text{Ker } \mu_\alpha = \text{Ker}(T(X_H) \rightarrow \mathcal{U}_H^\alpha)$, the map μ_α induces an **embedding**

$$\mathcal{U}_H^\alpha \hookrightarrow \text{Sym}(t_H) \otimes {}^\alpha H$$

of the **universal comodule algebra** into a twisted product

- ▶ $u \in \mathcal{U}_H^\alpha$ is **coinvariant** if and only if $\mu_\alpha(u)$ belongs to $\text{Sym}(t_H) \otimes 1$
- ▶ $u \in \mathcal{U}_H^\alpha$ is **central** if and only if $\mu_\alpha(u)$ belongs to $\text{Sym}(t_H) \otimes Z({}^\alpha H)$, where $Z({}^\alpha H)$ is the center of ${}^\alpha H$
- ▶ The **center** \mathcal{Z}_H^α of \mathcal{U}_H^α is a **domain** if $Z({}^\alpha H)$ is a domain

Identities in the Sweedler case

Consider the **Sweedler algebra** H and the **twisted algebra**

$${}^\alpha H = k\langle u_x, u_y \mid u_x^2 = a, \quad u_x u_y + u_y u_x = b, \quad u_y^2 = c \rangle$$

The following are examples of H -**identities** for ${}^\alpha H$:

$$(X_x X_y + X_y X_x)^2 - 4X_x^2 X_y^2 - \frac{b^2 - 4ac}{a} X_1^2 X_x^2$$

$$2X_x^2 (X_1 X_z - X_x X_y) - X_1 X_x (X_x X_z + X_z X_x) + X_x^2 (X_x X_y + X_y X_x)$$

(Check using the universal evaluation map)

Relating \mathcal{U}_H^α and \mathcal{A}_H^α

- To (H, α) we associated
 - (a) the **generic Galois extension**

$$\mathcal{A}_H^\alpha = \mathcal{B}_H^\alpha \otimes {}^\sigma H$$

built from the **generic cocycle** σ

- (b) the **universal comodule algebra**

$$\mathcal{U}_H^\alpha = T(X_H)/I_H({}^\alpha H)$$

built out of the **H -identities** of ${}^\alpha H$; its center is \mathcal{Z}_H^α

- **Theorem.** (a) *There is an **embedding** of H -comodule algebras*

$$\mathcal{U}_H^\alpha \hookrightarrow \mathcal{A}_H^\alpha$$

- (b) *If $Z({}^\alpha H) = k$, then $\mathcal{Z}_H^\alpha \hookrightarrow \mathcal{B}_H^\alpha$*

Structure of \mathcal{U}_H^α after central localization

- We assume that $Z({}^\alpha H) = k$, so that μ_α embeds \mathcal{Z}_H^α into \mathcal{B}_H^α

Theorem. *If in addition \mathcal{B}_H^α is a localization of \mathcal{Z}_H^α , then there is an isomorphism of H -comodule algebras*

$$\mathcal{B}_H^\alpha \otimes_{\mathcal{Z}_H^\alpha} \mathcal{U}_H^\alpha \cong \mathcal{A}_H^\alpha$$

In other words, **after localization** of the center, the universal comodule algebra \mathcal{U}_H^α becomes the generic Galois extension \mathcal{A}_H^α

References

E. Aljadeff, D. Haile, M. Natapov, *Graded identities of matrix algebras and the universal graded algebra*, arXiv:0710.5568, Trans. Amer. Math. Soc. (2008).

E. Aljadeff, C. Kassel, *Polynomial identities and noncommutative versal torsors*, arXiv:0708.4108, Adv. Math. 218 (2008), 1453–1495.

Y. Doi, *Equivalent crossed products for a Hopf algebra*, Comm. Algebra 17 (1989), 3053–3085.

C. Kassel, *Quantum principal bundles up to homotopy equivalence*, The Legacy of Niels Henrik Abel, Springer-Verlag 2004, 737–748, arXiv:math.QA/0507221.

C. Kassel, H.-J. Schneider, *Homotopy theory of Hopf Galois extensions*, Ann. Inst. Fourier (Grenoble) 55 (2005), 2521–2550.

A. Masuoka, *Cleft extensions for a Hopf algebra generated by a nearly primitive element*, Comm. Algebra 22 (1994), 4537–4559.

THANK YOU FOR YOUR ATTENTION

Strongly graded algebras

- Given a group G , consider a **strongly G -graded algebra**:

$$A = \bigoplus_{g \in G} A_g$$

with $A_g A_h = A_{gh}$ and $\dim A_g = 1$

- Let u_g be a spanning vector of A_g . Then

$$u_g u_h = \alpha(g, h) u_{gh} \tag{3}$$

for some $\alpha(g, h) \in k^\times = k - \{0\}$

- The associativity of the product of A implies that the map $\alpha : G \times G \rightarrow k^\times$ is a **group-cocycle**:

$$\alpha(g, h) \alpha(gh, k) = \alpha(h, k) \alpha(g, hk) \tag{4}$$

Isomorphism classes and group cohomology

- If $v_g = \lambda(g) u_g$ with $\lambda(g) \neq 0$, then

$$v_g v_h = \beta(g, h) v_{gh},$$

where

$$\beta(g, h) = \alpha(g, h) \frac{\lambda(g) \lambda(h)}{\lambda(gh)} \quad (5)$$

- Call α, β **cohomologous**, $\alpha \sim \beta$, if they are related by (5)
- The set $\{\text{group-cocycles of } G\}/\sim$ is the **cohomology group** $H^2(G, k^\times)$
- **Isomorphism classes of strongly graded algebras:**

$$\{\text{strongly } G\text{-graded algebras}\}/(\text{isomorphisms}) \cong H^2(G, k^\times)$$