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Introduction

» Joint work with Eli Aljadeff (Technion): arXiv:0708.4108,
Adv. Math. (2008), doi:10.1016/j.aim.2008.03.014

» We are interested in the concept of principal fiber bundles in
noncommutative geometry
For these “quantum principal fiber bundles”, the structural group is a
Hopf algebra

» Motivations:
(a) Many interesting examples coming from quantum groups

(b) A well-known algebraic language to describe “quantum principal
fiber bundles”, that of Hopf Galois extensions

(c) This leads to new questions on Hopf algebras



Genesis of the results

e In August 2005 at the XVI° Coloquio Latinoamericano de Algebra in
Colonia del Sacramento, Uruguay, | reported results on the classification of
Hopf Galois extensions (some joint with Hans-Jirgen Schneider)

In topology there are universal principal fiber bundles. In the context of
noncommutative geometry | raised the question of the existence and the
construction of universal Hopf Galois extensions.

o Eli Aljadeff suggested to use an appropriate theory of polynomial identities
in order to answer this question. During his three-month stay in Strasbourg in
Fall 2005, we made his idea work.

We obtained answers for a special class of Hopf Galois extensions,
subsequently called twisted algebras, which are obtained from a Hopf
algebra H and a cocycle «



What we actually do

To each pair (H, ), where H is a Hopf algebra and « is a cocycle, and to the
corresponding twisted algebra A we associate the following algebras:

» A commutative algebra B} constructed from what we call the generic
cocycle cohomologous to the cocycle a.

The algebra B is a natural parameter space for a class of deformations
of A. The affine variety Spec(B3) is a natural geometrical object
associated to the “noncommutative” pair (H, a)

We establish a connection between the noncommutative algebras A7 and U
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What we actually do

To each pair (H, ), where H is a Hopf algebra and « is a cocycle, and to the
corresponding twisted algebra A we associate the following algebras:

» A commutative algebra B} constructed from what we call the generic
cocycle cohomologous to the cocycle a.

The algebra B is a natural parameter space for a class of deformations
of A. The affine variety Spec(B3) is a natural geometrical object
associated to the “noncommutative” pair (H, a)

» A noncommutative Hopf Galois extension Ay, over the commutative
algebra By.
The algebra Ay is a flat deformation of A over the “parameter space”
Spec(Bg)

> An algebra U4 built out of the polynomial identities satisfied by the
twisted algebra A

We establish a connection between the noncommutative algebras Af and U



Plan

e Part One: Hopf Galois extensions, twisted algebras, the classification
problem

e Part Two: The generic cocycle and the “parameter space”

e Part Three: An example: the Sweedler algebra

e Part Four: The generic Galois extension

e Part Five: Polynomial identities and the universal comodule algebra



Part One

HOPF GALOIS EXTENSIONS



Basic dictionary of noncommutative geometry

e Replacing spaces by associative algebras

space X

map f: X =Y
product f: X xY
point X = {x}

—

>

>

algebra A(X) (= functions on X)
algebramap f*: A(Y) — A(X)
tensor product A(X) ® A(Y)
ground field A(x) =k



Groups in noncommutative geometry

e Groups . Let G be a group and H = A(G)

product G xG—G «— coproduct H - H®H
unit {x} = G «— counit H—k
inverse G- G +— antipode S:H —H

So H is a Hopf algebra

e Group actions . We also need the concept of an H-comodule algebra

action X xG —X «+«— coaction 6 :A—AQH

orbitset Y =X/G «— coinvariants B={ac A|dj(a) =a® 14}



Definition of a Hopf algebra

Fix a field k. A Hopf algebra is an associative unital k-algebra H together with
e (Coproduct) an algebra morphism A:H — H®H
e (Colnit) an algebra morphisme : H — k

e (Antipode) an algebra antimorphism S : H — H such that

(A®idy) o A = (idy ®A) 0 A,

D Xwe(x@) =D e(Xw) x@ =X,

(x) (x)
> xwSX@) =Y SXw) X =£(x)1,
(x) (x)
where we use the Sweedler notation

AX) =D xa) ®X)
)



Examples of Hopf algebras

Example 1: The algebra H = k€ of k-valued functions on a finite group G is a
Hopf algebra with

A(f)(g.h) =f(gh), e(f)=f(e), S(f)(g)="f(g™"
(f € H, g,h € G; e is the unit of the group).

Example 2: The algebra H = k[G] of a group G is a Hopf algebra with
A(g)=g®g, 9)=1, S(@) =g

9e0).



Comodule algebras

Let H be a Hopf algebra

e An H-comodule algebra is an associative unital algebra A together with an
algebra morphism
0:A—AQH

called the coaction and satisfying

(3 ®idy) 08 = (idy ®A)od and (idy ®e) o8 = idy

e Coinvariants:
A =f{acA|éa)=a® 1y}

is a subalgebra and a subcomodule of A



Hopf Galois extensions

e The noncommutative analogue of a principal fiber bundle, or a G-torsor, is
a Hopf Galois extension

e Let H be a Hopf algebra and B an associative algebra

Definition . An H-Galois extension A of B is an H-comodule algebra A such
that

(a) B is the subalgebra of coinvariants of A, i.e., B = A"

(b) the Galois condition is satisfied: the mapa® b — (a® 14) §(b)
induces a bijection
ARsA—ARQH

(c) as a left B-module, A is faithfully flat



Central Hopf Galois extensions

e \We consider only central Hopf Galois extensions, i.e., H-Galois extensions
A of B such that B is central in A

e Functoriality property: If A is a central H-Galois extension of B and
f : B — B’ is a morphism of commutative algebras, then
f.A=B ®gsA

is a central H-Galois extension of B’



Twisted algebras

e Let H be a Hopf algebra and o : H x H — k a bilinear form

e Let “H be a vector space isomorphic to H via a linear isomorphism
X € H — uyx € “H. Equip “H with the product

Ux Uy = Z a(X(), Y1) Uxpyz) (1)
(x),(y)

This product is associative if « is a two-cocycle: for all x,y € H,

> alxw, Ya) ax@Ye,2) = Y alyu,zg) X, Yo Ze) ()
(). ¥):@)

e The algebra “H has u; as unit if « is normalized: for all x € H,

a(1,x) = ax,1) = e(x)



Invertible cocycles

We shall consider only invertible two-cocycles

e A two-cocycle o : H x H — Kk is invertible if there is a bilinear form
a"!:H xH — k such that forall x,y € H,

> alxw, Yay) et (X@), V) = e(x)e(y)
(0.
and

> o xw, Ya) elX@), Ye) = e(x) ()
(x),(y)

e If Gis a group, H = k[G], and « is an invertible two-cocycle of H, then
(a) the restriction of a to G is a group-cocycle with values
ink* =k — {0}
(b) the algebra “H is a so-called strongly G-graded algebra and the
product is given for all g,h € G by

Ug Up = a(g, h) Ugn



Twisted algebras are Galois extensions

e For any two-cocycle «, the twisted algebra “H is an H-comodule algebra
with coaction

6:°H — “H®H
) = D Uy @X
(x)

e The coinvariants of “H are trivial:

(“H)" =k1

e The Galois condition is satisfied: for each cocycle «, the twisted algebra “H
is an H-Galois extension of k



The classification problem

e Problem: Classify all H-Galois extensions of B up to isomorphism

Recall: Two H-Galois extensions A, A’ of B are isomorphic if there is an
algebra isomorphism f : A — A’ preserving the coactions, i.e.,

(f@idg)0d =08 of

e Reformulation: Determine the set CGaly(B) of isomorphism classes of
central H-Galois extensions of B

This is a difficult problem in general



Universal classifying algebra

Let H be a Hopf algebra

e Definition . A central H-Galois extension Ay of By is called (uni)versal if for
any commutative algebra B, the map

Alg(By,B) — CGaly(B)
f—f. Ay =B ®5, An

is surjective (bijective)

e Universal central H-Galois extensions are unique up to isomorphism, but
may not exist

e We shall construct versal Galois extensions for twisted algebras



Doi’s classification of twisted algebras

e Lemma (Doi) . Two twisted algebras *H and ?H are isomorphic as
H-comodule algebras if and only if « and 3 are cohomologous in the
following sense

e Definition. Two-cocycles « and 8 of H are cohomologous, a ~ g, if there is
an invertible linear form X : H — k with inverse A~* : H — k such that for all
X,y € H,

BOGY) =D AX) AY) a(X@),Y@) A (X@Ye)
(x),(y)

e Alinear form X : H — k is invertible with inverse A=* : H — k if
S OAX@) A @) =D AT xw) Mxe) =&(x)1
(x) (x)

for all x € H (An invertible linear form has a unique inverse)



Classifying twisted algebras

e By Doi’'s lemma, there is a bijection

{twisted algebras}/(comodule algebra isomorphisms)
= {two-cocycles of H}/~

¢ In general, the set {two-cocycles of H} /~ is not a group
e Only in special cases is {two-cocycles of H} /~ a group, e.g., if H is

cocommutative:
Z X(1) ®X@) = Z X(2) ® X(1)
(x) (x)

The group Hopf algebra k[G] is cocommutative and

{two-cocycles of k[G]} /~ = H?(G, k™)



Part Two

THE GENERIC COCYCLE

(All results in the sequel are joint with Eli Aljadeff)



Towards a generic cocycle

e Objective. Let H be a Hopf algebra and « a normalized invertible
two-cocycle. We want to define a generic two-cocycle on H that is
cohomologous to a.

e To this end, we “emulate” the equations

BOGY) = Y M) AY) a(X@),Y@) A (Xe)Ye)
(x),5(y)

and
Z)\(x )AHX@) =D A x@) Mx@) =(x)1
(x)
(expressing that «, 3 are cohomologous)

by replacing the scalars A(x), A~1(x) by commuting symbols tx, t;



The symbols ty

Let ty be a copy of H with linear isomorphism x € H — tx € ty

Consider the symmetric algebra

sym(t) = €D Sym'(t)

r>0
on the vector space ty. If {Xi}ic/ is a basis of H, then
Sym(ty) 2 Kty i € 1]

is the polynomial algebra in the (commuting) variables ty,



The symbols t, !

o We also need variables t; * to deal with the equations

> Ax@) AT => A AMX@) = e(x) 1
)

(x)

e Let Frac Sym(ty) be the field of fractions of Sym(ty)

Lemma. There is a unique linear map x — t;, * from H to Frac Sym(ty) such
that for all x € H,

D b by = D by by =(X) 1
(x)

(x)



Computing t, !

o If x is grouplike, i.e., A(X) = x ® X, then ¢(x) = 1 and

_ 1
tt-l=1, hence t/l=—

o If X is skew-primitive, i.e., A(x) = g ® x + x ® h for some grouplike
elements g, h, then ¢(x) = 0 and

LS

oty '+ &ty " =0, hence t;'=—
tyt



The generic two-cocycle cohomologous to «

e Let H be a Hopf algebra and « : H x H — k a normalized invertible
two-cocycle

Define the generic two-cocycle o : H x H — Frac Sym(ty) by

-1
o(x,y) = Z ) by o(X(2),¥2) i)
(x),(y)

e The cocycle ¢ is cohomologous to « over the fraction field Frac Sym(ty)

e In case H = k[G] is a group algebra and g, h € G,



The generic base algebra

e Let H be a Hopf algebraand o : H x H — k a normalized invertible
two-cocycle

e Definition. Let B be the subalgebra of Frac Sym(ty) generated by the
values of the generic two-cocycle o and of its inverse !

We call By the generic base algebra

e Immediate properties :

(a) B5 is a domain

(b) Transcendence degree of Frac B < dimH
(c) By is finitely generated if dimH < oo



Computation of Bf, - the infinite cyclic case
o Consider the Hopf algebra of the group of integers H = k[x,x ] with
AX)=x®x, e(x)=1, S(X)=x""

together with the trivial two-cocycle: a(x™,x") =1 (m,n € Z)

e Here Sym(ty) = k[tm | m € Z]. For the generic cocycle,

tmtn YmYn
o(x",xM) = "2 =20 (mnezZ
( ’ ) tm+n Ym+n ( N e )

where ym = tn/t{" (note thaty; = 1 and yo = to)

e The algebra By is the Laurent polynomial algebra
Bi =k[ym'|m ez —{1}]

inside the Laurent polynomial algebra k[tE* |m € Z]

e Isk[tF! |m € Z] much bigger than B3? Answer:

K[t |m € 2] = BR[™



Computation of B, - the finite cyclic case

o For the Hopf algebra H = k[x]/(x" — 1) of the cyclic group of order N > 2
with trivial two-cocycle,

Sym(tH) = k[to,tl, e ,tN,]_]
and the algebra By is a Laurent polynomial algebra on N variables:
B =kIyohya oy Okl Tt
where yy = to/t}
e Here k[t 51, ... tF1 ] is an integral extension of Bg:

k[t .t ] = Bi[ul/(8 — yo/wn)



Part Three

THE SWEEDLER ALGEBRA



The Sweedler algebra: definition

e The Sweedler algebra is the smallest noncommutative noncocommutative
Hopf algebra

As an algebra,
H=k(x,y|[x*=1, xy +yx =0, y*=0)
Its radical is the ideal (y) and H/(y) = k[Z/2]
e Hopf algebra structure:
Coproduct: A(X) =x®Xx, A(Y)=1Qy+y®X
Colnit: e(x) =1, ¢(y)=0
Antipode: S(x) =x, S(y) =xy

e The algebra H is four-dimensional with basis {1, x,y,z}, where z = xy



The Sweedler algebra: the variables t, and t?

We need the variables ty, t, ty,tz and t; , tc 5t 0 7t
They satisfy the equations
;' =1, tt'=1,
tt, 't t=0, &G4ttt =0

Hence,
— tZ



Twisted Sweedler algebras

e (Masuoka) For any normalized invertible two-cocycle «, the twisted algebra
“H is up to isomorphism of the form

2 2
“H =k(ux,Uy |ugy =a, uUxUy +Uyux =b, uy =c)

for some scalars a, b, c witha £ 0  (u; is the unit of “H)

e Recall: The generic two cocycle o is given by

-1
o(x,y) = Z by by a(X(2),Y@) L)
(x),(y)

Since dimH = 4, we have to compute the 32 values of o and ¢~ on the
basis



Values of the generic cocycle

Values of o':
o(1,1)
(X, X)
a(y,y)
a(x,y)
a(y,x)

o(z,z)

t,
at?
t,
at? +btity +ctf
ty ’
atyty — tit,
ty ’
btitx + atety + tit,
ty ’
t? + bict, + act?
1

These rational fractions together with the values of o ~* generate the

algebra By



Generators of Bf, in the Sweedler case

If we set
E=t, R=at}, S=at +btt +ctf,
T =t (2aty+bt;), U=at?(2t, +bty),
then RT — EU
0(171) = E? O—(va) = Wv
R RT + EU
a(x,x) = E’ a(y,x) = T2ER
S aU? — (b? — 4ac)R?
U(yvy) - E7 O'(Z,Z) - 4aER?2

Consequence. The elements E,E~!,R, R, S, T, U belong to BS and
generate it as an algebra. Moreover, E, R, S, U are algebraically
independent.



The generic base algebra in the Sweedler case

Theorem. Presentation of B by generators and relations:
Bﬁ = k[Eila Rilv 87 T7 U]/(Pa,b,c) ’

where

b? —4ac _,

Papc=T? —4RS — EZR




Part Four

THE GENERIC GALOIS EXTENSION



The generic Galois extension

» Since the generic cocycle takes values in By, we can consider the
twisted algebra
Al =B ®°H
As a vector space, A = BS ® H; it is equipped with the product
(a & UX) (b & UY) = Z ab U(X(l)vy(l)) & uX(z) Y(©2)
():(y)
(a,b € By, x,y € H)

The twisted algebra Aj is called the generic Galois extension



The generic Galois extension

» Since the generic cocycle takes values in By, we can consider the
twisted algebra
Al =B ®°H
As a vector space, A = BS ® H; it is equipped with the product

(a & UX) (b & UY) = Z ab U(X(l)vy(l)) & uX(z) Y(©2)
(9),(y)

(a,b e B3, x,y € H)
The twisted algebra Aj is called the generic Galois extension
> Proposition.  (a) The map § = idgy ®A is a coaction, turning A into
an H-comodule algebra whose subalgebra of coinvariants is By :
Bi={acAi|é(a)=a® 1y}
(b) B5 is a central subalgebra of AJ

Thus A7 is a central H-Galois extension of By



A rigidity propery

> Aj is aflat deformation of “H over the commutative algebra Bg:

Proposition. There is a comodule algebra isomorphism
Af /moAf =2 “H
for some maximal ideal mq of B

The ideal my is the kernel of an algebra morphism xo : B — k sending
each element o(x,y) to a(x,y)



A rigidity propery

> Aj is aflat deformation of “H over the commutative algebra Bg:

Proposition. There is a comodule algebra isomorphism
Af/moAf =2 “H
for some maximal ideal mq of B
The ideal my is the kernel of an algebra morphism xo : B — k sending

each element o(x,y) to a(x,y)

> If “H is (semi)simple, then A7 is generically (semi)simple. More
precisely

Theorem. Assume that char(k) = 0 and dim(H) < cc.
If *H is (semi)simple, then so is

Frac Bi ®sg Ap = Frac B ® “H



Forms

eletd:H xH — K Dk be anormalized invertible two-cocycle. The twisted
algebra K ® #H is a K-form of ®H if there is a field L D K and an L-linear
isomorphism of H-comodule algebras

Lok (K®PH) > L “H.

e Theorem. IfK @ #H is a K-form of *H, then there is an algebra morphism
X : B§ — K such that
Ky ®5g Af =~ PH

In other words, any form of “H is obtained from the generic Galois
extension Af by a central specialization

There is a converse to the previous theorem; it requires an additional
condition



Azumaya

» Theorem If the algebra Frac Sym(ty) is integral over the
subalgebra B, then for any algebra morphism x : B — K Dk, the
algebra Ky ®ga Aj is a K-form of “H



Azumaya

» Theorem If the algebra Frac Sym(ty) is integral over the
subalgebra B, then for any algebra morphism x : B — K Dk, the
algebra Ky ®ga Aj is a K-form of “H

» Theorem. Under the previous integrality condition, if the algebra *H is
simple, then the generic extension A7 is an Azumaya algebra with
center BY

An algebra A is Azumaya if A/m is simple for any maximal ideal m of its
center. E.g. A = M,(R), where R is a commutative ring



Versal deformation space

o If Frac Sym(ty) is integral over B, then the map
Alg(B5,K) — K-Forms(“H)
x =  Ky®sy Aj

is a surjection from the set of algebra morphisms B — K to the set of
isomorphism classes of K-forms of “H

e Thus the set Alg(B5, K) parametrizes the K-forms of “H.

The extension B C A} is a versal deformation space for the forms of *H

e Remark. To determine the set Alg(5y, K), it is important to find a
presentation by generators and relations of B



The integrality condition

e Question. Under which condition on (H, «) is the algebra Frac Sym(ty)
integral over the subalgebra Bg?

e Proposition. If H is a finite-dimensional Hopf algebra that is generated by
grouplike and skew-primitive elements, and « is any two-cocycle, then
Frac Sym(ty) is integral over the subalgebra B

Proof in the case H is the algebra of a finite group G. It suffices to show that
each ty (g € G) is integral over Bj. Since

tg th

€ By,
[

a(9,h) = a(g, h)
we have tg t, = btgy for some b € B7. Consequently for alln > 2,
tg = b tgn
for some b’ € Bg. If n is the order of g, then since o(1,1) = ty,
tg =b'tp =b't1 =b"o(1,1),

which shows that tg belongs to B;. QED



The generic Galois extension in the Sweedler case

Theorem The generic Galois extension Ay is given by

AR 2B (X, Y )/ (XP =R, XY +YX —T,Y?-5S)

Compare with

“H =k(ux, Uy )/(uf —a, uxly + Uy — b, uj —c)

Recall:
BS = k[E, RS, T,U]/(Pab.c),

where )
b° — 4ac E?R

Papc=T? —4RS —



Computation of A{} for a group algebra

(By D. Haile and M. Natapov)

> LetG=(g,h|g°=h=1, gh=h*g) =Z/9 % Z/9



Computation of A{} for a group algebra

(By D. Haile and M. Natapov)
> LetG=(g,h|g°=h=1, gh=h*g) =Z/9 % Z/9

» LetH =k[G] and set X = Xy and Y = X;. Then
B = KX (YO, 2]/(2% - w (X)) (Y°)?),

where Z = XYX®Y® and w is a primitive third root of 1



Computation of A{} for a group algebra

(By D. Haile and M. Natapov)
> LetG=(g,h|g°=h=1, gh=h*g) =Z/9 % Z/9

» LetH =k[G] and set X = Xy and Y = X;. Then
B 2= K[(XT) (YO, Z]/(Z° - w (X (Y9)?),
where Z = XYX®Y® and w is a primitive third root of 1
» The generic Galois extension: Aj = B (X,Y)/l, where | is the
two-sided ideal generated by
X3 —wYX3, Y3X —w?XY?,

XYXY — w?Y2X2, YXYX — X?Y?, XY2X —w? YX2Y



Part Five

POLYNOMIAL IDENTITIES



How to find generators for B}

e In the Sweedler case, how did we find the generators
E=t, R=at;, S=at/+btt +ctf,

T =t (2aty +bty), U=at?(2t, +bt),
of BL?

o To explain this we need a new set of symbols



The symbols X, and the tensor algebra
e We now assume that the ground field k is infinite. Let H be a Hopf algebra
e Let Xy be a copy of H with a linear isomorphism x +— Xy

e Consider the tensor algebra

T(Xn) =P T"(Xn)

r>0
on the vector space Xy. If {Xi}ie/ is a basis of H, then
TXn) 2k{Xx |i€l)

is the algebra of noncommutative polynomials in Xy, (i € 1)

e The algebra T (Xy) is an H-comodule algebra with coaction
6 :T(Xu) — T(Xn) ® H given by

O(X) =D Xy @ X2)
(x)



The universal evaluation map

e Let H be a Hopf algebra, o : H x H — k a normalized invertible
two-cocycle, and “H the corresponding twisted algebra

e Consider the algebra morphism
Mo T(XH) — Sym(tH)®o‘H

K Z by @ Uxgy)
(x)

We call ., the universal evaluation map for “H



Properties of the map p,,

Lemma. (a) The map pq : T(Xu) — Sym(ty) ® “H is an H-comodule
algebra morphism

(b) For every H-comodule algebra morphism p: T(Xn) — “H, thereis a
unique algebra morphism x : Sym(ty) — k such that

p=(x®id) o pa
In other words, any comodule algebra morphism T (X4) — “H is a

specialization of u., and Sym(ty) parametrizes the set of such comodule
algebra morphisms



Constructing elements of By, using s,

» Proposition. If P € T(Xy) is coinvariant, i. e., §(P) = P ® 14, then
1a(P) belongs to B



Constructing elements of By, using s,

» Proposition. If P € T(Xy) is coinvariant, i. e., §(P) = P ® 14, then
1a(P) belongs to B

» The following “universal” formulas provide coinvariant elements
of T(Xn) (Where x,y € H):

Px = Z Xxwy Xs(x2))
(x)

Pxy = Z Kewy Ky Xsxzy(2))
(x),(y)



Constructing elements of By, using s,

» Proposition. If P € T(Xy) is coinvariant, i. e., §(P) = P ® 14, then
1a(P) belongs to B

» The following “universal” formulas provide coinvariant elements
of T(Xn) (Where x,y € H):

Px = Z Xxwy Xs(x2))
(x)

Pry = Z Xty Xy Xs(x29(2))
(x),(y)
» Example: For the Sweedler algebra:
R :MQ(PX)v T :/JOé(PY—Z)’

U= pa(Px,z), ES = 1a(Pyy)



A theory of identities for comodule algebras

» Let A be an H-comodule algebra for some Hopf algebra H

Definition. An element P € T (Xy) is an H-identity of A if 4(P) = 0 for
all comodule algebra morphisms p : T(Xy) — A



A theory of identities for comodule algebras

» Let A be an H-comodule algebra for some Hopf algebra H

Definition. An element P € T (Xy) is an H-identity of A if 4(P) = 0 for
all comodule algebra morphisms p : T(Xy) — A

> Let I4(A) be the vector space of all H-identities of A
Proposition. (&) I (A) is a two-sided ideal of T (Xu) such that
5(I4(A)) C Iu(A) @ H

(b) The ideal 14(A) is graded and

(A) C D T"(Xn)

r>2



The universal comodule algebra

e Definition. The universal comodule algebra of identities of the H-comodule
algebra A is the quotient-algebra

Un(A) =T (Xu)/Iu(A)
e Properties.

(a) Un(A) is a graded algebra coinciding with T (Xy) in degrees 0 and 1
(b) U (A) is an H-comodule algebra

(c) All H-identities of A vanish in Uy (A)
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» Let “H be a twisted algebra for some Hopf algebra H and some
normalized invertible two-cocycle «
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Detecting the identities for twisted algebras

» Let “H be a twisted algebra for some Hopf algebra H and some
normalized invertible two-cocycle «

Recall the universal evaluation map

Mo - T(XH) — Sym(tH) ®aH

» Theorem. We have Iy (*“H) = Ker pq

In other words, the map u. detects the H-identities of “*H
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Embedding 4] into a controllable algebra

Consequences of the previous theorem:  SetU3 = T(Xu)/Iu(“H)

> Since Ker po = Ker(T (Xu) — Ug), the map o induces an embedding
Uy — Sym(ty) ® “H

of the universal comodule algebra into a twisted product
> u € Uy is coinvariant if and only if . (u) belongs to Sym(ty) ® 1

> u < U is central if and only if uq(u) belongs to Sym(ty) ® Z(“H),
where Z(*H) is the center of “H

» The center Z of U is a domain if Z(“H) is a domain



Identities in the Sweedler case

Consider the Sweedler algebra H and the twisted algebra
“H =k(ux,uy |uf =a, uxy +uyux =b, ul=c)
The following are examples of H-identities for “H:

2 —_
(X Xy + Xy X )% — AXZXZ — b”—4ac yoy2

2X2 (X1 Xz — XxXy) — XaXe (X Xz + Xz Xx ) + X2 (Xx Xy + Xy Xx)

(Check using the universal evaluation map)



Relating ¢/ and A},

e To (H, ) we associated
(a) the generic Galois extension
h=DBi®H
built from the generic cocycle o
(b) the universal comodule algebra
US = T (Xu)/Iu("H)
built out of the H-identities of “H ; its center is Z5
e Theorem. (a) There is an embedding of H-comodule algebras
Uy — Aj

(b) If Z(*H) = k, then 25 — BS



Structure of U after central localization

e We assume that Z (“H) = k, so that u. embeds Zg into Bg

Theorem. If in addition 5] is a localization of Z, then there is an
isomorphism of H-comodule algebras

BY ©zg U = Aj

In other words, after localization of the center, the universal comodule
algebra 4§ becomes the generic Galois extension A3
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Strongly graded algebras

e Given a group G, consider a strongly G-graded algebra:

A=EP Ag

getG
with Ag An = Agh and dimAg =1
e Let ug be a spanning vector of Ag. Then
Ug Un = a(g, h) ugn (3)

for some «a(g, h) € k* =k — {0}

e The associativity of the product of A implies that the map «: G x G — k*
is a group-cocycle:

a(g,h) a(gh, k) = a(h,k) a(g, hk) 4)



Isomorphism classes and group cohomology

e If vg = A\(g) ug with A\(g) # 0, then
Vg Vh = B(gv h) Vgh »
where
A(g) A(h)
A(gh)

e Call a, 8 cohomologous, a ~ (3, if they are related by (5)

B(g,h) = a(g,h) ®)
e The set {group-cocycles of G} /~ is the cohomology group H?(G,k*)

e Isomorphism classes of strongly graded algebras:

{strongly G-graded algebras} /(isomorphisms) = H?(G, k )
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