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Overview

e We give a short introduction to the classical theory of polynomial
identities. ..

o ... followed by a description of some recent developments involving group
gradings

e Our main objects of study are matrix algebras



The classical theory of polynomial identities



Definition of polynomial identities

o We fix a field k of characteristic zero (e.g., k = C)
All algebras whe shall consider are associative unital k-algebras

o Definition. Let A be an algebra. A polynomial identity (Pl) for A is a
non-zero polynomial f(Xi, ..., Xp) in a finite number of non-commuting
variables Xi, . .., X, with coefficients in k such that

f(ai,...,an) =0

forall ai,...,an € A.

e We shall only consider homogeneous Pls

(Recall that a polynomial is homogeneous if it is a linear combination of
monomials all having the same degree in each variable)

There is no loss of generality in considering only homogeneous Pls since
each homogeneous summand of a Pl is a Pl



Pl-algebras

e An algebra for which there is a Pl is called a Pl-algebra

e Any commutative algebra A is a Pl-algebra since

(X, Y) =X, Y] € Xy - vx

is a Pl for A.

e As we shall see, all finite-dimensional algebras are Pl-algebras

In particular, all matrix algebras are Pl-algebras

o Not all algebras are Pl-algebras:

E.g., free algebras k(Xi, ..., X,) with n > 2 are not Pl-algebras



A polynomial identity for 2 x 2-matrices

> A degree 5 polynomial identity: The polynomial

(X,Y,2) = [X Y 2Z
XYXYZ — XY2XZ — YX?YZ + YXYXZ
— ZXYXY 4+ ZXY?X + ZYX?Y — ZYXYX

is a Pl for the algebra Mx(k) of 2 x 2-matrices with entries in k.

Consequently, Mx(k) is a Pl-algebra



A polynomial identity for 2 x 2-matrices

> A degree 5 polynomial identity: The polynomial

(X,Y,2) = [X Y 2Z
XYXYZ — XY2XZ — YX?YZ + YXYXZ
— ZXYXY 4+ ZXY?X + ZYX?Y — ZYXYX

is a Pl for the algebra Mx(k) of 2 x 2-matrices with entries in k.

Consequently, Mx(k) is a Pl-algebra

» Proof. By Cayley-Hamilton any 2 x 2-matrix M satisfies the identity
M? = tr(M) M — det(M) |
If M = [X, Y], then tr(M) = 0. Hence its square
M? = —det(M) |

is a scalar matrix, which then commutes with any matrix Z. O



Subalgebras of Pl-algebras are Pl-algebras

Any subalgebra of a Pl-algebra is clearly a Pl-algebra

Let us draw two simple interesting consequences:

» Quaternions form a Pl-algebra: This follows from the well-known fact
that the algebra H of quaternions is a subalgebra of M»(C)



Subalgebras of Pl-algebras are Pl-algebras

Any subalgebra of a Pl-algebra is clearly a Pl-algebra

Let us draw two simple interesting consequences:

» Quaternions form a Pl-algebra: This follows from the well-known fact
that the algebra H of quaternions is a subalgebra of M»(C)

> Non-linearity of free algebras: Since M>(K) is a Pl-algebra for any
field extension K of k and a non-commutative free algebra is not a
Pl-algebra, one cannot embed k(Xji, ..., Xs) (withn>2) as a
subalgebra into a matrix algebra of the form M, (K)

Remark. By contrast, any free group F, can be embedded as a
subgroup into SL>(Z), hence into the general linear group GL2(Q)



The matrix algebra Ms(k) is a Pl-algebra

We construct a Pl for the algebra Ms(k) of 3 x 3-matrices as follows:

By Cayley-Hamilton any matrix X € Ms(k)satisfies a relation of the form
X3 = Do X% + M X + Ao!
where A\g, A1, Ao are scalars (depending on X). Taking the commutator with another

matrix Y, we obtain
X3, Y] = X2 [X2, Y]+ A [X, V]

Now we take the commutator with [X, Y], thus obtaining
[[X37 Y]7 [X’ Y]] =X [[Xz’ Y]7 [X’ Y]]
Finally, taking the commutator with [[X2, Y], [X, Y]], we obtain for Ms(k) the degree 11

polynomial identity
[1X®, Y1, [X, Y11, [[X2, Y1, [X, Y]]}



All matrix algebras are Pl-algebras

e Proceeding in a similar fashion, we obtain a polynomial identity for any
algebra for which there is an integer n > 1 such that any elementa € A
satisfies an identity of the form

1

a+Xx—1@ '+ +Xat+ =0

where Mg, A1, ..., A\s—1 are scalars (depending on a)

e In this way we obtain for the algebra M,(k) of n x n-matrices a polynomial
identity of degree 2™ — 2"~1 _ 1

e Are there polynomial identities for M,(k) of (much) smaller degree?

For an answer, see the next slides



Standard polynomials

» The standard polynomial Sy of degree d is given by

Sa(Xi,.. ., Xo) = D &(0) Xo) Xo2) -+ Xo(a)

oeSymy

Clearly, Sy(ay,...,aq4) = 0if @ = a; for some i # j

Proposition. /fdim(A) < d, then Sy4(X1,...,Xy) is a Pl for A



Standard polynomials

» The standard polynomial Sy of degree d is given by

Sa(Xi,.. ., Xo) = D &(0) Xo) Xo2) -+ Xo(a)

oeSymy

Clearly, Sy(ay,...,aq4) = 0if @ = a; for some i # j

Proposition. /fdim(A) < d, then Sy4(X1,...,Xy) is a Pl for A

> Proof. Let (); be a basis of A. Then for any a,...,aq € Athe element
Sq4(at, ..., aq) is alinear combination of elements of the form
Sa(ei,- .., e,). Each of the latter must be zero since for dimension

reasons there must be a repetition in each sequence ¢, ..., €.

|



Standard polynomials

» The standard polynomial Sy of degree d is given by

Sa(Xi,.. ., Xo) = D &(0) Xo) Xo2) -+ Xo(a)

oeSymy

Clearly, Sy(ay,...,aq4) = 0if @ = a; for some i # j

Proposition. /fdim(A) < d, then Sy4(X1,...,Xy) is a Pl for A

> Proof. Let (); be a basis of A. Then for any a,...,aq € Athe element
Sq4(at, ..., aq) is alinear combination of elements of the form
Sa(ei,- .., e,). Each of the latter must be zero since for dimension
reasons there must be a repetition in each sequence e, ..., e;,. d

» Consequently, any finite-dimensional algebra is a Pl-algebra

o It follows from the above proposition that there is a Pl of degree n? + 1
for the matrix algebra My (k)

e We can still do better. ..



The Amitsur-Levitzki theorem

o The following deep result is due to Amitsur and Levitzki (1950)

Theorem. The standard polynomial Sx,(Xi, ..., Xon) of degree 2n is a
polynomial identity for the matrix algebra Mx(k)

e The degree 2n is optimal because there are no Pls of degree < 2n
for Mn(k)

e The proof of the theorem is difficult, but the latter assertion is easy to prove

So let us give a proof. .. (see next slide)



Multilinear polynomials

e A homogeneous polynomial is called multilinear if it is a linear combination
of monomials all of degree one in each variable

o A multilinear polynomial of degree d is of the form
z Ao Xo(1)Xo(2) - Xo(a) (1)
ocSymy
where )\, are scalars
e By a standard multilinearization procedure, one shows that if an algebra

has a homogeneous Pl of some degree, then it has a multilinear Pl of the
same degree



There are no Pls of degree < 2n for M,(k)

e Indeed, suppose that Mp(k) has a Pl of degree d < 2n — 1, then it would have a
multilinear PI of the form (1)

e To prove that this is impossible, it suffices to exhibit d matrices My, Mo, ..., My such
that the product My M, - - - My is non-zero and the product

Mo ()Mo (2) - Mo(a)
of any other permutation o of these matrices is zero
o Consider the elementary matrices E; ; with 1 < 7, j < n; they form a basis of My (k)

and they multiply as
EjjEmn=38;mEin

The product of the 2n — 1 matrices
Ei1, B2, E2p, Eo3, E33,...,En—1.n, Enn

is non-zero whereas the product of any other permutation of this sequence of matrices
is zero. This shows that Mj(k) has no Pl of degree 2n — 1

e The same proof can be made to work for any degree d < 2n — 1



T-ideals

e Let A be a Pl-algebra. The set Id(A) of polynomial identities for A (together
with 0) forms a two-sided ideal of the free algebra k(X1, Xz, .. .)

e A T-ideal is a two-sided ideal of k(Xi, Xz, .. .) that is preserved under all
substitution of variables, equivalently, under all algebra endomorphisms of
k{Xi,Xz,...)

The ideal Id(A) of polynomial identities is a T-ideal

e Problem. Determine the ideal Id(A) for a given Pl-algebra A
This is a difficult problem, solved only for a handful of algebras:

(a) If Ais commutative, then Id(A) is generated by the degree 2 standard
polynomial S; = [X1, X2]

(b) If A= Ma(k), then Id(A) is generated by the degree 4 standard
polynomial S, and the degree 5 polynomial [[X, Y]?, Z]



The Specht problem

e The problem. Is Id(A) generated by a finite number of polynomial identities
as a T-ideal?

e In 1987 Kemer gave a positive answer to the Specht problem for any
Pl-algebra (whether it is finitely generated or not)

The proof of Kemer’s theorem is difficult and does not yield a bound on the
number of generators or their degrees

e We now turn to a class of algebras with exira structure. . .



Graded polynomial identities



Graded algebras

Fix a finite group G

e An algebra A is G-graded if it has a decomposition into a family of vector
subspaces indexed by the elements of the group

A= A

geqG
and compatible with the product on A in the sense that for all g, h € G,
Ag - An C Agn
The subspace Ay is called the homogeneous component of degree g

The component A corresponding to the unit e of G is a subalgebra of A

e 7/2-graded algebras are also called superalgebras; they come up in
physics

Weyl algebras and Clifford algebras are superalgebras



Elementary gradings of matrices

e Fixagroup G

e Let us describe a special type of G-grading of Mp(k) called an elementary grading
(a description of all gradings of Mx(k) will be given in the Appendix)

e An elementary grading of Mp(k) is obtained for each sequence gy, ..., gn of length n
of elements of G: we grade M (k) by specifying that each elementary matrix E; ;
belongs to the homogeneous component of degree g,.‘1 g

o Example of an elementary G = Z/2-grading. We have M3(k) = Ay ® Ay
where A is the 5-dimensional vector space consisting of the matrices

* 0 =
0 x 0
* 0 =

and A; is the 4-dimensional vector space consisting of the matrices

(This grading corresponds to the triple (0, 1,0) € (2/2)3)



Graded polynomial identities

o To define polynomial identities for ordinary algebras, we used an arbitrary
finite number of non-commuting variables

To define identities for G-graded algebras, we need a numerable set of
non-commuting variables for each element of G

Let {X1(9), X2(g), ...} be the set of variables corresponding to the
elementge G

o Definition. Let A be a G-graded algebra. A graded polynomial identity
(G-PI) for A is a non-zero polynomial in the variables Xi(g) that vanishes in A
whenever we replace each variable Xi(g) by an element of the homogeneous
component Ay of degree g



Examples of graded polynomial identities

e It is easier to find G-Pls than ordinary Pls, as show the following stupid examples:

(a) If Ais a G-graded algebra and f is an ordinary Pl for the subalgebra A¢ (Where e
is the unit of G), then f is a G-PI for A (Replace each variable X; by the variable X;(e))

(b) Suppose that A is trivially graded, i.e., Ag = 0 for each g # e. Then X(g) is a
G-Plforeach g # e

o Non-trivial examples of graded polynomial identities. Consider the elementary

7,/2-grading of Mx(k) corresponding to the couple (0,1) € (Z/2)2. We have
Mg(k) = AO (&3} A1 y where

{6 ) e a(C0)

Check that X; (0) X; (1) — X;(1) X (0) and
X1 (0) (X1 (1)X2(1) + Xo(1) X1 (1)) — (X1 (1)X2(1) + X2(1) X1 (1)) X1(0)

are G-Pls for Ma(k)



The Specht problem in the graded case

> Let f be an algebra endomorphism of the free algebra on the
variables X;(g) where g € Gand i =1,2,...

We say that f is admissible if each f(Xi(g)) is a linear combination of
monomials Xj, (91)Xi,(g2) - - X, (gr) such that g1go--- g = g

o A two-sided ideal of the free algebra on the variables Xj(g) is a
G-T-ideal if it is preserved under all admissible algebra endomorphisms

e The set Idg(A) of G-Pls for A (together with 0) is a G-T-ideal



The Specht problem in the graded case

> Let f be an algebra endomorphism of the free algebra on the
variables X;(g) where g € Gand i =1,2,...

We say that f is admissible if each f(Xi(g)) is a linear combination of
monomials Xj, (91)Xi,(g2) - - X, (gr) such that g1go--- g = g

o A two-sided ideal of the free algebra on the variables Xj(g) is a
G-T-ideal if it is preserved under all admissible algebra endomorphisms

e The set Idg(A) of G-Pls for A (together with 0) is a G-T-ideal

> In 2008 Aljadeff and Kanel-Belov proved the following

Theorem. If A is a Pl-algebra, then |dg(A) is generated by a finite
number of graded polynomial identities as a G-T-ideal

e This provides an example of a (hard) result for ordinary polynomial
identities that extends to graded polynomial identities



A result about nilpotency

We now give an example of a result on ordinary polynomial identities that does not
extend to graded polynomial identities

Proposition. If f" is a Pl for Ma(C) for somer > 2, then f is a Pl

This means that if any evaluation of f is a nilpotent matrix, then this matrix is zero
Proof. It is based on the existence of a division ring D inside Mx(C) such that there is

an algebra isomorphism
Mp(C) = D @k C

where K is the center of D (for instance, M>(C) =2 H ®g C)
Now if f(X1,...,Xy)" € 1d(Mn(C)), then f(ay,...,a4)" =0forall ay,...,ay € Ma(C),

hence for all a1, ..., ay € D. Since a division ring has no non-zero nilpotent elements,
f(ay,...,aq4) =0forall ay,...,aq € D. This shows that f(Xj,..., Xy) is a Pl for D,
hence for Mx(C). O

In this proof we have used the fact that if an algebra A is obtained from an algebra B by
an extension of scalars, then they have the same polynomial identities:

ld(A) = Id(B)



A different behavior in the graded case

By contrast with what happens in the ungraded case, there are examples of gradings
on matrix algebras and of graded polynomials f such that " is a G-PI for some r > 2,
but not f

Example. Let G = Z/6 x Symg, where the symmetric group Symj; acts on Z/6 by the
sign of permutations; this is a group of order 36 with the following presentation:

G=(5t,z|P =P =28=1,ts=5""t,s2=25, tz=2z""1)

There is a G-graded algebra structure on Mg(C) (its homogeneous components are all
one-dimensional) for which the following holds:

Aljadeff, Haile & Natapov: The polynomial
f= X(8) X(1)? X(2%)® — w X(t) X(2%) X(t) X(2%)? X(s)

is not a G-PI for Mg(C), but 3 is a G-PI for Mg(C)
(here w = €2™//3 is a primitive third root of unity)



When Hopf algebras come in. ..



Towards more general polynomial identities

e |tis possible to extend the theory of polynomial identities to a bigger class
of algebras, namely to comodule algebras over Hopf algebras

Graded algebras are instances of comodule algebras
e Let H be a Hopf algebra; this is essentially an algebra together with an
algebra map A : H — H ® H, called the coproduct, satisfying certain

properties (coassociativity, counitality) dual to the properties satisfied by the
product in an associative unital algebra

Hopf algebras are essential tools in the theory of quantum groups

e An H-comodule algebra is an algebra A together with an algebra map
0 : A— A® H, called the coaction, satisfying certain standard properties



Comodule algebras

e A G-graded algebra is the same as an H-comodule algebra, where H = kG
is the group algebra with coproduct given by

Alg)=g®g (9€q)

e There is an important class of comodule algebras called Hopf Galois
extensions

Classical Galois extensions of fields are instances of Hopf Galois extensions
with H being the dual Hopf algebra of the algebra of the Galois group

Hopf Galois extensions can be viewed as analogues of principal fiber bundles
in “non-commutative geometry”; now the réle of the structural group is played
by a Hopf algebra. There are numerous instances of such “quantum principal
fiber bundles” in quantum group theory



Polynomial identities for comodule algebras

o To define a theory of polynomial identities for comodule algebras over a given Hopf
algebra H, we fix a basis (h;); of H, and for each basis element h; we pick a numerable
set {X1(h;), X2(hy), . . .} of non-commuting variables

e Let Ty be the free non-commutative algebra generated by these variables. There is a
structure of H-comodule algebra on Ty induced by the coproduct of H

Definition. Let A be an H-comodule algebra. An H-polynomial identity for A is an
element f € Ty such that u(f) = 0 for every algebra map . : Ty — A preserving the
coactions, i.e., such that the following square commutes:

Ty —£

d d

TyoH 2%, AgH

e An ordinary polynomial identity is an H-polynomial identity for the one-dimensional
Hopf algebra H = k

A graded polynomial identity is an H-polynomial identity for a group algebra H = kG



A universal algebra

e Given an H-comodule algebra A, let Idy(A) be the two-sided ideal of Ty
consisting of all H-polynomial identities for A

e The Specht problem for Idy(A) is open for a general Hopf algebra

e The quotient-algebra Uy (A) = T/ 1dn(A) is the universal algebra in which
all H-polynomial identities for A vanish
e The algebra Uy(A) turns out be useful:

After a suitable localization of the (big) center of Uy(A) we obtain an algebra
parametrizing an important class of Hopf Galois extensions

See details in joint work with Eli Aljadeff (Adv. Math., 2008)



APPENDIX

Gradings on matrix algebras



Fine grading and twisted group algebras

LetA= EBQGG Ag be a G-graded algebra for a finite group G
e Such a grading is called fine if for all g, h € G,
dim(Ag) =1 and Ag-Ap=Ag
Then necessarily dim(A) = |G|
e Pick a non-zero element ug in each Ag. Then
Ug Uy = (g, h) Ugh (2)

for some non-zero scalar «(g, h). Because of the associativity of the product, the
scalars a(g, h) satisfy the cocycle condition:

(g, h) a(gh, k) = a(g, hk) a(h. k) (g, h.k € G) @)

e Conversely, given a cocycle on G, i.e.,amap o : G x G — k — {0} satisfying (3), we
can define an associative algebra whose underlying vector space has a basis (ug)g
indexed by the elements of G and whose product is given by (2)

Such an algebra is called a twisted group algebra and is denoted by kG



Groups of central type and non-degenerate cocycles

e Let k> G be a twisted group algebra for some cocycle o

If there is an algebra isomorphism
kG = My(k)
for some n > 1, then we say that G is of central type and « is non-degenerate
e If a is non-degenerate, then |G| = n? and M,(k) has a fine G-grading
e (Howlett, Isaacs, 1982) Any group of central type is solvable
e It is easy to check that an abelian group G is of central type if and only if
G2HxH
for some abelian group H

e The group Z/6 x Syms; considered above is of central type



Gradings on M,(C)

Let G be a finite group

e Suppose we are given the following data:
(a) a subgroup H of G of central type
(b) a non-degenerate cocycle « on H
(c) a sequence gy, . .., gy Of elements of G

Then we can define a G-grading on A = C*H ® My(C) by setting

Ag = Span{u, ® E; ;| g~ "hg; = g}

e Bahturin and Zaicev (2002) proved that each G-grading of My(C) is of this form
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