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Overview

•We give a short introduction to the classical theory of polynomial
identities. . .

• . . . followed by a description of some recent developments involving group
gradings

• Our main objects of study are matrix algebras



The classical theory of polynomial identities



Definition of polynomial identities

•We fix a field k of characteristic zero (e.g., k = C)

All algebras whe shall consider are associative unital k -algebras

• Definition. Let A be an algebra. A polynomial identity (PI) for A is a
non-zero polynomial f (X1, . . . ,Xn) in a finite number of non-commuting
variables X1, . . . ,Xn with coefficients in k such that

f (a1, . . . , an) = 0

for all a1, . . . , an ∈ A.

•We shall only consider homogeneous PIs

(Recall that a polynomial is homogeneous if it is a linear combination of
monomials all having the same degree in each variable)

There is no loss of generality in considering only homogeneous PIs since
each homogeneous summand of a PI is a PI



PI-algebras

• An algebra for which there is a PI is called a PI-algebra

• Any commutative algebra A is a PI-algebra since

f (X ,Y ) = [X ,Y ]
def
= XY − YX

is a PI for A.

• As we shall see, all finite-dimensional algebras are PI-algebras

In particular, all matrix algebras are PI-algebras

• Not all algebras are PI-algebras:

E.g., free algebras k〈X1, . . . ,Xn〉 with n ≥ 2 are not PI-algebras



A polynomial identity for 2× 2-matrices

I A degree 5 polynomial identity: The polynomial

f (X ,Y ,Z ) = [[X ,Y ]2,Z ]

= XYXYZ − XY 2XZ − YX 2YZ + YXYXZ

− ZXYXY + ZXY 2X + ZYX 2Y − ZYXYX

is a PI for the algebra M2(k) of 2× 2-matrices with entries in k .

Consequently, M2(k) is a PI-algebra

I Proof. By Cayley-Hamilton any 2× 2-matrix M satisfies the identity

M2 = tr(M) M − det(M) I

If M = [X ,Y ], then tr(M) = 0. Hence its square

M2 = − det(M) I

is a scalar matrix, which then commutes with any matrix Z . �
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Subalgebras of PI-algebras are PI-algebras

Any subalgebra of a PI-algebra is clearly a PI-algebra

Let us draw two simple interesting consequences:

I Quaternions form a PI-algebra: This follows from the well-known fact
that the algebra H of quaternions is a subalgebra of M2(C)

I Non-linearity of free algebras: Since M2(K ) is a PI-algebra for any
field extension K of k and a non-commutative free algebra is not a
PI-algebra, one cannot embed k〈X1, . . . ,Xn〉 (with n ≥ 2) as a
subalgebra into a matrix algebra of the form M2(K )

Remark. By contrast, any free group Fn can be embedded as a
subgroup into SL2(Z), hence into the general linear group GL2(Q)
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The matrix algebra M3(k) is a PI-algebra

We construct a PI for the algebra M3(k) of 3× 3-matrices as follows:

By Cayley-Hamilton any matrix X ∈ M3(k)satisfies a relation of the form

X 3 = λ2X 2 + λ1X + λ0I

where λ0, λ1, λ2 are scalars (depending on X ). Taking the commutator with another
matrix Y , we obtain

[X 3,Y ] = λ2 [X 2,Y ] + λ1 [X ,Y ]

Now we take the commutator with [X ,Y ], thus obtaining

[[X 3,Y ], [X ,Y ]] = λ2 [[X 2,Y ], [X ,Y ]]

Finally, taking the commutator with [[X 2,Y ], [X ,Y ]], we obtain for M3(k) the degree 11
polynomial identity

[[[X 3,Y ], [X ,Y ]], [[X 2,Y ], [X ,Y ]]]



All matrix algebras are PI-algebras

• Proceeding in a similar fashion, we obtain a polynomial identity for any
algebra for which there is an integer n ≥ 1 such that any element a ∈ A
satisfies an identity of the form

an + λn−1an−1 + · · ·+ λ1a + λ0 = 0

where λ0, λ1, . . . , λn−1 are scalars (depending on a)

• In this way we obtain for the algebra Mn(k) of n × n-matrices a polynomial
identity of degree 2n+1 − 2n−1 − 1

• Are there polynomial identities for Mn(k) of (much) smaller degree?

For an answer, see the next slides



Standard polynomials

I The standard polynomial Sd of degree d is given by

Sd (X1, . . . ,Xd ) =
X

σ∈Symd

ε(σ) Xσ(1)Xσ(2) · · ·Xσ(d)

Clearly, Sd (a1, . . . , ad ) = 0 if ai = aj for some i 6= j

Proposition. If dim(A) < d, then Sd (X1, . . . ,Xd ) is a PI for A

I Proof. Let (ei )i be a basis of A. Then for any a1, . . . , ad ∈ A the element
Sd (a1, . . . , ad ) is a linear combination of elements of the form
Sd (ei1 , . . . , eid ). Each of the latter must be zero since for dimension
reasons there must be a repetition in each sequence ei1 , . . . , eid . �

I Consequently, any finite-dimensional algebra is a PI-algebra

• It follows from the above proposition that there is a PI of degree n2 + 1
for the matrix algebra Mn(k)

•We can still do better. . .
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The Amitsur-Levitzki theorem

• The following deep result is due to Amitsur and Levitzki (1950)

Theorem. The standard polynomial S2n(X1, . . . ,X2n) of degree 2n is a
polynomial identity for the matrix algebra Mn(k)

• The degree 2n is optimal because there are no PIs of degree < 2n
for Mn(k)

• The proof of the theorem is difficult, but the latter assertion is easy to prove

So let us give a proof. . . (see next slide)



Multilinear polynomials

• A homogeneous polynomial is called multilinear if it is a linear combination
of monomials all of degree one in each variable

• A multilinear polynomial of degree d is of the formX
σ∈Symd

λσ Xσ(1)Xσ(2) · · ·Xσ(d) (1)

where λσ are scalars

• By a standard multilinearization procedure, one shows that if an algebra
has a homogeneous PI of some degree, then it has a multilinear PI of the
same degree



There are no PIs of degree < 2n for Mn(k)

• Indeed, suppose that Mn(k) has a PI of degree d ≤ 2n − 1, then it would have a
multilinear PI of the form (1)

• To prove that this is impossible, it suffices to exhibit d matrices M1,M2, . . . ,Md such
that the product M1M2 · · ·Md is non-zero and the product

Mσ(1)Mσ(2) · · ·Mσ(d)

of any other permutation σ of these matrices is zero

• Consider the elementary matrices Ei,j with 1 ≤ i, j ≤ n; they form a basis of Mn(k)
and they multiply as

Ei,j Em,n = δj,m Ei,n

The product of the 2n − 1 matrices

E1,1 , E1,2 , E2,2 , E2,3 , E3,3 , . . . ,En−1,n , En,n

is non-zero whereas the product of any other permutation of this sequence of matrices
is zero. This shows that Mn(k) has no PI of degree 2n − 1

• The same proof can be made to work for any degree d < 2n − 1



T-ideals

• Let A be a PI-algebra. The set Id(A) of polynomial identities for A (together
with 0) forms a two-sided ideal of the free algebra k〈X1,X2, . . .〉

• A T-ideal is a two-sided ideal of k〈X1,X2, . . .〉 that is preserved under all
substitution of variables, equivalently, under all algebra endomorphisms of
k〈X1,X2, . . .〉

The ideal Id(A) of polynomial identities is a T-ideal

• Problem. Determine the ideal Id(A) for a given PI-algebra A

This is a difficult problem, solved only for a handful of algebras:

(a) If A is commutative, then Id(A) is generated by the degree 2 standard
polynomial S2 = [X1,X2]

(b) If A = M2(k), then Id(A) is generated by the degree 4 standard
polynomial S4 and the degree 5 polynomial [[X ,Y ]2,Z ]



The Specht problem

• The problem. Is Id(A) generated by a finite number of polynomial identities
as a T-ideal?

• In 1987 Kemer gave a positive answer to the Specht problem for any
PI-algebra (whether it is finitely generated or not)

The proof of Kemer’s theorem is difficult and does not yield a bound on the
number of generators or their degrees

•We now turn to a class of algebras with extra structure. . .



Graded polynomial identities



Graded algebras

Fix a finite group G

• An algebra A is G-graded if it has a decomposition into a family of vector
subspaces indexed by the elements of the group

A =
M
g∈G

Ag

and compatible with the product on A in the sense that for all g, h ∈ G,

Ag · Ah ⊂ Agh

The subspace Ag is called the homogeneous component of degree g

The component Ae corresponding to the unit e of G is a subalgebra of A

• Z/2-graded algebras are also called superalgebras; they come up in
physics

Weyl algebras and Clifford algebras are superalgebras



Elementary gradings of matrices
• Fix a group G

• Let us describe a special type of G-grading of Mn(k) called an elementary grading
(a description of all gradings of Mn(k) will be given in the Appendix)

• An elementary grading of Mn(k) is obtained for each sequence g1, . . . , gn of length n
of elements of G: we grade Mn(k) by specifying that each elementary matrix Ei,j

belongs to the homogeneous component of degree g−1
i gj

• Example of an elementary G = Z/2-grading. We have M3(k) = A0 ⊕ A1
where A0 is the 5-dimensional vector space consisting of the matrices0@∗ 0 ∗

0 ∗ 0
∗ 0 ∗

1A
and A1 is the 4-dimensional vector space consisting of the matrices0@0 ∗ 0

∗ 0 ∗
0 ∗ 0

1A
(This grading corresponds to the triple (0, 1, 0) ∈ (Z/2)3)



Graded polynomial identities

• To define polynomial identities for ordinary algebras, we used an arbitrary
finite number of non-commuting variables

To define identities for G-graded algebras, we need a numerable set of
non-commuting variables for each element of G

Let {X1(g),X2(g), . . .} be the set of variables corresponding to the
element g ∈ G

• Definition. Let A be a G-graded algebra. A graded polynomial identity
(G-PI) for A is a non-zero polynomial in the variables Xi (g) that vanishes in A
whenever we replace each variable Xi (g) by an element of the homogeneous
component Ag of degree g



Examples of graded polynomial identities

• It is easier to find G-PIs than ordinary PIs, as show the following stupid examples:

(a) If A is a G-graded algebra and f is an ordinary PI for the subalgebra Ae (where e
is the unit of G), then f is a G-PI for A (Replace each variable Xi by the variable Xi (e))

(b) Suppose that A is trivially graded, i.e., Ag = 0 for each g 6= e. Then X(g) is a
G-PI for each g 6= e

• Non-trivial examples of graded polynomial identities. Consider the elementary
Z/2-grading of M2(k) corresponding to the couple (0, 1) ∈ (Z/2)2. We have
M2(k) = A0 ⊕ A1, where

A0 =

„
∗ 0
0 ∗

«ff
and A1 =

„
0 ∗
∗ 0

«ff
Check that X1(0) X1(1)− X1(1) X1(0) and

X1(0)
`
X1(1)X2(1) + X2(1)X1(1)

´
−
`
X1(1)X2(1) + X2(1)X1(1)

´
X1(0)

are G-PIs for M2(k)



The Specht problem in the graded case

I Let f be an algebra endomorphism of the free algebra on the
variables Xi (g) where g ∈ G and i = 1, 2, . . .

We say that f is admissible if each f (Xi (g)) is a linear combination of
monomials Xi1 (g1)Xi2 (g2) · · ·Xir (gr ) such that g1g2 · · · gr = g

• A two-sided ideal of the free algebra on the variables Xi (g) is a
G-T-ideal if it is preserved under all admissible algebra endomorphisms

• The set IdG(A) of G-PIs for A (together with 0) is a G-T-ideal

I In 2008 Aljadeff and Kanel-Belov proved the following

Theorem. If A is a PI-algebra, then IdG(A) is generated by a finite
number of graded polynomial identities as a G-T-ideal

• This provides an example of a (hard) result for ordinary polynomial
identities that extends to graded polynomial identities
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A result about nilpotency
We now give an example of a result on ordinary polynomial identities that does not
extend to graded polynomial identities

Proposition. If f r is a PI for Mn(C) for some r ≥ 2, then f is a PI

This means that if any evaluation of f is a nilpotent matrix, then this matrix is zero

Proof. It is based on the existence of a division ring D inside Mn(C) such that there is
an algebra isomorphism

Mn(C) ∼= D ⊗K C

where K is the center of D (for instance, M2(C) ∼= H⊗R C)

Now if f (X1, . . . ,Xd )r ∈ Id(Mn(C)), then f (a1, . . . , ad )r = 0 for all a1, . . . , ad ∈ Mn(C),
hence for all a1, . . . , ad ∈ D. Since a division ring has no non-zero nilpotent elements,
f (a1, . . . , ad ) = 0 for all a1, . . . , ad ∈ D. This shows that f (X1, . . . ,Xd ) is a PI for D,
hence for Mn(C). �

In this proof we have used the fact that if an algebra A is obtained from an algebra B by
an extension of scalars, then they have the same polynomial identities:

Id(A) = Id(B)



A different behavior in the graded case

By contrast with what happens in the ungraded case, there are examples of gradings
on matrix algebras and of graded polynomials f such that f r is a G-PI for some r ≥ 2,
but not f

Example. Let G = Z/6 o Sym3, where the symmetric group Sym3 acts on Z/6 by the
sign of permutations; this is a group of order 36 with the following presentation:

G = 〈s, t , z | s3 = t2 = z6 = 1 , ts = s−1t , sz = zs , tz = z−1t〉

There is a G-graded algebra structure on M6(C) (its homogeneous components are all
one-dimensional) for which the following holds:

Aljadeff, Haile & Natapov: The polynomial

f = X(s) X(t)2 X(z2)3 − ω X(t) X(z2) X(t) X(z2)2 X(s)

is not a G-PI for M6(C), but f 3 is a G-PI for M6(C)

(here ω = e2πi/3 is a primitive third root of unity)



When Hopf algebras come in. . .



Towards more general polynomial identities

• It is possible to extend the theory of polynomial identities to a bigger class
of algebras, namely to comodule algebras over Hopf algebras

Graded algebras are instances of comodule algebras

• Let H be a Hopf algebra; this is essentially an algebra together with an
algebra map ∆ : H → H ⊗ H, called the coproduct, satisfying certain
properties (coassociativity, counitality) dual to the properties satisfied by the
product in an associative unital algebra

Hopf algebras are essential tools in the theory of quantum groups

• An H-comodule algebra is an algebra A together with an algebra map
δ : A→ A⊗ H, called the coaction, satisfying certain standard properties



Comodule algebras

• A G-graded algebra is the same as an H-comodule algebra, where H = kG
is the group algebra with coproduct given by

∆(g) = g ⊗ g (g ∈ G)

• There is an important class of comodule algebras called Hopf Galois
extensions

Classical Galois extensions of fields are instances of Hopf Galois extensions
with H being the dual Hopf algebra of the algebra of the Galois group

Hopf Galois extensions can be viewed as analogues of principal fiber bundles
in “non-commutative geometry”; now the rôle of the structural group is played
by a Hopf algebra. There are numerous instances of such “quantum principal
fiber bundles” in quantum group theory



Polynomial identities for comodule algebras

• To define a theory of polynomial identities for comodule algebras over a given Hopf
algebra H, we fix a basis (hi )i of H, and for each basis element hi we pick a numerable
set {X1(hi ),X2(hi ), . . .} of non-commuting variables

• Let TH be the free non-commutative algebra generated by these variables. There is a
structure of H-comodule algebra on TH induced by the coproduct of H

Definition. Let A be an H-comodule algebra. An H-polynomial identity for A is an
element f ∈ TH such that µ(f ) = 0 for every algebra map µ : TH → A preserving the
coactions, i.e., such that the following square commutes:

TH
µ−−−−−→ A

δ

??y δ

??y
TH ⊗ H

µ⊗ idH−−−−−→ A⊗ H

• An ordinary polynomial identity is an H-polynomial identity for the one-dimensional
Hopf algebra H = k

A graded polynomial identity is an H-polynomial identity for a group algebra H = kG



A universal algebra

• Given an H-comodule algebra A, let IdH(A) be the two-sided ideal of TH

consisting of all H-polynomial identities for A

• The Specht problem for IdH(A) is open for a general Hopf algebra

• The quotient-algebra UH(A) = TH/ IdH(A) is the universal algebra in which
all H-polynomial identities for A vanish

• The algebra UH(A) turns out be useful:

After a suitable localization of the (big) center of UH(A) we obtain an algebra
parametrizing an important class of Hopf Galois extensions

See details in joint work with Eli Aljadeff (Adv. Math., 2008)



APPENDIX

Gradings on matrix algebras



Fine grading and twisted group algebras

Let A =
L

g∈G Ag be a G-graded algebra for a finite group G

• Such a grading is called fine if for all g, h ∈ G,

dim(Ag) = 1 and Ag · Ah = Agh

Then necessarily dim(A) = |G|

• Pick a non-zero element ug in each Ag . Then

ug uh = α(g, h) ugh (2)

for some non-zero scalar α(g, h). Because of the associativity of the product, the
scalars α(g, h) satisfy the cocycle condition:

α(g, h)α(gh, k) = α(g, hk)α(h, k) (g, h, k ∈ G) (3)

• Conversely, given a cocycle on G, i.e., a map α : G × G→ k − {0} satisfying (3), we
can define an associative algebra whose underlying vector space has a basis (ug)g
indexed by the elements of G and whose product is given by (2)

Such an algebra is called a twisted group algebra and is denoted by kαG



Groups of central type and non-degenerate cocycles

• Let kαG be a twisted group algebra for some cocycle α

If there is an algebra isomorphism

kαG ∼= Mn(k)

for some n ≥ 1, then we say that G is of central type and α is non-degenerate

• If α is non-degenerate, then |G| = n2 and Mn(k) has a fine G-grading

• (Howlett, Isaacs,1982) Any group of central type is solvable

• It is easy to check that an abelian group G is of central type if and only if

G ∼= H × H

for some abelian group H

• The group Z/6 o Sym3 considered above is of central type



Gradings on Mn(C)

Let G be a finite group

• Suppose we are given the following data:

(a) a subgroup H of G of central type

(b) a non-degenerate cocycle α on H

(c) a sequence g1, . . . , gd of elements of G

Then we can define a G-grading on A = CαH ⊗Md (C) by setting

Ag = Span{uh ⊗ Ei,j | g−1hgj = g}

• Bahturin and Zaicev (2002) proved that each G-grading of Mn(C) is of this form
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