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Introduction

I Joint work with Christophe Reutenauer (UQAM): arXiv:0802.4359

I Starting point: Work of Aldo de Luca in combinatorics of words

We work with words on two letters a, b, in particular with a class of
words related to Christoffel words

I What we do:

We extend de Luca’s construction to the free group on a, b

Some results of de Luca’s still hold for our extension, some not

I New features:

(a) Continuity properties

(b) The braid group B3 plays a role
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Palindromic closure

• The words on the alphabet {a, b}, including the empty word, form under
concatenation the monoid {a, b}∗

• A word w is a palindrome if w = ew is equal to its mirror image (the word ew
is what you obtain when you read w from right to left)

• Right palindromic closure: For a word w , we denote by w+ the shortest
palindrome having w as a prefix

Construction of w+: if w = uv is the unique decomposition, where v = ev is
the longest palindromic suffix of v , then

w+ = uveu



De Luca’s iterated palindromic closure

• De Luca’s defined the right iterated palindromic closure

P : {a, b}∗ −→ {a, b}∗

recursively by P(1) = 1 and

P(wa) =
`
P(w)a

´+ and P(wb) =
`
P(w)b

´+

By definition, each P(w) is a palindrome

• Some values:
P(a) = a , P(b) = b ,

P(aa) = aa , P(bb) = bb ,

P(ab) = aba , P(ba) = bab ,

P(aba) = abaaba , P(bab) = babbab



Properties of de Luca’s map

Aldo de Luca proved the following result

Theorem. The map P is a bijection from {a, b}∗ onto the subset of central
words

This means that

(a) P : {a, b}∗ → {a, b}∗ is injective

(b) Each P(w) is a central word

(c) Any central word is P(w) for some (unique) word w

Central words will be defined on the next slide



Central words

I A word is central if it has two coprime periods p, q and its length is
p + q − 2

Example: aba2ba is central with periods 3, 5 and length 6:

aba2ba = aba|{z} aba|{z} = aba2b| {z } a|{z}
I All central words are palindromes

I There is a geometric definition of central words via Christoffel words,
which label discrete approximations of segments in the plane (see
Appendix 1)

If w is a central word, then awb is a Christoffel word. Conversely, any
Christoffel word starting with a and ending with b is of the form awb for
some central word w
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Justin’s formula

I An action of the free monoid on itself.
There is a unique monoid homomorphism

{a, b}∗ −→ End({a, b}∗)
w 7−→ Rw

such that Ra and Rb are the substitutions (endomorphisms)

Ra(a) = a , Ra(b) = ba ,

Rb(a) = ab , Rb(b) = b .

I Justin proved the following multiplicative formula for de Luca’s map P:

P(uv) = P(u) Ru
`
P(v)

´
(u, v ∈ {a, b}∗) (1)

Consequently, de Luca’s map P is determined by (1) and its values on a
and b
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Trivial solutions of (1)

• If u, v were elements of a group G and P took values in a group E on which
G acts by w 7→ Rw by group automorphisms, then the functional equation

P(uv) = P(u) Ru
`
P(v)

´
would have as trivial solutions maps of the form

w 7→ X−1 Rw (X ) (w ∈ G) (2)

for some fixed element X of E

• Drawback. In the case of de Luca’s map, a trivial solution of the form (2)
forces us to work in the free group F2 on the letters a, b

• Bonus. If de Luca’s map is of the form (2) for some X ∈ F2, then
Formula (2) makes sense in F2, and thus provides an extension of P to F2



Extending de Luca’s map to the free group

For each w ∈ F2, we (= CK & CR) set

Pal(w) = (ab)−1 Rw (ab)

Our first observation was the following.

Proposition. For all w ∈ {a, b}∗,

Pal(w) = P(w)

In other words, the map Pal : F2 → F2 extends de Luca’s map
P : {a, b}∗ → {a, b}∗

Proof. Since Pal is of the form (2), it suffices to check that Pal(a) = a and
Pal(b) = b. For instance,

Pal(a) = (ab)−1 Ra(ab) = (ab)−1 Ra(a) Ra(b) = (ab)−1aba = a



First properties of Pal

I Proposition. Each Pal(w) is a palindrome:

Pal(w) = P̃al(w)

Here w 7→ ew is the unique anti-automorphism of F2 fixing a and b

I (Counting with signs the numbers of occurrences of a and b in Pal(w))
Let π : F2 → Z2 be the abelianization map

Proposition. For each w ∈ F2,

π
`
Pal(w)

´
=

`
Mw − I2

´ „
1
1

«
(3)

where w 7→ Mw is the homomorphism F2 → SL2(Z) such that

Ma =

„
1 1
0 1

«
and Mb =

„
1 0
1 1

«
.

Formula (3) had been established for de Luca’s map by Berthé, de
Luca, and Reutenauer
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Continuity of Pal

• The profinite topology on F2 is the coarsest topology such that any
homomorphism from F2 to a finite group is continuous

The subgroups of F2 of finite index form a system of neighborhoods of 1 for
this topology

• Theorem. The map Pal : F2 → F2 is continuous for the profinite topology

• Since {a, b}∗ is dense in F2 for this topology, we obtain

Corollary. The map Pal : F2 → F2 is the unique continuous extension of de
Luca’s map to F2



Non-continuity results

• Recall: De Luca constructed the map P using the right palindromic closure

w 7→ w+

Lemma. The map w 7→ w+ is not continuous

Proof. When n →∞,

wn = abn! → a and (wn)
+ = (abn!)+ = abn!a → aa 6= a+

• For a given prime p, the pro-p-finite topology on F2 is defined as the
coarsest topology such that any homomorphism from F2 to a finite p-group is
continuous

Lemma. The map Pal is not continuous for the pro-p-finite topology



Pal is not injective

• De Luca’s map P : {a, b}∗ → {a, b}∗ is injective, but

Pal(ba−1) = a−1 = Pal(a−1) and Pal(aba−1) = 1 = Pal(1)

• A good reason why Pal cannot be injective. In the automorphism
group Aut(F2),

Rab−1a = Ra R−1
b Ra = R−1

b Ra R−1
b = Rb−1ab−1 (4)

• By contrast, when considered as substitutions, Ra and Rb generate a free
monoid in End({a, b}∗)



Link with the braid group

• The braid group of braids with three strands:

B3 = 〈σ1, σ2 | σ1σ2σ1 = σ2σ1σ2〉

Let ϕ : F2 → B3 be the homomorphism such that

ϕ(a) = σ1 and ϕ(b) = σ−1
2

• Since Pal(w) = (ab)−1 Rw (ab) and Rab−1a = Rb−1ab−1 ,

ϕ(w) = ϕ(w ′) =⇒ Pal(w) = Pal(w ′)



The “kernel” of Pal

• Theorem. Pal(w) = Pal(w ′) ⇐⇒ ϕ(w−1w ′) ∈ 〈σ1σ
−1
2 σ−1

1 〉 ⊂ B3

• The proof of the theorem relies on the following facts:

(a) The subgroup of Aut(F2) generated by Ra and Rb is isomorphic to B3

(b) If Mw ∈ SL2(Z) fixes the vector (1, 1), then w is a power of aba−1

Note that ϕ(aba−1) = σ1σ
−1
2 σ−1

1



Characterization of the image of Pal

• For w , w ′ ∈ F2, we write w ∼ w ′ if they are conjugate in the group

Theorem. An element u ∈ F2 belongs to the image of Pal if and only if

abu ∼ bau

• We reduce the proof to

(a) the following result by Pirillo:

If u is a word in an alphabet A
such that abu ∼ bau for some distinct a, b ∈ A,

then u is a central word in a and b

(b) and de Luca’s characterization of central words as the images of his
map P

• Corollary. The image of Pal is a closed subset of F2 w. r. t. the profinite
topology
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Appendix 1: Christoffel words
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P = (5, 3)

• The Christoffel word attached to the primitive vector (5, 3) is aabaabab:

it labels the closest stair-case path approximating OP from below

• The corresponding central word is the palindrome abaaba



Appendix 2: Inverting de Luca’s map

• By de Luca’s result, if u is a central word, then u = P(w) for a unique w .

How to recover w from u?

• De Luca’s algorithm: If u0 = 1, u1, . . . , ur are the proper palindromic
prefixes of u in increasing length, and ai is the letter following ui in u, then

w = a0a1 · · · ar

• Example: For the central word u = abaaba,

u0 = 1 , a0 = a

u1 = a , a1 = b

u2 = aba , a2 = a

Hence,
w = aba
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