

The free group F_2 , the braid group B_3 , and palindromes

Christian Kassel

Université de Strasbourg
Institut de Recherche Mathématique Avancée
CNRS - Université Louis Pasteur
Strasbourg, France

Deuxième Congrès Canada-France
Session “Combinatoire algébrique”
Université du Québec à Montréal
Le 2 juin 2008

Introduction

- ▶ Joint work with **Christophe Reutenauer** (UQAM): arXiv:0802.4359
- ▶ *Starting point:* Work of **Aldo de Luca** in **combinatorics of words**

We work with words on **two letters** a, b , in particular with a class of words related to **Christoffel words**

- ▶ *What we do:*

We extend de Luca's construction to the **free group** on a, b

Some results of de Luca's still hold for our extension, some not

- ▶ *New features:*

- (a) **Continuity** properties
- (b) The **braid group** B_3 plays a role

Introduction

- ▶ Joint work with **Christophe Reutenauer** (UQAM): arXiv:0802.4359
- ▶ *Starting point:* Work of **Aldo de Luca** in **combinatorics of words**

We work with words on **two letters** a, b , in particular with a class of words related to **Christoffel words**

- ▶ *What we do:*

We extend de Luca's construction to the **free group** on a, b

Some results of de Luca's still hold for our extension, some not

- ▶ *New features:*

- (a) **Continuity** properties
- (b) The **braid group** B_3 plays a role

Introduction

- ▶ Joint work with **Christophe Reutenauer** (UQAM): arXiv:0802.4359
- ▶ *Starting point:* Work of **Aldo de Luca** in **combinatorics of words**

We work with words on **two letters** a, b , in particular with a class of words related to **Christoffel words**

- ▶ *What we do:*

We extend de Luca's construction to the **free group** on a, b

Some results of de Luca's still hold for our extension, some not

- ▶ *New features:*

- (a) **Continuity** properties
- (b) The **braid group** B_3 plays a role

Introduction

- ▶ Joint work with Christophe Reutenauer (UQAM): arXiv:0802.4359
- ▶ *Starting point:* Work of Aldo de Luca in combinatorics of words

We work with words on **two letters** a, b , in particular with a class of words related to **Christoffel words**

- ▶ *What we do:*

We extend de Luca's construction to the **free group** on a, b

Some results of de Luca's still hold for our extension, some not

- ▶ *New features:*

- (a) **Continuity** properties
- (b) The **braid group** B_3 plays a role

Palindromic closure

- The words on the alphabet $\{a, b\}$, including the empty word, form under concatenation the **monoid** $\{a, b\}^*$
- A word w is a **palindrome** if $w = \tilde{w}$ is equal to its **mirror image** (the word \tilde{w} is what you obtain when you read w from right to left)
- **Right palindromic closure:** For a word w , we denote by w^+ the shortest palindrome having w as a prefix

Construction of w^+ : if $w = uv$ is the unique decomposition, where $v = \tilde{v}$ is the longest palindromic suffix of v , then

$$w^+ = u\tilde{v}u$$

De Luca's iterated palindromic closure

- De Luca's defined the **right iterated palindromic closure**

$$P : \{a, b\}^* \longrightarrow \{a, b\}^*$$

recursively by $P(1) = 1$ and

$$P(wa) = (P(w)a)^+ \quad \text{and} \quad P(wb) = (P(w)b)^+$$

By definition, each $P(w)$ is a **palindrome**

- **Some values:**

$$P(a) = a, \quad P(b) = b,$$

$$P(aa) = aa, \quad P(bb) = bb,$$

$$P(ab) = aba, \quad P(ba) = bab,$$

$$P(aba) = abaaba, \quad P(bab) = babbab$$

Properties of de Luca's map

Aldo de Luca proved the following result

Theorem. *The map P is a bijection from $\{a, b\}^*$ onto the subset of central words*

This means that

- (a) $P : \{a, b\}^* \rightarrow \{a, b\}^*$ is injective
- (b) Each $P(w)$ is a central word
- (c) Any central word is $P(w)$ for some (unique) word w

Central words will be defined on the next slide

Central words

- ▶ A word is **central** if it has two coprime periods p, q and its length is $p + q - 2$

Example: aba^2ba is central with periods 3, 5 and length 6:

$$aba^2ba = \underbrace{aba}_{\text{period } 3} \underbrace{aba}_{\text{period } 5} = \underbrace{aba^2b}_{\text{length } 6} \underbrace{a}_{\text{length } 2}$$

- ▶ All central words are **palindromes**
- ▶ There is a **geometric** definition of central words *via Christoffel words*, which label **discrete approximations** of segments in the plane (see Appendix 1)

If w is a central word, then awb is a **Christoffel word**. Conversely, any Christoffel word starting with a and ending with b is of the form awb for some central word w

Central words

- ▶ A word is **central** if it has two coprime periods p, q and its length is $p + q - 2$

Example: aba^2ba is central with periods 3, 5 and length 6:

$$aba^2ba = \underbrace{aba}_{\text{period 3}} \underbrace{aba}_{\text{period 5}} = \underbrace{aba^2b}_{\text{length 6}} \underbrace{a}_{\text{length 2}}$$

- ▶ All central words are **palindromes**
- ▶ There is a **geometric** definition of central words *via Christoffel words*, which label **discrete approximations** of segments in the plane (see Appendix 1)

If w is a central word, then awb is a **Christoffel word**. Conversely, any Christoffel word starting with a and ending with b is of the form awb for some central word w

Central words

- ▶ A word is **central** if it has two coprime periods p, q and its length is $p + q - 2$

Example: aba^2ba is central with periods 3, 5 and length 6:

$$aba^2ba = \underbrace{aba}_{\text{period } 3} \underbrace{aba}_{\text{period } 5} = \underbrace{aba^2b}_{\text{length } 6} \underbrace{a}_{\text{length } 2}$$

- ▶ All central words are **palindromes**
- ▶ There is a **geometric** definition of central words *via Christoffel words*, which label **discrete approximations** of segments in the plane (see Appendix 1)

If w is a central word, then awb is a **Christoffel word**. Conversely, any Christoffel word starting with a and ending with b is of the form awb for some central word w

Justin's formula

- ▶ An action of the free monoid on itself.

There is a unique monoid homomorphism

$$\begin{array}{ccc} \{a, b\}^* & \longrightarrow & \text{End}(\{a, b\}^*) \\ w & \longmapsto & R_w \end{array}$$

such that R_a and R_b are the **substitutions** (endomorphisms)

$$R_a(a) = a, \quad R_a(b) = ba,$$

$$R_b(a) = ab, \quad R_b(b) = b.$$

- ▶ Justin proved the following **multiplicative formula** for de Luca's map P :

$$P(uv) = P(u) R_u(P(v)) \quad (u, v \in \{a, b\}^*) \quad (1)$$

Consequently, de Luca's map P is **determined** by (1) and its values on a and b

Justin's formula

- ▶ An action of the free monoid on itself.

There is a unique monoid homomorphism

$$\begin{array}{ccc} \{a, b\}^* & \longrightarrow & \text{End}(\{a, b\}^*) \\ w & \longmapsto & R_w \end{array}$$

such that R_a and R_b are the **substitutions** (endomorphisms)

$$R_a(a) = a, \quad R_a(b) = ba,$$

$$R_b(a) = ab, \quad R_b(b) = b.$$

- ▶ Justin proved the following **multiplicative formula** for de Luca's map P :

$$P(uv) = P(u) R_u(P(v)) \quad (u, v \in \{a, b\}^*) \quad (1)$$

Consequently, de Luca's map P is **determined** by (1) and its values on a and b

Trivial solutions of (1)

- If u, v were elements of a group G and P took values in a group E on which G acts by $w \mapsto R_w$ by group automorphisms, then the functional equation

$$P(uv) = P(u) R_u(P(v))$$

would have as **trivial solutions** maps of the form

$$w \mapsto X^{-1} R_w(X) \quad (w \in G) \tag{2}$$

for some fixed element X of E

- **Drawback.** In the case of de Luca's map, a trivial solution of the form (2) forces us to work in the **free group** F_2 on the letters a, b
- **Bonus.** If de Luca's map is of the form (2) for some $X \in F_2$, then Formula (2) makes sense in F_2 , and thus provides an extension of P to F_2

Extending de Luca's map to the free group

For each $w \in F_2$, we (= CK & CR) set

$$\text{Pal}(w) = (ab)^{-1} R_w(ab)$$

Our first observation was the following.

Proposition. For all $w \in \{a, b\}^*$,

$$\text{Pal}(w) = P(w)$$

In other words, the map $\text{Pal} : F_2 \rightarrow F_2$ extends de Luca's map
 $P : \{a, b\}^* \rightarrow \{a, b\}^*$

Proof. Since Pal is of the form (2), it suffices to check that $\text{Pal}(a) = a$ and $\text{Pal}(b) = b$. For instance,

$$\text{Pal}(a) = (ab)^{-1} R_a(ab) = (ab)^{-1} R_a(a) R_a(b) = (ab)^{-1} aba = a$$

First properties of Pal

- ▶ **Proposition.** *Each $\text{Pal}(w)$ is a **palindrome**:*

$$\text{Pal}(w) = \widetilde{\text{Pal}(w)}$$

Here $w \mapsto \widetilde{w}$ is the unique anti-automorphism of F_2 fixing a and b

- ▶ *(Counting with signs the numbers of occurrences of a and b in $\text{Pal}(w)$)*
Let $\pi : F_2 \rightarrow \mathbb{Z}^2$ be the **abelianization** map

Proposition. *For each $w \in F_2$,*

$$\pi(\text{Pal}(w)) = (M_w - I_2) \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad (3)$$

where $w \mapsto M_w$ is the homomorphism $F_2 \rightarrow \text{SL}_2(\mathbb{Z})$ such that

$$M_a = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad M_b = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}.$$

Formula (3) had been established for de Luca's map by Berthé, de Luca, and Reutenauer

First properties of Pal

- ▶ **Proposition.** *Each $\text{Pal}(w)$ is a **palindrome**:*

$$\text{Pal}(w) = \widetilde{\text{Pal}(w)}$$

Here $w \mapsto \widetilde{w}$ is the unique anti-automorphism of F_2 fixing a and b

- ▶ *(Counting with signs the numbers of occurrences of a and b in $\text{Pal}(w)$)*
Let $\pi : F_2 \rightarrow \mathbb{Z}^2$ be the **abelianization** map

Proposition. *For each $w \in F_2$,*

$$\pi(\text{Pal}(w)) = (M_w - I_2) \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad (3)$$

where $w \mapsto M_w$ is the homomorphism $F_2 \rightarrow \text{SL}_2(\mathbb{Z})$ such that

$$M_a = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad M_b = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}.$$

Formula (3) had been established for de Luca's map by Berthé, de Luca, and Reutenauer

Continuity of Pal

- The **profinite topology** on F_2 is the coarsest topology such that any homomorphism from F_2 to a finite group is continuous

The subgroups of F_2 of **finite index** form a system of neighborhoods of 1 for this topology

- **Theorem.** *The map $\text{Pal} : F_2 \rightarrow F_2$ is continuous for the profinite topology*
- Since $\{a, b\}^*$ is **dense** in F_2 for this topology, we obtain

Corollary. *The map $\text{Pal} : F_2 \rightarrow F_2$ is the unique continuous extension of de Luca's map to F_2*

Non-continuity results

- Recall: De Luca constructed the map P using the right **palindromic closure**

$$w \mapsto w^+$$

Lemma. *The map $w \mapsto w^+$ is **not** continuous*

Proof. When $n \rightarrow \infty$,

$$w_n = ab^{n!} \rightarrow a \quad \text{and} \quad (w_n)^+ = (ab^{n!})^+ = ab^{n!}a \rightarrow aa \neq a^+$$

- For a given prime p , the **pro- p -finite topology** on F_2 is defined as the coarsest topology such that any homomorphism from F_2 to a finite p -group is continuous

Lemma. *The map Pal is **not** continuous for the pro- p -finite topology*

Pal is not injective

- De Luca's map $P : \{a, b\}^* \rightarrow \{a, b\}^*$ is **injective**, but

$$\text{Pal}(ba^{-1}) = a^{-1} = \text{Pal}(a^{-1}) \quad \text{and} \quad \text{Pal}(aba^{-1}) = 1 = \text{Pal}(1)$$

- **A good reason why Pal cannot be injective.** In the automorphism group $\text{Aut}(F_2)$,

$$R_{ab^{-1}a} = R_a R_b^{-1} R_a = R_b^{-1} R_a R_b^{-1} = R_{b^{-1}ab^{-1}} \quad (4)$$

- By contrast, when considered as **substitutions**, R_a and R_b generate a **free monoid** in $\text{End}(\{a, b\}^*)$

Link with the braid group

- The **braid group** of braids with three strands:

$$B_3 = \langle \sigma_1, \sigma_2 \mid \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle$$

Let $\varphi : F_2 \rightarrow B_3$ be the homomorphism such that

$$\varphi(a) = \sigma_1 \quad \text{and} \quad \varphi(b) = \sigma_2^{-1}$$

- Since $\text{Pal}(w) = (ab)^{-1} R_w(ab)$ and $R_{ab^{-1}a} = R_{b^{-1}ab^{-1}}$,

$$\varphi(w) = \varphi(w') \implies \text{Pal}(w) = \text{Pal}(w')$$

The “kernel” of Pal

- **Theorem.** $\text{Pal}(w) = \text{Pal}(w') \iff \varphi(w^{-1}w') \in \langle \sigma_1\sigma_2^{-1}\sigma_1^{-1} \rangle \subset B_3$
- The proof of the theorem relies on the following facts:
 - (a) The subgroup of $\text{Aut}(F_2)$ generated by R_a and R_b is isomorphic to B_3
 - (b) If $M_w \in SL_2(\mathbb{Z})$ fixes the vector $(1, 1)$, then w is a power of aba^{-1}

Note that $\varphi(aba^{-1}) = \sigma_1\sigma_2^{-1}\sigma_1^{-1}$

Characterization of the image of Pal

- For $w, w' \in F_2$, we write $w \sim w'$ if they are conjugate in the group

Theorem. *An element $u \in F_2$ belongs to the image of Pal if and only if*

$$abu \sim bau$$

- We reduce the proof to

(a) the following result by **Pirillo**:

*If u is a word in an alphabet A
such that $abu \sim bau$ for some distinct $a, b \in A$,
then u is a central word in a and b*

(b) and **de Luca's characterization of central words** as the images of his map P

- **Corollary.** *The image of Pal is a closed subset of F_2 w. r. t. the profinite topology*

References

V. Berthé, A. de Luca, C. Reutenauer, *On an involution of Christoffel words and Sturmian morphisms*, European J. Combin. 29 (2008), 535–553.

J. Justin, *Episturmian morphisms and a Galois theorem on continued fractions*, Theor. Inform. Appl. 39 (2005), 207–215.

C. Kassel, C. Reutenauer, *Sturmian morphisms, the braid group B_4 , Christoffel words and bases of F_2* , Ann. Mat. Pura Appl. 186 (2007), 317–339.

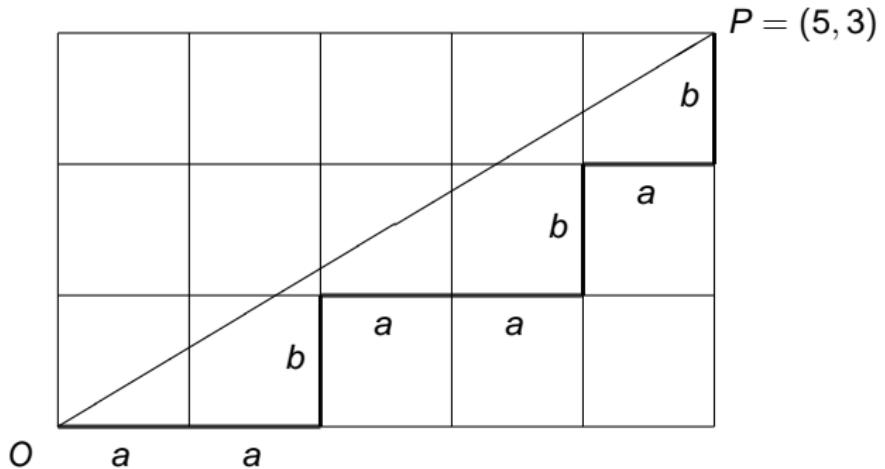
C. Kassel, C. Reutenauer, *A palindromization map for the free group*, arXiv:0802.4359

A. de Luca, *Sturmian words: structure, combinatorics, and their arithmetics*, Theoret. Comput. Sci. 183 (1997), no. 1, 45–82.

G. Pirillo, *A curious characteristic property of standard Sturmian words*, Algebraic combinatorics and computer science, 541–546, Springer Italia, Milan, 2001.

Appendix 1: Christoffel words

- The **Christoffel word** attached to the primitive vector $(5, 3)$ is $aabaabab$: it labels the closest stair-case path approximating OP from below
- The corresponding **central word** is the palindrome $abaaba$



Appendix 2: Inverting de Luca's map

- By de Luca's result, if u is a central word, then $u = P(w)$ for a unique w .

How to recover w from u ?

- *De Luca's algorithm:* If $u_0 = 1, u_1, \dots, u_r$ are the proper palindromic prefixes of u in increasing length, and a_i is the letter following u_i in u , then

$$w = a_0 a_1 \cdots a_r$$

- *Example:* For the central word $u = abaaba$,

$$u_0 = 1, \quad a_0 = a$$

$$u_1 = a, \quad a_1 = b$$

$$u_2 = aba, \quad a_2 = a$$

Hence,

$$w = aba$$