On combinatorial zeta functions

Christian Kassel

Institut de Recherche Mathématique Avancée
CNRS - Université de Strasbourg
Strasbourg, France

Colloquium
Potsdam
13 May 2015
• To a sequence \((a_n)_{n\geq 1}\) of numbers, it is customary to associate its generating function

\[g(t) = \sum_{n \geq 1} a_n t^n \]

• This is convenient because
 * it puts an infinite number of data into a single expression
 * very often finding equations for the generating function helps compute each individual number \(a_n\)
Another type of generating functions: Zeta functions

- To a sequence \((a_n)_{n \geq 1}\) of numbers, it is sometimes convenient to associate another generating function, a bit more involved, its zeta function:

\[
Z(t) = \exp \left(\sum_{n \geq 1} a_n \frac{t^n}{n} \right)
\]

- The ordinary generating function \(g(t)\) of the sequence can be recovered from the zeta function as its logarithmic derivative:

\[
g(t) = t \frac{d\log Z(t)}{dt} = t \frac{Z'(t)}{Z(t)} \tag{1}
\]

where \(Z'(t)\) is the derivative of \(Z(t)\)

Note that \(Z(t)\) is the unique solution of (1) such that \(Z(0) = 1\)

- Let us give examples of zeta functions appearing in various situations
Zeta functions I. Geometric progressions

- Take the geometric progression \((a_n)_{n \geq 1}\) with \(a_n = \lambda^n\) for some fixed scalar \(\lambda\):

\[
g(t) = \sum_{n \geq 1} \lambda^n t^n = \frac{\lambda t}{1 - \lambda t}
\]

We deduce

\[
Z(t) = \frac{1}{1 - \lambda t}
\] (2)

Observe that

* \(Z(t)\) is a rational function; we shall see more examples of rational zeta functions
* \(Z(t)\) is a “simpler” rational function than \(g(t)\)
* In the special case of the constant sequence \(a_n = 1\) for all \(n \geq 1\),

\[
Z(t) = \frac{1}{1 - t}
\]

Proof of (2). We have \(Z(0) = 1\) and

\[
t \frac{Z'(t)}{Z(t)} = -t \frac{(1 - \lambda t)'}{1 - \lambda t} = -t \frac{-\lambda}{1 - \lambda t} = \frac{\lambda t}{1 - \lambda t} = g(t)
\]
Zeta functions II. Algebraic varieties

- Let X be an algebraic variety defined as the set of zeroes of a system of polynomial equations with coefficients in the finite field $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$.

- Recall that any finite field extension of \mathbb{F}_p is of the form \mathbb{F}_q, where \mathbb{F}_q is a finite field of cardinality $q = p^n$ for some integer $n \geq 1$.

- Now X has a finite number of points $a_n = |X(\mathbb{F}_p^n)|$ in all finite fields \mathbb{F}_p^n, so that it makes sense to consider the zeta function

$$Z_{X/\mathbb{F}_p}(t) = \exp \left(\sum_{n \geq 1} a_n \frac{t^n}{n} \right)$$

introduced by Emil Artin in his Leipzig thesis (1921).

- **Question.** *Why call this a zeta function?*
 To answer this question, let us consider the case when X is a point.
The connection with Riemann’s zeta function

- **Example.** Let X be a point. Then $a_n = |X(F_p^n)| = 1$ for all $n \geq 1$ and

$$Z_{X/F_p}(t) = \frac{1}{1 - t}$$

- Now a point is defined over all finite fields. Putting all prime characteristics p together, we may form the **global zeta function**:

$$\zeta_X(s) = \prod_{p \text{ prime}} Z_{X/F_p}(p^{-s})$$

- Let us compute the global zeta function when X is a point:

$$\zeta_X(s) = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}}$$

(Euler)

$$\sum_{n \geq 1} \frac{1}{n^s} = \zeta(s)$$

which is the famous **Riemann zeta function**
Artin’s zeta functions and Weil conjectures

- More examples of Artin’s zeta functions.

 (a) Let $X = \mathbb{A}^1$ be an affine line. Then $a_n = |\mathbb{F}_p^n| = p^n$ and

 $$Z_{\mathbb{A}^1/\mathbb{F}_p}(t) = \frac{1}{1 - pt}$$

 (b) Let $X = \mathbb{P}^1 = \mathbb{A}^1 \cup \{\infty\}$ be a projective line. Then $a_n = p^n + 1$ and

 $$Z_{\mathbb{P}^1/\mathbb{F}_p}(t) = \frac{1}{(1 - t)(1 - pt)}$$

- Weil conjectures. One of them is the following:

 * If X is a quasi-projective variety (i.e. intersection of an open and of a closed subset of a projective space), then $Z_{X/\mathbb{F}_p}(t)$ is a rational function

 * This conjecture was first proved by Dwork (Amer. J. Math. 82 (1960))

 * Later Deligne proved all Weil conjectures and expressed $Z_{X/\mathbb{F}_p}(t)$ in terms of étale cohomology
Let Γ be a finite connected graph (i.e. the set of vertices and the set of edges are finite, and one can pass from one vertex to another by a series of edges) Assume Γ has no vertex of degree 1 (i.e. no vertex is related to only one other vertex)

Let a_n be the number of closed paths of length n (without backtracking)

Y. Ihara (1966) formed the corresponding zeta function

$$Z_\Gamma(t) = \exp \left(\sum_{n \geq 1} a_n \frac{t^n}{n} \right)$$

Theorem. The zeta function of a graph is a rational function

More precisely,…
Ihara’s zeta function: rationality

• The zeta function $Z_\Gamma(t)$ of a graph Γ is the inverse of a polynomial:

$$Z_\Gamma(t) = \frac{1}{\det(I - tM)}$$ \hspace{1cm} (3)

Here M is the edge adjacency matrix of Γ defined as follows:

• M is a matrix whose entries are indexed by all couples (\vec{e}, \vec{f}) of oriented edges of Γ (each edge has two orientations)

 * By definition, $M_{\vec{e}, \vec{f}} = 1$ if $\bullet \xrightarrow{\vec{e}} \bullet \xrightarrow{\vec{f}} \bullet$, i.e., if the terminal vertex of \vec{e} is the initial vertex of \vec{f} (provided \vec{f} is not the edge \vec{e} with reverse orientation)
 * Otherwise, $M_{\vec{e}, \vec{f}} = 0$

• To prove (3) one checks that

$$a_n = \text{(number of closed paths of length } n) = \text{Tr}(M^n)$$

and one concludes with the following general fact
The zeta function of a matrix

- For any square matrix M with scalar entries (in a field, in \mathbb{Z}), define

$$Z_M(t) = \exp \left(\sum_{n \geq 1} \text{Tr}(M^n) \frac{t^n}{n} \right)$$

Here $a_n = \text{Tr}(M^n)$ is the trace of the n-th power of M

- Proposition. We have Jacobi's formula

$$Z_M(t) = \frac{1}{\det(I - tM)}$$

- Proof. M is conjugate to an upper triangular matrix N; we have $\text{Tr}(M^n) = \text{Tr}(N^n)$ and $\det(I - tM) = \det(I - tN)$

 - For Tr and \det we need take care only of the diagonal elements
 - By multiplicativity we are reduced to a 1×1-matrix $M = (\lambda)$, hence to a geometric progression:

$$Z_M(t) = \frac{1}{1 - \lambda t} = \frac{1}{\det(I - tM)}$$
We next consider matrices with entries in a group ring

- Let G be a group (finite or infinite). Any element of the group ring $\mathbb{Z}G$ is a finite linear combination of elements of G of the form

$$a = \sum_{g \in G} a_g g \quad (a_g \in \mathbb{Z})$$

- Let $\tau_0 : \mathbb{Z}G \to \mathbb{Z}$ be the linear form defined by

$$\tau_0 \left(\sum_{g \in G} a_g g \right) = a_e \quad (e \text{ is the identity element of } G)$$

Exercise. Prove that τ_0 is a trace map, i.e., $\tau_0(ab) = \tau_0(ba)$ for all $a, b \in \mathbb{Z}G$

- **Example.** If $G = \mathbb{Z}$ is the group of integers, then $\mathbb{Z}G = \mathbb{Z}[X, X^{-1}]$ is the algebra of Laurent polynomials in one variable X and $\tau_0 \left(\sum_{k \in \mathbb{Z}} a_k X^k \right) = a_0$ is the constant coefficient of this Laurent polynomial
Matrices over group rings

- Let \(M \in M_d(\mathbb{Z}G) \) be a \(d \times d \)-matrix with entries in the group ring \(\mathbb{Z}G \). Set

\[
\tau(M) = \tau_0(\text{Tr}(M)) = \sum_i \tau_0(M_{i,i}) \in \mathbb{Z}
\]

- **Definition.** The zeta function of a matrix \(M \in M_d(\mathbb{Z}G) \) is given by

\[
Z_M(t) = \exp\left(\sum_{n \geq 1} \tau(M^n) \frac{t^n}{n} \right)
\]

- If \(G \) is the trivial group, then \(\mathbb{Z}G = \mathbb{Z} \) and \(\tau(M^n) = \text{Tr}(M^n) \). Therefore,

\[
Z_M(t) = \frac{1}{\det(I - tM)}
\]

This again is a rational function

- **Question.** What can we say for a general group \(G \)?
Finite groups

- **Proposition.** Let G be a finite group of order N. For any $M \in M_d(\mathbb{Z}G)$,

$$Z_M(t) = \left(\frac{1}{\det(I - tM')}\right)^{1/N}$$

for some $M' \in M_{dN}(\mathbb{Z})$

- **Proof.** It follows from a simple trick. We show how it works for $d = 1$.

 * To $a = \sum_{g \in G} a_g g \in \mathbb{Z}G$ associate the matrix $M_a \in M_N(\mathbb{Z})$ of the multiplication by a in a basis $\{g_1, \ldots, g_N\}$ of $\mathbb{Z}G$. It is easy to check that

$$\tau(a) = \tau_0(a) = a_e = \frac{1}{N} \text{Tr}(M_a)$$

 * Therefore,

$$Z_{(a)}(t) = \exp\left(\sum_{n \geq 1} \frac{\tau(a^n) t^n}{n}\right) = \exp\left(\sum_{n \geq 1} \frac{1}{N} \text{Tr}(M_a^n) \frac{t^n}{n}\right) = Z_{M_a}(t)^{1/N} \quad (\text{Jacobi}) = 1/ \det(I - tM_a)^{1/N}$$
So, if G is a non-trivial finite group, then $Z_M(t)$ is an algebraic function, not a rational function.

- **Definition.** A function $y = y(t)$ is algebraic if it satisfies an equation of the form
 \[a_r(t)y^r + a_{r-1}(t)y^{r-1} + \cdots + a_0(t) = 0 \]
 for some $r \geq 1$ and polynomials $a_0(t), a_1(t), \ldots, a_r(t)$ in t (not all of them 0).

- The zeta function $y = Z_M(t) = 1/\det(I - tM')^{1/N}$ of (4) satisfies the algebraic equation
 \[\det(I - tM')y^N - 1 = 0 \]

- Now we can state the main result...
The main result

- **Theorem.** Let G be a **virtually free** group and $M \in M_d(\mathbb{Z}G)$. Then $Z_M(t)$ is an **algebraic** function.

- **Remarks.** (a) A group G is **virtually free** if it contains a finite-index subgroup H which is free.

 * A **free group** is virtually free: take $H = G$

 * A **finite group** is virtually free: take $H = \{1\}$ (a free group of rank 0)

 (b) The theorem is due to

 * M. Kontsevich (*Arbeitstagung* Bonn 2011, arXiv:1109.2469) for $d = 1$,

 * Christophe Reutenauer and me for $d \geq 1$ (*Algebra Number Theory* 2014)

- Using the finite group trick, one derives the theorem from the more precise following result:

 Theorem 1. Let $G = F_N$ be a free group and $M \in M_d(\mathbb{Z}G)$. Then the formal power series $Z_M(t)$ has **integer** coefficients and is **algebraic**.
Let us now outline the proof of Theorem 1 following Kontsevich

Starting from a matrix \(M \in M_d(\mathbb{Z}F_N) \),

- **Step 1.** Prove that \(Z_M(t) \) is a formal power series with integer coefficients
- **Step 2.** Prove that \(g_M(t) = t \frac{d\log(Z_M(t))}{dt} = t \frac{Z'_M(t)}{Z_M(t)} \) is algebraic
- **Step 3.** Deduce from Steps 1–2 that \(Z_M(t) \) is algebraic

Remark.
- Steps 1–2 use standard techniques of the theory of formal languages
- Step 3 follows from a deep result in arithmetic geometry
A general setup

• Let A be a set and A^* the free monoid on the alphabet A:

$$A^* = \{ \text{words from letters of the alphabet } A \}$$

• Let $\mathbb{Z}\langle\langle A \rangle\rangle$ be the ring of non-commutative formal power series on A with integer coefficients. For $S \in \mathbb{Z}\langle\langle A \rangle\rangle$ we have a unique expansion of the form

$$S = \sum_{w \in A^*} (S, w) w \quad \text{with } (S, w) \in \mathbb{Z}$$

To such S we associate a generating function $g_S(t)$ and a zeta function $Z_S(t)$

• **Definition.** Set $a_n = \sum_{|w|=n} (S, w)$, where $|w|$ is the length of w. Then

$$g_S(t) = \sum_{n \geq 1} a_n t^n \in \mathbb{Z}[[t]] \quad \text{and} \quad Z_S(t) = \exp \left(\sum_{n \geq 1} a_n \frac{t^n}{n} \right) \in \mathbb{Q}[[t]]$$

As above, $g_S(t)$ and $Z_S(t)$ are related by $g_S(t) = t \frac{d \log(Z_S(t))}{dt} = t \frac{Z'_S(t)}{Z_S(t)}$
Cyclic non-commutative formal power series

- **Definition.** An element $S \in \mathbb{Z}\langle\langle A\rangle\rangle$ is *cyclic* if
 - $\forall u, v \in A^*, (S, uv) = (S, vu)$ and
 - $\forall w \in A^* - \{1\}, \forall r \geq 2, (S, w^r) = (S, w)^r$.

Definition. (a) A word is *primitive* if it is not the power of a proper subword
(b) Words w and w' are *conjugate* if $w = uv$ and $w' = vu$ for some u and v

- **Proposition.** If $S \in \mathbb{Z}\langle\langle A\rangle\rangle$ is cyclic, then we have the Euler product

$$Z_S(t) = \prod_{[\ell]} \frac{1}{1 - (S, \ell) t^{|\ell|}} = \prod_{[\ell]} (1 + (S, \ell) t^{|\ell|} + (S, \ell)^2 t^{2|\ell|} + \cdots)$$

where the product is taken over all conjugacy classes of non-trivial primitive words ℓ

- For the proof, take $t \text{dlog} / \text{dt}$ of both sides and use the following two facts:
 - any word is the power of a unique primitive word
 - if w is of length n, then there are n words conjugate to w, all of them of length n

- **Corollary.** If $S \in \mathbb{Z}\langle\langle A\rangle\rangle$ is cyclic, then $Z_S(t)$ has integer coefficients
Algebraic non-commutative formal power series

- One can define the notion of an algebraic non-commutative power series S

 Essentially, it means that S satisfies an algebraic system of equations.

- Passing from $S \in \mathbb{Z}\langle\langle A\rangle\rangle$ to $g_S(t) \in \mathbb{Z}[[t]]$ consists in replacing in S each letter of the alphabet A by the variable t. Therefore,

 \[
 \text{if } S \text{ is algebraic, then } g_S(t) \text{ is an algebraic function.}
 \]

- Relation between algebraicity and virtually free groups.

 Let G be a group and $A \subset G$ be a subset generating G as a monoid. Consider

 \[
 S_G = \sum w \in \mathbb{Z}\langle\langle A\rangle\rangle
 \]

 where the sum is taken over all words $w \in A^*$ representing the identity element of G (The series S_G incarnates the word problem for G)

 Theorem (Muller & Schupp, 1983) *The non-commutative power series S_G is algebraic if and only if the group G is virtually free.*
Steps 1–2

- To a matrix $M \in M_d(\mathbb{Z}F_N)$ there is a procedure to associate a formal power series $S \in \mathbb{Z}[[A]]$ satisfying:
 - the generating functions coincide:

 $$g_S(t) = g_M(t) \quad \text{and} \quad Z_S(t) = Z_M(t)$$
 - S is cyclic
 - S is algebraic

- **Consequence.** $Z_M(t)$ is a formal power series with integer coefficients and its logarithmic derivative $g_M(t)$ is algebraic
Step 3: An algebraicity theorem

To conclude we need the following

- **Lemma.** If \(f \in \mathbb{Z}[[t]] \) is a formal power series with integer coefficients and \(t \frac{d \log f}{dt} \) is algebraic, then \(f \) is algebraic

- **Remark.** The integrality condition ("with integer coefficients") is crucial: the transcendental formal power series

\[
f(t) = \exp(t) = \sum_{n \geq 0} \frac{t^n}{n!}
\]

has a logarithmic derivative \(t \frac{d \log f}{dt} = t \) which is algebraic (even rational)

- This lemma belongs to a list of similar results, such as the 19th century result: *If \(f \in \mathbb{Z}[[t]] \) is a formal power series with integer coefficients and its derivative is rational, then \(f \) is a rational function*

But passing from "rational" to "algebraic" is a more challenging problem, having received an answer only in the last 30 years

- **Problem.** Find an elementary proof of the lemma!
The Grothendieck-Katz conjecture

- The Grothendieck-Katz conjecture is a very general, mainly unproved, algebraicity criterion:

 \[Y' = AY \text{ is a linear system of differential equations with } A \in M_r(\mathbb{Q}(t)), \text{ then it has a basis of solutions which are algebraic over } \mathbb{Q}(t) \text{ if and only, for all large enough prime integers } p, \text{ the reduction modulo } p \text{ of the system has a basis of solutions that are algebraic over } \mathbb{F}_p(t) \]

- Instances of the conjecture have been proved
 - by Yves André (1989) following Diophantine approximation techniques of D. V. and G. V. Chudnovsky (1984),
 - and by Jean-Benoît Bost (2001) using Arakelov geometry

- These instances cover the system consisting of the differential equation

\[y' = \frac{g_M}{t} y \]

which is of interest to us, and thus yield the desired lemma

(for an overview, see Bourbaki Seminar by Chambert-Loir, 2001)
An example by Kontsevich

• Let $G = F_2$ the free group with generators X and Y and

\[M = X + X^{-1} + Y + Y^{-1} \in \mathbb{Z}F_2 = M_1(\mathbb{Z}F_2) \]

• Easy to check that

\[\tau(M^n) = \text{words in the alphabet \{X, X^{-1}, Y, Y^{-1}\} of length n and representing the identity element of F_2} \]

• Kontsevich proves the following algebraic expression for $Z_M(t)$:

\[Z_M(t) = \frac{2}{3} \cdot \frac{1 + 2\sqrt{1 - 12t^2}}{1 - 6t^2 + \sqrt{1 - 12t^2}} \]

Expanding $Z_M(t)$ as a formal power series, we obtain

\[Z_M(t) = 1 + 2 \sum_{n\geq1} 3^n \frac{(2n)!}{n!(n + 2)!} t^{2n} \in \mathbb{Z}[[t]] \]

See Sequence A000168 in Sloane’s *On-Line Encyclopedia of Integer Sequences*
The zeta function is not always algebraic

• For $M = X + X^{-1} + Y + Y^{-1} \in \mathbb{Z}F_2 = M_1(\mathbb{Z}F_2)$ we observed that

$$\tau(M^n) = |\text{words in the alphabet } \{X, X^{-1}, Y, Y^{-1}\}\text{ of length } n \text{ and representing the identity element of } F_2|$$

In particular, $\tau(XYX^{-1}Y^{-1}) = 0$

• Now, if $G = \mathbb{Z} \times \mathbb{Z}$ is the free abelian group with generators X and Y, then

$$XYX^{-1}Y^{-1} = 1$$

and so $\tau(XYX^{-1}Y^{-1}) = 1$

• Taking $M = X + X^{-1} + Y + Y^{-1}$ now in $\mathbb{Z}[\mathbb{Z} \times \mathbb{Z}] = \mathbb{Z}[X, X^{-1}, Y, Y^{-1}]$, one shows that

$$\tau(M^n) = \left(\frac{2n}{n}\right)^2 \sim \frac{1}{\pi} \frac{16^n}{n}$$

By a criterion due to Eisenstein (1852), the presence of $1/n$ in the previous asymptotics implies that the generating function $g_M(t)$, hence $Z_M(t)$, is not algebraic
The algebraic curve behind Kontsevich’s example

- For $M = X + X^{-1} + Y + Y^{-1} \in \mathbb{Z}F_2$
 the function $y = Z_M(t)$ satisfies the quadratic equation

$$27t^4y^2 - (18t^2 - 1)y + (16t^2 - 1) = 0 \quad (5)$$

This equation defines an algebraic curve C_M over \mathbb{Z}

What can we say about the curve C_M? about its genus?

- How to compute the genus from an equation of the form $\sum_{i,j \geq 0} a_{i,j} t^i y^j = 0$?

 * Draw the Newton polygon which is the convex hull of the points $(i, j) \in \mathbb{R}^2$ for which $a_{i,j} \neq 0$

 * The genus is the number of integral points of the interior of the Newton polygon

Newton polygon and genus

Equation of $y = Z_M(t)$ for $M = X + X^{-1} + Y + Y^{-1}$:

$$27t^4y^2 - (18t^2 - 1)y + (16t^2 - 1) = 0$$

The contour of the Newton polygon is in red.

It contains 2 interior integral points marked \times.

Therefore genus $= 2$.
The algebraic curve behind a matrix

• For $M = X + X^{-1} + Y + Y^{-1}$, we have the formal power series expansion

$$Z_M(t) = 1 + 2t^2 + 9t^4 + 54t^6 + 378t^8$$
$$+ 2916t^{10} + 24057t^{12} + 208494t^{14}$$
$$+ 1876446t^{16} + 17399772t^{18} + 165297834t^{20} + \cdots$$

The function $y = Z_M(t)$ satisfies the quadratic equation

$$27t^4y^2 - (18t^2 - 1)y + (16t^2 - 1) = 0$$

• For a general matrix $M \in M_d(\mathbb{Z}F_N)$, what are the connections between

 * the entries of M,
 * the integer coefficients of the formal power series $Z_M(t)$,
 * the integer coefficients of an algebraic equation satisfied by $Z_M(t)$,
 * the integral coordinates of the vertices of the Newton polygon of the equation?

Any idea?

M. Kontsevich, *Noncommutative identities*, talk at Mathematische Arbeitstagung 2011, Bonn; arXiv:1109.2469v1

Ich danke für Ihre Aufmerksamkeit

Thank you for your attention!