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Introduction

Dans cet exposé je parlerai

• du multiplicateur introduit par Schur un peu après 1900,

• puis d’un avatar moderne dû à Drinfeld

Auparavant, je rappellerai ce qu’est le dual de Pontryagin d’un groupe abélien

Je présenterai ainsi trois objets mathématiques dus à trois mathématiciens
ayant vécu à trois époques différentes



Issai Schur (1875–1941)

• professeur à l’Université de Berlin

• connu pour ses travaux en théorie des représentations (“lemme de Schur”)
et en combinatoire (“fonctions de Schur”)

• chassé en 1935 de son poste de professeur en raison de ses origines juives,
puis, suite à une intervention de Bieberbach, de l’Académie des sciences de
Prusse et du comité éditorial de Mathematische Zeitschrift

• obligé de quitter l’Allemagne en 1939 et mort en exil à Jérusalem



Lev Semionovitch Pontriaguine (Pontryagin) (1908–1988)

• aveugle à l’âge de 14 ans suite à l’explosion d’un réchaud

• professeur à Moscou

• connu pour ses travaux en topologie algébrique et
en topologie différentielle (“classes de Pontryagin”)

• et. . . pour ses positions antisémites



Vladimir Drinfeld (né en 1954)

• professeur à Chicago (auparavant, chercheur à Kharkov)

• connu pour ses travaux sur la conjecture de Langlands et
en physique mathématique menant aux groupes quantiques

• médaille Fields en 1990



Dual de Pontryagin

Soit G un groupe abélien localement compact

• Définition. Un caractère de G est une fonction continue χ : G → U à valeurs
dans les nombres complexes de module 1 telle que

χ(a + b) = χ(a)χ(b) (a, b ∈ G)

• L’ensemble des caractères de G est appelé le dual de Pontryagin de G ;
il forme un groupe dont la loi est donnée par

(χ · χ′)(a) = χ(a)χ′(a) (a ∈ G)

• La dualité de Pontryagin est involutive :
̂̂
G ∼= G

• Exemples.
(a) Û = Z : tout endomorphisme continu de U est de la forme z 7→ zn (n ∈ Z)

(b) R̂ = R : tout homorphisme continu R → U est de la forme t 7→ e iat (a ∈ R)

• Le dual d’un groupe compact est un groupe discret et réciproquement

• Dans la suite on ne s’intéressera qu’aux groupes compacts et discrets,
c’est-à-dire aux groupes finis



Transformation de Fourier discrète

• Question. Comment étendre la dualité de Pontryagin aux groupes (finis) non
abéliens sachant que tout caractère χ : G → U se factorise par le quotient
abélien maximal Gab = G/[G ,G ] ?

• Idée. Passer aux algèbres de fonctions

• Soit G un groupe fini abélien et O(G) l’algèbre des fonctions sur G à valeurs

complexes. Notons O(Ĝ) l’algèbre des fonctions sur le dual de Pontryagin de G

La transformation de Fourier discrète (TFD)

f̂ (χ) =
∑
a∈G

f (a)χ(a) (χ ∈ Ĝ)

définit un isomorphisme d’espaces vectoriels

f 7→ f̂ : O(G)→ O(Ĝ)



L’algèbre d’un groupe

• La TDF n’est pas un isomorphisme d’algèbres : on a

f̂1 · f̂2 = f̂1 ∗ f2

où le produit ∗, dit produit de convolution, sur O(G) est défini par

(f1 ∗ f2)(a) =
∑
b∈G

f1(b) f2(a− b) (a ∈ G)

• Le produit de convolution ∗ munit O(G) d’une autre structure d’algèbre
associative et unifère, notée CG et appelée l’algèbre du groupe G

Etant donné a ∈ G , soit ea la fonction nulle partout sauf en a où elle vaut 1.
Alors

ea ∗ eb = ea+b (a, b ∈ G)

Conclusion. La TDF permet d’identifier l’algèbre des fonctions O(Ĝ) sur le

dual de Pontryagin Ĝ avec l’algèbre du groupe CG



Algèbres de Hopf

• Si G est un groupe (fini) non abélien, alors les algèbres O(G) et CG sont
bien définies, et en généralisant à partir du cas abélien, on peut considérer
l’algèbre du groupe CG comme le dual de l’algèbre des fonctions O(G)

On va donner un sens précis à cette nouvelle dualité en utilisant le langage des
algèbres de Hopf

• Une algèbre de Hopf est une algèbre associative et unifère muni de structures
supplémentaires, notamment d’un morphisme d’algèbres

∆ : H → H ⊗ H (coproduit)

vérifiant l’égalité de coassociativité

(∆⊗ idH)∆ = (idH ⊗∆)∆

• Le concept d’algèbre de Hopf est auto-dual : si H est une algèbre de Hopf de
dimension finie, alors son dual linéaire H∗ = Hom(H,C) en est une également :

- le produit de H∗ est la transposée du coproduit de H

- le coproduit de H∗ est la transposée du produit de H



La dualité entre O(G ) et CG

• Pour tout groupe (fini) G , l’algèbre des fonctions O(G) est une algèbre de
Hopf dont le coproduit est défini par

∆(f )(g , h) = f (gh) (g , h ∈ G)

• L’algèbre de groupe CG a également une structure d’algèbre de Hopf ; son
coproduit est donné par

∆(eg ) = eg ⊗ eg (g ∈ G)

• L’accouplement naturel 〈−,−〉 : CG × O(G)→ C donné par

〈eg , f 〉 = f (g)

induit un isomorphisme d’algèbres de Hopf CG
∼=−→ O(G)∗

• Moralité. La dualité de Pontryagin pour les groupes non abéliens,
c’est la dualité entre les algèbres de Hopf O(G) et CG



Représentations projectives

• Une représentation linéaire d’un groupe fini G est un homomorphisme de
groupes

ρ : G → GLn(C)

de G vers le groupe linéaire général pour un certain entier n ≥ 1

• Une représentation projective d’un groupe fini G est un homomorphisme de
groupes

ρ̄ : G → PGLn(C)

de G vers le groupe linéaire projectif

PGLn(C) = GLn(C)/ {λIn , λ ∈ C− {0}}

Les représentations projectives ont étudiées par Schur dans deux articles parus
en 1904 et 1907 au Journal de Crelle (Journal für reine und angewandte
Mathematik)



Cocycle associé à une représentation projective

I En associant à tout élément de PGLn(C) une matrice inversible
dans GLn(C), autrement dit, en choisissant une section de la surjection
canonique GLn(C)� PGLn(C), on peut identifier une représentation
projective ρ̄ : G → PGLn(C) à une fonction

ρ : G → GLn(C)

telle que, pour tous g , h ∈ G , il existe un scalaire α(g , h) 6= 0 tel que

ρ(gh) = α(g , h) ρ(g)ρ(h) (g , h ∈ G)

I Que peut-on dire de la fonction α : G × G → C× = C− {0} ?

Si on développe l’égalité ρ((gh)k) = ρ(g(hk)), on obtient la relation de
cocycle

α(g , h)α(gh, k) = α(h, k)α(g , hk) (g , h, k ∈ G) (1)

• On dit qu’une fonction α : G × G → C× vérifiant la relation (1) est un
2-cocycle de G



Cocycles cohomologues

• Si on fait le choix d’une autre section de la surjection GLn(C)� PGLn(C),
on obtient un autre 2-cocycle β. Il est lié à α par une relation de la forme

β(g , h) =
λ(g)λ(h)

λ(gh)
α(g , h) (g , h ∈ G)

où λ : G → C× est une certaine fonction

On dit que les 2-cocycles α et β sont cohomologues

• La relation de cohomologie est une relation d’équivalence sur les 2-cocycles
d’un groupe



Le multiplicateur de Schur - Définition

• Définition. Le multiplicateur de Schur M(G) de G est le groupe des classes
de cohomologie de 2-cocycles de G

• Depuis l’avènement de l’algèbre homologique et de la cohomologie des
groupes (1940–50), on sait que le multiplicateur de Schur s’identifie au second
groupe de cohomologie du groupe G :

M(G) = H2(G ,C×)

ce qui donne de puissants moyens de le calculer

• Remarque. Si G est un groupe abélien fini, alors Ĝ = H1(G ,C×)

On peut considérer le multiplicateur de Schur comme un analogue supérieur du
dual de Pontryagin



Le multiplicateur de Schur - Exemples

I Schur (1911) a déterminé le multiplicateur de Schur
des groupes symétriques et alternés :

M(Sn) =

{
Z/2 si n ≥ 4

1 si n ≤ 3

M(An) =


Z/2 si n ≥ 8 et n = 4, 5

Z/6 si n = 6, 7

1 si n ≤ 3

I Les multiplicateurs de Schur de tous les groupes simples ont été calculés
dans les années 1960–70. Par exemple,

(a) pour le Monstre de Fischer-Griess, on a M(F1) = 1

(b) M(PSL3(F4)) ∼= Z/12× Z/4

I Pour des groupes “composés” le multiplicateur peut être “grand” :

M((Z/2)N) ∼= (Z/2)N(N−1)/2



Vers un “dual” du multiplicateur de Schur

Questions

• Peut-on définir le multiplicateur de Schur d’un groupe fini G
en termes de l’algèbre des fonctions O(G) ?

Comme nous l’avons vu, une telle réinterprétation permet de voir la dualité de
Pontryagin des groupes dans le cadre plus général de la dualité des algèbres de
Hopf

O(G)←→ CG

• Plus généralement, peut-on définir le multiplicateur de Schur dans le cadre
des algèbres de Hopf ?

• La réponse est oui ; elle fait intervenir les “twists de Drinfeld”



Twists de Drinfeld

Ils ont été introduits par Drinfeld en 1989–90 pour classifier les groupes
quantiques qu’il avait définis quelques années auparavant

• Définition. (a) Un twist de Drinfeld sur une algèbre de Hopf H est un
élément inversible F ∈ H ⊗ H vérifiant l’équation

(F ⊗ 1) (∆⊗ idH)(F ) = (1⊗ F ) (idH ⊗∆)(F ) ∈ H ⊗ H ⊗ H (2)

• Si H = O(G) est l’algèbre des fonctions complexes sur un groupe fini G ,
alors un twist de Drinfeld

F ∈ O(G)⊗ O(G) = O(G × G)

n’est autre qu’une fonction F : G × G → C vérifiant deux conditions :

(a) F prend des valeurs dans C× ⇐⇒ inversibilité de F

(b) F est un 2-cocycle de G ⇐⇒ équation (2)

Conclusion. Un twist de Drinfeld sur H = O(G) est un 2-cocycle de G



Le multiplicateur de Schur exprimé
à l’aide des twists de Drinfeld

• Lemme. Deux 2-cocycles F ,F ′ de G sont cohomologues si et seulement si

F ′ = (λ⊗ λ) F ∆(λ−1) ∈ O(G)⊗ O(G) (3)

où λ est un élément inversible de O(G), c’est-à-dire une fonction λ : G → C×
à valeurs non nulles

Conséquences.

(a) Le multiplicateur de Schur M(G) d’un groupe fini s’identifie à
l’ensemble des classes de cohomologie des twists de Drinfeld sur l’algèbre de
Hopf O(G)

(b) La relation d’équivalence (3) s’étend aux twists de Drinfeld sur les

algèbres de Hopf



Le multiplicateur de Schur d’une algèbre de Hopf

• Première tentative. Définir le multiplicateur de Schur d’une algèbre de
Hopf H comme l’ensemble des classes de cohomologie des twists de Drinfeld
sur H

• Un hic ! Le produit de twists de Drinfeld sur une algèbre de Hopf
non commutative n’est en général pas un twist de Drinfeld

• Deuxième tentative. On se restreint aux twists de Drinfeld invariants,
c’est-à-dire aux twists F tels que

∆(a)F = F ∆(a) (a ∈ H)

• Coup de chance. Le produit de deux twists invariants est un twist invariant

• Définition (Peter Schauenburg, 2002). Le multiplicateur de Schur M(H)
d’une algèbre de Hopf H est le groupe des classes de cohomologie des twists de
Drinfeld invariants sur H



Le multiplicateur de Schur de l’algèbre d’un groupe

• On peut maintenant essayer de calculer le multiplicateur de Schur de diverses
algèbres de Hopf

I Si H = O(G) est l’algèbre des fonctions sur un groupe fini G , alors au vu
des identifications précédentes, on retrouve le multiplicateur de Schur
de G :

M(O(G)) = M(G)

I Considérons maintenant l’algèbre duale de O(G), à savoir
l’algèbre CG du groupe G .

Nous nous concentrons sur ce cas et posons

H(G) =M(CG)

• Cas abélien. Si G est abélien, alors CG ∼= O(Ĝ) via TFD et donc

H(G) ∼=M(O(Ĝ)) = M(Ĝ)



Le groupe H(G )

• Que peut-on dire de H(G) =M(CG) quand G est un groupe fini
non abélien ?

• La réponse est donnée dans un travail en commun avec Pierre Guillot
(Strasbourg)

Référence : P. Guillot, C. Kassel,
Cohomology of invariant Drinfeld twists on group algebras,
Internat. Math. Res. Notices 2010 no. 10, 1894–1939; arXiv:0903.2807

• Je vais me contenter d’énoncer trois propriétés de H(G) et de donner de
quelques exemples de calcul



Propriétés et calcul de H(G )

• Trois propriétés importantes

1. H(G) est un groupe fini

2. H(G) contient un sous-groupe H0(G) isomorphe à un sous-groupe
d’automorphismes extérieurs Outc(G) (décrit plus loin)

3. Si G possède un unique sous-groupe distingué abélien maximal A, alors il
existe une suite exacte de la forme

1→ H0(G)→ H(G)→ H2(Â,C×)G

(Lorsque G possède plusieurs tels sous-groupes, il y a une formulation
plus compliquée de la suite exacte précédente)

• Exemples

I Si G est un groupe simple ou un groupe symétrique, alors

H(G) = 1

I Pour A4 qui est le seul groupe alterné non simple (il contient le groupe de
Klein Z/2× Z/2, qui est le seul sous-groupe distingué abélien maximal),

H(A4) ∼= H2(Z/2× Z/2,C×)A4 ∼= Z/2



Le groupe Outc(G )

• Le groupe des automorphismes intérieurs est défini par

Int(G) =
{
ϕ ∈ Aut(G) | ∃h, ∀g ∈ G , ϕ(g) = hgh−1

}
Echangeons les quantificateurs :

Autc(G) =
{
ϕ ∈ Aut(G) | ∀g , ∃h ∈ G , ϕ(g) = hgh−1

}
Un élément de Autc(G) est un automorphisme de G qui préserve chaque classe
de conjugaison de G

• Définition. On pose Outc(G) = Autc(G)/ Int(G)

• Exemples pour lesquels Outc(G) = 1

∗ G est un groupe symétrique (exercice)

∗ (Feit-Seitz, 1989) G est un groupe simple
(calcul au cas par cas utilisant la classification des groupes finis simples)



Le groupe Outc(G ) n’est pas toujours trivial, ni abélien

• Burnside (1912) a été le premier à construire des groupes pour lesquels
Outc(G) 6= 1 (son exemple le plus petit est d’ordre 729 = 36)

• G. E. Wall (1947) a montré que Outc(G) = Z/2 pour le groupe d’ordre 32

G = Z/8 o Aut(Z/8)

• Burnside a énoncé que Outc(G) est toujours abélien, mais. . .

• C.-H. Sah (1968) a construit des groupes où Outc(G) est non abélien
(son exemple le plus petit est d’ordre 215)

• Conséquence. Il existe des groupes pour lesquels H(G) est non abélien
et donc des algèbres de Hopf pour lesquelles
le multiplicateur de Schur généralisé M(H) est non abélien



Merci de votre attention
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The pointed set B(G )

• Definition. Let A be the category whose objects are the normal abelian
subgroups A of G and whose arrows are the inclusions. Define

B(G) =
⋃
A∈A

H2(Â, k×)G (a colimit of pointed sets)

Here Â = Hom(A, k×) is the group of characters of A and

H2(Â, k×) is the second cohomology group of Â

Remark. If k× is divisible, then H2(Â, k×) ∼= Hom(Λ2Â, k×)

• The set B(G) is

∗ non-empty: it is pointed by the zero element 0 lying in all H2(Â, k×)G

∗ it is finite

• If G has a unique maximal normal abelian subgroup A, then

B(G) = H2(Â, k×)G



Determining H2(G/k)

Now our main result in the algebraically closed case

Assume that the field k is algebraically closed of characteristic prime to |G |

Theorem 2. There is a set-theoretic map Θ : H2(G/k)→ B(G) such that

(a) H0 = Θ−1({0}) is a subgroup of H2(G/k) with

H0
∼= Outc(G)

(b) All fibers of Θ are in bijection with H0; more precisely,

Θ(α) = Θ(β)⇐⇒ β ∈ αH0 (α, β ∈ H2(G/k))

(c) If |G | is odd, then Θ is surjective



Wall’s group of order 32

• The group G = Z/8 o Aut(Z/8) of order 32 has the presentation

G = 〈s, t, u | s2 = t2 = u8 = 1, st = ts, sus−1 = u3, tut−1 = u5〉

• G. E. Wall (1947) proved that Outc(G) = Z/2, generated by the
automorphism α defined by

α(s) = u4s = u2su−2 , α(t) = u4t = utu−1 , α(u) = u

In fact, α(g) = aga−1 (g ∈ G), where

a =
1

2
(1 + u4) +

√
2

4
u (1− u2 − u4 + u5) ∈ CG

• The group G has a unique maximal normal abelian subgroup, namely
A = 〈t, u4〉 ∼= Z/2× Z/2. The set B(G) = H2(Â, k×)G has two elements

• Therefore, H2(G) has order 4 or 2 according as Θ is surjective or not

We were not able to conclude



The rationality exact sequence

Assume that k is of characteristic zero with algebraic closure k̄

Theorem 1. Let G be a finite group. If all irreducible k̄-representations of G
can be realized over k, then there is an exact sequence of groups

1 −→ H1(Gal(k̄/k),Z(G)) −→ H2(G/k) −→ H2(G/k̄) −→ 1

(classical bitorsors) (non-comm. bitorsors)

(arithmetic) (geometric)

In particular, if G has a trivial center, then H2(G/k) ∼= H2(G/k̄)

Remark.

H1(Gal(k̄/k),Z(G)) = Homcontinuous(Gal(k̄/k),Z(G))

= lim−→ k′/k
finite Galois ext.

Hom(Gal(k ′/k),Z(G))


