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Introduction

Dans cet exposé je parlerai

e du multiplicateur introduit par Schur un peu apres 1900,

e puis d'un avatar moderne dii a Drinfeld
Auparavant, je rappellerai ce qu'est le dual de Pontryagin d'un groupe abélien

Je présenterai ainsi trois objets mathématiques dus a trois mathématiciens
ayant vécu a trois époques différentes



Issai Schur (1875-1941)

e professeur a I'Université de Berlin

e connu pour ses travaux en théorie des représentations (“lemme de Schur”)
et en combinatoire (“fonctions de Schur”)

e chassé en 1935 de son poste de professeur en raison de ses origines juives,
puis, suite a une intervention de Bieberbach, de I’Académie des sciences de
Prusse et du comité éditorial de Mathematische Zeitschrift

e obligé de quitter I'Allemagne en 1939 et mort en exil a Jérusalem



Lev Semionovitch Pontriaguine (Pontryagin) (1908-1988)

e aveugle a |'dge de 14 ans suite a |'explosion d'un réchaud
e professeur a Moscou

e connu pour ses travaux en topologie algébrique et
en topologie différentielle (“classes de Pontryagin”)

e et...pour ses positions antisémites



Vladimir Drinfeld (né en 1954)

e professeur a Chicago (auparavant, chercheur a Kharkov)

e connu pour ses travaux sur la conjecture de Langlands et
en physique mathématique menant aux groupes quantiques

o médaille Fields en 1990



Dual de Pontryagin

Soit G un groupe abélien localement compact

e Définition. Un caractére de G est une fonction continue x : G — U a valeurs
dans les nombres complexes de module 1 telle que

x(a+b) =x(a)x(b)  (a,b€G)

e L'ensemble des caractéres de G est appelé le dual de Pontryagin de G ;
il forme un groupe dont la loi est donnée par

(- x)@) =x(a)x'(a)  (a€G)

e La dualité de Pontryagin est involutive : G = G

e Exemples.
(a) U=Z : tout endomorphisme continu de U est de la forme z — z" (n € Z)

(b) R=R: tout homorphisme continu R — U est de la forme t — e (a € R)

e Le dual d'un groupe compact est un groupe discret et réciproquement

e Dans la suite on ne s’intéressera qu'aux groupes compacts et discrets,
c’est-a-dire aux groupes finis



Transformation de Fourier discréte

e Question. Comment étendre la dualité de Pontryagin aux groupes (finis) non
abéliens sachant que tout caractére x : G — U se factorise par le quotient
abélien maximal G, = G/[G,G] ?

e |Idée. Passer aux algebres de fonctions
e Soit G un groupe fini abélien et O(G) I'algebre des fonctions sur G a valeurs

complexes. Notons O(a) I"algebre des fonctions sur le dual de Pontryagin de G

La transformation de Fourier discrete (TFD)

f)=>_ fax(a) (x€G)

acG

définit un isomorphisme d'espaces vectoriels

frs f:0(G) = 0(G)



L'algebre d'un groupe

e La TDF n’est pas un isomorphisme d'algebres : on a
Ah=fi+h

ou le produit *, dit produit de convolution, sur O(G) est défini par

(f*£)@) =3 A(B)A(a—b)  (2€G)

beG

e Le produit de convolution * munit O(G) d'une autre structure d'algébre
associative et unifere, notée CG et appelée |'algebre du groupe G

Etant donné a € G, soit e, la fonction nulle partout sauf en a ou elle vaut 1.
Alors
€ % € = €atb (a, b€ G)

Conclusion. La TDF permet d'identifier |'algebre des fonctions O(a) sur le
dual de Pontryagin G avec I'algebre du groupe CG



Algebres de Hopf

e Si G est un groupe (fini) non abélien, alors les algébres O(G) et CG sont
bien définies, et en généralisant a partir du cas abélien, on peut considérer
I'algebre du groupe CG comme le dual de I'algebre des fonctions O(G)

On va donner un sens précis a cette nouvelle dualité en utilisant le langage des

algebres de Hopf

e Une algebre de Hopf est une algebre associative et uniféere muni de structures
supplémentaires, notamment d’un morphisme d'algebres

A:H—-H®H (coproduit)
vérifiant I'égalité de coassociativité
(A®idp)A = (idy ®A)A

e Le concept d'algébre de Hopf est auto-dual : si H est une algebre de Hopf de
dimension finie, alors son dual linéaire H* = Hom(H, C) en est une également :

- le produit de H* est la transposée du coproduit de H

- le coproduit de H* est la transposée du produit de H



La dualité entre O(G) et CG

e Pour tout groupe (fini) G, I'algebre des fonctions O(G) est une algebre de
Hopf dont le coproduit est défini par

A(f)(g,h) =f(gh) (g, heG)

e L'algebre de groupe CG a également une structure d'algébre de Hopf ; son
coproduit est donné par

Alg) = e, @ eg (g € G)

e L'accouplement naturel (—, =) : CG x O(G) — C donné par
(eg, f) = f(g)

induit un isomorphisme d'algébres de Hopf CG — o(G)*

e Moralité. La dualité de Pontryagin pour les groupes non abéliens,
c'est la dualité entre les algebres de Hopf O(G) et CG



Représentations projectives

e Une représentation linéaire d’'un groupe fini G est un homomorphisme de
groupes
p: G — GL,(C)

de G vers le groupe linéaire général pour un certain entier n > 1

e Une représentation projective d'un groupe fini G est un homomorphisme de
groupes
p: G — PGL,(C)

de G vers le groupe linéaire projectif
PGL,(C) = GL,(C)/{\l,, A € C—{0}}
Les représentations projectives ont étudiées par Schur dans deux articles parus

en 1904 et 1907 au Journal de Crelle (Journal fiir reine und angewandte
Mathematik)



Cocycle associé a une représentation projective

> En associant a tout élément de PGL,(C) une matrice inversible
dans GL,(C), autrement dit, en choisissant une section de la surjection
canonique GL,(C) — PGL,(C), on peut identifier une représentation
projective p: G — PGL,(C) a une fonction

p: G — GL,(C)
telle que, pour tous g, h € G, il existe un scalaire a(g, h) # 0 tel que
p(gh) = (g, h) p(g)p(h)  (g,h € G)
> Que peut-on dire de la fonction a: G x G - C* =C — {0} ?

Si on développe I'égalité p((gh)k) = p(g(hk)), on obtient la relation de
cocycle

a(g, h) a(gh, k) = a(h, k) a(g, hk) (g,h, k € G) (1)

e On dit qu'une fonction a: G x G — C* vérifiant la relation (1) est un
2-cocycle de G



Cocycles cohomologues

e Si on fait le choix d'une autre section de la surjection GL,(C) — PGL,(C),
on obtient un autre 2-cocycle 3. Il est lié a a par une relation de la forme

s =200 agn)  (gne )

oll A: G — C* est une certaine fonction

On dit que les 2-cocycles « et 3 sont cohomologues

e La relation de cohomologie est une relation d’'équivalence sur les 2-cocycles
d'un groupe



Le multiplicateur de Schur - Définition

e Définition. Le multiplicateur de Schur M(G) de G est le groupe des classes
de cohomologie de 2-cocycles de G

e Depuis I'avenement de I'algebre homologique et de la cohomologie des
groupes (1940-50), on sait que le multiplicateur de Schur s'identifie au second
groupe de cohomologie du groupe G :

M(G) = H*(G,C")
ce qui donne de puissants moyens de le calculer

e Remarque. Si G est un groupe abélien fini, alors G = HY(G,CX)

On peut considérer le multiplicateur de Schur comme un analogue supérieur du
dual de Pontryagin



Le multiplicateur de Schur - Exemples

» Schur (1911) a déterminé le multiplicateur de Schur
des groupes symétriques et alternés :

7/2 sin>4
1 sin<3

Mwaz{

ZJ/2 sin>8etn=4,5
M(A) =< Z/6 sin=6,7
1 sin<3

> Les multiplicateurs de Schur de tous les groupes simples ont été calculés
dans les années 1960-70. Par exemple,

(a) pour le Monstre de Fischer-Griess, on a M(F1) =1
(b) M(PSL3(Fs)) = Z/12 x Z,/4
» Pour des groupes “composés’ le multiplicateur peut étre “grand” :

M((Z/Q)N) I~ (Z/2)N(N_1)/2



Vers un “dual” du multiplicateur de Schur

Questions

e Peut-on définir le multiplicateur de Schur d'un groupe fini G
en termes de |'algebre des fonctions O(G) ?

Comme nous |'avons vu, une telle réinterprétation permet de voir la dualité de
Pontryagin des groupes dans le cadre plus général de la dualité des algebres de
Hopf

O(G) +— CG

e Plus généralement, peut-on définir le multiplicateur de Schur dans le cadre
des algebres de Hopf ?

e La réponse est oui ; elle fait intervenir les “twists de Drinfeld”



Twists de Drinfeld

lls ont été introduits par Drinfeld en 1989-90 pour classifier les groupes
quantiques qu'il avait définis quelques années auparavant

e Définition. (a) Un twist de Drinfeld sur une algébre de Hopf H est un
élément inversible F € H ® H vérifiant I'équation

(FRL(AQIdu)(F)=1®F)(idyi@A)F) e HOHR®H (2)
e Si H = O(G) est I'algebre des fonctions complexes sur un groupe fini G,
alors un twist de Drinfeld
F e O(G)® O(G) = 0(G x G)

n'est autre qu'une fonction F : G x G — C vérifiant deux conditions :
(a) F prend des valeurs dans C* <= inversibilité de F
(b) F est un 2-cocycle de G <> équation (2)

Conclusion. Un twist de Drinfeld sur H = O(G) est un 2-cocycle de G



Le multiplicateur de Schur exprimé
a l'aide des twists de Drinfeld

e Lemme. Deux 2-cocycles F, F' de G sont cohomologues si et seulement si
FF=M\®X)FAM ") € 0(G)® 0(G) (3)

ou \ est un élément inversible de O(G), c'est-a-dire une fonction \ : G — C*
a valeurs non nulles

Conséquences.

(a) Le multiplicateur de Schur M(G) d'un groupe fini s'identifie a
I'ensemble des classes de cohomologie des twists de Drinfeld sur |'algebre de
Hopf O(G)

(b) La relation d'équivalence (3) s'étend aux twists de Drinfeld sur les
algebres de Hopf



Le multiplicateur de Schur d'une algebre de Hopf

e Premiére tentative. Définir le multiplicateur de Schur d'une algebre de
Hopf H comme I'ensemble des classes de cohomologie des twists de Drinfeld
sur H

e Un hic ! Le produit de twists de Drinfeld sur une algébre de Hopf
non commutative n'est en général pas un twist de Drinfeld

o Deuxiéme tentative. On se restreint aux twists de Drinfeld invariants,
c'est-a-dire aux twists F tels que

A(a)F = FA(a) (a€ H)
e Coup de chance. Le produit de deux twists invariants est un twist invariant

o Définition (Peter Schauenburg, 2002). Le multiplicateur de Schur M(H)
d'une algebre de Hopf H est le groupe des classes de cohomologie des twists de
Drinfeld invariants sur H



Le multiplicateur de Schur de I'algebre d'un groupe

e On peut maintenant essayer de calculer le multiplicateur de Schur de diverses
algebres de Hopf

> Si H = O(G) est I'algébre des fonctions sur un groupe fini G, alors au vu
des identifications précédentes, on retrouve le multiplicateur de Schur
de G :

> Considérons maintenant I'algébre duale de O(G), a savoir
|"algebre CG du groupe G.

Nous nous concentrons sur ce cas et posons

H(G) = M(CG)

e Cas abélien. Si G est abélien, alors CG = O(G) via TFD et donc

H(G) = M(0(G)) = M(G)



Le groupe H(G)

e Que peut-on dire de H(G) = M(CG) quand G est un groupe fini
non abélien ?

e La réponse est donnée dans un travail en commun avec Pierre Guillot
(Strasbourg)

Référence : P. Guillot, C. Kassel,
Cohomology of invariant Drinfeld twists on group algebras,
Internat. Math. Res. Notices 2010 no. 10, 1894-1939; arXiv:0903.2807

e Je vais me contenter d'énoncer trois propriétés de H(G) et de donner de
quelques exemples de calcul



Propriétés et calcul de H(G)

e Trois propriétés importantes
1. H(G) est un groupe fini

2. H(G) contient un sous-groupe Ho(G) isomorphe a un sous-groupe
d’automorphismes extérieurs Outc(G) (décrit plus loin)

3. Si G possede un unique sous-groupe distingué abélien maximal A, alors il
existe une suite exacte de la forme

1= Ho(G) — H(G) — H*(A,C¥)°

(Lorsque G posséde plusieurs tels sous-groupes, il y a une formulation
plus compliquée de la suite exacte précédente)

e Exemples
» Si G est un groupe simple ou un groupe symétrique, alors
H(G) =1

> Pour As qui est le seul groupe alterné non simple (il contient le groupe de
Klein Z/2 x Z/2, qui est le seul sous-groupe distingué abélien maximal),

H(As) = H(Z)2 x 7)2,C* )" =~ 7,/2



Le groupe Out.(G)

e Le groupe des automorphismes intérieurs est défini par
Int(G) = {Lp € Aut(G) | 3h,Vg € G, p(g) = hgh*l}
Echangeons les quantificateurs :
Autc(G) = {go € Aut(G) | Vg,3h € G, p(g) = hgh*l}

Un élément de Aut.(G) est un automorphisme de G qui préserve chaque classe
de conjugaison de G

e Définition. On pose Out.(G) = Autc(G)/ Int(G)

e Exemples pour lesquels Out(G) =1
* G est un groupe symétrique (exercice)

* (Feit-Seitz, 1989) G est un groupe simple
(calcul au cas par cas utilisant la classification des groupes finis simples)



Le groupe Out.(G) n'est pas toujours trivial, ni abélien

e Burnside (1912) a été le premier a construire des groupes pour lesquels
Outc(G) # 1 (son exemple le plus petit est d'ordre 729 = 3°)

e G. E. Wall (1947) a montré que Out.(G) = Z/2 pour le groupe d'ordre 32
G = 7/8 x Aut(Z/8)

e Burnside a énoncé que Out.(G) est toujours abélien, mais. . .

e C.-H. Sah (1968) a construit des groupes ol Outc(G) est non abélien
(son exemple le plus petit est d'ordre 2'°)

e Conséquence. |l existe des groupes pour lesquels H(G) est non abélien
et donc des algébres de Hopf pour lesquelles
le multiplicateur de Schur généralisé M(H) est non abélien



Merci de votre attention
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The pointed set B(G)

e Definition. Let A be the category whose objects are the normal abelian
subgroups A of G and whose arrows are the inclusions. Define

B(G) = U H?(A, k*)¢ (a colimit of pointed sets)
A€A

Here A = Hom(A, k*) is the group of characters of A and
H?(A, k) is the second cohomology group of A

Remark. If k* is divisible, then H2(A, k*) = Hom(A2A, k)

e The set B(G) is
* non-empty: it is pointed by the zero element O lying in all H2(27 k*)¢
x it is finite

e If G has a unique maximal normal abelian subgroup A, then

B(G) = H*(A, k*)¢



Determining H?(G/k)

Now our main result in the algebraically closed case
Assume that the field k is algebraically closed of characteristic prime to |G|

Theorem 2. There is a set-theoretic map © : H*(G/k) — B(G) such that
(a) Ho = ©~1({0}) is a subgroup of H*(G/k) with
Ho =2 Out(G)
(b) All fibers of © are in bijection with Ho; more precisely,

O(a)=0(B) <= pBecaHe (a,fecH(G/kK))

(c) If |G| is odd, then © is surjective



Wall's group of order 32

e The group G = Z/8 x Aut(Z/8) of order 32 has the presentation
G={(stul S=t2=u¥=1,st=ts, sus ' =0 tut™! = u5>

e G. E. Wall (1947) proved that Out.(G) = Z/2, generated by the
automorphism « defined by

a(s) = uts = u25u727 a(t) = u't = UtU717 ou) =u

! (g € G), where

a:%(1+u4)+¥u(1—u2—u4+u5)E(CG

In fact, a(g) = aga™

e The group G has a unique maximal normal abelian subgroup, namely
A= (t,u*) 2 7/2 x Z/2. The set B(G) = H*(A, k*)€ has two elements

o Therefore, #?(G) has order 4 or 2 according as © is surjective or not

We were not able to conclude



The rationality exact sequence

Assume that k is of characteristic zero with algebraic closure k

Theorem 1. Let G be a finite group. If all irreducible k-representations of G
can be realized over k, then there is an exact sequence of groups

1 — HY(Gal(k/k), Z(G)) — H}(G/k) —  H*(G/k) —1
(classical bitorsors) — (nom-comm. bitorsors)

(ARITHMETIC) (GEOMETRIC)

In particular, if G has a trivial center, then H?(G/k) = H?*(G/k)

Remark.

H'(Gal(k/k), Z(G)) = Homcontinuous(Gal(k/ k), Z(G))
= lim 4, Hom(Gal(k'/k), Z(G))

finite Galois ext.



