

Banff International Research Station
Workshop on Braid Groups and Applications
(16–21.10.2004)

**From Sturmian morphisms to
the braid group B_4**

CHRISTIAN KASSEL

Institut de Recherche Mathématique Avancée
CNRS - Université Louis Pasteur
Strasbourg, France

Joint work with
CHRISTOPHE REUTENAUER
UQAM, Montréal, Canada

C. KASSEL, C. REUTENAUER, *Sturmian morphisms,
the braid group B_4 , Christoffel words and bases of F_2 ,*
preprint IRMA 2004/021.

Sturmian sequences [Morse & Hedlund (1938)]

An infinite word w in two letters a and b is a *Sturmian sequence* if for all $n \geq 1$ the number of factors of w of length n is $n + 1$. (w_1 is a *factor* of $w = w_0w_1w_2\ldots$)

FIBONNACI SEQUENCE. If $\varphi(a) = ab$ and $\varphi(b) = a$, then $w_n = \varphi^n(a)$ converges to a Sturmian sequence w :

$$w_0 = a, \quad w_1 = ab, \quad w_2 = aba, \dots, \quad w_{n+2} = w_{n+1}w_n.$$

The sequence $|w_n|$ of lengths is the Fibonacci sequence.

SLOPE OF A STURMIAN SEQUENCE. If w is Sturmian and w_n is its prefix of length n , then $|w_n|_b/|w_n|$ tends to a limit, called the *slope* of w . The slope of a Sturmian sequence is an *irrational* number.

References

M. LOTHAIRE, *Algebraic combinatorics on words*, Cambridge University Press, Cambridge, 2002, Chapter 2, 45–110.

J.-P. ALLOUCHE, J. SHALLIT, *Automatic sequences. Theory, applications, generalizations*, Cambridge University Press, Cambridge, 2003.

The monoid of Sturmian morphisms

A substitution φ (an endomorphism of the free monoid $\{a, b\}^*$) is a *Sturmian morphism* if $\varphi(w)$ is a Sturmian sequence whenever w is a Sturmian sequence. Sturmian morphisms form a *monoid* St under composition.

FIVE STURMIAN MORPHISMS:

$$\begin{array}{ll} E(a) = b, & E(b) = a, \\ D(a) = ba, & D(b) = b, \quad \tilde{D}(a) = ab, \quad \tilde{D}(b) = b, \\ G(a) = a, & G(b) = ab, \quad \tilde{G}(a) = a, \quad \tilde{G}(b) = ba. \end{array}$$

F. MIGNOSI, P. SÉÉBOLD (1993) : *The monoid St is generated by E , D , \tilde{D} (also by E , G , \tilde{G}).*

$$\begin{array}{ccc} \text{Aut}^+(F_2) & \longrightarrow & \text{Aut}(F_2) \\ \downarrow & & \downarrow \\ \text{End}(\{a, b\}^*) & \longrightarrow & \text{End}(F_2) \end{array}$$

Z.-X. WEN, Z.-Y. WEN (1994) : *The monoid $\text{Aut}^+(F_2)$ of positive automorphisms is generated by E , D , \tilde{D} .*

Conclusion: $\text{St} = \text{Aut}^+(F_2)$.

The special Sturmian monoid

Let St_0 be the submonoid of St generated by

$$D, \tilde{D}, G, \tilde{G}.$$

The subgroup of $\text{Aut}(F_2)$ generated by $D, \tilde{D}, G, \tilde{G}$ is

$$\text{Aut}_0(F_2) = \text{Ker}(\text{Aut}(F_2) \xrightarrow{\text{ab}} \text{GL}_2(\mathbf{Z}) \xrightarrow{\det} \{\pm 1\}).$$

THEOREM. *The monoid St_0 has a monoid presentation with generators*

$$D, \tilde{D}, G, \tilde{G},$$

and relations

$$G\tilde{G} = \tilde{G}G, \quad D\tilde{D} = \tilde{D}D,$$

$$GD\tilde{G} = \tilde{G}\tilde{D}G, \quad DG\tilde{D} = \tilde{D}\tilde{G}D,$$

$$GD^k\tilde{G} = \tilde{G}\tilde{D}^kG, \quad DG^k\tilde{D} = \tilde{D}\tilde{G}^kD$$

$$(k \geq 2).$$

Braid relations for the generators of St_0

The generators G, \tilde{G} of St_0 map to $A \in \mathrm{GL}_2(\mathbf{Z})$, and D, \tilde{D} map to $B \in \mathrm{GL}_2(\mathbf{Z})$, where

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}.$$

The matrices A and B satisfy the braid relation

$$AB^{-1}A = B^{-1}AB^{-1}.$$

LEMMA. *We have $G\tilde{G} = \tilde{G}G$, $D\tilde{D} = \tilde{D}D$,*

$$GD^{-1}G = D^{-1}GD^{-1}, \quad D^{-1}\tilde{G}D^{-1} = \tilde{G}D^{-1}\tilde{G},$$

$$\tilde{G}\tilde{D}^{-1}\tilde{G} = \tilde{D}^{-1}\tilde{G}\tilde{D}^{-1}, \quad \tilde{D}^{-1}G\tilde{D}^{-1} = G\tilde{D}^{-1}G.$$

Symbolically,

$$G \qquad \qquad \qquad D$$

$$A \qquad \qquad B$$

$$\tilde{D} \qquad \qquad \qquad \tilde{G}$$

An action of B_4 on F_2

The *braid group* B_4 with generators $\sigma_1, \sigma_2, \sigma_3$ and relations $\sigma_1\sigma_3 = \sigma_3\sigma_1$,

$$\sigma_1\sigma_2\sigma_1 = \sigma_2\sigma_1\sigma_2, \quad \sigma_2\sigma_3\sigma_2 = \sigma_3\sigma_2\sigma_3.$$

LEMMA. *There is a group homomorphism*

$$f : B_4 \rightarrow \text{Aut}(F_2)$$

defined by

$$f(\sigma_1) = G, \quad f(\sigma_2) = D^{-1}, \quad f(\sigma_3) = \tilde{G}.$$

Moreover, if $\sigma_4 = \sigma_3^{-1}\sigma_1\sigma_2\sigma_3\sigma_1^{-1}$, then $f(\sigma_4) = \tilde{D}^{-1}$.

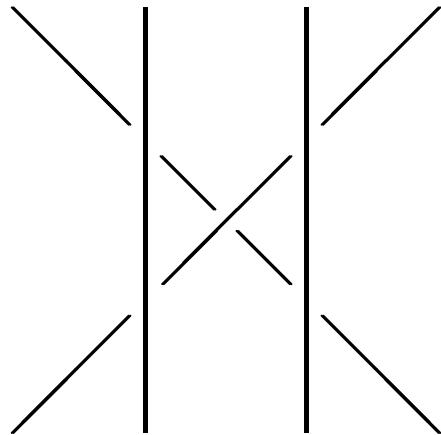


Figure 1. The braid σ_4 in B_4

An action of B_4 on F_2 (sequel)

THEOREM. *There is a commutative diagram of exact sequences*

$$\begin{array}{ccccccc}
 & 1 & \longrightarrow & 1 & & & \\
 & \downarrow & & \downarrow & & & \\
 1 & \rightarrow \text{Ker}(q) & \xrightarrow{\cong} & F_2 & \rightarrow & 1 & \\
 \downarrow & \downarrow & & \downarrow & & \downarrow & \\
 1 \rightarrow & Z_4 & \rightarrow & B_4 & \xrightarrow{f} & \text{Aut}(F_2) & \rightarrow & \mathbf{Z}/2 & \rightarrow 1 \\
 \cong \downarrow & & q \downarrow & & \text{ab} \downarrow & & = \downarrow & \\
 1 \rightarrow & 2Z_3 & \rightarrow & B_3 & \longrightarrow & \text{GL}_2(\mathbf{Z}) & \xrightarrow{\det} & \mathbf{Z}/2 & \rightarrow 1 \\
 \downarrow & & \downarrow & & \downarrow & & \downarrow & \\
 1 & \rightarrow & 1 & \longrightarrow & 1 & \rightarrow & 1 & \\
 \end{array}$$

Centre of B_4 : $Z_4 = \langle (\sigma_1\sigma_2\sigma_3)^4 \rangle \cong \mathbf{Z}$

Centre of B_3 : $Z_3 = \langle (\sigma_1\sigma_2)^3 \rangle \cong \mathbf{Z}$

$$2Z_3 = \langle (\sigma_1\sigma_2)^6 \rangle$$

Homomorphism $q : B_4 \rightarrow B_3$:

$$q(\sigma_1) = q(\sigma_3) = \sigma_1 \text{ and } q(\sigma_2) = \sigma_2.$$

$\text{Ker}(q)$ is free on $x = \sigma_1\sigma_3^{-1}$ and $y = \sigma_2\sigma_1\sigma_3^{-1}\sigma_2^{-1}$
 [Gassner (1962), Gorin and Lin (1969)]

An action of B_4 on F_2 (end)

Involution ω of B_4 :

$$\sigma_1 \leftrightarrow \sigma_2^{-1} \text{ and } \sigma_3 \leftrightarrow \sigma_4^{-1}.$$

- ω preserves the centre of B_4

- Compatibility of ω with $f : B_4 \rightarrow \text{Aut}(F_2)$:

$$f(\omega(\sigma_i)) = Ef(\sigma_i)E \quad (i = 1, 2, 3, 4)$$

- Karrass, Pietrowski, Solitar (1984):

$$\text{Out}(B_4) \cong \mathbf{Z}/2 \text{ generated by } \omega$$

From the exact sequence (split by ω)

$$1 \rightarrow Z_4 \rightarrow B_4 \rightarrow \text{Aut}(B_4) \rightarrow \text{Out}(B_4) \rightarrow 1$$

it follows that $\text{Aut}(B_4) \cong B_4/Z_4 \rtimes_{\omega} \mathbf{Z}/2$.

From previous theorem it then follows:

$$\text{Aut}(F_2) \cong B_4/Z_4 \rtimes_{\omega} \mathbf{Z}/2 \cong \text{Aut}(B_4).$$

Remarks:

- Dyer, Formanek, Grossman (1982): B_4/Z_4 is a subgroup of index two of $\text{Aut}(F_2)$
- Karrass, Pietrowski, Solitar (1984): $\text{Aut}(B_4) \cong \text{Aut}(F_2)$

Lifting of St_0 to B_4

THEOREM. *The formulas*

$$i(G) = \sigma_1, \quad i(\tilde{G}) = \sigma_3, \quad i(D) = \sigma_2^{-1}, \quad i(\tilde{D}) = \sigma_4^{-1}.$$

define a homomorphism of monoids $i : \text{St}_0 \rightarrow B_4$. The composite map

$$\text{St}_0 \xrightarrow{i} B_4 \xrightarrow{f} \text{Aut}(F_2)$$

is the natural inclusion.

COROLLARY. *The submonoid of B_4 generated by*

$$\sigma_1, \sigma_2^{-1}, \sigma_3, \sigma_4^{-1}$$

is isomorphic to St_0 . It has a monoid presentation with generators $\sigma_1, \sigma_2^{-1}, \sigma_3, \sigma_4^{-1}$, and relations

$$\sigma_1 \sigma_2^{-k} \sigma_3 = \sigma_3 \sigma_4^{-k} \sigma_1 \quad \text{and} \quad \sigma_2^{-1} \sigma_1^k \sigma_4^{-1} = \sigma_4^{-1} \sigma_3^k \sigma_2^{-1}$$

for all $k \geq 0$.

N. B. The submonoid of B_4 generated by σ_1 and σ_2^{-1} is a free monoid.

Bases of the free group F_2

$$\begin{array}{ccc} \text{Aut}(F_2) & \cong & \{\text{bases of } F_2\} \\ \varphi & \mapsto & (\varphi(a), \varphi(b)) \end{array}$$

J. NIELSEN (1918):

$$\begin{array}{ccc} \text{Aut}(F_2)/\text{conjugacy} & \cong & \text{GL}_2(\mathbf{Z}) \\ \cong \downarrow & & \cong \downarrow \\ \{\text{bases of } F_2\}/\text{conjugacy} & \cong & \{\text{bases of } \mathbf{Z}^2\} \end{array}$$

PROBLEM: Given a basis of \mathbf{Z}^2 , equivalently a matrix

$$M = \begin{pmatrix} p & r \\ q & s \end{pmatrix} \in \text{GL}_2(\mathbf{Z}),$$

construct a basis of F_2 lifting M .

SOLVED by H. Cohn (1972), Osborne & Zieschang (1981),
González-Acuña & Ramírez (1999).

Christoffel words: a finitary version of Sturmian sequences

To $(p, q) \in \mathbf{Z}^2$ such that p and q are coprime, we attach an element $u(p, q) \in F_2$. When $p, q \in \mathbf{N}$:

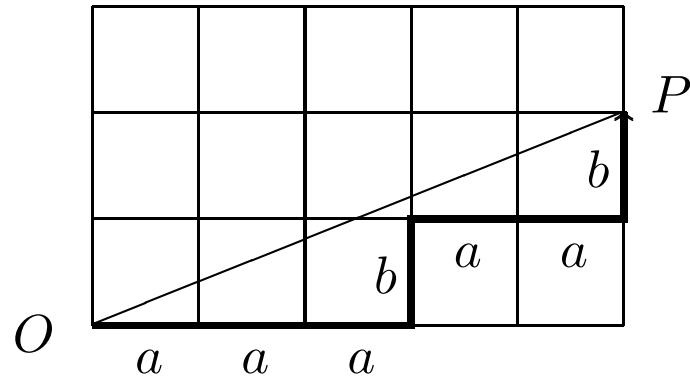


Figure 2. $u(5, 2) = a^3ba^2b$

PROPERTY. If $ps - qr = 1$ with $p, q, r, s \in \mathbf{N}$, then

$$u(p, q)u(r, s) = u(p + r, q + s).$$

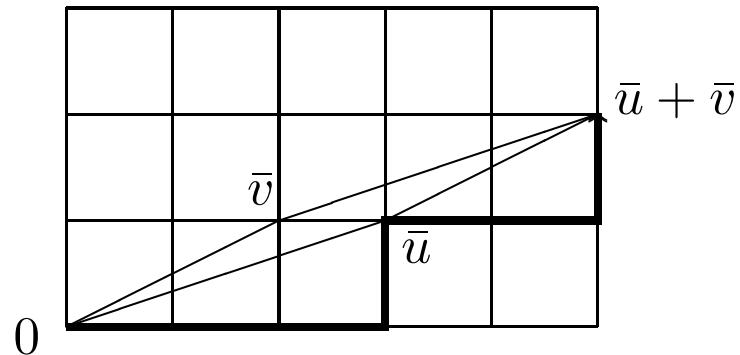


Figure 3. $u(3, 1)u(2, 1) = u(5, 2)$

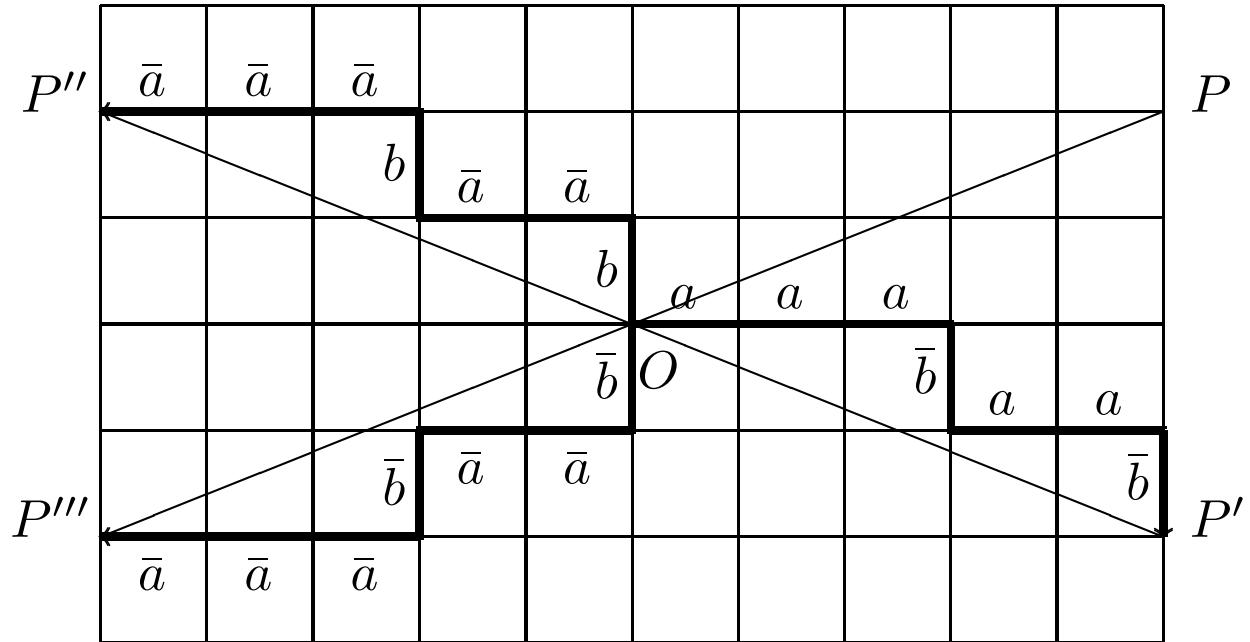
General Christoffel words

When p or q are negative, use the automorphism T : $a \mapsto a$, $b \mapsto b^{-1}$. For $p \geq 0$ and $q \geq 0$ set

$$u(p, -q) = Tu(p, q),$$

$$u(-p, q) = Tu(p, q)^{-1},$$

$$u(-p, -q) = u(p, q)^{-1}.$$



THEOREM. *If $\{(p, q), (r, s)\}$ is a basis of \mathbf{Z}^2 , then $\{u(p, q), u(r, s)\}$ is a basis of F_2 .*

Characterization of bases

M. DEHN: $\{u, v\}$ is a basis of F_2 if and only if $uvu^{-1}v^{-1}$ is conjugate to $(aba^{-1}b^{-1})^{\pm 1}$.

REWRITING SYSTEM for $(u, v) \in \{a, b\}^* \times \{a, b\}^*$:

$$(au', av') \rightarrow (u'a, v'a) \text{ and } (bu', bv') \rightarrow (u'b, v'b)$$

Any couple is contained in a maximal chain of arrows.
The length of the chain is the number of arrows.

EXAMPLES.

- (a) (a, b^2) is contained in a chain of length 0.
- (b) (b^2, b^3) is contained in a chain of infinite length

THEOREM. Let $u, v \in \{a, b\}^*$ of lengths $|u|$ and $|v|$.

(a) The couple (u, v) is a basis of F_2 if and only if the maximal chain containing (u, v) is of length

$$|u| + |v| - 2.$$

(b) If the maximal chain containing (u, v) is of length $> |u| + |v| - 2$, then it is infinite and u, v are positive powers of a same word.

COROLLARY. Any cyclically reduced basis (u, v) of F_2 is conjugate to exactly $|u| + |v| - 1$ cyclically reduced bases.

Palindromes

REVERSE: Let $u \mapsto \tilde{u}$ be the anti-automorphism of F_2 such that $\tilde{a} = a$ and $\tilde{b} = b$.

PALINDROME: $u \in F_2$ is a palindrome if $\tilde{u} = u$.

THEOREM *Any cyclically reduced basis $\{u, v\}$ of F_2 such that $|u|$ and $|v|$ are odd has exactly one cyclically reduced conjugate consisting of two palindromes.*

The maximal chain containing (aba^2b, aba) :

$$\begin{array}{ccccccc}
 (aba^2b, aba) & \longrightarrow & (ba^2ba, ba^2) & \longrightarrow & (a^2bab, a^2b) & & \\
 & & & & & & \downarrow \\
 & & & & & & (ababa, aba) \\
 & & & & & & \downarrow \\
 (ba^2ba, aba) & \longleftarrow & (aba^2b, a^2b) & \longleftarrow & (babab^2, ba^2) & &
 \end{array}$$

Length $6 = |aba^2b| + |aba| - 2$. Therefore (aba^2b, aba) is a basis.

REMARK. A basis element of F_2 of even length cannot be conjugate to a palindrome.