

Tate-Vogel cohomology

Christian Kassel

Institut de Recherche Mathématique Avancée
CNRS - Université de Strasbourg

Journées en l'honneur de Pierre Vogel
Institut Henri Poincaré, Paris
27 octobre 2010

Report on work by Vogel

- This is a short report on unpublished work done by Pierre Vogel in the early 1980's
- In this work Vogel extended the Tate cohomology of finite groups to any group, and even to any ring
- The definition by Vogel is very simple and elegant, using unbounded chain complexes
- At that time, Vogel was working on a strong version of Novikov's conjecture
- In an email dated 28 September 2010, Pierre wrote to me the following:

<< C'est au cours de mes nombreuses tentatives pour montrer la conjecture que j'ai manipulé beaucoup de modules différentiels gradués et que j'ai pensé à cette algèbre homologique à la Tate. Le fait que je n'ai rien écrit sur ces sujets est que je n'ai rien obtenu de significatif sauf des conjectures et des jolies constructions. >>

Plan

What is Tate cohomology?

Generalities on chain complexes

Vogel's extension of Tate cohomology

References

Plan

What is Tate cohomology?

Generalities on chain complexes

Vogel's extension of Tate cohomology

References

Group cohomology

- Let G be a group and $R = \mathbb{Z}G$ its group ring
- The **cohomology** of G with coefficients in a left R -module M is defined as

$$H^*(G, M) = \mathrm{Ext}_R^*(\mathbb{Z}, M)$$

- It can be computed as follows: if

$$\dots \longrightarrow F_2 \longrightarrow F_1 \longrightarrow F_0 \longrightarrow \mathbb{Z} \tag{1}$$

is a **resolution** of the trivial R -module \mathbb{Z} by **projective** left R -modules, then

$$H^*(G, M) = H^*(\mathrm{Hom}_R(F, M))$$

The case of finite groups

- **Notation.** If M is a left R -module, then the **dual module**

$$M^\vee = \text{Hom}_R(M, R)$$

is a right R -module (which can be turned into a left module)

- Now suppose that the group G is **finite**

There exist resolutions of the form (1) where the projective modules F_i are all **finitely generated**

- Dualizing such a resolution, one gets an acyclic complex

$$0 \longrightarrow \mathbb{Z} \longrightarrow F_0 \longrightarrow F_1 \longrightarrow F_2 \longrightarrow \cdots \tag{2}$$

of **finitely generated projective modules**

Tate cohomology

- Splicing the complexes (1) and (2) together and setting $F_{-i} = F_{i-1}^\vee$ for $i > 0$, we obtain a **complete resolution** for G , that is, an **acyclic complex** of finitely generated projective modules

$$\dots \longrightarrow F_2 \longrightarrow F_1 \longrightarrow F_0 \longrightarrow F_{-1} \longrightarrow F_{-2} \longrightarrow \dots \quad (3)$$

together with an R -linear map $F_0 \longrightarrow \mathbb{Z}$ such that

$$\dots \longrightarrow F_2 \longrightarrow F_1 \longrightarrow F_0 \longrightarrow \mathbb{Z} \longrightarrow 0$$

is acyclic

- The **Tate cohomology** of G with coefficients in M is defined as

$$\widehat{H}^*(G, M) = H^*(\text{Hom}_R(F, M))$$

where F is a complete resolution of the form (3)

These groups are independent of the chosen complete resolution

Properties of Tate cohomology

Tate cohomology enjoys **standard properties** of ordinary group cohomology such as:

- If $0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$ is a **short exact sequence** of R -modules, then there is a **long exact sequence** of cohomology groups

$$\cdots \rightarrow \widehat{H}^i(G, M') \rightarrow \widehat{H}^i(G, M) \rightarrow \widehat{H}^i(G, M'') \rightarrow \widehat{H}^{i+1}(G, M') \rightarrow \cdots$$

- There are **restriction** and **transfer** maps with respect to subgroups of G
- There are associative **cup-products**

$$\widehat{H}^i(G, M) \times \widehat{H}^j(G, N) \xrightarrow{\cup} \widehat{H}^{i+j}(G, M \otimes N)$$

These are useful to express **periodicity** in group cohomology (see next slide)

Periodic cohomology

- **Definition.** A finite group has *periodic cohomology* if there is an integer $d \neq 0$ and an element $\alpha \in \widehat{H}^d(G, \mathbb{Z})$ that is invertible with respect to the cup-product

Such an element induces natural isomorphisms

$$\widehat{H}^i(G, M) \xrightarrow{\cup \alpha} \widehat{H}^{i+d}(G, M)$$

for all $i \in \mathbb{Z}$ and all G -modules M

- **Examples.** The following finite groups have periodic cohomology:

- the *cyclic groups* ($d = 2$)
- the order 8 *quaternionic group* Q_8 ($d = 4$)

See Chapter XII of Cartan and Eilenberg's book for a complete *classification* of finite groups with periodic cohomology

Farrell's extension

- **Definition.** A group has *finite cohomological dimension* (cd) if the trivial G -module \mathbb{Z} has a projective resolution of finite length

Any group of finite cd is **torsion-free**; thus a **finite** group has **infinite cd**

- **Definition.** A group has *finite virtual cohomological dimension* (vcd) if it admits a finite index subgroup that has finite cd

For instance, a **finite** group G has finite vcd: the trivial subgroup of G is of finite index and has finite cd

- Farrell (1977) extended Tate cohomology to all groups with finite vcd
- Any group of finite vcd has a **complete resolution** in the following general sense: there exist an acyclic complex of projective modules

$$\dots \longrightarrow F_2 \longrightarrow F_1 \longrightarrow F_0 \longrightarrow F_{-1} \longrightarrow F_{-2} \longrightarrow \dots$$

and a projective resolution

$$\dots \longrightarrow P_2 \longrightarrow P_1 \longrightarrow P_0 \longrightarrow \mathbb{Z} \longrightarrow 0$$

such that the complexes F and P coincide in large enough degrees

Plan

What is Tate cohomology?

Generalities on chain complexes

Vogel's extension of Tate cohomology

References

The standard Hom-complex

- Let C, d and C', d' be **chain complexes of left R -modules** (graded by \mathbb{Z} and not necessarily bounded)
- Recall that there is an **internal Hom** in the category of chain complexes of left R -modules:

Define $\text{Hom}(C, C')$ as the **chain complex** such that

$$\text{Hom}(C, C')_n = \prod_{i \in \mathbb{Z}} \text{Hom}_R(C_i, C'_{i+n}) \quad (n \in \mathbb{Z})$$

with **differential** given for $f \in \text{Hom}_R(C_i, C'_{i+n})$ by

$$\partial(f) = d' \circ f - (-1)^n f \circ d$$

The bounded Hom-complex

- The complex $\text{Hom}(C, C')$ has a **subcomplex** $\text{Hom}_b(C, C')$ such that

$$\text{Hom}_b(C, C')_n = \bigoplus_{i \in \mathbb{Z}} \text{Hom}_R(C_i, C'_{i+n}) \quad (n \in \mathbb{Z})$$

We call $\text{Hom}_b(C, C')$ the **bounded** Hom-complex

- Observe that $\text{Hom}_b(C, C') = \text{Hom}(C, C')$ if
 - (a) one of the complexes C, C' is **bounded above and below**, or
 - (b) one of them is **bounded above** and the other one is **bounded below**
- **Definition.** The **complete** Hom-complex is the quotient complex

$$\widehat{\text{Hom}}(C, C') = \text{Hom}(C, C') / \text{Hom}_b(C, C')$$

- Observe that $\widehat{\text{Hom}}(C, C') = 0$ if one of Conditions (a) or (b) above holds

The tensor product of complexes

- Let C'', d'' be a chain complex of **right** R -modules and C', d' be a chain complex of **left** R -modules
- Recall that their **tensor product** is the chain complex $C'' \otimes C'$ such that

$$(C'' \otimes C')_n = \bigoplus_{i+j=n} C''_i \otimes_R C'_j \quad (n \in \mathbb{Z})$$

with **differential** given for $x \in C''_i$ and $y \in C'_j$ by

$$d(x \otimes y) = d''(x) \otimes y + (-1)^i x \otimes d'(y)$$

Relating \otimes and Hom for modules

- Let us connect the Hom-complexes with the tensor product of complexes
- Recall that if M and N are left R -modules, then there is a natural map

$$M^\vee \otimes_R N \longrightarrow \text{Hom}_R(M, N)$$

sending $f \otimes y \in M^\vee \otimes_R N$ to the element $x \mapsto f(x)y$ of $\text{Hom}_R(M, N)$

This map is an isomorphism if M is a **finitely generated projective** R -module

Relating \otimes and Hom for complexes

- Let C and C' be chain complexes of **left** R -modules
- The **dual complex** C^\vee is a chain complex of **right** R -modules with

$$(C^\vee)_n = (C_{-n})^\vee \quad (i \in \mathbb{Z})$$

- **Lemma.** If C_n is a **finitely generated projective** R -module for all $n \in \mathbb{Z}$, then the natural chain map

$$C^\vee \otimes C' \longrightarrow \text{Hom}_b(C, C')$$

is an isomorphism of chain complexes

Proof of Lemma

Proof. On the chain level, we have the following natural identifications

$$\begin{aligned}\mathrm{Hom}_b(C, C')_n &= \bigoplus_{i \in \mathbb{Z}} \mathrm{Hom}_R(C_i, C'_{i+n}) \\ &= \bigoplus_{i \in \mathbb{Z}} (C_i)^\vee \otimes_R C'_{i+n} \\ &= \bigoplus_{j \in \mathbb{Z}} (C^\vee)_j \otimes_R C'_{n-j} \\ &= (C^\vee \otimes C')_n\end{aligned}$$

- * The first and last equality hold by definition
- * The second equality holds because of the assumption on the modules C_i
- * For the third equality set $j = -i$

Q.E.D.

Plan

What is Tate cohomology?

Generalities on chain complexes

Vogel's extension of Tate cohomology

References

Definition of Tate-Vogel cohomology

- Given left R -modules M, N , and a projective resolution P (resp. Q) of M (resp. of N), **Pierre Vogel** defined

$$\widehat{\text{Ext}}_R^*(M, N) = H^*(\widehat{\text{Hom}}(P, Q))$$

One checks that $\widehat{\text{Ext}}_R^*(M, N)$ is **independent** of the chosen resolutions

- Definition.** The **Tate-Vogel cohomology** of a group G with coefficients in a left R -module M is given by

$$\widehat{H}^*(G, M) = \widehat{\text{Ext}}_R^*(\mathbb{Z}, M)$$

where $R = \mathbb{Z}G$

- Tate-Vogel cohomology enjoys the **standard properties** of Tate cohomology

Tate-Vogel cohomology extends Tate cohomology

- **Proposition.** If G is a *finite group*, then the Tate-Vogel cohomology of G *coincides* with the Tate cohomology of G

- **Proof.** Let F be a complete resolution for G such that

$$F^+ : \dots \longrightarrow F_2 \longrightarrow F_1 \longrightarrow F_0 \longrightarrow 0$$

is a resolution of \mathbb{Z} ; all F_n are assumed to be finitely generated projective

- * Let M be a left G -module and Q be a projective resolution of M
- * The *Tate-Vogel cohomology* of G with coefficients in M is the cohomology of the chain complex $\widehat{\text{Hom}}(F^+, Q)$
- * The *Tate cohomology* of G with coefficients in M is the cohomology of the chain complex $\text{Hom}(F, M)$
- * Enough to show that $\widehat{\text{Hom}}(F^+, Q)$ and $\text{Hom}(F, M)$ are *quasi-isomorphic*

(to be continued)

Sequel of proof of Proposition

* Let F' be the kernel of the natural surjective map of complexes $F \rightarrow F^+$

The exact sequence of complexes $0 \rightarrow F' \rightarrow F \rightarrow F^+ \rightarrow 0$ induces an exact sequence

$$0 \rightarrow \widehat{\text{Hom}}(F^+, Q) \rightarrow \widehat{\text{Hom}}(F, Q) \rightarrow \widehat{\text{Hom}}(F', Q) \rightarrow 0$$

between the **complete Hom-complexes**

* Since F' is **bounded above** and Q is **bounded below**,

$$\widehat{\text{Hom}}(F', Q) = 0$$

It follows from this and from the previous exact sequence that

$$\widehat{\text{Hom}}(F^+, Q) = \widehat{\text{Hom}}(F, Q)$$

(to be continued)

End of proof of Proposition

- * Consider now the exact sequence defining $\widehat{\text{Hom}}(F, Q)$:

$$0 \rightarrow \text{Hom}_b(F, Q) \rightarrow \text{Hom}(F, Q) \rightarrow \widehat{\text{Hom}}(F, Q) \rightarrow 0$$

- * Since F consists of **finitely generated projective** R -modules, we have

$$\text{Hom}_b(F, Q) \cong F^\vee \otimes Q$$

For the same reason, the acyclicity of F implies the **acyclicity** of F^\vee , of $F^\vee \otimes Q$, hence of $\text{Hom}_b(F, Q)$

It follows that $\text{Hom}(F, Q) \rightarrow \widehat{\text{Hom}}(F, Q)$ is a **quasi-isomorphism**

- * Observe that $\text{Hom}(F, Q) \rightarrow \text{Hom}(F, M)$ is a quasi-isomorphism as well

- * By putting everything together, we obtain the **chain of quasi-isomorphisms**

$$\widehat{\text{Hom}}(F^+, Q) \xrightarrow{\cong} \widehat{\text{Hom}}(F, Q) \leftarrow \text{Hom}(F, Q) \longrightarrow \text{Hom}(F, M)$$

Q.E.D.

Some history

- **Pierre Vogel** gave lectures on this subject around 1983–84, but never published his results
- Accounts of his results appeared, one in a paper by **François Goichot** (1992), another one in a paper by **Daniel Conduché, and Hvedri and Nick Inassaridze** (2004)
- **Benson and Carlson** rediscovered Vogel's construction in a paper published in 1992
- **Mislin** (1994) gave a definition of Tate-Vogel cohomology using satellites
- **Goichot** extended Tate-Vogel cohomology to equivariant cohomology, and **Conduché et al.** to mod q cohomology
- Tate-Vogel cohomology for rings has been used recently by **Mori** to prove a Riemann-Roch theorem in non-commutative algebraic geometry and by **Martínez Villa and Martsinkovsky** to establish some non-commutative Serre duality

(see references below)

Plan

What is Tate cohomology?

Generalities on chain complexes

Vogel's extension of Tate cohomology

References

Basic references

- K. S. Brown, *Cohomology of groups*, Grad. Texts in Math., 87, Springer-Verlag, New York-Berlin, 1982
- H. Cartan, S. Eilenberg, *Homological algebra*, Princeton University Press, Princeton, N. J., 1956
- D. Conduché, H. Inassaridze, N. Inassaridze, *Mod q cohomology and Tate-Vogel cohomology of groups*, J. Pure Appl. Algebra 189 (2004), 61–87
- F. T. Farrell, *An extension of Tate cohomology to a class of infinite groups*, J. Pure Appl. Algebra 10 (1977/78), 153–161
- F. Goichot, *Homologie de Tate-Vogel équivariante*, J. Pure Appl. Algebra 82 (1992), 39–64

Further references

- D. J. Benson, J. F. Carlson, *Products in negative cohomology*, J. Pure Appl. Algebra 82 (1992), 107–129
- R. Martínez Villa, A. Martsinkovsky, *Tate cohomology of tails, Tate-Vogel cohomology, and noncommutative Serre duality over Koszul quiver algebras*, J. Algebra 280 (2004), 58–83
- G. Mislin, *Tate cohomology for arbitrary groups via satellites*, Topology Appl. 56 (1994), 293–300
- I. Mori, *Riemann-Roch like theorem for triangulated categories*, J. Pure Appl. Algebra 193 (2004), 263–285

(8 December 2010)