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Report on work by Vogel

• This is a short report on unpublished work done by Pierre Vogel in the
early 1980’s

• In this work Vogel extended the Tate cohomology of finite groups to any
group, and even to any ring

• The definition by Vogel is very simple and elegant, using unbounded chain
complexes

• At that time, Vogel was working on a strong version of Novikov’s conjecture

• In an email dated 28 September 2010, Pierre wrote to me the following:

<< C’est au cours de mes nombreuses tentatives pour montrer la
conjecture que j’ai manipulé beaucoup de modules différentiels
gradués et que j’ai pensé à cette algèbre homologique à la Tate.
Le fait que je n’ai rien écrit sur ces sujets est que je n’ai
rien obtenu de significatif sauf des conjectures et des jolies
constructions. >>
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Group cohomology

• Let G be a group and R = ZG its group ring

• The cohomology of G with coefficients in a left R-module M is defined as

H∗(G,M) = Ext∗R(Z,M)

• It can be computed as follows: if

. . . −→ F2 −→ F1 −→ F0 −→ Z (1)

is a resolution of the trivial R-module Z by projective left R-modules, then

H∗(G,M) = H∗ (HomR(F ,M))



The case of finite groups

• Notation. If M is a left R-module, then the dual module

Mv = HomR(M,R)

is a right R-module (which can be turned into a left module)

• Now suppose that the group G is finite

There exist resolutions of the form (1) where the projective modules Fi are all
finitely generated

• Dualizing such a resolution, one gets an acyclic complex

0 −→ Z −→ F0 −→ F1 −→ F2 −→ · · · (2)

of finitely generated projective modules



Tate cohomology

• Splicing the complexes (1) and (2) together and setting F−i = F v
i−1 for i > 0,

we obtain a complete resolution for G, that is, an acyclic complex of finitely
generated projective modules

. . . −→ F2 −→ F1 −→ F0 −→ F−1 −→ F−2 −→ · · · (3)

together with an R-linear map F0 −→ Z such that

. . . −→ F2 −→ F1 −→ F0 −→ Z −→ 0

is acyclic

• The Tate cohomology of G with coefficients in M is defined as

Ĥ∗(G,M) = H∗ (HomR(F ,M))

where F is a complete resolution of the form (3)

These groups are independent of the chosen complete resolution



Properties of Tate cohomology

Tate cohomology enjoys standard properties of ordinary group cohomology
such as:

• If 0→ M ′ → M → M ′′ → 0 is a short exact sequence of R-modules,
then there is a long exact sequence of cohomology groups

· · · → Ĥ i(G,M ′)→ Ĥ i(G,M)→ Ĥ i(G,M ′′)→ Ĥ i+1(G,M ′)→ · · ·

• There are restriction and transfer maps with respect to subgroups of G

• There are associative cup-products

Ĥ i(G,M)× Ĥ j(G,N)
∪−→ Ĥ i+j(G,M ⊗ N)

These are useful to express periodicity in group cohomology (see next slide)



Periodic cohomology

• Definition. A finite group has periodic cohomology if there is an integer
d 6= 0 and an element α ∈ Ĥd(G,Z) that is invertible with respect to the
cup-product

Such an element induces natural isomorphisms

Ĥ i(G,M)
∪α−→ Ĥ i+d(G,M)

for all i ∈ Z and all G-modules M

• Examples. The following finite groups have periodic cohomology:

(a) the cyclic groups (d = 2)

(b) the order 8 quaternionic group Q8 (d = 4)

See Chapter XII of Cartan and Eilenberg’s book for a complete classification
of finite groups with periodic cohomology



Farrell’s extension
• Definition. A group has finite cohomological dimension (cd) if the trivial
G-module Z has a projective resolution of finite length

Any group of finite cd is torsion-free; thus a finite group has infinite cd

• Definition. A group has finite virtual cohomological dimension (vcd) if it
admits a finite index subgroup that has finite cd

For instance, a finite group G has finite vcd: the trivial subgroup of G is of
finite index and has finite cd

• Farrell (1977) extended Tate cohomology to all groups with finite vcd

• Any group of finite vcd has a complete resolution in the following general
sense: there exist an acyclic complex of projective modules

. . . −→ F2 −→ F1 −→ F0 −→ F−1 −→ F−2 −→ · · ·

and a projective resolution

. . . −→ P2 −→ P1 −→ P0 −→ Z −→ 0

such that the complexes F and P coincide in large enough degrees
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The standard Hom-complex

• Let C, d and C′, d ′ be chain complexes of left R-modules
(graded by Z and not necessarily bounded)

• Recall that that there is an internal Hom in the category of chain complexes
of left R-modules:

Define Hom(C,C′) as the chain complex such that

Hom(C,C′)n =
∏
i∈Z

HomR(Ci ,C′i+n) (n ∈ Z)

with differential given for f ∈ HomR(Ci ,C′i+n) by

∂(f ) = d ′ ◦ f − (−1)nf ◦ d



The bounded Hom-complex

• The complex Hom(C,C′) has a subcomplex Homb(C,C′) such that

Homb(C,C′)n =
⊕
i∈Z

HomR(Ci ,C′i+n) (n ∈ Z)

We call Homb(C,C′) the bounded Hom-complex

• Observe that Homb(C,C′) = Hom(C,C′) if

(a) one of the complexes C,C′ is bounded above and below, or

(b) one of them is bounded above and the other one is bounded below

• Definition. The complete Hom-complex is the quotient complex

Ĥom(C,C′) = Hom(C,C′)/Homb(C,C′)

• Observe that Ĥom(C,C′) = 0 if one of Conditions (a) or (b) above holds



The tensor product of complexes

• Let C′′, d ′′ be a chain complex of right R-modules and C′, d ′ be a chain
complex of left R-modules

• Recall that their tensor product is the chain complex C′′ ⊗ C′ such that

(C′′ ⊗ C′)n =
⊕
i+j=n

C′′i ⊗R C′j (n ∈ Z)

with differential given for x ∈ C′′i and y ∈ C′j by

d(x ⊗ y) = d ′′(x)⊗ y + (−1)ix ⊗ d ′(y)



Relating ⊗ and Hom for modules

• Let us connect the Hom-complexes with the tensor product of complexes

• Recall that if M and N are left R-modules, then there is a natural map

Mv ⊗R N −→ HomR(M,N)

sending f ⊗ y ∈ Mv ⊗R N to the element x 7→ f (x)y of HomR(M,N)

This map is an isomorphism if M is a finitely generated projective R-module



Relating ⊗ and Hom for complexes

• Let C and C′ be chain complexes of left R-modules

• The dual complex Cv is a chain complex of right R-modules with

(Cv )n = (C−n)
v (i ∈ Z)

• Lemma. If Cn is a finitely generated projective R-module for all n ∈ Z, then
the natural chain map

Cv ⊗ C′ −→ Homb(C,C′)

is an isomorphism of chain complexes



Proof of Lemma

Proof. On the chain level, we have the following natural identifications

Homb(C,C′)n =
⊕
i∈Z

HomR(Ci ,C′i+n)

=
⊕
i∈Z

(Ci)
v ⊗R C′i+n

=
⊕
j∈Z

(Cv )j ⊗R C′n−j

= (Cv ⊗ C′)n

∗ The first and last equality hold by definition

∗ The second equality holds because of the assumption on the modules Cn

∗ For the third equality set j = −i

Q.E.D.
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Definition of Tate-Vogel cohomology

• Given left R-modules M, N, and a projective resolution P (resp. Q) of M
(resp. of N), Pierre Vogel defined

Êxt
∗
R(M,N) = H∗

(
Ĥom(P,Q)

)
One checks that Êxt

∗
R(M,N) is independent of the chosen resolutions

• Definition. The Tate-Vogel cohomology of a group G with coefficients in a
left R-module M is given by

Ĥ∗(G,M) = Êxt
∗
R(Z,M)

where R = ZG

• Tate-Vogel cohomology enjoys the standard properties of Tate cohomology



Tate-Vogel cohomology extends Tate cohomology

• Proposition. If G is a finite group, then the Tate-Vogel cohomology of G
coincides with the Tate cohomology of G

• Proof. Let F be a complete resolution for G such that

F+ : · · · −→ F2 −→ F1 −→ F0 −→ 0

is a resolution of Z; all Fn are assumed to be finitely generated projective

∗ Let M be a left G-module and Q be a projective resolution of M

∗ The Tate-Vogel cohomology of G with coefficients in M is the cohomology
of the chain complex Ĥom(F+,Q)

∗ The Tate cohomology of G with coefficients in M is the cohomology of the
chain complex Hom(F ,M)

∗ Enough to show that Ĥom(F+,Q) and Hom(F ,M) are quasi-isomorphic

(to be continued)



Sequel of proof of Proposition

∗ Let F ′ be the kernel of the natural surjective map of complexes F → F+

The exact sequence of complexes 0→ F ′ → F → F+ → 0 induces an exact
sequence

0→ Ĥom(F+,Q)→ Ĥom(F ,Q)→ Ĥom(F ′,Q)→ 0

between the complete Hom-complexes

∗ Since F ′ is bounded above and Q is bounded below,

Ĥom(F ′,Q) = 0

It follows from this and from the previous exact sequence that

Ĥom(F+,Q) = Ĥom(F ,Q)

(to be continued)



End of proof of Proposition

∗ Consider now the exact sequence defining Ĥom(F ,Q):

0→ Homb(F ,Q)→ Hom(F ,Q)→ Ĥom(F ,Q)→ 0

∗ Since F consists of finitely generated projective R-modules, we have

Homb(F ,Q) ∼= F v ⊗Q

For the same reason, the acyclicity of F implies the acyclicity of F v ,
of F v ⊗Q, hence of Homb(F ,Q)

It follows that Hom(F ,Q)→ Ĥom(F ,Q) is a quasi-isomorphism

∗ Observe that Hom(F ,Q)→ Hom(F ,M) is a quasi-isomorphism as well

∗ By putting everything together, we obtain the chain of quasi-isomorphisms

Ĥom(F+,Q)
=−→ Ĥom(F ,Q)←− Hom(F ,Q) −→ Hom(F ,M)

Q.E.D.



Some history

• Pierre Vogel gave lectures on this subject around 1983–84, but never published his
results

• Accounts of his results appeared, one in a paper by François Goichot (1992), another
one in a paper by Daniel Conduché, and Hvedri and Nick Inassaridze (2004)

• Benson and Carlson rediscovered Vogel’s construction in a paper published in 1992

• Mislin (1994) gave a definition of Tate-Vogel cohomology using satellites

• Goichot extended Tate-Vogel cohomology to equivariant cohomology, and Conduché
et al. to mod q cohomology

• Tate-Vogel cohomology for rings has been used recently by Mori to prove a
Riemann-Roch theorem in non-commutative algebraic geometry and by Martı́nez Villa
and Martsinkovsky to establish some non-commutative Serre duality

(see references below)
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