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ABSTRACT. These notes provide a concise introduction to the theory of quantum groups
from the point of view of braided tensor categories. They were written for a course given
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MATHEMATICS SUBJECT CLASSIFICATION (1991): 16W30, 17B37, 18D10, 20F36, 81R50

Estas son las notas del curso que di en Agosto de 1994 en el XI° Coloquio Latinoameri-
cano de Algebra en Mendoza, Argentina. El objetivo de éste fue dar una introduccién a
la teoria de los grupos cuanticos desde el punto de vista de las categorias.

Los grupos cuanticos de los que hablamos son las llamadas “algebras envolventes
cuanticas” de Drinfeld-Jimbo. Estas son deformaciones formales de las dlgebras envolventes
de las algebras de Lie semisimples. La definicion de estas algebras es bastante complicada;
lo haremos solo en el caso més simple, cuando el dlgebra de Lie es sl(2). Las algebras
envolventes cudnticas tienen una propiedad comin muy importante: sus categorias de
modulos son categorias trenzadas. Este iltimo concepto es el méas estudiado en este curso.
También consideraremos otras categorias trenzadas interesantes, que no son categorias de
modulos, como las construidas con objetos 1-dimensionales en el plano.

El contenido de estas notas es el siguiente. Empezamos definiendo categorias tren-
zadas, ilustrando este concepto con dos tipos de ejemplos:

(i) el primer ejemplo serdn categorias de médulos sobre ciertas algebras, llamadas
bidlgebras trenzadas. Las &lgebras envolventes cuanticas de Drinfeld-Jimbo son de este
tipo.

(ii) construiremos la categoria trenzada B utilizando ciertos objetos 1-dimensiona-
les en el plano, llamados trenzas. La categoria B es universal entre todas las categorias
trenzadas.

Después haremos una construccién categorica del doble cuantico de Drinfeld. El
método mostrado aqui es mas conceptual y mas facil de entender que la construccién
original de Drinfeld. Esto nos permitird obtener la R-matriz universal para el algebra
envolvente cudntica de s[(2).

En la Leccion IV damos una version infinitesimal del concepto de categoria trenzada,
esto es, el concepto de una categoria infinitesimal simétrica. La categoria de modulos
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sobre un algebra de Lie semisimple es un ejemplo de estas categorias. Existe una categoria
simétrica infinitesimal universal A, que también construiremos en estas notas.

Terminamos este curso mostrando cémo construir una categoria trenzada dada cual-
quier categoria infinitesimal simétrica. Por un importante teorema de Drinfeld, si apli-
camos este método a la categoria de médulos sobre un algebra de Lie semisimple, recu-
peramos la categoria de mddulos sobre la correspondiente dlgebra envolvente cuantica.
Por otro lado, considerando la categoria A de la Leccién IV, tenemos una representacion
universal del grupo de trenzas.

Mi céalido agradecimiento a Silvia Cécere, Maria Julia Redondo y Andrea Solotar
quienes me ayudaron a escribir estas notas y las tradujeron al espanol.
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Leccion I. Categorias tensoriales

I.1. Definicién. Recordamos una definicién clésica (ver [Mac71], [Kas95], Capitulo XI).

Definicion 1. Una categoria tensorial C es una categoria provista de un producto tensorial
® :CxC — C, esto es, dados objetos V, W de la categoria, VRW es un objeto de C, y dados
morfismos f:V — V' yg: W — W', se le asocia un morfismo fRqg: VW — V' W’
de C que verifica:

(i) ® es asociativo en los objetos y en los morfismos,

(ZZ) idv(g)w = idv ® idw, V, W de C,

(i5i) Si V, V' V" W, W' W' son objetos de C, y f -V = V', g: W W' f:V —
V", g : W' — W" son morfismos de C, entonces

(ff@gd)o(feg) =(fof)®(d og),

(iv) Eziste un objeto I de C tal que I @V =V @ I =V, para todo objeto V', y
idy ® f = f®id; = f para todo morfismo f en C.

I.2. La categoria de los espacios vectoriales. Si k es un cuerpo, C la categoria de
k-espacios vectoriales, ® el producto tensorial usual, entonces C es una categoria tensorial
con I = k.

Sea G un grupo. Es claro que la subcategoria de espacios vectoriales con una accién
a izquierda de G es también tensorial. El producto tensorial es el mismo que en el caso
de los espacios vectoriales. Ademas, si V' y W son G-médulos, entonces V ®; W es un
G-médulo con la accién

g(v®@w) = gv® gw (1.1)

para todo g € G, v € V y w € W. El grupo actia trivialmente en el espacio vectorial
unidimensional k, es decir, gv = v para todo g € Gy v € k.

I.3. Médulos sobre una bialgebra. La categoria de G-mddulos es un caso particular
de la categoria A-mod de médulos a izquierda sobre una k-algebra A, asociativa y con
unidad, tomando en este caso A = k[G] el algebra de grupo.

Ahora buscamos condiciones sobre la k-algebra A que impliquen que A-mod es una
subcategoria tensorial de la categoria de los espacios vectoriales. Si V', W son A-mddulos,
entonces V ®; W es un A® A-mddulo. Si existe un morfismo de k-algebras A : A - A® A,
entonces V ®; W resulta un A-médulo definiendo paraa € A,veV yw e W

a(v@w) =Aa)(vew) = Za’v@a”w (1.2)
si A(a) =2,y a’ ®a”. Es facil ver que para que se cumplan (i-iii) de la Definicién 1, el
morfismo A debe ser coasociativo, es decir que

(A®ida)A = (ida ® A)A. (1.3)
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Como objeto I hay que tomar al cuerpo k. Para que k sea un A-mddulo, necesitamos
un morfismo de k-algebras € : A — k. Entonces k resulta un A-moédulo definiendo para
a€ A vek

av = g(a)v. (1.4)

Tenemos tambien las relaciones
(€®idA)A: (idA®€)A:idA. (1.5)

Una terna (A, A, ¢) satisfaciendo Condiciones (1.3) y (1.5) se llama una bidlgebra. Los
morfismos A y € son la comultiplicacion y la counidad de la bidlgebra A.

El dlgebra de grupo k[G] de 1.2 es una bidlgebra con comultiplicacién y counidad
dadas por

Alg)=g®g vy e(g)=1 (1.6)

para todo g € G.
El dlgebra envolvente U(g) del dlgebra de Lie g es también una bidlgebra, con comul-
tiplicacion y counidad dadas por

Alz)=z1+1®z y ez)=0 (1.7)

para todo x € g. Por lo tanto, la categoria U(g)-mod de g-médulos es también un subcat-
egoria tensorial de la categoria de los espacios vectoriales.

En estos ejemplos se verifica que A = A°P, donde A°? = g o A, y o es la tras-
posicién (12). En este caso, (A, A, ¢) se llama una k-bidlgebra coconmutativa. Veremos
ahora un ejemplo de una bidlgebra que no es conmutativa ni coconmutativa.

I.4. El dlgebra envolvente cudntica de sl(2). Los primeros ejemplos de bidlgebras eran
conmutativos o coconmutativos. Drinfeld y Jimbo [Dri87], [Jim85] construyeron ejemplos
naturales de bidlgebra no conmutativa ni coconmutativa, a partir de las algebras de Lie
semisimples g, que vamos a describir para el caso g = sl(2).

Recordemos que

sl(2) = {(i Z) € My(C) \a+d=o}

y estd generada como algebra por H, X, Y, donde
1 0 0 1 0 0
p=(o 5) x=(0 ) v r=(00)

[H,X]=2X, [HY]=-2Y, [X,Y]=H. (1.8)

con las relaciones

Llamamos Uy, (sl(2)) a la C][h]]-dlgebra generada por X, Y, H con las relaciones

[H,X]=2X, [HY]=-2Y (1.9)



exp(hH/2) — exp(—hH/2)  sinh(hH/2)

XY = = o2 —exp(Ch/2) — smb(h/2) (1.10)

La estructura de bidlgebra esta definida por la comultiplicacién A y la counidad e:
AH)=19H+H®1, (1.11)
A(X) =X ®exp(hH/4) + exp(—hH/4) ® X, (1.12)
AY)=Y ®exp(hH/4) + exp(—hH/4) ®Y, (1.13)
e(H)=¢(X)=¢eY)=0. (1.14)

Es evidente que Uy (sl(2)) no es conmutativa ni coconmutativa. Ademds [X,Y] = H
modulo h. Mas generalmente, para h = 0 recuperamos el caso clasico, esto es,

Un(sl(2))/hUr(sl(2)) = U(sl(2)) (1.15)
como bialgebras.

I.5. Una categoria de dibujos. En los ejemplos de categorias que hemos visto, nunca
especificamos los morfismos porque era claro a quienes nos referiamos. Ahora describiremos
una categoria D de naturaleza completamente diferente, para la cual la informacion esencial
estd en los morfismos, no en los objetos.

Los objetos de la categoria D son los nimeros naturales. Un morfismo en D del
objeto m en el objeto n es cualquier figura que uno quiera dibujar con las siguientes
propiedades: la figura estd en la banda horizontal R x [0, 1]; tiene extremos, que son inter-
valos topoldgicos, que unen m puntos distintos de la recta R x {0} con n puntos distintos
de la recta R x {1}. Consideramos el conjunto de las figuras a menos de homeomorfismos,
con los extremos fijos.

La composiciéon en D estda dada por: sean f : m — ny g : n — p morfimos en D
representados por figuras D y D’ respectivamente. Por definicién, D tiene n extremos
superiores y D’ tiene la misma cantidad de extremos inferiores. La composicién go f es la
clase de homeomorfismo de la figura que se obtiene poniendo D’ arriba de D, pegando los
correspondientes extremos, y comprimiendo la figura resultante en la banda R x [0, 1]. La
identidad de un objeto n > 0 esta representada por la unién {1,...,n} x [0, 1] de intervalos.
La identidad del objeto 0 es la figura vacia.

Afirmamos que D es una categoria tensorial. En los objetos, el producto tensorial esta
dado por la adicién: m ® n = m + n. En los morfismos, se define asi: sean f:m — ny
g : p — ¢q morfismos de D representados por figuras D y D’ respectivamente. Definimos
f®g como la clase de homeomorfismo de la figura obtenida poniendo D’ a la derecha de D,
de tal manera que ambas figuras sean disjuntas. El lector puede verificar que todos los
axiomas de la Definicién 1 se satisfacen. Es claro que 0 es el objeto unidad. Observar que
su conjunto de endomorfimos es muy grande: es el conjunto de clases de homeomorfismo
de todas las figuras en la banda abierta Rx]0,1[.

La categoria D es anecdética. Fue desarrollada para este curso, solo para considerar un
ejemplo sencillo muy diferente a los usuales. De todos modos, en lo que sigue encontraremos
otras dos categorias de figuras construidas en esta forma. Ambas seran muy importantes
en la teoria de grupos cuanticos.



Leccion II. Categorias trenzadas
I1.1. Definicién. El siguiente concepto es fundamental para este curso.

Definicion 2. Dada una categoria tensorial C, un trenzado de C es una familia de iso-
morfismos
Cy,w : VoW -WeV

para todos los objetos V., W de C tales que:
(i) Si f: V=V g W—>W,

cviwro(f®g)=(9®f)ocvw. (2.1)
(ii) Los siguientes tridngulos conmutan:
UgVeW  —5%  WeUeV
idy@cvw \y A cuw®idy (2.2)
UWeV
y CU, VW
UVeoW — VeWeU
CU’V®idW \( /‘ idv®CU’W (23)
VoUW

para todos los objetos U, V., W. Una categoria tensorial C provista de un trenzado se dice
una categoria trenzada.

Si C es la categoria de k-espacios vectoriales, y cyyw : VW — WV es la trasposicion
oy.w(v®w) =w ® v, la categoria C resulta una categoria trenzada.

I1.2. La ecuacion de Yang-Baxter.

Proposicion 1. FEn una categoria trenzada, el siguiente hexdgono conmuta para todo
objeto U, V, W: vy @idw
UVeW — — VoUW

idy®cv,w l l idy ®@cu,w
UWV VWU
cy,w ®idy J J cv,w Qidy
idw ®cu,v

WUV — —— WeVeU

DEMOSTRACION.— Observar que si completamos el hexdgono con las flechas cyyvew
Y cuwev, entonces los tridngulos conmutan. Ahora basta ver que el rectangulo interior
conmuta, y esto es inmediato a partir de la relacién (2.1). O

Corolario 1. Para todo objeto V' en una categoria trenzada, el automorfismo ¢ = cy,y
de V. ®V satisface la ecuacion de Yang-Bazter

(c®id)(id®c¢)(c®id) = (ild ® ¢)(c ®id)(id ® ¢) (2.4)

Los grupos cuéanticos fueron construidos originariamente para encontrar soluciones a
la ecuacién de Yang-Baxter (ver [Dri87)).



I1.3. Bialgebras trenzadas. Veamos cuando resulta trenzada la categoria tensorial de
A-médulos.

Proposicién 2. Sea (A, A,e) una bidlgebra y sea C la categoria tensorial de A-mddulos.
La categoria C es trenzada si y solo si existe R € A® A tal que:

(a) R es inversible en el dlgebra A® A,
(b) para todo a € A

A%(q) = RA(a)R™Y, (2.5)

(c)
(A®id)(R) = RizRes y (Id® A)(R) = RizRi2 (2.6)

donde Rig = R®1, Ry = 1@R y Riz = Yy RV ®@10R®) donde R =3 p RV @RP).

Si A satisface las condiciones de la proposicién 2, A se llamarda una bidlgebra trenzada.
Drinfeld [Dri87], [Dri89] usaba la terminologia “dlgebra cuasitriangular”. El elemento R
se llama la R-matriz universal de A. Si A es coconmutativa, por ejemplo, A = k[G] 6
A =U(g), puede tomarse R =1® 1 y el trenzado la trasposicion o.

DEMOSTRACION.— <«=) Se define cy,w : VW — W®V a partir de la R-matriz universal
por:

cvw(v@w) =0(Rv®@w)) =[R(v@w)xn (2.7)

Es claro que ¢y, es un isomorfismo que verifica (2.1), y para ver que los tridngulos (2.2
2.3) conmutan, es suficiente usar la condicién (2.6) de la proposicién.

=) Sea R =[ca,a(1®1)]21 € A® A. Como cy4 4 es un isomorfismo, R es inversible.
Observemos también que por la funtorialidad de ¢, dados v € V' y w € W, el siguiente

diagrama conmuta:
cA,A

AR A — ARA

TRW J/ J/ WRT

cv,w

VeW — WeV

donde v y w son las aplicaciones A-lineales A — V y A — W definidas por o(1) = v
y w(1) = w. Luego
cvw(v@w) =cyw((t@w)(1®1))
= (W®v)(caa(l®1))
= Ro1(w ® v)
= [R(v® w)]21.

Por la A-linealidad de cy,w, sigue facilmente que A°?(a)R = RA(a) para todo a € A. La
condicion (c) se verifica usando la conmutatividad de (2.2-2.3). O
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I1.4. El caso Uj(sl(2)). El objetivo de este parrafo es describir una subcategoria de
Uy, (s1(2))-médulos que es una categoria trenzada. Recordemos que U(sl(2)) es semisimple,
es decir, todo sl(2)-médulo V' de dimensién finita es suma directa de submédulos simples V,,
con dim V,, = n+1 y tales que la accién p de sl(2) sobre V,, estd dada en una base adecuada

por
n

n—2

o = O
N O

p(Y) = 0
n 0
Cada sl(2)-médulo V,, puede ser deformado a un Uy, (sl(2))-médulo V,, libre de rango
n + 1 sobre C[[h]] con la accién

b n—2
ph(H): )
—n + 2
0 [n]
0 0 [n—1]
,Oh(X): )
[1]
0
0
1] 0
pn(¥)=1| 0 120 ,
[n] 0

donde [n] = sinh(nh/2)/sinh(h/2). Observar que [n] tiende a n cuando h tiende a 0.
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Consideremos la categoria Uy, (s[(2))-mod cuyos objetos son las sumas directas finitas
de los médulos V,,. Dado cualquier s[(2)-mod V de dimensién finita, notamos V al tinico
objeto de Uy (sl(2))-mody tal que V/hV =V como sl(2)-médulo. La categorfa Uy (s1(2))-
mody es tensorial, con producto tensorial dado por VoW = (V @k W)N

Teorema 1. La categoria Uy(sl(2))-mody estd trenzada, con trenzado inducido por la
R-matriz universal

— HeoH 1
R=Y" (g [Z' )" e/ g [g ( f +5EH®1-18 KH))] (X @Y
>0 ’

donde g = exp(h/2), [(] = (¢ —¢7*)/(a—q~") y [ = [1][2] ... [¢].

El lector puede intentar probar directamente que R satisface las condiciones de la
Definicién 2. Pero esto es dificil. En II1.3 encontraremos otra expresion de Rj; usando la
construccion del doble cuantico.

I1.5. Grupos de trenzas: definicién algebraica. Ahora explicaremos por qué las
categorias consideradas en esta leccion se llaman trenzadas. Sea n un entero > 1.

Definicién 3. El grupo B, es el grupo generado por o1,...,0,_1, con las relaciones
0,0 = 0,04 s1 ‘ 2—] ‘Z 2 Y 0;0;410; = 0;410;04+1

para todos i, j. Un elemento de B,, es llamado una trenza con n hebras.
2

Agregando la relacién o7
simétrico &,,.

Ahora describiremos una relacién que existe entre los grupos de trenzas y las categorias
trenzadas. Si V es un objeto cualquiera de una categoria trenzada, entonces el grupo B,

actlia naturalmente sobre V®", es decir, existe un morfismo de grupos

= 1 para todo i, se obtiene una presentacion del grupo

pn : B — Aut(VE™)

que en los generadores o1, ...,0,_1 esta dado por
pn(0;) =1d®...Qcyy ®...®id. (2.8)
~—~—
iyit1

Del Corolario 1 se deduce que esta férmula define un morfismo de grupos en B,,.

I1.6. Descripcién topoldégica de las trenzas. Nosotros representamos una trenza
con n hebras como la unién de n intervalos inmersos en R x [0, 1] tales que

(i) los extremos de los intervalos son los puntos (1,0),...,(n,0) y (1,1),..., (n,1) del
plano,

(ii) para todo t € [0, 1] salvo un nimero finito, la interseccién de la recta R x {t} con
la trenza consiste en n puntos distintos. Més atn, suponemos que todas las singularidades
de la inmersién son puntos dobles ordinarios. En cada punto doble, existe un orden de las
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hebras que pasan por alli, que significa que una de ellas pasa por encima de la otra, y esto
lo representamos interrumpiendo el dibujo de la hebra que pasa por debajo en un entorno
del punto doble.

Consideramos las trenzas a menos de homeomorfismos. Esto significa un homeomor-
fismo de R x [0, 1] que fija los extremos, que manda puntos dobles en puntos dobles, y que
preserva el orden de las hebras en los puntos dobles.

El producto TT" de dos trenzas Ty T” con n hebras se define como en la categoria D
de la Leccién 1.5, esto es, poniendo T arriba de T”, pegando los extremos y comprimiendo
la trenza resultante dentro de R x [0, 1]. Este producto tiene la unidad representada por
la unién {1,...,n} x [0, 1] de intervalos.

Representamos el generador oy, por la unién de los intervalos {i} x [0,1] para 1 < i <n
y i # k,k+ 1 y los intervalos [(k,0),(k+ 1,1)] vy [(k + 1,0), (k,1)], donde el pentiltimo

intervalo pasa por encima del iltimo intervalo.

I1.7. La categoria trenzada universal. Consideremos la categoria BB cuyos objetos son
los nimeros naturales, y tal que

0 sin#m,
HomB(”’m):{Bn Sinim

donde B,, es el grupo de la Definicién 3 y By = B; = {1}. La composicién la definimos por
el producto en los grupos trenzados o, equivalentemente, como en la categoria D de L.5.
La identidad id,, del objeto n es la unidad del grupo B,,. La categoria B es tensorial con
producto tensorial definido en los objetos y en los morfismos como en el caso de D.
Nosotros afirmamos que B es trenzada. Para todo par de objetos (n, m), definimos un
morfismo ¢, m,m 1 1 ® m — m ®n como el elemento de B, 4, definido con los generadores

01,y Ontm POT Cpo = Co.p = idy, ¥y

Cnom = (OmOm—1--.01)(Cm+410m ---02) .. . (Oman—10min—2-..0p). (2.9)

Proposicién 3. La familia de morfismos (¢pm)n,m>0 €s un trenzado para la categoria
tensorial B.

La demostracién se deja al lector. La categoria B es la categoria trenzada universal,
mas precisamente:

Teorema 2. Sea C una categoria trenzada y V un objeto de C. Entonces existe un unico
funtor Fy : B — C tal que Fy(0) =1, Fy(1) =V,

Fv(TL@m) :Fv(n)®Fv(m>, Fv(T(X)T/) :Fv(T)®Fv(T/)
para todos los objetos n, m y todos los morfismos T, T' y

Fv(O'l) =cyy € Aut(V X V)
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DEMOSTRACION.— En los objetos, el funtor estd definido por Fy/(n) = V®". En los
morfismos T' de B, estd definido por Fy(T) = p,(T), donde p, es la representacién
construida en IL.5. O

Leccion I11. El doble cuantico

.. Cémo obtener bidlgebras trenzadas, es decir, bidlgebras A tales que A-mod sea una
categoria trenzada ? Existe un método creado por Drinfeld que asocia a toda bialgebra A
otra bidlgebra D(A) que es trenzada. Esta construccién no es sencilla. Nosotros veremos
una construcciéon categorica simple, que a cada categoria tensorial C le asocia una categoria
trenzada D(C), de forma tal que D(A-mod) = D(A)-mod. Luego aplicaremos este método
para “re”-encontrar la expresién de Ry, en Up(sl(2)).

ITI.1. Definicién. Sea (C,®,I) una categoria tensorial. Definimos una nueva categoria
D(C), llamada el doble cudntico de C, como sigue. Los objetos de D(C) son pares (V,cx,v),
donde V es un objetode C, y cx,v : X ® V = V ® X es una familia de isomorfismos tales
que

cyv(f®idy) = (id® f)ex,v (3.1)

CXQY,V = (CX,V & idy)(idx &® CY,V) (3.2)

para todo par (X,Y) de objetos y todo morfismo f: X — Y de C.

Un morfismo de (V,cx v) en (W, cx,w) en D(C) es un morfismo f: V — W de C tal
que

(f ®idx)ex,v = cxw (idx ® f) (3.3)

para todo objeto X en C.
Se tiene entonces el siguiente:

Teorema 3. La categoria D(C) es una categoria trenzada tal que
(i) el producto tensorial de dos objetos estda dado por

Viexv)®@ Woexw) = (VoW exvew)

donde CX, VoW = (ldV & CX,W)(CX,V & ldw),
(ii) la unidad es (I,id),
(7ii) el trenzado (V,cx v) @ (W,exw) = (W, exw) ® (V,ex,v) estd dado por cyy .

DEMOSTRACION.— Hace falta ver que (i) (V, cx,v)®(W, cx, w) es un objeto de la categoria,
(ii) si f y g son morfismos en la categoria, entonces f®g también, (iii) ¢y, es un morfismo
en D(C), (iv) cy,w es un trenzado. Todo esto se verifica facilmente. O
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ITI.2. Aplicacién a la categoria de A-mddulos. Dada una bidlgebra (A, A, ¢), se
quiere describir la categoria D(A-mod) en términos de A. Para hacer esto, necesitamos la
siguiente definicion.

Definicién 4. Dada una bidlgebra (A, A e), un A-bimédulo cruzado es un A-mdédulo a
izquierda V' con una aplicacion lineal Ay :V — V ® A tal que
(i) se tiene
(AV X ldA) oAy = (ldV X A) oAy, (34)

(idv (029 8) oAy =idy, (35)

(ii) para todo a € A yv € V tenemos

ZZ(LUV@)CL”UA—ZZ "v)ad (3.6)

(a) (v) (a) (v)

donde A(a) =32, a®ayAyv(v) =3 vv ®va.

Teorema 4. La categoria D(A-mod) es equivalente a la categoria de los A-bimddulos
cruzados.

DEMOSTRACION.— De todo A-bimédulo cruzado V' obtenemos un elemento (V,cx v )
de D(A-mod) definido por

cxyv(z@v)=Av(l®z) = ZUV@)UA:(J (3.7)

Uno puede verificar que cx v satisface los axiomas que definen un objeto de D(A-mod).
Reciprocamente, sea (V,cx ) un objeto de D(A-mod). Definimos una aplicacion
lineal Ay : V — V ® A por

Ay(v) =cay(l®@v)

para todo v € V. La naturalidad (3.1) de cx,y en X implica que se puede recuperar
de Ay como en la ecuacién (3.7). La relacién (3.2) para X =Y = A implica (3.4). La
A-linealidad de cy4,y implica (3.6). O

De los Teoremas 3-4 se deduce que la categoria de los A-bimddulos cruzados es tren-
zada. El trenzado entre dos A-bimdédulos cruzados estd dado por (3.7).

IT1.3. Bimddulos cruzados en el caso sl(2). Apliquemos ahora el Teorema 4 a una
sub-bidlgebra de Uy (sl(2)). La idea de Drinfeld para encontrar la R-matriz universal R,
fue construir D(A) que es una bidlgebra trenzada, y por lo tanto, tiene una R-matriz
universal ]?{, que se aplica en R; mediante una suryeccion.

Recordemos que Up(s((2)) es el dlgebra generada por X, H, Y con las relaciones (1.9-
1.10). Sea By, la subdlgebra de Uy, (s(2)) generada por H, X. Sea E = Xe1/%, Tenemos
que [H,E] = 2E. De (1.11-1.14) se deduce que Bj, es una sub-bidlgebra de Uy, (s1(2)).
A ella le queremos aplicar el Teorema 4.
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Sea V un Bjp-médulo. Determinemos cuando es un bimoédulo cruzado. Si lo es,
existe una aplicacion lineal Ay que satisface las condiciones de la Definicion 4. Como
{H™E"},, n>0 es una base topoldgica de By, la aplicacién Ay es de la forma

Ay= > A™@H"E" (3.8)

m,n>0

donde (A™™),, n>0 es una familia de endomorfismos de V.

La relacién (3.4) nos permite expresar el producto de dos elementos de esta familia
como una combinacion lineal de los elementos de la familia. Una induccién sencilla muestra
que

=1 _— — AT'AY (3.9)

para todo m, n, donde A; = A0 y Ay = A%L. La relacién (3.5) implica que A%9 = idy.

La relacién (3.6) implica relaciones entre la familia (A™"),, , y los operadores H y
FE en V. Mas precisamente, uno puede probar que V es un Bj-mddulo cruzado si y sélo si
tiene cuatro endomorfismos H, E, A1, A, actuando sobre él, tales que sus conmutadores
estan dados por

[H,E|=2E, [A,A] = —gAQ, (3.10)
[H,A\] =0,  [H,As] = —2A,, (3.11)
(E,A] = —gE, [E, As] = exp(hH/2) — exp(2A,). (3.12)

En otras palabras, un Bj-bimoédulo cruzado es lo mismo que un médulo sobre el algebra
Dy, generado por cuatro generadores H, E, Ay, Ay y las relaciones (3.10-3.12).

Como la categoria de Bj-bimddulos cruzados es trenzada (Teoremas 3—4), el alge-
bra Dy, debe ser trenzada (Proposicién 2). Por (2.7), (3.7) y (3.8) su R-matriz universal
tiene que ser

R= > H"E"®@A™"
m,n>0
Combinando esto con (3.9), tenemos que
n(n—1)/2

A_ q m n m n
R= Z> WH E" ® AT'AL. (3.13)
m,n>0

El préximo lema relaciona a la bidlgebra trenzada Dy, con el dlgebra envolvente cuan-
tica Up(s1(2)).

Lema 1. Existe un morfismo sobreyectivo de bidlgebras x : Dy, — Up(sl(2)) dado por

X(E) = X exp(hH/1),  x(H) =,
X(A2) = TH, x(8s) = (exp(h/4) — exp(~3h/1)) .
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Esto implica que, como D}, es trenzada con la R-matriz universal R, entonces U, (s[(2))

~

es trenzada con la R-matriz universal (y ® x)(R). Tenemos

. n(n—1)/2
(@) = 37 T ()™ (B)" @ x(A)"x(A5) (3.14)

m,n>0

Un célculo rapido muestra que el lado derecho de (3.14) es igual a la expresién dada por Rj,
en el Teorema 1, y esto prueba lo ltimo.

Leccion IV. Trenzados infinitesimales

IV.1. Definicién. Como hemos visto en el caso de sl(2), la categoria de mddulos sobre
un algebra envolvente cuantica depende de un pardmetro h. Por ejemplo, el trenzado cy,w
se puede extender a una serie formal en h:

cyvw = ov,w (ldvew +hryw +---) (4.1)

donde oy es la trasposiciéon y ry, es un endomorfismo de V@ W. Estudiemos el término
lineal ry . Como cy,w satisface los axiomas (2.1-2.3), éstos se traducen en condiciones
sobre Ty .

Sea S una categoria simétrica, es decir, una categoria trenzada cuyo trenzado o satis-
face la condicién adicional

OwW,v C0y,w = idV®W (42)

para todo objeto V., W de S. Estos trenzados se llamaran simetrias. Ademas suponemos
que S es C-lineal, que significa que todos sus conjuntos de morfismos son espacios vecto-
riales complejos, y la composicién y el producto tensorial de morfismos es C-bilineal.

Definicion 5. Sea S una categoria simétrica y C-lineal. Un trenzado infinitesimal de S
es una familia de endomorfismos ty.w € End(V ® W) definida para todo objeto V., W tal
que:

(feg)tvw =tvw (f®g) (4.3)
ov,w otv,w =tw,v cov,w, (4.4)
tuvew =tuyv ® idw + (UU,V %9 idw>_1(idv ® tU,W)(JU,V & idw> (4.5)

para todo objeto U, V., W y todo morfismo f € Homg(V, V') y g € Homg(W, W').
Si S tiene un trenzado infinitesimal se llamard una categoria simétrica infinitesimal.

Si ty,w se define como en (4.1) por

~1
tvw = Tv,w + 0y "W,V OV,
entonces ty y satisface (4.3-4.5).
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IV.2. Trenzados infinitesimales sobre categorias de médulos. Como en II.3,
buscamos algebras A cuya categoria de médulos sea simétrica infinitesimal. Sea (A, A, ¢)
una bialgebra coconmutativa. Sabemos por I1.3 que la categoria de A-mddulos es trenzada,
con trenzado dado por la trasposicién, que obviamente, es una simetria. El préximo
resultado clasifica todos los trenzados infinitesimales en esta categoria.

Proposicién 4. Sea (A, A, e) una bidlgebra coconmutativa, y sea S la categoria de A-
modulos con o la trasposicion. Entonces S es una categoria simétrica infinitesimal si y
solo si existet € A® A tal que:

(i) [A(a),t] = 0 para todo a € A,

(ii) t es un tensor simétrico y,

(iii) t pertenece a Prim(A) ® Prim(A) donde Prim(A) es el conjunto de elementos
a € A tales que Ala) =1®a+a® 1.

DEMOSTRACION.— <) Si v,w € S, sea ty, € End(V ® W) definido por:

tvw(v@w)=tvew)= va@yz (4.6)

donde t =), x; ® y;. Es facil verificar que las condiciones (i-ii) implican (4.3-4.5).
=)Seat =) 2,0y € A® A definido por t = t4.4(1 ® 1). Veamos que se
verifican (i-iii). La condicién (i) se verifica porque t4 4 es A-lineal. La condicién (ii) es
clara.
Probemos la condicién (iii). Si aplicamos ambos lados de (4.5) al elemento 1 ® 1 ® 1,
con U=V =W = A, tenemos

Z:L'l@Ayl sz (v @14+ 1®y;).

Podemos suponer que los elementos x; son linealmente independientes. Entonces tenemos
Ay;) = y; ®1+1®y;, es decir, todos los elementos y; pertenecen a Prim(A). Por lo tanto,
t pertenece a A ® Prim(A). Terminamos la demostracién usando la simetria de t. O

Podemos aplicar la Proposicién 4 al caso en que A sea el algebra envolvente de un
algebra de Lie g sobre un cuerpo de caracteristica cero. Entonces los trenzados infinitesi-
males de la categoria simétrica de g-mdodulos estan en biyeccién con 2-tensores € g® g que
son simétricos e invariantes bajo la representacion adjunta.

Consideremos el caso especial de un algebra de Lie compleja semisimple g. Sea {z;}
una base ortonormal de g con respecto a la forma de Killing < x,y > = Tr(ad(z)ad(y)). Es
bien sabido que el 2-tensor t = > x; ® z; es simétrico e invariante. Entonces la categoria
de g-modulos es una categoria simétrica infinitesimal con la trasposicién como simetria y
con trenzado infinitesimal inducido por la accién de t.

IV.3. Un ejemplo grafico. El resto de esta Leccién esta dedicado a desarrollar un ejem-
plo grafico de una categoria simétrica infinitesimal. Empezamos con algunas notaciones.
Para todo entero n > 2, sea p,, el algebra de Lie compleja generada por los generadores
(t)1<izj<n ¥ las relaciones
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i = 7, (4.7)
[tttk 4 ¢7%] = 0, (4.8)
[t %] =0 (4.9)

para indices distintos i, j, k, ¢. Llamamos U(p,) a su algebra envolvente. El grupo
simétrico &, actia sobre U(p,,) por la regla o - tii = o (D97 G) donde o € G,,. Podemos
considerar el producto cruzado A,, de &,, por U(p, ). Recordemos que A,, es un algebra
cuyo espacio vectorial subyacente es el mismo que el del dlgebra de grupo U (p,,)[S,,], pero
la multiplicacién esta determinada por la regla

ot =(o-t9) o (4.10)

para todo 0 € &,,. Ademas Ag = A; = C.
Ahora consideremos la categoria A cuyos objetos son los nimeros naturales, y tal que

0 sin#m,
Hom (,m) = {An sin i m.

La composicion estd definida por el producto en el dlgebra A,. La identidad id,, es la
unidad de A,,.

Para darle a la categoria A una estructura de categoria infinitesimal simétrica, daremos
primero una descripcién grafica de sus elementos. Como en el caso de las trenzas, estaran
representados por figuras consideradas a menos de homeomorfismos en la banda R x [0, 1].
Estas figuras estaran llamadas diagramas de cuerdas. El diagrama de cuerdas del producto
de dos elementos se obtiene, como en el caso de las trenzas, pegando el diagrama de cuerdas
de un elemento arriba del diagrama de cuerdas del otro elemento.

Para representar graficamente los elementos de A, es suficiente representar a sus
generadores. El dlgebra A,, tiene dos tipos de generadores: los generadores t de p,, y las
trasposiciones s = (k, k + 1) del grupo simétrico &,,.

Representemos al generador t¥ por n intervalos verticales paralelos con una linea
punteada horizontal entre el ¢-ésimo y el j-ésimo intervalo. Una linea punteada horizontal
se llama una cuerda. Representemos la trasposicion s por la unién de los intervalos
{i} x [0,1] para 1 < ¢ < nyi # k,k+ 1y los intervalos [(k,0),(k+ 1,1)] y [(k +
1,0), (k,1)] de R x [0, 1]. En el grupo simétrico oy, es igual a su inverso. Esto significa que,
contrariamente a lo que sucede con las trenzas, aqui no hay diferencia entre cruzar por
adelante o por atras. Observar que s estd representada por un diagrama de cuerdas sin
cuerdas. Dejamos al lector que agregue las relaciones que resultan de las Relaciones (4.8—
4.10). La relacién entre los diagramas de cuerdas correspondientes a (4.8) es conocida en
la teoria de invariantes de grado finito de nudos bajo la terminologia “relacién de cuatro
términos” (para més informacién, ver [BN92] y [Kas95], Capitulo XX).

Con esta representacion grafica, es facil dar una estructura tensorial a la categoria A.
Esto estd hecho, asi como hicimos para las categorias D en 1.5 y B en I1.7. La férmula (2.9)
define una simetria en A.

16



Ahora construiremos un trenzado infinitesimal. Para todo objeto n, m > 1, definimos
un endomorfismo ¢, ,,, del objeto n ® m como el elemento

n m
trm = 3> T € Ay, (4.11)
i=1 j=1
Sin 6 m = 0, tenemos t,,, = 0. Dejamos como ejercicio la demostraciéon del préximo
resultado (sugerencia: la relacién (4.8) se usa para probar la naturalidad (4.3) de t,, ).

Proposicién 5. La familia de endomorfismos (tn m)n,m>0 €s un trenzado infinitesimal de
la categoria A.

La categoria A tiene la siguiente propiedad universal.

Teorema 5. Sea A una categoria simétrica infinitesimal C-lineal con simetria o y trenzado
infinitesimal t. Dado un objeto V de S, existe un unico funtor Gy : A — S tal que
Gv(0)=1,Gv(1)=V,

Gv(n X m) = Gv(n) X Gv(m), Gv(D X D,) = Gv(D) X Gv(D/)
para todos objetos n, m y todos morfismos D, D', y

Gy(s1) =ovy e Aut(VeV) y Gv(t12) =tyy € End(V @ V).

Leccion V. Integracion de categorias simétricas infinitesimales

A partir de una categoria simétrica infinitesimal S, construimos una categoria tren-
zada S[[h]]. Como veremos mas adelante, esto tiene consequencias muy importantes, gra-
cias a un resultado fundamental de Drinfeld.

V.1. Categorias trenzadas revisadas. Antes de comenzar a construir S[[h]], necesita-
mos extender el concepto de categoria trenzada. Empezamos ampliando la condicién (i)
de la Definicién 1 suponiendo la existencia de una isomorfismo de asociatividad natural

A (UaV)aW U (VeWw)

definido para toda terna U, V, W de objetos de la categoria C (cuando a es la identidad,
recuperamos la Definicién 1). En esta nueva situacién, tenemos muchas elecciones de
colocar los paréntesis en el producto tensorial de n objetos. Todas ellas son isomorfas. Por
ejemplo, tomemos cuatro objetos U, V', W, Z. Hay cinco formas de colocar paréntesis en
UV W ® Z. El siguiente diagrama, a menudo llamado el pentagono de Mac Lane,
muestra dos formas de pasar de (U@ V)@ W)® Z a U ® (V® (W ® Z)) usando el

isomorfismo de asociatividad a.
AauV,W,Z

(UeV)oW)®Z UeV)e(WeZ)
ay,v,w ®idz l l au,v,wez
UeVeWw)eZ U (Ve WeZ)) (5.1)
ay,vew,z \,4 ]idU®av,W,Z

U (VeW)® Z)
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Nosotros supondremos que dados cuatro objetos cualesquiera, el pentdgono de Mac Lane
conmuta. Esto significa que entre dos formas de colocar los paréntesis en el producto ten-
sorial de cuatro objetos, existe un tnico isomorfismo natural expresado con el isomorfismo
de asociatividad. Mac Lane prob6 que la conmutatividad del pentdgono también implica
que existe un unico isomorfismo natural, expresado con el isomorfismo de asociatividad,
entre dos formas de colocar los paréntesis en el producto tensorial de n objetos, donde n
es un entero positivo arbitrario (ver [Mac71]).

También tenemos que tener en cuenta al isomorfismo de asociatividad a en la definicion
del trenzado c. Esto significa que debemos reemplazar los dos tridngulos conmutativos (2.2—
2.3) de la Definicién 2 por dos hexdgonos conmutativos. El primer hexagono es

CUQV,W

UeV)oW WeUeV)
auy,v,w J/ T aw,u,v
U (VeW) (WeU)eV (5.2)
idU®CV’W J{ 1 T CU,W®idV
Auy,w,v
U (WeV) UeW)V

El segundo hexagono se obtiene a partir del primero, reemplazando el isomorfismo ¢ por

su inverso ¢~ 1.

V.2. Series de Drinfeld. Una serie formal ®(A, B) en dos variables A, B que no
conmutan se llama una serie de Drinfeld si ®(A, B) es solucién del siguiente sistema de
ecuaciones:

®(0,0) =1,
D(t12,tag + tag) P(t13 + ta3, t34) = P(t23, t34) P(t12 + t13, tas + t34) P(t12, t23),

t13+t t _ t
eXp(%) = ®(t13,t12) exp(?) D(t13,t23) " eXp(?) O (t12,t23),
ti13+1¢ _ t t _
exp(—7 ) = Btz tas) H exp(7) Dtz trs) exp() B(taz, ts)

donde (t;;),.;.:<, verifica las relaciones (4.7-4.9). Observar que ®(A, B) = 1 no es una
serie de Drinfeld. En realidad,

t13 + ta3
2

)exp(2)

25}

) # exp(S

exp(

porque t13 y t23 no conmutan. De todos modos, tenemos el siguiente resultado.
Teorema 6. Ezisten series de Drinfeld.

Drinfeld [Dri89], [Dri90] probé este teorema exhibiendo una solucién particular ®ky
de la siguiente manera. Consideremos la ecuacion diferencial lineal

dz  2um

dG(z) 1 (A B ) &) (53)

z z—1
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definida para z € C\{0, 1}, donde A, B son operadores que no conmutan. La ecuacién (5.3)
tiene singularidades regulares en 0, 1, co. Sea G(z) alguna solucién. No estd definida en
0, 1, pero su comportamiento asintético en estos puntos es bien conocido. Escribamos

G(Z) _ ZhA/2i7r (1 _ Z)hB/Qiﬂ' V(Z)

La funcién V (z) estd definida en un entorno de [0, 1]. Drinfeld probé que ®xz = V(1)V(0)~!
es una serie de Drinfeld. En realidad, es la tnica solucién conocida hasta hoy. Podemos
resolver (5.3) usando el método de aproximacién de Picard. Por ejemplo, podemos calcular
los primeros términos de ®ky;:

@)
(2im)3

Pkz(A,B) =1+ i [A, B] + ([[A,B],B] — [A,[A,B]]) 4+ ---. (5.4)

Aqui ((3) es el valor de la funcién zeta de Riemann en el entero 3. La serie de Drinfeld
dky fue encontrada por Drinfeld en relacién con las ecuaciones de Knizhnik-Zamolodchikov
(para mas informacién, ver [Dri89], [Dri90], [Kas95], Capitulo XIX).

V.3. La construcciéon de Drinfeld-Cartier. Ahora estamos listos para definir S[[h]]
cuando S es una categoria simétrica infinitesimal C-lineal. Seguiremos [Dri90] y [Car93].

Los objetos de SJ[h]] son los mismos que los objetos de S. Un morfismo en S[[h]]
de V en W es una serie formal ) -, fnh™, donde f, € Homg(V, W) para todo n. La
composicion estd definida usando la composicién en S y la multiplicacion usual de las series
formales. La identidad de un objeto V' en S[[h]] es la serie formal constante ) -, fnh"
donde fy =1idy y f, = 0 cuando n > 0. a

La categoria S[[h]] tiene un producto tensorial obtenido extendiendo C|[h]]-linealmente
al producto tensorial de S.

Ahora le daremos a S[[h]] una estructura de categoria trenzada en el sentido ampliado
de V.1. Para hacer esto, definimos un isomorfismo de asociatividad y un trenzado. Ambos
estaran definidos como series formales. Para el isomorfismo de asociatividad, necesitamos
elegir una serie de Drinfeld ® como esta definida en V.2. Sean

av,v,w = @(htyy ®idw, hidy ® tv,w) (5.5)

donde tyy, ty,w son los trenzados infinitesimales de la categoria S. El trenzado estd
definido por

Cyw = O0y,w © exp(htV7W/2) (56)

donde oy, es la simetria en S.

Es facil verificar que las ecuaciones que definen una serie de Drinfeld implican la con-
mutatividad del pentdgono (5.1) y de los hexdgonos (5.2). Como la categoria trenzada que
acabamos de construir depende de una serie de Drinfeld ®, hacemos notar esto llamando
a la categorfa trenzada Sg[[h]].
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V.4. El teorema fundamental de Drinfeld. Sea g un algebra de Lie semisimple
compleja. Como mencionamos anteriormente, Drinfeld y Jimbo construyeron una CJ[[h]]-
bidlgebra trenzada Uy, (g) tal que

Un(g)/hUn(g) = U(g)

como bidlgebras. Podemos considerar la categoria Up,(g)-mods de Up(g)-médulos que son
libres de rango finito como C[[h]]-mddulos. Esta categoria es trenzada.

Por otro lado, por IV.2 sabemos que la categoria U(g)-mody de g-médulos de dimen-
sién finita es simétrica infinitesimal cuando la equipamos con la trasposicion como simetria
y con el trenzado infinitesimal inducido por el 2-tensor t = . ; ® x; que es dual a la
forma de Killing. Podemos aplicar el procedimiento de integracién de V.3 a U(g)-mod;.

Drinfeld ([Dri89], [Dri90]) probé el siguiente resultado, que muestra la importancia del
procedimiento de integracion del parrafo anterior. Esta es una interpretacién categérica
de la demostracion dada por Drinfeld de un teorema de Kohno sobre la monodromia de
ecuaciones de Knizhnik-Zamolodchikov.

Teorema 7. Para toda serie de Drinfeld ®, las categorias trenzadas Up(g)-modys y
(U(g)-mody), [[h]] son equivalentes.

V.5. Una representacién universal del grupo de trenzas. Volvamos a la categoria
simétrica infinitesimal universal A construida en IV.3. Fijemos una serie de Drinfeld ®.
Por V.3 conseguimos una categoria trenzada Ag[[h]]. Consideremos el objeto 1 de esta
categoria. Por el Teorema 2, existe un tnico funtor Z = F; : B — Ag[[h]] que preserva
el producto tensorial y el trenzado tal que Z(1) = 1. Este funtor da una representacién
de B,, por un grupo de series formales cuyos coeficientes son diagramas de cuerdas con
n hebras: para cualquier trenza 1" con n hebras tenemos

Z(T) =Y Zi(T) h* (5.7)

k>0

donde Zi(T) es un elemento del algebra A, que es una combinacién lineal de diagramas
de cuerdas con k cuerdas. Por ejemplo, si o7 es el generador de Bs,
12 h¥ 124k
Z(o1) = s1 0 exp(ht'?/2) = kz oy 510 ()", (5.8)
>0

Tomando “trazas”, obtenemos un invariante de lazos a valores en diagramas de cuer-
das en el circulo. Este es el invariante universal de Kontsevich (ver [BN92|, [Kas95],
Capitulo XX).

El funtor Z es universal para todos los funtores F' de la categoria B en cualquier
categoria trenzada de la forma Sg[[h]], que preserva todas las estructuras. En realidad,
sea V el objeto F/(1) de S. Por el Teorema 5 existe un unico funtor G : A — S que
preserva todas las estructuras y tal que G(1) = V. Este funtor se extiende a un funtor
Ga|[h]] : As[[h]] — Sa[[h]]. Consideremos la composicion Ggllh]] o Z : B — Sg[[h]]. Ella
manda el objeto 1 en el objeto V. Por la unicidad establecida en el Teorema 2, tenemos

F = Gsl[h]] o Z, (5.9)
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que prueba que F' se factoriza a través de Z.

El funtor Z se puede usar para probar el siguiente isomorfismo de Kohno [Koh85]
entre completados del algebra de grupo del grupo de trenzas B,, y del dlgebra A,, definida
en IV.3:

lim C[B,]/I* = lim A, /J", (5.10)
k k
donde I es el ideal bilatero de C[B,,] generado por los elementos o1 —o7 L on1 -0, 1,

y J es el ideal de A,, generado por los elementos {¢“ }1<;zj<n. La demostracién que usa
el funtor Z estd en [KT95], Apéndice C.
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