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Estas son las notas del curso que d́ı en Agosto de 1994 en el XIo Coloquio Latinoameri-
cano de Álgebra en Mendoza, Argentina. El objetivo de éste fue dar una introducción a
la teoŕıa de los grupos cuánticos desde el punto de vista de las categoŕıas.

Los grupos cuánticos de los que hablamos son las llamadas “álgebras envolventes
cuánticas” de Drinfeld-Jimbo. Estas son deformaciones formales de las álgebras envolventes
de las álgebras de Lie semisimples. La definición de estas álgebras es bastante complicada;
lo haremos solo en el caso más simple, cuando el álgebra de Lie es sl(2). Las álgebras
envolventes cuánticas tienen una propiedad común muy importante: sus categoŕıas de
módulos son categoŕıas trenzadas. Este último concepto es el más estudiado en este curso.
También consideraremos otras categoŕıas trenzadas interesantes, que no son categoŕıas de
módulos, como las constrúıdas con objetos 1-dimensionales en el plano.

El contenido de estas notas es el siguiente. Empezamos definiendo categoŕıas tren-
zadas, ilustrando este concepto con dos tipos de ejemplos:

(i) el primer ejemplo serán categoŕıas de módulos sobre ciertas álgebras, llamadas
biálgebras trenzadas. Las álgebras envolventes cuánticas de Drinfeld-Jimbo son de este
tipo.

(ii) construiremos la categoŕıa trenzada B utilizando ciertos objetos 1-dimensiona-
les en el plano, llamados trenzas. La categoŕıa B es universal entre todas las categoŕıas
trenzadas.

Después haremos una construcción categórica del doble cuántico de Drinfeld. El
método mostrado aqúı es más conceptual y más fácil de entender que la construcción
original de Drinfeld. Esto nos permitirá obtener la R-matriz universal para el álgebra
envolvente cuántica de sl(2).

En la Lección IV damos una versión infinitesimal del concepto de categoŕıa trenzada,
esto es, el concepto de una categoŕıa infinitesimal simétrica. La categoŕıa de módulos
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sobre un álgebra de Lie semisimple es un ejemplo de estas categoŕıas. Existe una categoŕıa
simétrica infinitesimal universal A, que también construiremos en estas notas.

Terminamos este curso mostrando cómo construir una categoŕıa trenzada dada cual-
quier categoŕıa infinitesimal simétrica. Por un importante teorema de Drinfeld, si apli-
camos este método a la categoŕıa de módulos sobre un álgebra de Lie semisimple, recu-
peramos la categoŕıa de módulos sobre la correspondiente álgebra envolvente cuántica.
Por otro lado, considerando la categoŕıa A de la Lección IV, tenemos una representación
universal del grupo de trenzas.

Mi cálido agradecimiento a Silvia Cécere, Maŕıa Julia Redondo y Andrea Solotar
quienes me ayudaron a escribir estas notas y las tradujeron al español.
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I.2. La categoŕıa de los espacios vectoriales
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Lección V. Integración de categoŕıas simétricas infinitesimales
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Lección I. Categoŕıas tensoriales

I.1. Definición. Recordamos una definición clásica (ver [Mac71], [Kas95], Caṕıtulo XI).

Definición 1. Una categoŕıa tensorial C es una categoŕıa provista de un producto tensorial
⊗ : C×C → C, esto es, dados objetos V,W de la categoŕıa, V ⊗W es un objeto de C, y dados
morfismos f : V → V ′ y g : W →W ′, se le asocia un morfismo f ⊗ g : V ⊗W → V ′⊗W ′

de C que verifica:

(i) ⊗ es asociativo en los objetos y en los morfismos,
(ii) idV ⊗W = idV ⊗ idW , V , W de C,
(iii) Si V, V ′, V ′′,W,W ′,W ′′ son objetos de C, y f : V → V ′, g : W → W ′, f ′ : V ′ →

V ′′, g′ : W ′ →W ′′ son morfismos de C, entonces

(f ′ ⊗ g′) ◦ (f ⊗ g) = (f ′ ◦ f)⊗ (g′ ◦ g),

(iv) Existe un objeto I de C tal que I ⊗ V = V ⊗ I = V , para todo objeto V , y
idV ⊗ f = f ⊗ idI = f para todo morfismo f en C.

I.2. La categoŕıa de los espacios vectoriales. Si k es un cuerpo, C la categoŕıa de
k-espacios vectoriales, ⊗ el producto tensorial usual, entonces C es una categoŕıa tensorial
con I = k.

Sea G un grupo. Es claro que la subcategoŕıa de espacios vectoriales con una acción
a izquierda de G es también tensorial. El producto tensorial es el mismo que en el caso
de los espacios vectoriales. Además, si V y W son G-módulos, entonces V ⊗k W es un
G-módulo con la acción

g(v ⊗ w) = gv ⊗ gw (1.1)

para todo g ∈ G, v ∈ V y w ∈ W . El grupo actúa trivialmente en el espacio vectorial
unidimensional k, es decir, gv = v para todo g ∈ G y v ∈ k.

I.3. Módulos sobre una biálgebra. La categoŕıa de G-módulos es un caso particular
de la categoŕıa A-mod de módulos a izquierda sobre una k-álgebra A, asociativa y con
unidad, tomando en este caso A = k[G] el álgebra de grupo.

Ahora buscamos condiciones sobre la k-álgebra A que impliquen que A-mod es una
subcategoŕıa tensorial de la categoŕıa de los espacios vectoriales. Si V , W son A-módulos,
entonces V ⊗kW es un A⊗A-módulo. Si existe un morfismo de k-álgebras ∆ : A→ A⊗A,
entonces V ⊗k W resulta un A-módulo definiendo para a ∈ A, v ∈ V y w ∈W

a(v ⊗ w) = ∆(a)(v ⊗ w) =
∑

(a)

a′v ⊗ a′′w (1.2)

si ∆(a) =
∑

(a) a
′ ⊗ a′′. Es fácil ver que para que se cumplan (i–iii) de la Definición 1, el

morfismo ∆ debe ser coasociativo, es decir que

(∆⊗ idA)∆ = (idA ⊗∆)∆. (1.3)
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Como objeto I hay que tomar al cuerpo k. Para que k sea un A-módulo, necesitamos
un morfismo de k-álgebras ε : A → k. Entonces k resulta un A-módulo definiendo para
a ∈ A, v ∈ k

av = ε(a)v. (1.4)

Tenemos tambien las relaciones

(ε⊗ idA)∆ = (idA ⊗ ε)∆ = idA. (1.5)

Una terna (A,∆, ε) satisfaciendo Condiciones (1.3) y (1.5) se llama una biálgebra. Los
morfismos ∆ y ε son la comultiplicación y la counidad de la biálgebra A.

El álgebra de grupo k[G] de I.2 es una biálgebra con comultiplicación y counidad
dadas por

∆(g) = g ⊗ g y ε(g) = 1 (1.6)

para todo g ∈ G.
El álgebra envolvente U(g) del álgebra de Lie g es también una biálgebra, con comul-

tiplicación y counidad dadas por

∆(x) = x⊗ 1 + 1⊗ x y ε(x) = 0 (1.7)

para todo x ∈ g. Por lo tanto, la categoŕıa U(g)-mod de g-módulos es también un subcat-
egoŕıa tensorial de la categoŕıa de los espacios vectoriales.

En estos ejemplos se verifica que ∆ = ∆op, donde ∆op = σ ◦ ∆, y σ es la tras-
posición (12). En este caso, (A,∆, ε) se llama una k-biálgebra coconmutativa. Veremos
ahora un ejemplo de una biálgebra que no es conmutativa ni coconmutativa.

I.4. El álgebra envolvente cuántica de sl(2). Los primeros ejemplos de biálgebras eran
conmutativos o coconmutativos. Drinfeld y Jimbo [Dri87], [Jim85] construyeron ejemplos
naturales de biálgebra no conmutativa ni coconmutativa, a partir de las álgebras de Lie
semisimples g, que vamos a describir para el caso g = sl(2).

Recordemos que

sl(2) =

{(
a b
c d

)
∈M2(C)

∣∣ a+ d = 0

}

y está generada como álgebra por H, X , Y , donde

H =

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
y Y =

(
0 0
1 0

)

con las relaciones
[H,X ] = 2X, [H, Y ] = −2Y, [X, Y ] = H. (1.8)

Llamamos Uh(sl(2)) a la C[[h]]-álgebra generada por X , Y , H con las relaciones

[H,X ] = 2X, [H, Y ] = −2Y (1.9)
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y

[X, Y ] =
exp(hH/2)− exp(−hH/2)

exp(h/2)− exp(−h/2)
=

sinh(hH/2)

sinh(h/2)
. (1.10)

La estructura de biálgebra está definida por la comultiplicación ∆ y la counidad ε:

∆(H) = 1⊗H +H ⊗ 1, (1.11)

∆(X) = X ⊗ exp(hH/4) + exp(−hH/4)⊗X, (1.12)

∆(Y ) = Y ⊗ exp(hH/4) + exp(−hH/4)⊗ Y, (1.13)

ε(H) = ε(X) = ε(Y ) = 0. (1.14)

Es evidente que Uh(sl(2)) no es conmutativa ni coconmutativa. Además [X, Y ] ≡ H
módulo h. Más generalmente, para h = 0 recuperamos el caso clásico, esto es,

Uh(sl(2))/hUh(sl(2)) ∼= U(sl(2)) (1.15)

como biálgebras.

I.5. Una categoŕıa de dibujos. En los ejemplos de categoŕıas que hemos visto, nunca
especificamos los morfismos porque era claro a quienes nos refeŕıamos. Ahora describiremos
una categoŕıaD de naturaleza completamente diferente, para la cual la información esencial
está en los morfismos, no en los objetos.

Los objetos de la categoŕıa D son los números naturales. Un morfismo en D del
objeto m en el objeto n es cualquier figura que uno quiera dibujar con las siguientes
propiedades: la figura está en la banda horizontal R× [0, 1]; tiene extremos, que son inter-
valos topológicos, que unen m puntos distintos de la recta R× {0} con n puntos distintos
de la recta R×{1}. Consideramos el conjunto de las figuras a menos de homeomorfismos,
con los extremos fijos.

La composición en D está dada por: sean f : m → n y g : n → p morfimos en D
representados por figuras D y D′ respectivamente. Por definición, D tiene n extremos
superiores y D′ tiene la misma cantidad de extremos inferiores. La composición g ◦ f es la
clase de homeomorfismo de la figura que se obtiene poniendo D′ arriba de D, pegando los
correspondientes extremos, y comprimiendo la figura resultante en la banda R× [0, 1]. La
identidad de un objeto n > 0 esta representada por la unión {1, . . . , n}×[0, 1] de intervalos.
La identidad del objeto 0 es la figura vaćıa.

Afirmamos que D es una categoŕıa tensorial. En los objetos, el producto tensorial está
dado por la adición: m ⊗ n = m + n. En los morfismos, se define aśı: sean f : m → n y
g : p → q morfismos de D representados por figuras D y D′ respectivamente. Definimos
f⊗g como la clase de homeomorfismo de la figura obtenida poniendo D′ a la derecha de D,
de tal manera que ambas figuras sean disjuntas. El lector puede verificar que todos los
axiomas de la Definición 1 se satisfacen. Es claro que 0 es el objeto unidad. Observar que
su conjunto de endomorfimos es muy grande: es el conjunto de clases de homeomorfismo
de todas las figuras en la banda abierta R×] 0, 1[.

La categoŕıa D es anecdótica. Fue desarrollada para este curso, solo para considerar un
ejemplo sencillo muy diferente a los usuales. De todos modos, en lo que sigue encontraremos
otras dos categoŕıas de figuras constrúıdas en esta forma. Ambas serán muy importantes
en la teoŕıa de grupos cuánticos.
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Lección II. Categoŕıas trenzadas

II.1. Definición. El siguiente concepto es fundamental para este curso.

Definición 2. Dada una categoŕıa tensorial C, un trenzado de C es una familia de iso-
morfismos

cV,W : V ⊗W →W ⊗ V

para todos los objetos V , W de C tales que:
(i) Si f : V → V ′, g : W →W ′,

cV ′,W ′ ◦ (f ⊗ g) = (g ⊗ f) ◦ cV,W . (2.1)

(ii) Los siguientes triángulos conmutan:

U ⊗ V ⊗W
cU⊗V,W

−−−−→ W ⊗ U ⊗ V
idU⊗cV,W ց ր cU,W⊗idV

U ⊗W ⊗ V
(2.2)

y
U ⊗ V ⊗W

cU,V ⊗W

−−−−→ V ⊗W ⊗ U
cU,V ⊗idW ց ր idV ⊗cU,W

V ⊗ U ⊗W
(2.3)

para todos los objetos U , V , W . Una categoŕıa tensorial C provista de un trenzado se dice
una categoŕıa trenzada.

Si C es la categoŕıa de k-espacios vectoriales, y cV,W : V⊗W → W⊗V es la trasposición
σV,W (v ⊗ w) = w ⊗ v, la categoŕıa C resulta una categoŕıa trenzada.

II.2. La ecuación de Yang-Baxter.

Proposición 1. En una categoŕıa trenzada, el siguiente hexágono conmuta para todo
objeto U , V , W :

U ⊗ V ⊗W
cU,V ⊗idW

−−−−−→ V ⊗ U ⊗W

idU⊗cV,W

y
y idV ⊗cU,W

U ⊗W ⊗ V V ⊗W ⊗ U

cU,W⊗idV

y
y cV,W⊗idU

W ⊗ U ⊗ V
idW⊗cU,V

−−−−−→ W ⊗ V ⊗ U

Demostración.— Observar que si completamos el hexágono con las flechas cU,V⊗W

y cU,W⊗V , entonces los triángulos conmutan. Ahora basta ver que el rectángulo interior
conmuta, y esto es inmediato a partir de la relación (2.1). �

Corolario 1. Para todo objeto V en una categoŕıa trenzada, el automorfismo c = cV,V
de V ⊗ V satisface la ecuación de Yang-Baxter

(c⊗ id)(id⊗ c)(c⊗ id) = (id⊗ c)(c⊗ id)(id⊗ c) (2.4)

Los grupos cuánticos fueron constrúıdos originariamente para encontrar soluciones a
la ecuación de Yang-Baxter (ver [Dri87]).
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II.3. Biálgebras trenzadas. Veamos cuándo resulta trenzada la categoŕıa tensorial de
A-módulos.

Proposición 2. Sea (A,∆, ε) una biálgebra y sea C la categoŕıa tensorial de A-módulos.
La categoŕıa C es trenzada śı y sólo si existe R ∈ A⊗ A tal que:

(a) R es inversible en el álgebra A⊗ A,

(b) para todo a ∈ A

∆op(a) = R∆(a)R−1, (2.5)

(c)

(∆⊗ id)(R) = R13R23 y (id⊗∆)(R) = R13R12 (2.6)

donde R12 = R⊗1, R23 = 1⊗R y R13 =
∑

(R) R
(1)⊗1⊗R(2) donde R =

∑
(R) R

(1)⊗R(2).

Si A satisface las condiciones de la proposición 2, A se llamará una biálgebra trenzada.
Drinfeld [Dri87], [Dri89] usaba la terminoloǵıa “álgebra cuasitriangular”. El elemento R
se llama la R-matriz universal de A. Si A es coconmutativa, por ejemplo, A = k[G] ó
A = U(g), puede tomarse R = 1⊗ 1 y el trenzado la trasposición σ.

Demostración.— ⇐) Se define cV,W : V ⊗W →W ⊗V a partir de la R-matriz universal
por:

cV,W (v ⊗ w) = σ
(
R(v ⊗ w)

)
= [R(v ⊗ w)]21 (2.7)

Es claro que cV,W es un isomorfismo que verifica (2.1), y para ver que los triángulos (2.2–
2.3) conmutan, es suficiente usar la condición (2.6) de la proposición.

⇒) Sea R = [cA,A(1⊗ 1)]21 ∈ A⊗ A. Como cA,A es un isomorfismo, R es inversible.
Observemos también que por la funtorialidad de c, dados v ∈ V y w ∈ W , el siguiente
diagrama conmuta:

A⊗ A
cA,A

−−→ A⊗ A

v̄⊗w̄

y
y w̄⊗v̄

V ⊗W
cV,W

−−→ W ⊗ V

donde v̄ y w̄ son las aplicaciones A-lineales A → V y A → W definidas por v̄(1) = v
y w̄(1) = w. Luego

cV,W (v ⊗ w) = cV,W
(
(v̄ ⊗ w̄)(1⊗ 1)

)

= (w̄ ⊗ v̄)
(
cA,A(1⊗ 1)

)

= R21(w ⊗ v)

= [R(v ⊗ w)]21.

Por la A-linealidad de cV,W , sigue fácilmente que ∆op(a)R = R∆(a) para todo a ∈ A. La
condición (c) se verifica usando la conmutatividad de (2.2–2.3). �
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II.4. El caso Uh(sl(2)). El objetivo de este párrafo es describir una subcategoŕıa de
Uh(sl(2))-módulos que es una categoŕıa trenzada. Recordemos que U(sl(2)) es semisimple,
es decir, todo sl(2)-módulo V de dimensión finita es suma directa de submódulos simples Vn

con dimVn = n+1 y tales que la acción ρ de sl(2) sobre Vn está dada en una base adecuada
por

ρ(H) =




n
n− 2

. . .

−n + 2
−n




,

ρ(X) =




0 n
0 0 n− 1

. . .

1
0




,

ρ(Y ) =




0
1 0
0 2 0

. . .
. . .

n 0




.

Cada sl(2)-módulo Vn puede ser deformado a un Uh(sl(2))-módulo Ṽn libre de rango
n+ 1 sobre C[[h]] con la acción

ρh(H) =




n
n− 2

. . .

−n + 2
−n




,

ρh(X) =




0 [n]
0 0 [n− 1]

. . .

[1]
0




,

ρh(Y ) =




0
[1] 0
0 [2] 0

. . .
. . .

[n] 0




,

donde [n] = sinh(nh/2)/ sinh(h/2). Observar que [n] tiende a n cuando h tiende a 0.
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Consideremos la categoŕıa Uh(sl(2))-modf cuyos objetos son las sumas directas finitas

de los módulos Ṽn. Dado cualquier sl(2)-mod V de dimensión finita, notamos Ṽ al único

objeto de Uh(sl(2))-modf tal que Ṽ /hṼ = V como sl(2)-módulo. La categoŕıa Uh(sl(2))-

modf es tensorial, con producto tensorial dado por Ṽ ⊗ W̃ = (V ⊗k W )̃.

Teorema 1. La categoŕıa Uh(sl(2))-modf está trenzada, con trenzado inducido por la
R-matriz universal

Rh =
∑

ℓ≥0

(q − q−1)ℓ

[ℓ]!
q−ℓ(ℓ+1)/2 exp

[
h

2

(
H ⊗H

2
+

1

2
(ℓH ⊗ 1− 1⊗ ℓH)

)] (
Xℓ ⊗ Y ℓ

)

donde q = exp(h/2), [ℓ] = (qℓ − q−ℓ)/(q − q−1) y [ℓ]! = [1][2] . . . [ℓ].

El lector puede intentar probar directamente que Rh satisface las condiciones de la
Definición 2. Pero esto es dif́ıcil. En III.3 encontraremos otra expresión de Rh usando la
construcción del doble cuántico.

II.5. Grupos de trenzas: definición algebraica. Ahora explicaremos por qué las
categoŕıas consideradas en esta lección se llaman trenzadas. Sea n un entero > 1.

Definición 3. El grupo Bn es el grupo generado por σ1, . . . , σn−1, con las relaciones

σiσj = σjσi si | i− j |≥ 2 y σiσi+1σi = σi+1σiσi+1

para todos i, j. Un elemento de Bn es llamado una trenza con n hebras.

Agregando la relación σ2
i = 1 para todo i, se obtiene una presentación del grupo

simétrico Sn.
Ahora describiremos una relación que existe entre los grupos de trenzas y las categoŕıas

trenzadas. Si V es un objeto cualquiera de una categoŕıa trenzada, entonces el grupo Bn

actúa naturalmente sobre V ⊗n, es decir, existe un morfismo de grupos

ρn : Bn → Aut(V ⊗n)

que en los generadores σ1, . . . , σn−1 está dado por

ρn(σi) = id⊗ . . .⊗ cV,V︸︷︷︸
i,i+1

⊗ . . .⊗ id. (2.8)

Del Corolario 1 se deduce que esta fórmula define un morfismo de grupos en Bn.

II.6. Descripción topológica de las trenzas. Nosotros representamos una trenza
con n hebras como la unión de n intervalos inmersos en R× [0, 1] tales que

(i) los extremos de los intervalos son los puntos (1, 0), . . . , (n, 0) y (1, 1), . . . , (n, 1) del
plano,

(ii) para todo t ∈ [0, 1] salvo un número finito, la intersección de la recta R× {t} con
la trenza consiste en n puntos distintos. Más aún, suponemos que todas las singularidades
de la inmersión son puntos dobles ordinarios. En cada punto doble, existe un orden de las
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hebras que pasan por alĺı, que significa que una de ellas pasa por encima de la otra, y esto
lo representamos interrumpiendo el dibujo de la hebra que pasa por debajo en un entorno
del punto doble.

Consideramos las trenzas a menos de homeomorfismos. Esto significa un homeomor-
fismo de R× [0, 1] que fija los extremos, que manda puntos dobles en puntos dobles, y que
preserva el orden de las hebras en los puntos dobles.

El producto TT ′ de dos trenzas T y T ′ con n hebras se define como en la categoŕıa D
de la Lección I.5, esto es, poniendo T arriba de T ′, pegando los extremos y comprimiendo
la trenza resultante dentro de R × [0, 1]. Este producto tiene la unidad representada por
la unión {1, . . . , n} × [0, 1] de intervalos.

Representamos el generador σk por la unión de los intervalos {i}×[0, 1] para 1 ≤ i ≤ n
y i 6= k, k + 1 y los intervalos [(k, 0), (k + 1, 1)] y [(k + 1, 0), (k, 1)], donde el penúltimo
intervalo pasa por encima del último intervalo.

II.7. La categoŕıa trenzada universal. Consideremos la categoŕıa B cuyos objetos son
los números naturales, y tal que

HomB(n,m) =

{
∅ si n 6= m,
Bn si n = m,

donde Bn es el grupo de la Definición 3 y B0 = B1 = {1}. La composición la definimos por
el producto en los grupos trenzados o, equivalentemente, como en la categoŕıa D de I.5.
La identidad idn del objeto n es la unidad del grupo Bn. La categoŕıa B es tensorial con
producto tensorial definido en los objetos y en los morfismos como en el caso de D.

Nosotros afirmamos que B es trenzada. Para todo par de objetos (n,m), definimos un
morfismo cn,m : n ⊗m → m ⊗ n como el elemento de Bn+m definido con los generadores
σ1, . . . , σn+m por cn,0 = c0,n = idn y

cn,m = (σmσm−1 . . . σ1)(σm+1σm . . . σ2) . . . (σm+n−1σm+n−2 . . . σn). (2.9)

Proposición 3. La familia de morfismos (cn,m)n,m≥0 es un trenzado para la categoŕıa
tensorial B.

La demostración se deja al lector. La categoŕıa B es la categoŕıa trenzada universal,
más precisamente:

Teorema 2. Sea C una categoŕıa trenzada y V un objeto de C. Entonces existe un único
funtor FV : B → C tal que FV (0) = I, FV (1) = V ,

FV (n⊗m) = FV (n)⊗ FV (m), FV (T ⊗ T ′) = FV (T )⊗ FV (T
′)

para todos los objetos n, m y todos los morfismos T , T ′ y

FV (σ1) = cV,V ∈ Aut(V ⊗ V ).

.
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Demostración.— En los objetos, el funtor está definido por FV (n) = V ⊗n. En los
morfismos T de Bn, está definido por FV (T ) = ρn(T ), donde ρn es la representación
constrúıda en II.5. �

Lección III. El doble cuántico

¿ Cómo obtener biálgebras trenzadas, es decir, biálgebras A tales que A-mod sea una
categoŕıa trenzada ? Existe un método creado por Drinfeld que asocia a toda biálgebra A
otra biálgebra D(A) que es trenzada. Esta construcción no es sencilla. Nosotros veremos
una construcción categórica simple, que a cada categoŕıa tensorial C le asocia una categoŕıa
trenzada D(C), de forma tal que D(A-mod) = D(A)-mod. Luego aplicaremos este método
para “re”-encontrar la expresión de Rh en Uh(sl(2)).

III.1. Definición. Sea (C,⊗, I) una categoŕıa tensorial. Definimos una nueva categoŕıa
D(C), llamada el doble cuántico de C, como sigue. Los objetos de D(C) son pares (V, cX,V ),
donde V es un objeto de C, y cX,V : X ⊗ V → V ⊗X es una familia de isomorfismos tales
que

cY,V (f ⊗ idV ) = (id⊗ f) cX,V (3.1)

y

cX⊗Y,V = (cX,V ⊗ idY )(idX ⊗ cY,V ) (3.2)

para todo par (X, Y ) de objetos y todo morfismo f : X → Y de C.

Un morfismo de (V, cX,V ) en (W, cX,W ) en D(C) es un morfismo f : V → W de C tal
que

(f ⊗ idX) cX,V = cX,W (idX ⊗ f) (3.3)

para todo objeto X en C.

Se tiene entonces el siguiente:

Teorema 3. La categoŕıa D(C) es una categoŕıa trenzada tal que

(i) el producto tensorial de dos objetos está dado por

(V, cX,V )⊗ (W, cX,W ) = (V ⊗W, cX,V⊗W )

donde cX,V ⊗W = (idV ⊗ cX,W )(cX,V ⊗ idW ),

(ii) la unidad es (I, id),

(iii) el trenzado (V, cX,V )⊗ (W, cX,W )→ (W, cX,W )⊗ (V, cX,V ) está dado por cV,W .

Demostración.— Hace falta ver que (i) (V, cX,V )⊗(W, cX,W ) es un objeto de la categoŕıa,
(ii) si f y g son morfismos en la categoŕıa, entonces f⊗g también, (iii) cV,W es un morfismo
en D(C), (iv) cV,W es un trenzado. Todo esto se verifica fácilmente. �
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III.2. Aplicación a la categoŕıa de A-módulos. Dada una biálgebra (A,∆, ε), se
quiere describir la categoŕıa D(A-mod) en términos de A. Para hacer esto, necesitamos la
siguiente definición.

Definición 4. Dada una biálgebra (A,∆, ε), un A-bimódulo cruzado es un A-módulo a
izquierda V con una aplicación lineal ∆V : V → V ⊗A tal que

(i) se tiene

(∆V ⊗ idA) ◦∆V = (idV ⊗∆) ◦∆V , (3.4)

(idV ⊗ ε) ◦∆V = idV , (3.5)

(ii) para todo a ∈ A y v ∈ V tenemos

∑

(a)

∑

(v)

a′vV ⊗ a′′vA =
∑

(a)

∑

(v)

(a′′v)V ⊗ (a′′v)A a′ (3.6)

donde ∆(a) =
∑

(a) a⊗ a y ∆V (v) =
∑

(v) vV ⊗ vA.

Teorema 4. La categoŕıa D(A-mod) es equivalente a la categoŕıa de los A-bimódulos
cruzados.

Demostración.— De todo A-bimódulo cruzado V obtenemos un elemento (V, cX,V )
de D(A-mod) definido por

cX,V (x⊗ v) = ∆V (1⊗ x) =
∑

(v)

vV ⊗ vA x. (3.7)

Uno puede verificar que cX,V satisface los axiomas que definen un objeto de D(A-mod).
Rećıprocamente, sea (V, cX,V ) un objeto de D(A-mod). Definimos una aplicación

lineal ∆V : V → V ⊗A por

∆V (v) = cA,V (1⊗ v)

para todo v ∈ V . La naturalidad (3.1) de cX,V en X implica que se puede recuperar
de ∆V como en la ecuación (3.7). La relación (3.2) para X = Y = A implica (3.4). La
A-linealidad de cA,V implica (3.6). �

De los Teoremas 3–4 se deduce que la categoŕıa de los A-bimódulos cruzados es tren-
zada. El trenzado entre dos A-bimódulos cruzados está dado por (3.7).

III.3. Bimódulos cruzados en el caso sl(2). Apliquemos ahora el Teorema 4 a una
sub-biálgebra de Uh(sl(2)). La idea de Drinfeld para encontrar la R-matriz universal Rh,
fue construir D(A) que es una biálgebra trenzada, y por lo tanto, tiene una R-matriz

universal R̂, que se aplica en Rh mediante una suryección.
Recordemos que Uh(sl(2)) es el álgebra generada por X , H, Y con las relaciones (1.9–

1.10). Sea Bh la subálgebra de Uh(sl(2)) generada por H, X . Sea E = XehH/4. Tenemos
que [H,E] = 2E. De (1.11–1.14) se deduce que Bh es una sub-biálgebra de Uh(sl(2)).
A ella le queremos aplicar el Teorema 4.
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Sea V un Bh-módulo. Determinemos cuándo es un bimódulo cruzado. Si lo es,
existe una aplicación lineal ∆V que satisface las condiciones de la Definición 4. Como
{HmEn}m,n≥0 es una base topológica de Bh, la aplicación ∆V es de la forma

∆V =
∑

m,n≥0

∆m,n ⊗HmEn (3.8)

donde (∆m,n)m,n≥0 es una familia de endomorfismos de V .
La relación (3.4) nos permite expresar el producto de dos elementos de esta familia

como una combinación lineal de los elementos de la familia. Una inducción sencilla muestra
que

∆m,n =
qn(n−1)/2

m![n]!
∆m

1 ∆n
2 (3.9)

para todo m, n, donde ∆1 = ∆1,0 y ∆2 = ∆0,1. La relación (3.5) implica que ∆0,0 = idV .
La relación (3.6) implica relaciones entre la familia (∆m,n)m,n y los operadores H y

E en V . Más precisamente, uno puede probar que V es un Bh-módulo cruzado śı y sólo si
tiene cuatro endomorfismos H, E, ∆1, ∆2 actuando sobre él, tales que sus conmutadores
están dados por

[H,E] = 2E, [∆1,∆2] = −
h

2
∆2, (3.10)

[H,∆1] = 0, [H,∆2] = −2∆2, (3.11)

[E,∆1] = −
h

2
E, [E,∆2] = exp(hH/2)− exp(2∆1). (3.12)

En otras palabras, un Bh-bimódulo cruzado es lo mismo que un módulo sobre el álgebra
Dh generado por cuatro generadores H, E, ∆1, ∆2 y las relaciones (3.10–3.12).

Como la categoŕıa de Bh-bimódulos cruzados es trenzada (Teoremas 3–4), el álge-
bra Dh debe ser trenzada (Proposición 2). Por (2.7), (3.7) y (3.8) su R-matriz universal
tiene que ser

R̂ =
∑

m,n≥0

HmEn ⊗∆m,n.

Combinando esto con (3.9), tenemos que

R̂ =
∑

m,n≥0

qn(n−1)/2

m![n]!
HmEn ⊗∆m

1 ∆n
2 . (3.13)

El próximo lema relaciona a la biálgebra trenzada Dh con el álgebra envolvente cuán-
tica Uh(sl(2)).

Lema 1. Existe un morfismo sobreyectivo de biálgebras χ : Dh → Uh(sl(2)) dado por

χ(E) = X exp(hH/4), χ(H) = H,

χ(∆1) =
h

4
H, χ(∆2) = (exp(h/4)− exp(−3h/4)) Y.
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Esto implica que, comoDh es trenzada con la R-matriz universal R̂, entonces Uh(sl(2))

es trenzada con la R-matriz universal (χ⊗ χ)(R̂). Tenemos

(χ⊗ χ)(R̂) =
∑

m,n≥0

qn(n−1)/2

m![n]!
χ(H)mχ(E)n ⊗ χ(∆1)

mχ(∆n
2 ). (3.14)

Un cálculo rápido muestra que el lado derecho de (3.14) es igual a la expresión dada por Rh

en el Teorema 1, y esto prueba lo último.

Lección IV. Trenzados infinitesimales

IV.1. Definición. Como hemos visto en el caso de sl(2), la categoŕıa de módulos sobre
un álgebra envolvente cuántica depende de un parámetro h. Por ejemplo, el trenzado cV,W
se puede extender a una serie formal en h:

cV,W = σV,W (idV⊗W + h rV,W + · · ·) (4.1)

donde σV,W es la trasposición y rV,W es un endomorfismo de V ⊗W . Estudiemos el término
lineal rV,W . Como cV,W satisface los axiomas (2.1–2.3), éstos se traducen en condiciones
sobre rV,W .

Sea S una categoŕıa simétrica, es decir, una categoŕıa trenzada cuyo trenzado σ satis-
face la condición adicional

σW,V ◦ σV,W = idV⊗W (4.2)

para todo objeto V , W de S. Estos trenzados se llamarán simetŕıas. Además suponemos
que S es C-lineal, que significa que todos sus conjuntos de morfismos son espacios vecto-
riales complejos, y la composición y el producto tensorial de morfismos es C-bilineal.

Definición 5. Sea S una categoŕıa simétrica y C-lineal. Un trenzado infinitesimal de S
es una familia de endomorfismos tV,W ∈ End(V ⊗W ) definida para todo objeto V , W tal
que:

(f ⊗ g) tV,W = tV ′,W ′ (f ⊗ g) (4.3)

σV,W ◦ tV,W = tW,V ◦ σV,W , (4.4)

tU,V⊗W = tU,V ⊗ idW + (σU,V ⊗ idW )−1(idV ⊗ tU,W )(σU,V ⊗ idW ) (4.5)

para todo objeto U , V , W y todo morfismo f ∈ HomS(V, V
′) y g ∈ HomS(W,W ′).

Si S tiene un trenzado infinitesimal se llamará una categoŕıa simétrica infinitesimal.

Si tV,W se define como en (4.1) por

tV,W = rV,W + σ−1
V,W rW,V σV,W

entonces tV,W satisface (4.3–4.5).
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IV.2. Trenzados infinitesimales sobre categoŕıas de módulos. Como en II.3,
buscamos álgebras A cuya categoŕıa de módulos sea simétrica infinitesimal. Sea (A,∆, ε)
una biálgebra coconmutativa. Sabemos por II.3 que la categoŕıa de A-módulos es trenzada,
con trenzado dado por la trasposición, que obviamente, es una simetŕıa. El próximo
resultado clasifica todos los trenzados infinitesimales en esta categoŕıa.

Proposición 4. Sea (A,∆, ε) una biálgebra coconmutativa, y sea S la categoŕıa de A-
módulos con σ la trasposición. Entonces S es una categoŕıa simétrica infinitesimal śı y
sólo si existe t ∈ A⊗ A tal que:

(i) [∆(a), t] = 0 para todo a ∈ A,
(ii) t es un tensor simétrico y,
(iii) t pertenece a Prim(A) ⊗ Prim(A) donde Prim(A) es el conjunto de elementos

a ∈ A tales que ∆(a) = 1⊗ a+ a⊗ 1.

Demostración.— ⇐) Si v, w ∈ S, sea tV,W ∈ End(V ⊗W ) definido por:

tV,W (v ⊗ w) = t(v ⊗ w) =
∑

i

xiv ⊗ yiw (4.6)

donde t =
∑

i xi ⊗ yi. Es fácil verificar que las condiciones (i–iii) implican (4.3–4.5).
⇒) Sea t =

∑
i xi ⊗ yi ∈ A ⊗ A definido por t = tA,A(1 ⊗ 1). Veamos que se

verifican (i–iii). La condición (i) se verifica porque tA,A es A-lineal. La condición (ii) es
clara.

Probemos la condición (iii). Si aplicamos ambos lados de (4.5) al elemento 1⊗ 1⊗ 1,
con U = V = W = A, tenemos

∑

i

xi ⊗∆(yi) =
∑

i

xi ⊗ (yi ⊗ 1 + 1⊗ yi).

Podemos suponer que los elementos xi son linealmente independientes. Entonces tenemos
∆(yi) = yi⊗1+1⊗yi, es decir, todos los elementos yi pertenecen a Prim(A). Por lo tanto,
t pertenece a A⊗ Prim(A). Terminamos la demostración usando la simetŕıa de t. �

Podemos aplicar la Proposición 4 al caso en que A sea el álgebra envolvente de un
álgebra de Lie g sobre un cuerpo de caracteŕıstica cero. Entonces los trenzados infinitesi-
males de la categoŕıa simétrica de g-módulos están en biyección con 2-tensores ∈ g⊗g que
son simétricos e invariantes bajo la representación adjunta.

Consideremos el caso especial de un álgebra de Lie compleja semisimple g. Sea {xi}
una base ortonormal de g con respecto a la forma de Killing < x, y >= Tr(ad(x)ad(y)). Es
bien sabido que el 2-tensor t =

∑
xi ⊗ xi es simétrico e invariante. Entonces la categoŕıa

de g-módulos es una categoŕıa simétrica infinitesimal con la trasposición como simetŕıa y
con trenzado infinitesimal inducido por la acción de t.

IV.3. Un ejemplo gráfico. El resto de esta Lección está dedicado a desarrollar un ejem-
plo gráfico de una categoŕıa simétrica infinitesimal. Empezamos con algunas notaciones.
Para todo entero n ≥ 2, sea pn el álgebra de Lie compleja generada por los generadores
(tij)1≤i6=j≤n y las relaciones
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tij = tji, (4.7)

[tij , tik + tjk] = 0, (4.8)

[tij, tkℓ] = 0 (4.9)

para ı́ndices distintos i, j, k, ℓ. Llamamos U(pn) a su álgebra envolvente. El grupo

simétrico Sn actúa sobre U(pn) por la regla σ · tij = tσ
−1(i)σ−1(j) donde σ ∈ Sn. Podemos

considerar el producto cruzado An de Sn por U(pn). Recordemos que An es un álgebra
cuyo espacio vectorial subyacente es el mismo que el del álgebra de grupo U(pn)[Sn], pero
la multiplicación esta determinada por la regla

σ tij = (σ · tij) σ (4.10)

para todo σ ∈ Sn. Además A0 = A1 = C.
Ahora consideremos la categoŕıa A cuyos objetos son los números naturales, y tal que

HomA(n,m) =

{
∅ si n 6= m,
An si n = m.

La composición está definida por el producto en el álgebra An. La identidad idn es la
unidad de An.

Para darle a la categoŕıaA una estructura de categoŕıa infinitesimal simétrica, daremos
primero una descripción gráfica de sus elementos. Como en el caso de las trenzas, estarán
representados por figuras consideradas a menos de homeomorfismos en la banda R× [0, 1].
Estas figuras estarán llamadas diagramas de cuerdas. El diagrama de cuerdas del producto
de dos elementos se obtiene, como en el caso de las trenzas, pegando el diagrama de cuerdas
de un elemento arriba del diagrama de cuerdas del otro elemento.

Para representar gráficamente los elementos de An es suficiente representar a sus
generadores. El álgebra An tiene dos tipos de generadores: los generadores tij de pn y las
trasposiciones sk = (k, k + 1) del grupo simétrico Sn.

Representemos al generador tij por n intervalos verticales paralelos con una ĺınea
punteada horizontal entre el i-ésimo y el j-ésimo intervalo. Una ĺınea punteada horizontal
se llama una cuerda. Representemos la trasposición sk por la unión de los intervalos
{i} × [0, 1] para 1 ≤ i ≤ n y i 6= k, k + 1 y los intervalos [(k, 0), (k + 1, 1)] y [(k +
1, 0), (k, 1)] de R× [0, 1]. En el grupo simétrico σk es igual a su inverso. Esto significa que,
contrariamente a lo que sucede con las trenzas, aqúı no hay diferencia entre cruzar por
adelante o por atrás. Observar que sk está representada por un diagrama de cuerdas sin
cuerdas. Dejamos al lector que agregue las relaciones que resultan de las Relaciones (4.8–
4.10). La relación entre los diagramas de cuerdas correspondientes a (4.8) es conocida en
la teoŕıa de invariantes de grado finito de nudos bajo la terminoloǵıa “relación de cuatro
términos” (para más información, ver [BN92] y [Kas95], Caṕıtulo XX).

Con esta representación gráfica, es fácil dar una estructura tensorial a la categoŕıa A.
Esto está hecho, aśı como hicimos para las categoŕıas D en I.5 y B en II.7. La fórmula (2.9)
define una simetŕıa en A.
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Ahora construiremos un trenzado infinitesimal. Para todo objeto n, m ≥ 1, definimos
un endomorfismo tn,m del objeto n⊗m como el elemento

tn,m =

n∑

i=1

m∑

j=1

ti,j+n ∈ An+m. (4.11)

Si n ó m = 0, tenemos tn,m = 0. Dejamos como ejercicio la demostración del próximo
resultado (sugerencia: la relación (4.8) se usa para probar la naturalidad (4.3) de tn,m).

Proposición 5. La familia de endomorfismos (tn,m)n,m≥0 es un trenzado infinitesimal de
la categoŕıa A.

La categoŕıa A tiene la siguiente propiedad universal.

Teorema 5. Sea A una categoŕıa simétrica infinitesimalC-lineal con simetŕıa σ y trenzado
infinitesimal t. Dado un objeto V de S, existe un único funtor GV : A → S tal que
GV (0) = I, GV (1) = V ,

GV (n⊗m) = GV (n)⊗GV (m), GV (D ⊗D′) = GV (D)⊗GV (D
′)

para todos objetos n, m y todos morfismos D, D′, y

GV (s1) = σV,V ∈ Aut(V ⊗ V ) y GV (t
12) = tV,V ∈ End(V ⊗ V ).

Lección V. Integración de categoŕıas simétricas infinitesimales

A partir de una categoŕıa simétrica infinitesimal S, constrúımos una categoŕıa tren-
zada S[[h]]. Como veremos más adelante, esto tiene consequencias muy importantes, gra-
cias a un resultado fundamental de Drinfeld.

V.1. Categoŕıas trenzadas revisadas. Antes de comenzar a construir S[[h]], necesita-
mos extender el concepto de categoŕıa trenzada. Empezamos ampliando la condición (i)
de la Definición 1 suponiendo la existencia de una isomorfismo de asociatividad natural

a : (U ⊗ V )⊗W → U ⊗ (V ⊗W )

definido para toda terna U, V,W de objetos de la categoŕıa C (cuando a es la identidad,
recuperamos la Definición 1). En esta nueva situación, tenemos muchas elecciones de
colocar los paréntesis en el producto tensorial de n objetos. Todas ellas son isomorfas. Por
ejemplo, tomemos cuatro objetos U , V , W , Z. Hay cinco formas de colocar paréntesis en
U ⊗ V ⊗W ⊗ Z. El siguiente diagrama, a menudo llamado el pentágono de Mac Lane,
muestra dos formas de pasar de ((U ⊗ V ) ⊗ W ) ⊗ Z a U ⊗ (V ⊗ (W ⊗ Z)) usando el
isomorfismo de asociatividad a.(

(U ⊗ V )⊗W
)
⊗ Z

aU⊗V,W,Z

−−−−−−−−−−−→ (U ⊗ V )⊗ (W ⊗ Z)

aU,V,W⊗idZ

y
y aU,V,W⊗Z

(
U ⊗ (V ⊗W )

)
⊗ Z U ⊗

(
V ⊗ (W ⊗ Z)

)

aU,V ⊗W,Z ց ր idU⊗aV,W,Z

U ⊗
(
(V ⊗W )⊗ Z

)

(5.1)
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Nosotros supondremos que dados cuatro objetos cualesquiera, el pentágono de Mac Lane
conmuta. Esto significa que entre dos formas de colocar los paréntesis en el producto ten-
sorial de cuatro objetos, existe un único isomorfismo natural expresado con el isomorfismo
de asociatividad. Mac Lane probó que la conmutatividad del pentágono también implica
que existe un único isomorfismo natural, expresado con el isomorfismo de asociatividad,
entre dos formas de colocar los paréntesis en el producto tensorial de n objetos, donde n
es un entero positivo arbitrario (ver [Mac71]).

También tenemos que tener en cuenta al isomorfismo de asociatividad a en la definición
del trenzado c. Esto significa que debemos reemplazar los dos triángulos conmutativos (2.2–
2.3) de la Definición 2 por dos hexágonos conmutativos. El primer hexágono es

(U ⊗ V )⊗W
cU⊗V,W

−−−−−−−−−−−→ W ⊗ (U ⊗ V )

aU,V,W

y
x aW,U,V

U ⊗ (V ⊗W ) (W ⊗ U)⊗ V

idU⊗cV,W

y
x cU,W⊗idV

U ⊗ (W ⊗ V )
a−1

U,W,V

−−−−−−−−−−−→ (U ⊗W )⊗ V

(5.2)

El segundo hexágono se obtiene a partir del primero, reemplazando el isomorfismo c por
su inverso c−1.

V.2. Series de Drinfeld. Una serie formal Φ(A,B) en dos variables A, B que no
conmutan se llama una serie de Drinfeld si Φ(A,B) es solución del siguiente sistema de
ecuaciones:

Φ(0, 0) = 1,

Φ(t12, t23 + t24) Φ(t13 + t23, t34) = Φ(t23, t34) Φ(t12 + t13, t24 + t34) Φ(t12, t23),

exp(
t13 + t23

2
) = Φ(t13, t12) exp(

t13
2
)Φ(t13, t23)

−1 exp(
t23
2
)Φ(t12, t23),

exp(
t13 + t12

2
) = Φ(t23, t13)

−1 exp(
t13
2
)Φ(t12, t13) exp(

t12
2
)Φ(t12, t23)

−1,

donde (tij)1≤i6=j≤4 verifica las relaciones (4.7–4.9). Observar que Φ(A,B) = 1 no es una
serie de Drinfeld. En realidad,

exp(
t13 + t23

2
) 6= exp(

t13
2
) exp(

t23
2
)

porque t13 y t23 no conmutan. De todos modos, tenemos el siguiente resultado.

Teorema 6. Existen series de Drinfeld.

Drinfeld [Dri89], [Dri90] probó este teorema exhibiendo una solución particular ΦKZ

de la siguiente manera. Consideremos la ecuación diferencial lineal

dG(z)

dz
=

1

2iπ

(
A

z
+

B

z − 1

)
G(z) (5.3)
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definida para z ∈ C\{0, 1}, donde A, B son operadores que no conmutan. La ecuación (5.3)
tiene singularidades regulares en 0, 1, ∞. Sea G(z) alguna solución. No está definida en
0, 1, pero su comportamiento asintótico en estos puntos es bien conocido. Escribamos

G(z) = zhA/2iπ (1− z)hB/2iπ V (z).

La función V (z) está definida en un entorno de [0, 1]. Drinfeld probó que ΦKZ = V (1)V (0)−1

es una serie de Drinfeld. En realidad, es la única solución conocida hasta hoy. Podemos
resolver (5.3) usando el método de aproximación de Picard. Por ejemplo, podemos calcular
los primeros términos de ΦKZ:

ΦKZ(A,B) = 1 +
1

24
[A,B] +

ζ(3)

(2iπ)3
(
[[A,B], B]− [A, [A,B]]

)
+ · · · . (5.4)

Aqúı ζ(3) es el valor de la función zeta de Riemann en el entero 3. La serie de Drinfeld
ΦKZ fue encontrada por Drinfeld en relación con las ecuaciones de Knizhnik-Zamolodchikov
(para más información, ver [Dri89], [Dri90], [Kas95], Caṕıtulo XIX).

V.3. La construcción de Drinfeld-Cartier. Ahora estamos listos para definir S[[h]]
cuando S es una categoŕıa simétrica infinitesimal C-lineal. Seguiremos [Dri90] y [Car93].

Los objetos de S[[h]] son los mismos que los objetos de S. Un morfismo en S[[h]]
de V en W es una serie formal

∑
n≥0 fnh

n, donde fn ∈ HomS(V,W ) para todo n. La
composición está definida usando la composición en S y la multiplicación usual de las series
formales. La identidad de un objeto V en S[[h]] es la serie formal constante

∑
n≥0 fnh

n

donde f0 = idV y fn = 0 cuando n > 0.

La categoŕıa S[[h]] tiene un producto tensorial obtenido extendiendoC[[h]]-linealmente
al producto tensorial de S.

Ahora le daremos a S[[h]] una estructura de categoŕıa trenzada en el sentido ampliado
de V.1. Para hacer esto, definimos un isomorfismo de asociatividad y un trenzado. Ambos
estarán definidos como series formales. Para el isomorfismo de asociatividad, necesitamos
elegir una serie de Drinfeld Φ como está definida en V.2. Sean

aU,V,W = Φ(h tU,V ⊗ idW , h idU ⊗ tV,W ) (5.5)

donde tU,V , tV,W son los trenzados infinitesimales de la categoŕıa S. El trenzado está
definido por

cV,W = σV,W ◦ exp(h tV,W /2) (5.6)

donde σV,W es la simetŕıa en S.

Es fácil verificar que las ecuaciones que definen una serie de Drinfeld implican la con-
mutatividad del pentágono (5.1) y de los hexágonos (5.2). Como la categoŕıa trenzada que
acabamos de construir depende de una serie de Drinfeld Φ, hacemos notar esto llamando
a la categoŕıa trenzada SΦ[[h]].
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V.4. El teorema fundamental de Drinfeld. Sea g un álgebra de Lie semisimple
compleja. Como mencionamos anteriormente, Drinfeld y Jimbo construyeron una C[[h]]-
biálgebra trenzada Uh(g) tal que

Uh(g)/hUh(g) ∼= U(g)

como biálgebras. Podemos considerar la categoŕıa Uh(g)-modf de Uh(g)-módulos que son
libres de rango finito como C[[h]]-módulos. Esta categoŕıa es trenzada.

Por otro lado, por IV.2 sabemos que la categoŕıa U(g)-modf de g-módulos de dimen-
sión finita es simétrica infinitesimal cuando la equipamos con la trasposición como simetŕıa
y con el trenzado infinitesimal inducido por el 2-tensor t =

∑
i xi ⊗ xi que es dual a la

forma de Killing. Podemos aplicar el procedimiento de integración de V.3 a U(g)-modf .
Drinfeld ([Dri89], [Dri90]) probó el siguiente resultado, que muestra la importancia del

procedimiento de integración del párrafo anterior. Esta es una interpretación categórica
de la demostración dada por Drinfeld de un teorema de Kohno sobre la monodromı́a de
ecuaciones de Knizhnik-Zamolodchikov.

Teorema 7. Para toda serie de Drinfeld Φ, las categoŕıas trenzadas Uh(g)-modf y
(U(g)-modf )Φ [[h]] son equivalentes.

V.5. Una representación universal del grupo de trenzas. Volvamos a la categoŕıa
simétrica infinitesimal universal A constrúıda en IV.3. Fijemos una serie de Drinfeld Φ.
Por V.3 conseguimos una categoŕıa trenzada AΦ[[h]]. Consideremos el objeto 1 de esta
categoŕıa. Por el Teorema 2, existe un único funtor Z = F1 : B → AΦ[[h]] que preserva
el producto tensorial y el trenzado tal que Z(1) = 1. Este funtor da una representación
de Bn por un grupo de series formales cuyos coeficientes son diagramas de cuerdas con
n hebras: para cualquier trenza T con n hebras tenemos

Z(T ) =
∑

k≥0

Zk(T ) h
k (5.7)

donde Zk(T ) es un elemento del álgebra An que es una combinación lineal de diagramas
de cuerdas con k cuerdas. Por ejemplo, si σ1 es el generador de B2,

Z(σ1) = s1 ◦ exp(ht
12/2) =

∑

k≥0

hk

2kk!
s1 ◦ (t

12)k. (5.8)

Tomando “trazas”, obtenemos un invariante de lazos a valores en diagramas de cuer-
das en el ćırculo. Este es el invariante universal de Kontsevich (ver [BN92], [Kas95],
Caṕıtulo XX).

El funtor Z es universal para todos los funtores F de la categoŕıa B en cualquier
categoŕıa trenzada de la forma SΦ[[h]], que preserva todas las estructuras. En realidad,
sea V el objeto F (1) de S. Por el Teorema 5 existe un único funtor G : A → S que
preserva todas las estructuras y tal que G(1) = V . Este funtor se extiende a un funtor
GΦ[[h]] : AΦ[[h]] → SΦ[[h]]. Consideremos la composición GΦ[[h]] ◦ Z : B → SΦ[[h]]. Ella
manda el objeto 1 en el objeto V . Por la unicidad establecida en el Teorema 2, tenemos

F = GΦ[[h]] ◦ Z, (5.9)
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que prueba que F se factoriza a través de Z.
El funtor Z se puede usar para probar el siguiente isomorfismo de Kohno [Koh85]

entre completados del álgebra de grupo del grupo de trenzas Bn y del álgebra An definida
en IV.3:

lim←−
k

C[Bn]/I
k ∼= lim←−

k

An/J
k, (5.10)

donde I es el ideal bilátero de C[Bn] generado por los elementos σ1−σ
−1
1 , . . . , σn−1−σ

−1
n−1,

y J es el ideal de An generado por los elementos {tij}1≤i6=j≤n. La demostración que usa
el funtor Z está en [KT95], Apéndice C.
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Boston 1993.

[Mac71] S. Mac Lane, Categories for the working mathematician, Springer-Verlag, New
York-Heidelberg-Berlin 1971.

[Maj95] S. Majid, Foundations of quantum group theory, Cambridge University Press,
Cambridge 1995.

[RT90] N. Yu. Reshetikhin, V. G. Turaev, Ribbon graphs and their invariants derived
from quantum groups, Commun. Math. Phys. 127 (1990), 1–26.

[SS94] S. Sternberg, S. Shnider, Quantum groups — from coalgebras to Drinfeld alge-
bras —, International Press, Cambridge, Mass., 1994.

[Tur94] V. G. Turaev, Quantum invariants of knots and 3-manifolds, W. de Gruyter,
Berlin 1994.

Institut de Recherche Mathématique Avancée
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