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Preface

These notes were originally prepared for a course on Berezin-Toeplitz operators given
with Leonid Polterovich at Tel Aviv University during the academic year 2015-2016.
This course was mainly aimed at graduate students and its goal was to prove the
main properties of these operators and to present a few applications, following the
ideas contained in the paper [19] by Laurent Charles and Leonid Polterovich. At
the time, I decided to type some notes in order to provide the students with some
examples, details and basics that we would not have time to cover during classes,
but also to help myself in the organization of my share of the lectures.

After the course was over, Leonid encouraged me to keep working on them and
eventually try to publish them. After having been reluctant for some time, I finally
let him convince me that it would be a good idea. Hence I came back to this project,
added some material, and the present manuscript is an attempt at a clean version
of these notes.

Acknowledgements. Iam grateful to Leonid Polterovich for suggesting this course
and for encouraging me to try to publish these notes, and to Laurent Charles who
explained some delicate details of their joint paper. I would like to thank all the
people who attended the lectures for their enthusiasm and constant questions. After
a critical number of pages has been reached, writing an error-free text can be par-
ticularly difficult. This is why I would like to thank Ziv Greenhut for pointing out
some mistakes in an earlier version of these notes, and why I am especially grateful
to Vukasin Stojisavljevi¢ for devoting a lot of his time to reading very carefully the
first half of this manuscript; his help has been extremely precious.
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Chapter 1

Introduction

Berezin-Toeplitz operators appear in the study of the semiclassical limit of the quan-
tization of compact symplectic manifolds. They where introduced by Berezin [4],
their microlocal analysis was intiated by Boutet de Monvel and Guillemin [11], and
they have been studied by many authors since, see for instance [7, 8, 14, 27, 38]. This
list is of course far from exhaustive, and the very nice survey paper by Schlichenmaier
[34] gives a review of the Kéhler case, and contains a lot of additional references.

Besides consolidation of the theory, the past twenty years have seen the devel-
opment of applications of these operators to various domains of mathematics and
physics, such as topics in Kahler and algebraic geometry [21, 26, 33|, topological
quantum field theory [1, 17, 18, 28] or the study of integrable systems [6]. Moreover,
they constitute a natural setting to investigate the connection between symplectic
rigidity results on compact manifolds and their quantum consequences, and have
recently been used to this effect by Charles and Polterovich [31, 32, 19, 20]. For all
these reasons, their importance is now comparable to the one of pseudodifferential
operators. Yet, while many textbooks on the latter are available, there is still, to
our knowledge, no single place for a graduate student getting started on the subject
of Berezin-Toeplitz operators to quickly learn the basic material that they need.

These notes are a modest attempt at filling this gap, and are designed as an
introduction to the case of compact Kéhler manifolds, for which the constructions
are simpler than in the general case. Before detailing their contents, let us explain
how they have been built.

1.1 Overview of the book

The philosophy of this book is to give a short and—hopefully—simple introduction
to Berezin-Toeplitz operators on compact Kéhler manifolds. Here, the word “sim-
ple” means that it has been written with the purpose of being understandable by,
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at least, graduate students; therefore, we have tried not to assume any knowledge in
the advanced material used throughout the different chapters. Thus, the minimal
requirement is some acquaintance with the basics of differential geometry. Neverthe-
less, this does not mean that these notes are self-contained; despite all our efforts,
we sometimes had to sacrifice completeness on the altar of concision. Furthermore,
there is one major blackbox at the heart of these notes, namely, the description of the
asymptotics of the Bergman kernel (Theorem 7.2.1). The reason is that this result is
quite involved, and presenting a proof would require space, the introduction of more
advanced material and would go against the spirit of the present manuscript, which
is to remain as short and non-technical as possible. Nonetheless, we will briefly
sketch one of the most direct proofs we are aware of. Besides, one can directly start
with the explicit form of the Bergman kernel in the case of CP" (see Exercise 7.2.7),
check that it satisfies all the conclusions of Theorem 7.2.1, and follow the rest of
these notes with this particular example in mind.

The choice to focus on the case of Kédhler manifolds is motivated by the fact
that this is the setting in which the constructions are the simplest to explain, and
that most of the usual examples belong to this class anyway. In particular, we will
describe several examples on symplectic surfaces, which are automatically Kéhler.
We should nevertheless mention, for the interested reader, that there are several
approaches to Berezin-Toeplitz operators in the general compact symplectic case:
via almost-holomorphic sections and Fourier integral operators of Hermite type [11,
9, 35], via spin®-Dirac operators [27], or, more recently, via a direct construction of a
candidate for the Szego projector [16]. We will not go any further in the discussion
of the details of these constructions.

As regards the Kéhler case, the quantization procedure, named geometric quan-
tization, and due to Kostant [25] and Souriau [36], requires the existence of a certain
complex line bundle over the manifold, called a prequantum line bundle. The Hilbert
space of quantum states is then constructed as the space of holomorphic sections
of some tensor power of this line bundle; in fact, the power in question serves as
a semiclassical parameter, and we eventually consider a family of Hilbert spaces
indexed by this power. Roughly speaking, the first half of this book is devoted to
the construction and study of this family of Hilbert spaces; for a different point of
view on this part, we recommend the excellent textbook by Woodhouse [37]. The
second half deals with Berezin-Toeplitz operators, which are particular families of
operators acting on these quantum spaces.

1.2 Contents

Since the aim of these notes is to give a brief introduction to the topic at hand,
there is obviously a lot of material that has been left untouched. Our choice of
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the subjects to discuss or discard has been guided by two imperatives. Firstly, the
notes follow the general guidelines of the course they were designed to accompanys;
namely, to introduce Berezin-Toeplitz operators on compact Kéhler manifolds and
state those of their properties which are needed to explain the main results from the
three papers [31, 32, 19], with an audience knowing little—or even nothing—on the
topic. This means that we have tried to make the exposition as clear as possible,
and to refrain from going into full generality when this what not necessary.

Secondly, we have made the choice of focusing on the practical side of the subject,
by devoting an important part of these notes to examples and useful tools. By doing
so, we want to encourage the reader to immediately start playing with concrete
Berezin-Toeplitz operators and check by themself that the properties stated in this
book are satisfied by these examples.

One key feature that arose by taking into account these two aspects is the pres-
ence of exercises throughout the text. Again, we encourage the reader to try to solve
these exercises, which constitute most of the time a simple verification that some
notion or example has been understood, or a straightforward generalization of some
result. For these reasons, we do not provide with any solution to these exercises.

Keeping these guidelines in mind, let us now go to the heart of the subject, and
explain further the general idea of the book. We want to quantize a phase space
which is a compact Kéhler manifold (M, w, 5), that is a compact manifold endowed
with a symplectic form w and a complex structure j, these two structures being com-
patible in some sense that we will not precise here. Roughly speaking, this means
that we want to construct a Hilbert space H, the space of quantum states, and to
associate to each classical observable f € C*(M,R) a quantum observable, that is a
self-adjoint operator T'(f) € L(H), in a way that respects a certain number of princi-
ples (note that we avoid discussing problems coming from the possible unboudedness
of T'(f), which is fine since we will see that the relevant H will be finite-dimensional).
More precisely, the map sending f to T'(f) must be linear, send 1 to the identity of H
and satisfy the famous correspondence principle, which states that the commutator
[T(f),T(g)] should be related to the quantum observable T'({f, g}) associated with
the Poisson bracket of f and g. Before giving more precisions, let us insist on the
fact that we want a semiclassical theory, so we want this construction to depend on
Planck’s constant i and to investigate the limit 2~ — 0. Hence, what we really want
is a family of Hilbert spaces (H;)s>o and a family of maps f +— Ty(f), A > 0. The
geometric quantization procedure requires the existence of an additional structure
at the classical level, a holomorphic line bundle L — M with certain properties;
the desired Hilbert spaces are then built as spaces of holomorphic sections of tensor
powers of this line bundle. Hence, in this theory, what will play the role of A is the
inverse of a positive integer k, and we will consider the family (#H)r>1 of spaces of
holomorphic sections of L®* — M the semiclassical limit corresponds to k — +o0.
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The next step is to construct the family of maps f + Ti(f), and the main objective
of these notes is to prove that these maps satisfy the following properties as k goes
to infinity:

LTI ~ ]l (norm estimate),

2. Ti()Tr(g) ~ Tr(fg) (product estimate),

3. (Tu(f), Te(9)] ~ 5 Tn({ [, 9})-

A rigorous version of these estimates was derived in the fundamental article [7]. Here,
our goal is to prove more precise versions of these facts, where we add remainders
on the right-hand sides, and we aim at describing these remainders in terms of f, g
and their derivatives, following [19].

This goal will be reached as follows. Chapters 2 and 3 contain the minimal
knowledge required to understand geometric quantization, that is respectively some
properties of Kdhler manifolds and some facts about complex line bundles with con-
nections; both chapters constitute quick overviews of the essential material, but are
of course far from a complete treaty on these two topics. The reader who is already
familiar with these two aspects may want to start with Chapter 4, where we describe
the geometric quantization procedure and investigate the first properties of the asso-
ciated quantum spaces, such as the computation of their dimensions. In Chapter 5,
we define Berezin-Toeplitz operators and state their properties, such as the estimate
of their norm, and the behaviour of their compositions and commutators. The rest
of the book is devoted to the proof of these three properties, based on the standard
ansatz for the Schwartz kernel of the projector from the space of square-integrable
sections of the k-th tensor power of the prequantum line bundle to the space of its
holomorphic sections. Consequently, Chapter 6 is devoted to a brief discussion of
integral operators on spaces of sections and their kernels, before we introduce the
aforementioned ansatz in Chapter 7. We investigate composition and commutators
of Berezin-Toeplitz operators in Chapter 8. Finally, in Chapter 9, we explain how
to estimate the norm of a Berezin-Toeplitz operator; to this effect, we introduce the
so-called coherent states, and we use the rest of the chapter to discuss some nice
properties of these states.

Finally, we should warn the reader that he will not find anything new in these
notes, but should rather see them as a convenient gathering of the folklore knowledge
on the subject. We do not claim originality in any of the results contained in this
manuscript.
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1.3 Uncontents

As unbirthdays sometimes provide with more gifts and excitement than birthdays,
the “uncontents” of these notes probably constitute the most interesting part of
the topic, and it is worth mentioning the aspects that will not be evocated along
these lines, if only to convince the interested reader that there is much more to learn
about Berezin-Toeplitz operators. This will also allow us to point to a few references
regarding these missing parts.

Perhaps the most important choice that we have made is to not talk about
metaplectic correction. This first-order correction to quantization is widely used,
and in the context of geometric quantization, it consists in working with holomorphic
sections of L®* ®§ — M instead of holomorphic sections of L®* — M. Here § — M
is a half-form bundle, that is a square root of the canonical bundle of M. Although
it leads to nicer formulas, one example being the cancellation of the term of order
k"~1 in the computation of the dimension of Hy, the decision not to include it was
not so complicated to make, because we felt that it would have led to a general
obfuscation of the text and hindered the pedagogical writing that we have tried to
use. Not only because replacing L®* by L®* @ § everywhere could have brought
confusion to the reader, but also because such a half-form bundle may not exist
globally over M, and this problem would have forced us to introduce some technical
discussion. For more details on Berezin-Toeplitz operators within the framework
metaplectic correction, one can for instance look at the article by Charles [15].

A certain number of experts in Berezin-Toeplitz operators are used to working
with circle bundles instead of line bundles. While we respect this choice, for semi-
classical purposes, we have some good reasons to prefer using line bundles rather
than circle bundles. However, a small number of proofs in these notes could have
been simplified by adopting the circle bundle point of view, essentially in the section
about the unitary evolution of Kostant-Souriau operators. We chose not to do so,
since we realised that the gain would be small in comparison to the loss of efficiency
induced by forcing the reader to digest a chapter on circle bundles. Nonetheless,
for those who are interested in this aspect, and since we believe that it is useful to
be able to easily pass from one theory to another, we have included an appendix in
which we compare the two points of view.

Besides these two major characters, there is a certain number of interesting topics
that this book will not even allude to. In the product formula for Berezin-Toeplitz,
one can go further than simply saying that the product Ty (f)7%(g) coincides with
Ty (fg) up to some small remainder. In fact, one can get a better approximation by
comparing this product with Ty (u(-, k)) where u has a complete asymptotic expan-
sion in negative powers of k. One can then talk about a subprincipal symbol; not
the subprincipal symbol, since there are several choices of symbols. For more de-
tails about this and symbolic calculus, see for instance [14]. We do not mention the
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group theoretic aspects of geometric quantization and Berezin-Toeplitz operators
either, namely the quantization of coadjoint orbits of compact Lie groups. Several
references are available, but the original article by Kostant [25] constitutes a good
starting place. Finally, as already explained, this book does not contain anything
about the general symplectic case, and we invite the reader to have a look at the
references listed above for this matter.

This list is of course not exhaustive, and we hope that this introduction to
Berezin-Toeplitz operators will give the reader the impulse to go through the looking-
glass and discover by himself the wonders that lie on the other side.



Chapter 2

A short introduction to Kahler
manifolds

In this chapter, we recall some general facts about complex and Kéahler manifolds.
It is not an exhaustive list of such facts, but rather an introduction of objects and
properties that we will need in the rest of the notes. The interested reader might
want to take a look at some standard textbooks, such as [24, 29] for instance.

Let M be a smooth manifold (M will always be paracompact). The tangent
(respectively cotangent) space at a point m € M will be denoted by 7,,M (respec-
tively T M); the tangent (respectively cotangent) bundle will be denoted by 7'M
(respectively T*M). A vector field is a smooth section of the tangent bundle; the
notation C*°(M,TM) will stand for the set of vector fields. Similarly, a differential
form of degree p is a section of the exterior bundle AP(T*M); we will use the notation
QP(M) for the set of degree p differential forms. We will write ixa for the interior
product of a vector field X with a differential form «.

2.1 Almost complex structures

Definition 2.1.1. An almost complex structure on M is a smooth field j of endo-
morphisms of the tangent bundle of M whose square is minus the identity:

VYm € M, ]r2n = _IdTmM-
If such a structure exists, we say that (M, j) is an almost complex manifold.
By taking the determinant, we notice that if M is endowed with an almost

complex structure, then its dimension is necessarily even. In what follows, we will
note this dimension by 2n with n > 1.
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Example 2.1.2. Consider M = R? with its standard basis, and let j be the endo-
morphism of R? whose matrix in this basis is

J:<(1) —01>.

Then j is an almost complex structure on M; it corresponds to multiplication by ¢
on R? ~ C, (x,y) — x+iy. More generally, the endomorphism of R?" whose matrix
in the standard basis is block diagonal with blocks as above is an almost complex
structure on R?",

This example is a particular case of a more general fact: if M is a complex
manifold, i.e. a manifold modelled on C" with holomorphic transition functions,
then it has an almost complex structure. Indeed, let U be a trivialization open set,

and let z,..., %, be holomorphic coordinates on U. For ¢ € [1,n], we define the
functions z, = R(z¢) and y, = I(z¢). Then (z1,y1,...,Zn, yn) are real coordinates
on M, and

Ve e [1,n], JOz, = Oy,, 7Oy, = =0y,

defines an almost complex j structure on M; it does not depend on the choice of
local coordinates because the differentials of the transition functions are C-linear
isomorphisms, which means that they commute with this local j.

The converse is not true in general: an almost complex structure does not nec-
essarily come from a structure of complex manifold. When it occurs, the almost
complex structure is said to be integrable. We will state some integrability criterion
later.

2.2 The complexified tangent bundle

Given an almost complex manifold (M, j), we would like to diagonalize j; since
it obviously has no real eigenvalue, we introduce the complexified tangent bundle
TM ® C of M. We extend all endomorphisms of T'M to its complexification by
C-linearity. Then we can decompose the complexified tangent bundle as the direct
sum of the eigenspaces of j.

Lemma 2.2.1. The complexified tangent bundle can be written as the direct sum
TM®C=T"Ma&T" M

where
TYOM :=ker(j —ild) = {X —ijX| X € TM}

and
TO'M :=ker(j +ild) = {X +ijX| X € TM} =THOM.
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We will denote by Y0 (respectively Y*!) the component in THYM (respectively
TY1M) of an element Y of the complexified tangent bundle in this decomposition.
We have that N N

yio _ Y —ijY Yol _ Y +43Y

2 2
for such a Y.

Proof. Since j2 = —1d, j is diagonalizable over C, with eigenvalues =i:
TM ® C = ker(j —ild) @ ker(j + iId).

Since these two eigenspaces correspond to complex conjugate eigenvalues, they are
complex conjugate. Thus, it only remains to show that

ker(j — ild) = {X —ijX| X € TM}.

A simple computation shows that if Y = X — X with X € TM, then jY =Y.
Conversely, let Z € ker(j — ild), and let us write Z = X + Y with XY € TM.
From the equality

JjX 415y =iX =Y,
it follows, by identification of the real parts, that Y = —jX. n

Let us assume that M is a complex manifold and that j is the associated com-
plex structure introduced in the previous section. We consider some local complex
coordinates (z; = x1 + iy1, ..., 2n = Ty + 1Y), and define for ¢ € [1,n]

82[ = ;(azz - iaye)v 854 = ;(au + iaW);

then (0.,)1<¢<n and (95,)1<¢<n are local bases of T"YM and T%!M respectively.

The following statement gives a necessary and sufficient condition for an almost
complex structure to induce a genuine complex structure. Let us recall that a
distribution £ C T'M is integrable if and only if for any two vector fields X,Y € F,
the Lie bracket [ X, Y] belongs to E (this is actually equivalent to the usual definition
as a consequence of the Frobenius integrability theorem, but we take it as a definition
to simplify).

Theorem 2.2.2 (The Newlander-Nirenberg theorem). Let (M, j) be an almost com-
plex manifold. Then j comes from a complex structure if and only if the distribution
TYOM is integrable.

A proof of this standard but rather involved result can be found in [22, Section
5.7] for instance.
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2.3 Decomposition of forms

By duality, the decomposition TM ®@ C = T*OM @ T%' M induces a decomposition
of the complexified cotangent bundle:

T*M ® C — (T*M)LO @ (T*M)O,l

where

(T M) = {a € T"M| VX € T"'M, a(X) =0},

and (T*M)%! is defined in the same way, replacing T%'M by THOM. Similarly to
Lemma 2.2.1, we have the following description.

Lemma 2.3.1. We have that
(T*M)"° ={a —iaoj| acT*M}, (T*M)% = (T*M)-0.

It is well-known that the exterior algebra of a direct sum of two vector spaces is
isomorphic to the tensor product of both exterior algebras of the vector spaces, and
that this isomorphism respects the grading. Consequently, we have that

k
A (T*M) ® C ~ g}o (A“OM @ A1)

with APOM = AP ((T*M)'%) and A%M := A9 ((T*M)"!). This can be written as
AT M)®C~ @ A"M

p,gEN
pt+q=k
with AP9M = APOM @ A®9M . Therefore, this induces a decomposition of the space
of k-forms:
Q"M)yeC= P QM)

p,q€EN
pt+a=Fk

where QP9(M) is the space of smooth sections of A»?M. An element of QP¢(M)
will be called a (p, ¢)-form. These forms can be characterized in the following way.

Lemma 2.3.2. A k-form o belongs to Q*°(M) if and only if for every vector field
X € C®(M, T"'M), ixa = 0. More generally, a k-form « belongs to QP9(M)
with p+q =k, ¢ # k, if and only if for any ¢ + 1 vector fields X1,..., X441 €
COO(M, To’lM), in .. .ixq+1()é =0.

By applying complex conjugation, we deduce from this result that a k-form «
belongs to QP9(M) with p+ g = k, p # k, if and only if for any p + 1 vector fields
YI; . 7Y;)+1 € COO<M, Tl’OM), in .. 'iXp+1a = 0.
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Proof. Let a € Q"9(M). We can write « locally as a sum of terms of the form
ap=P1 A NPy
with fy,..., B8 € QVO(M). If X € C°(M, T*' M), by using the formula
ix(y A8) = (ix7) NS+ (=1)%7 A (ixd)

for differential forms +,d, and the fact that 3;(X) = 0, we obtain that ixa = 0.
Conversely, let a € QF(M)®C whose interior product with every X € C®(M, T%' M)
vanishes. We write as

a=aF0 k=Ll 4 nO0R)

the decomposition of « in the direct sum QF(M) = Q¥ (M) @ ... ® Q% (M). For
X € C®(M,T*' M), one has

0= Ixox = iXa(k_l’l) —+ ..+ iXoé(O’k)

since ixa®® = 0 by the first part of the proof. It is easy to check that iyxa®*=PP)
belongs to Q¥~PP~1(M) for 1 < p < k. Therefore, the previous equality yields that
ixa*PP) = 0 for every p € [1, k]. Now, we take a local basis 31, ..., of (T*M)"°
and write

Oé(k—P,P) — Z Z fL,Mﬁél VANIAN ngip N Bml FANRA Bmp
L={l1,...0,_p}C[1,n] M={mi,....,mp}C[1,n]
b <. <lp_p m1<...<mp

for some smooth functions fr, . Then

p — — — — —
ix@® PP = NSNS fr B (X) B A ABa , ABmy Ao ABy ABry i A ABr

L M r=1

thus f11Bm, (X) = 0 for every L, M,m, and every X € C>(M,T%' M), which fi-
nally yields a*=7?) = 0. Therefore a = a*?) belongs to Q*°(M).

The second statement can be proved by induction on ¢ (the first statement is
the ¢ = 0 case).
m

We would like to understand the action of the exterior derivative (extended by C-
linearity) with respect to this decomposition. It turns out that it behaves “nicely” if
and only if j is induced by a structure of complex manifold on M. Before explaining
this, let us introduce one more object.
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Definition 2.3.3. The Nijenhuis tensor N; of j is defined as follows: for any vector
fields X,Y € C*(M,TM),

This tensor allows one to express the integrability condition in the Newlander-
Nirenberg theorem in a more algebraic way.

Proposition 2.3.4. Let (M, j) be an almost complex manifold. The following as-
sertions are equivalent:

1. 7 comes from a complex structure,

2. d(QYO(M)) C Q¥°(M) @ QM(M),

3. Vp,qeN, d(QPIM)) C QPha(M) @ QPIt(M),

4. N; =0.
Proof. 1 <= 4: the Newlander-Nirenberg theorem states that j comes from a
complex structure if and only if [C*°(M, T OM),C>(M,T*°M)] C C>(M,T°M).
So let X, Y € C>®(M,TM); a straightforward computation yields
which implies that

1

Therefore, [X —ijX,Y —ijY] belongs to C*(M, T*°M) if and only if N;(X,Y) = 0.

1 < 2. let a € QY9(M), and let X,Y € C°(M, T M). Then

da(X,Y) = Lx (a(Y)) = Ly (a(X)) = o([X, Y]) = —a([X, Y])

because a(X) = 0 = a(Y) by definition of Q"°(M). Therefore, da(X,Y) = 0 if
and only if [X,Y]"? € kera. This means that d (Q“°(M)) c Q>*°(M) @ QVL(M)
if and only if for any X,Y € C®°(M,T% M), [X,Y]"? = 0, i.e. [X,Y] belongs to
C®(M, T M).

2 <= 3: the implication 3 = 2 is obvious. Thus, let us assume that statement
3 holds. By complex conjugation, this implies that

d (Q"(M)) € QY (M) @ O (M)
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as well. Let v € QP9(M); we can write locally v as a sum of elements 4 of the form
F=a1 A...Napy ANBi AN B,
with aq, ..., a, € QY(M), By, ..., B, € Q% (M). Then by the Leibniz rule for forms
A7 = day AN ey + .. A day ANg, +dBL ANg, + .o A dBy A g,

where 4o, = a1 A Aaj_1 AN ANap ABLA. L A By and A, is defined in the same
way. In particular, 4,, belongs to QP~1¢(M). Moreover, since o is a (1, 0)-form, da;
belongs to Q*°(M)@Qb! (M); therefore da; AY,, belongs to QPF14(M) @ QP4+ (M).
It follows from a similar reasoning that dfg, A 43, also belongs to this direct sum.
Consequently, dy belongs to QPTH4(M) @ QP9TL(M), and so does dry.

O

Observe that, as a consequence of this result, an almost complex structure on
a surface always comes from a complex structure. Indeed, if M is a surface, then
O20(M) = Q%*(M) = {0}, therefore the exterior derivative of a (1,0)-form always
lies in QUL(M).

2.4 Complex manifolds

Let us now assume that M is a complex manifold and that j is the induced almost
complex structure. Let (zx = x + iyx)1<k<n be some local complex coordinates on
an open subset U C M. We get complex-valued forms

dzk = de‘k + zdyk € QI’O(U), dik = dl’k — Zdyk - QO’I(U)

which form local bases (dz1, .. .,dz,), (dzi,...,dz,) of QY9(M) and Q%' (M) respec-
tively; (dzy,...,dz,,dzy, . .. ,dz,) is a local basis of Q'(M) ® C which is dual to the

local basis (0.,,...,0,,,0z,...,0s ) introduced above. Therefore, a local basis of
QP4(M) is given by

(del /\ “ e /\ dep /\ dzjl /\ N /\ dggq)1§]€1<.”<kp’£1<“.<gq§n.

This immediately provides one with another proof of the fact that, in this case, the
image of QP4(M) by the exterior derivative is included in QPF4(A) @ QP4H(M).
Because of this fact, we can write d = 0 + 0 where

O QPI(M) — QPFFYU(M), 9 QPI(M) — QPTL(M).
The operators 9, satisfy the Leibniz rule
IanB)=0anp+(=1)DaAdB, daAB)=0aApB+(—1)*e@aAdp,
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which we can prove by writing the Leibniz rule for d and identifying the types.

Let (U, ¢k )rer be a holomorphic atlas of M. A function f : M — C is called
holomorphic if and only if for every k € I, the function f o ¢, ' : C" — C is
holomorphic.

Lemma 2.4.1. Let f: M — C be a smooth function. The following statements are
equivalent

1. f is holomorphic,
2. for every Z € C®(M,T**M), Lz f =0,
3. 0f =0.

Proof. The equivalence of the last two statements is clear because Of = 0 is equiv-
alent to the fact that df belongs to Q“0(M). Now, let (z1,...,2,) be the local
complex coordinates defined by ¢y; then f is holomorphic if and only if

of
Vﬁ € 1, 5 ~ = O
[1,n] P

in these coordinates. This is equivalent to saying that df(0z,) = 0 for every /¢; since
(0s,)1<0<n is a local basis of T%' M, this amounts to df € Q°(M), which in turn is

2

equivalent to Of = 0. O
Lemma 2.4.2. The following identities hold:
=0, 00+990=0, & =0.
Proof. This follows from the equality
0=d"=09"400+ 00+ 0
and the fact that 92 : QP4(M) — QP+29(M), 90+ 00 : QPI(M) — QPTL4+L(M) and
0% QPI(M) — QPIt2(M). O

Following the standard terminology for the exterior derivative, we say that a
complex-valued form « is 9-closed if Oa = 0, and 9-ezact if there exists a differential
form /8 such that & = 8. The operator d defines a cohomology, called Dolbeault
cohomology. The cohomology groups are the quotients of d-closed forms by 0-exact
forms:

HP(M) = ker (Daraqan) ) /O(Q"H (M),

The following result is an analogue of the Poincaré lemma for the exterior derivative.
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Lemma 2.4.3 (Dolbeault-Grothendieck lemma, or 0-Poincaré lemma). A 0-closed

form is locally O-ezact.

For a proof, we refer the reader to standard textbooks, for instance [24, Proposi-
tion 1.3.8]. This result can be used to prove the following proprerty of the operator
100, which will be useful later.

Lemma 2.4.4 (The i00-lemma). Let o € QYY(M) be a differential form of type
(1,1). Then « is closed and real-valued (i.e. o € QY(M) N Q*(M)) if and only if
every point m € M has an open neighbourhood U such that o = i0d¢ over U for
some ¢ € C*(U,R).

Proof. Assume that a = i0d¢ over some open subset U C M for some ¢ € C®(U,R).
Then - o -

doa =i (a2a¢ + aaa¢) = —i00%p =0,
which proves that « is closed. Moreover,

a = —i00p = —i00¢ = i00¢ = a,

thus « is real-valued.

Conversely, assume that « is closed and real-valued. From the usual Poincaré
lemma, there exists locally a real-valued one-form g such that o = df. From the
equality

a=dp=0p"" +ap"Y + 9% + 55OV,

we deduce that a = 0819 + 9D and 98(Y = 0. Thanks to the Dolbeault-
Grothendieck lemma, we can find a local function f such that 8 = 9f. Since 3
is real-valued, the components of 3 satisfy

B = g0 = of.
We finally obtain that
o =90f +00f = 00(f — f) = i0d¢
with ¢ = 2S(f). O

2.5 Kahler manifolds

Let (M, j) be an almost complex manifold.

Definition 2.5.1. A Riemannian metric g on M is said to be compatible with j if
9 X, jY) = g(X,Y)

for every X, Y € T'M.
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Every almost complex manifold can be equipped with a compatible Riemannian
metric. Indeed, take any Riemannian metric g on M and define

h(X7 Y) = g(X7 Y) +g(jX7jY>

for every X, Y € TM; then h is compatible with 7. Given a compatible Riemannian
metric g on (M, j), one defines its fundamental form as

w(X,Y) =9(X,Y)
for every X, Y € T'M.

Lemma 2.5.2. The fundamental form w is a real (1,1)-form, i.e. it belongs to
QLY (M) N Q2 (M).

Proof. Firstly, we check that w belongs to Q%(M):
w(Y,X) = g(jY, X) = g(5°Y,jX) = —g(V,jX) = —g(jX,Y) = —w(X,Y)

for XY € TM. To show that w is of type (1,1), it is enough, by Lemma 2.3.2; to
show that it vanishes when applied to a pair of elements of T5°M. Therefore, let
X,Y € C®(M,TM); then

wX - XY —i5Y) =w(X,Y) —iw(X,jY) —iw(jX,Y) —w(jX, jY).
But on the one hand
and on the other hand
Consequently, w(X —ij X, Y —ijY) = 0. O]
To illustrate this, let us assume for a moment that M is a complex manifold and

that j is the induced almost complex structure. We choose some local holomorphic
coordinates (z1, ..., z,), and define the function

h’@,m = g(aZg7 Em)

where g has been extended to TM ® C by C-bilinearity (and not sesquilinearity!).
One can check that .
w=1 Z h&deg A dZm
fm=1

in these coordinates.

Let (M, j) be an almost complex manifold, and let g be a compatible Riemannian
metric. Since j is an isomorphism and ¢ is non-degenerate, it is clear that w is non-
degenerate. Hence, if it is closed, it is a symplectic form.
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Definition 2.5.3. A compatible Riemannian metric on an almost complex manifold
is called a Kdhler metric if j is integrable and the fundamental form w is closed.
A Kaihler manifold (M, 3, g) is an almost complex manifold (M, j) endowed with a
Kéhler metric g.

In this case, the fundamental form is a symplectic form on M. By Lemma 2.4.4,
near each point p € M, there exists a real-valued smooth function ¢ such that

w = i00¢.
This function ¢ is called a Kdhler potential. In local coordinates, this gives

_ 99
h&m N 8zg82m

which means that the metric is determined locally by the Kéahler potential.
In what follows, we will be more interested in the symplectic point of view. So
let us start with a symplectic manifold (M, w).

Definition 2.5.4. An almost complex structure j on M is said to be compatible
with w if
W(iX,JY) = w(X,Y)

for any X,Y € T"M and
w(X,jX)>0

for every X #0 € TM.

One readily checks that, given a compatible almost complex structure j on
(M,w), the spaces T*°M and T%! M are Lagrangian (where we extend w to TM @ C
by C-bilinearity).

Assume that M is a complex manifold endowed with the induced complex struc-
ture 7, and that w belongs to Q1 (M). In local coordinates (z;)1<¢<n, the symplectic
form is of the form .

w=1 Z h&m ng N dém
£m=1
for some smooth functions hy,,, 1 < ¢,m < n. Then w is compatible with j if and
only if all the matrices (hym(p))1<t,m<n, P € M coming from such local expressions
are positive definite Hermitian matrices.

A symplectic manifold always has a compatible almost complex structure. In-
deed, take any Riemannian metric ¢ on M. By the Riesz representation theorem,
we have two isomorphisms

O:TM - T*M, Xw—ixw and §:TM —T*M, X~ g(X,-).
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Consider @ = g 'o@ : TM — TM; it is an isomorphism, which is moreover

antisymmetric, in the sense that a* = —a (a* is the adjoint of a with respect to g).

Indeed,
g(aX7 Y) = W(Xa Y) = _W(Y7 X) = —g(CLY,X) = Q(X, _GY>

for any X, Y € TM. Let
a=j(a*a)/?
be the polar decomposition of a; j is unitary (with respect to g).
Lemma 2.5.5. j is an almost complex structure which is compatible with w.

Proof. On the one hand, since j is unitary, 7*7 = Idry,. On the other hand, since
(a*a)'/? is an isomorphism commuting with a and a is antisymmetric, we have

= (a(a*a)—l/Q)* _ (a*a)—l/Qa* _ _(a*a)—l/Qa _ _a(a*a)—1/2 = —j,

thus j2 = —Idgys. It remains to check the compatibility between j and w. Firstly,
we have that

w(iX,jY) = 9(ajX,jY) = g(jaX,jY) = g(aX,j7jY) = g(aX,Y) = w(X,Y)
for any X,Y € T'M. Secondly, for every X # 0 € TM,

w(X,jX) = glaX,jX) = g(j*aX, X) = g((a*a)*X, X) > 0

1/2

because (a*a)'/? is positive definite. O

Observe that, given a symplectic form w and a compatible almost complex struc-
ture 7, the formula
9(X,Y) = w(X,jY)

defines a Riemannian metric on M, which is compatible with 7 and whose funda-
mental form is equal to w. The latter is closed by definition; therefore we obtain an
equivalent definition of Kahler manifolds.

Proposition 2.5.6. A symplectic manifold (M,w) is a Kihler manifold if and only if
there exists an almost complex structure j which is compatible with w and integrable.

Note that an orientable surface is always a Kéhler manifold. Indeed, by the
discussion above, it can be endowed with an almost complex structure compatible
with the symplectic (volume) form. But as we noticed earlier, an almost complex
structure on a surface is always integrable.
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Example 2.5.7. On C with its standard complex structure, the standard symplectic
form

W = EZng/\ng
24:1

is the fundamental form of the Kahler metric given by the standard scalar product
on R?". There is a globally defined Kéihler potential given by

_ _ 1 &
O(Z1y ey Zny 21y e e vy 2n) = 72\24\2.
24

Example 2.5.8 (The unit disc). On the open unit disc D" C C" (still with standard
complex structure), we consider the function

_ _ 1 9
¢(217"'7Zn7zl7"'azn) = _ilog (1 - HZH ) 5
where ||z||* = (2, 2) = 3/, |2|? is the square of the norm of z with respect to the
standard Hermitian product on C”, and introduce the form w = i9d¢. This is a
closed real (1, 1)-form; we will show that it is compatible with the complex structure.
We compute

A —0 (1—=>0 |Z€|2) _ >t 2edz

8(25 - - )
2(1 = [|=[1%) 2(1 = [|=11?)
which yields
s 1 (0 zdzr) N (S0 zedze) | X5 dzg Ndz
00¢p = = o2 5 :
2 (1= 1=]?) 1—z]]

We finally obtain that
Z‘ n
W= "—"">5 Z Eng +(1— ||ZH2 (5]“4 de VAN dfg;
2(1=[[=l1?)* k= ( ( ) o)

we claim that the matrix H = (Zxz¢ + (1 — ||2[|*) Oke) s 4<,, 18 Hermitian positive
definite for every z € D", which means that w is compatible with the complex
structure. Indeed, for a non zero u in C", we have

(Hu,u) = (u, 2) (z,0) + (1= [l2l*)lull* = [ (z,u) [* + (L= 2" Jul* > 0
since 1 — ||z]|* > 0.

Example 2.5.9 (The Fubini-Study structure). Let M = CP" with its standard

open covering CP" C Up_, Uy where Uy, = {[z0: ... : z,] € CP"| 2, # 0} and charts
z Zk—1 Z Zn
ok U = C" Jzg i zp] = (wy,. .0 wy,) = (O,...,kl,kﬂ,...,>.
2k k2 2
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On each U, we can define a function

2 n
“t ) = log (1 + Z ]wm]2> ,

%k m=1

n

¢r = log (Z

=0

which, as we will prove, is a local Kéhler potential. We define real (1, 1)-forms wy
on each Uy by wy = 100¢;. Firtsly, we check that this defines a global element
we QLVY(M)NQ*(M), ie. that

Wk|U,nU, = We|U,NU, >

on U, NU,, we have

2 n 2 2
¢k:10g<2g ern):log(’ze)*-@-
293 e— T 2k

Ze
2k

90 log |w|* = 0 wdw) _ dfw = 0.
jw]? w

Now, a computation similar to the one in the previous example yields

_ 2
Hence, we only need to show that 90 log ( ) =0 on Uy NU,. This follows from

the fact that on C

wp = s 30 (U [l )i — ) duy A diy
m=1

(1 + [[wl?)*
Let H = ((1 + ||w]|*)dem — Wewm)1<e.m<n and consider u # 0 in C"; then
(Hu,u) = [Jul]® + [Jwl*[lull* = | {w, w) [* > [Jul|* > 0

by the Cauchy-Schwarz inequality. Consequently, wrs = w is a Kéahler form, called
the Fubini-Study form. Sometimes its definition involves a factor £1/(27), so that
the integral of wpg on CP' C CP" is equal to &1. In our setting, it is better not to
include this factor, as we will see later.

2.6 A few useful properties

Let (M,w,j) be a Kéhler manifold and let ¢ = w(-,j-) be the induced Kéhler
metric. The gradient with respect to g of a function f and the Hamiltonian vector
field associated with f are related as follows.

Lemma 2.6.1. Let f € C'(M). Then grad, f = —jX;.
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Proof. On the one hand, by definition, the gradient of f is such that the equation
df = g(-,grad, f) = w(-,jerad, f) holds. But on the other hand, the Hamiltonian
vector field of f satisfies df + w(Xy,) = 0. ]

Like any other Riemannian metric, the Kéhler metric g induces a volume form
on M. But the symplectic form w also defines a volume form, namely the Liouville
volume form p = w”""/n!. They are also related.

Lemma 2.6.2. These two volume forms are equal: (1 = [i,.

Proof. Let us use local complex coordinates (zi,...,z2,) and let us introduce the
real local coordinates (1,91, ..., Tn, Yn) satisfying z, = x, + iy, for every £ € [1,n].
Then we can write

w=1 Z h&m ng A dim

lm=1

for some functions hy,, such that H(z) = (he,(x)) is a positive definite Hermitian
matrix for every z. Consequently,

p=1i"det(H) dzy ANdzy A ... Ndz, Ndz, =2"det(H) dxy ANdyy A ... Adz, A dy,,.

Note that 2" det(H) = y/det g; this is a consequence of the definition of H, because

1
hem = 19(8“ — 10Yy, Oy, + 10,,,).

Therefore, we finally obtain that

p=+/detg doy Adys A ... Adxy, A dy, = pig,

which was to be proved. O

In what follows, we will also need the following result, which can be derived from
the Hodge theory of compact Kahler manifolds. We do not want to spend time on
this theory in these notes, therefore we will not give a proof of this result. It is a
consequence of [24, Corollary 3.2.10] for example.

Lemma 2.6.3 (The global i00-lemma). Let (M,w) be a compact Kihler manifold.
Let o be an exact, real-valued form of type (1,1) on M. Then there exists a function
¢ € C*°(M,R) such that o = i00¢. This function is unique up to the addition of a
constant.
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Chapter 3

Complex line bundles with
connections

Let us now recall some facts about complex line bundles. A certain number of
definitions and properties could be stated for general vector bundles, but we prefer
to focus on the one-dimensional case, since this is the case that will be encountered
in the following sections.

3.1 Complex line bundles

As before, let M be a smooth manifold.

Definition 3.1.1. A complex line bundle over M is the data of a smooth manifold
L and a smooth map 7 : L — M such that

1. for every m € M, the fiber L,, := 7~'(m) over m is a one-dimensional complex
vector space,

2. M is covered by local trivializations (U;, 7;)ier, where U; C M is an open set
and
T; . U,L x C — 7T71(UZ')
is a diffeomorphism which, when restricted to {m} x C, m € U, induces a
linear isomorphism 7" = 7;(m, ) : C — Ly,.

In this definition, one can replace the model vector space C by any other one-
dimensional complex vector space. We will use the notation L — M or 7 : L — M
when we want to keep track of the projection.

Example 3.1.2. L = M xC — M with natural projection is a complex line bundle,
called the trivial line bundle.

23
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A map s : M — L such that 7 o s is the identity is called a section of L — M.
The space of smooth sections of L — M will be denoted by C>*(M, L). We can
also work with local sections, that is sections over open subsets of M; we will use
the notation C*(U, L) for the space of smooth sections over some open subset U.
Given a local trivialization (U;, 7;), we have a preferred local section, called the unit
section, given by s; = 7;(+, 1). It is a non-vanishing element of C*(U;, L).

We can describe line bundles by gluing local models as follows. Given two trivi-
alizations (U;, 7;), (Uj, 7;) such that U; N U; # (), the associated unit sections s;, s;
satisfy s; = f;;s; on U; N U; for some smooth function f;; € C>*(U; NU;,C\ {0}).
Now, if there exists another trivialization (Uy,7s) such that U; N U; N Uy is non
empty, we obtain the equality

fz‘k = fijfjk on UZ N Uj N Uk, (31)
called the cocycle relation.

Example 3.1.3. The transition functions of the trivial bundle L = M x C — M
are the constant functions equal to 1.

Proposition 3.1.4. Let M be a manifold endowed with an open cover (U;);er such
that there exists a collection (fi;) ijer of elements of C*(U; NU;,C\ {0}) satis-

UiﬁUj75@

fying the cocycle relation (3.1). Then there exists a line bundle L — M having the
functions f;; as transition functions.

Proof. Let us consider the binary relation ~ defined on the disjoint union | |;c; U; x C
by the condition

(mi, zi) € Ui x C~ (mj, z;) € Uj x C <= m; =m; and z; = f;;(my;)z;.

Since the functions f;; satisfy the cocycle relation, this relation is reflexive (because
fii = 1), symmetric (because fi;f;; = 1) and transitive. Hence it is an equivalence
relation; we construct L as the quotient of | |;c; U; X C by ~. It is a smooth manifold,
and the map

m:L— M, [(mz)]—m

is well-defined and smooth. It is clear that the fiber 77*(m) at m is a one-dimensional
complex vector space. We now define

7 U X C— 7T_1(Ui)7 (mzazz) — [(mﬂzl)]v

they are diffeomorphisms by construction, and induce isomorphisms on fibers. More-
over, it follows from the equality

[(my, D] = [(my, fi;(m;))]

that the functions f;; are transition functions for L. m
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Two complex line bundles 7 : L — M, 7 : K — M over the same base manifold
are said to be #somorphic if there exists a diffeomorphism ¢ : L — K such that
7 o ¢ = m and which restricts to an isomorphism on each fiber (such a ¢ is called a
line bundle isomorphism).

Lemma 3.1.5. Let (f;j)i jer and (ﬁ-j)i’jg be the transition functions (with respect to
the same open covering (U;)ier of M) for m: L — M and 7 : K — M respectively.
Then L. — M and K — M are isomorphic if and only if there exist nowhere
vanishing smooth functions (g;)cr such that f;j = g—;fij.

Proof. Assume that there exists a line bundle isomorphism ¢ : L — K. For m € M,
let ¢, : L, — K,, be the restriction of ¢ to the fiber L,,. Let s;,5; be the unit
sections over U; of L and K respectively. Since ¢,, is an isomorphism, it sends s;(m)
to a generator of K,,, thus there exists a complex number g;(m) # 0 such that
o(m)(s;(m)) = g;(m)3;(m). The function g; : U; — C\ {0} thus defined is smooth.
Consider now m € U; N U;. On the one hand, we have that

Pm(s;(m)) = dm(fij(m)si(m)) = fi;(m)gi(m)s;(m).
On the other hand,

Ou(s5(m)) = gj(m)3;(m) = g;(m) fi;(m)5:(m),

and comparing the two equalities yields fi;(m) = %Z; fij(m).
J
Conversely, let us assume that such functions (g;);e; exist. Let 7; : U; x C —
7 HU;) and 7; : U; x C — 7 4(U;) be the trivialization diffeomorphisms of L and

K respectively. Define ¢; on 7~ 1(U;) as

V(m,z) € U; x C, oi(1i(m, 2)) = (m, g;(m)7"(2)).

)

We need to check that this defines a global map ¢ : L — K, i.e. that if m belongs
to U; NU; and 7;(m, w) = 7;,(m, ), then ¢,(7;(m,w)) = ¢i(1;(m, 2)). This follows
from the equalities

9;(m)7"(w) = g;(m) fi;(m)7" (w) = fi;(m)gi(m) 7" (w) = g{(m)7;"(fi;(m))
and from the fact that
zsi(m) = 17" (w) = wsj(m) = wf;;(m)s;(m)

which implies that wf;;(m) = z. The map ¢ thus obtained is clearly a diffeomor-
phism, and the restriction to the fiber over m is an isomorphism. O]

Let us now assume that M is a complex manifold.
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Definition 3.1.6. A complex line bundle L — M is said to be holomorphic if L is
a complex manifold, 7 : L — M is a holomorphic map and the trivialization maps
7; are biholomorphisms.

Similarly to smooth sections of a smooth line bundle, it makes sense to talk
about holomorphic sections of a holomorphic line bundle. As before, we have unit
sections s; = 7;(-, 1) which are holomorphic, and we can construct a holomorphic
line bundle over M if and only if there exists an open cover (U;);cr of M and a

collection (fi;) ijer of holomorphic functions from U; N U; to C* satisfying the
UiﬂUj75®
cocycle relation (3.1).

Example 3.1.7 (Tautological line bundles over projective spaces). Let M = CP"
and consider the set

O(-1) = {([u],v) € CP" x C"*!| v € Cu} C CP" x C"*!

and the projection 7 : O(—1) — CP" defined by 7([u],v) = [u]. We claim that
7 : O(—1) — CP" is a holomorphic line bundle over CP", called the tautological line
bundle. Indeed, consider the usual open covering (U;)o<i<n, of CP™:

Ulz{[Zo . Zn] GCPn, ZZ#O},
and define functions

71Uy x C— 7 1(Uy), ([u], 2) — ([u], Zu) :
Ui
This expression does not depend on the choice of the representative of [u]. It is
obviously smooth and has a smooth inverse 7; *([u], v) = ([u], ;). Therefore O(—1)
is a complex line bundle with local trivializations (U;, 7;). The transition functions
U;

fij:UiﬂUj—HC\{O}, [U]H;

J

are holomorphic.

3.2 Operations on line bundles

We can perform a certain number of operations on complex line bundles. In these
notes, the reader is assumed to be familiar with vector bundles and operations on
them, but we want to enter into details in the specific case of line bundles, since
we will need some particular results later. Let M, N be smooth manifolds, and let
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m: L — N be a complex line bundle. If f : M — N is a smooth function, we can
define the pullback bundle f*L — M as

ffL:={(mu)e M xL| f(m)=n(u)} C M xL

with projection 7(m,u) = m. One can check that this defines a line bundle over M,
indeed, given a local trivialization (U;, 7;) of L — N, the map

G:fTHU) xC =7 ), (my2) = n(f(m),2)

is a diffeomorphism which restricts to a linear isomorphism C — 7~!(m) for every
m € f~Y(U;), therefore (f~1(U;), () is a local trivialization for f*L. Any smooth
section of L — N defines a smooth section f*s = so f of f*L — M, called the
pullback section of s.

If L, K are two complex line bundles over the same manifold M, we can define
their tensor product L ® K — M whose fiber over m € M is L,, ® K,, and whose
transition functions are h;; = f;;:;, where f;; and g;; are the transition functions of
L and K respectively. These functions h;; clearly satisfy the cocycle relation (3.1),
and the line bundle they generate has fiber L,, ® K,, over m € M. It turns out
that the tensor product defines a group law on the set of equivalence classes of line
bundles (with respect to the relation of being isomorphic as line bundles). Slightly
abusing notation, we denote by L* the k-th tensor power L®* of the line bundle L.
The (class of the) trivial line bundle M x C is the identity of this group. On the
one hand, the inverse of L. — M is the equivalence class of the line bundle whose
transition functions are the inverses of the transition functions of L:

1
fis
On the other hand, we can construct the dual bundle L* — M whose fiber over m

is the dual of L,,, with natural projection 7 and with local trivializations (U;, (;)
where L has local trivializations (U;, 7;) and

G Ui x C =7 (Uh), Gi(m,2) = (m, (7)) 7 (2)) .

Here (7;)* is the dual map

m

(r™M*: L, - C*, @ ot

Let h;; be the transition functions for this line bundle L*. By definition of the dual
map, we have that
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which yields by using the transition functions
1= fij(m)hi(m)((7")) (7" (1)) = fij(m)hij(m).

Thus h;; is the inverse of f;;, and we finally obtain that L~ is isomorphic to L*.
The purely tensorial section ¢ ® s of L* ® L is identified with the complex-valued
function ¢(s).

Remark 3.2.1. The tensor product endows the set of equivalence classes of line
bundles over M with a group structure. This group is isomorphic to the coho-
mology group H?*(M,Z) [13, Theorem 2.1.3]; let us describe a sketch of proof
of this isomorphism, using the language and some results of sheaf cohomology.
The transitions functions f;; of a line bundle form a degree one Cech cocycle of
the open cover (U;);e; with coefficients in the sheaf C*(M,C \ {0}) of smooth
non-vanishing complex-valued functions. By Lemma 3.1.5, its cohomology class
[fi;] € HY(M,C>®(M,C \ {0})) determines the equivalence class of the associated
line bundle. But H'(M,C>(M,C \ {0})) is isomorphic to H?(M,Z); the image of
[f:;] is the cohomology class of the degree two Cech cocycle

psk = 5 (0g(f) — log(f) — log(f).
(x

Furthermore, there is an isomorphism ¢ : H2(M,Z) — H?(M,Z) (see for instance
[10, Theorem 15.8]). The composition of these isomorphisms gives the claimed

isomorphism between the group of equivalence classes of complex line bundles and
H?*(M,Z); the image ¢ (L) := ¢(p1.) is called the first Chern class of L.

Using the two constructions above, we can form the external tensor product of
two line bundles L — M and K — N which are not necessarily defined over the
same base manifold, as

LXK :=pILRp,K — M x N

where p; : M X N — M and py : M x N — N are the natural projections on each
factor.

3.3 Connections on line bundles

Let us come back to the case where M is a general smooth manifold.

Definition 3.3.1. A connection on a complex line bundle L — M is a linear map
V:C>®(M,L) = C®(M,T*M ® L) satisfying the Leibniz rule:

V(fs)=fVs+df ®s
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for every f € C*°(M) and every s € C*(M, L). If X is a smooth vector field on M,
the map Vx : C*(M, L) — C*(M, L) obtained by contracting V and X is called
the covariant derivative along X.

Example 3.3.2. A section of the trivial line bundle M x C — M identifies with a
complex-valued function on M, and for every 1-form «, the formula

Vf=df + fa

defines a connection on this line bundle. Any connection is of this form with o = V1
where 1 stands for the function which is equal to 1 everywhere.

A connection is a local operator in the following sense: if U is an open subset
of M and s is a section of L — M, then the value of Vs over U only depends on
the value of s over U. Indeed, if s,t € C*°(M, L) agree over U, consider for m € U
a smooth function x compactly supported in U and equal to one near m. Then
X(s —t) =0 on U, therefore

0=V(x(s—1t)=dx®(s—t)+xV(s—t) =dx ® (s —t) + x(Vs — V).

Since dyx(m) = 0, this yields (Vs)(m) = (Vt)(m). Therefore, the connection V
defines a local connection VY such that VY (sy) = (Vs)y for every section s. We
will keep the notation V for VY.

Let (U;,7;) be a local trivialization of L, and let s; = 7;(-,1) € C*(U, L) be
the associated unit section. We set 3; = Vs;/s; € Q'(U;) ® C. Any other section
t € C(U;, L) is of the form t = fs; for some smooth function f, hence

Vi = (df + ) ® si.
Consequently, the connection can be locally identified with d+ 3; acting on functions.

Lemma 3.3.3. IfU;NU; # 0, the forms j;, B; satisfy on U;NU; the cocycle relation

dfi;
fij

where the functions f;; are the transition functions of L — M.

Bj = Bi + (3.2)
Proof. On U; NU;, we have that s; = f;;s;, thus on the one hand
Vs; = (dfij + fi;Bi) ® .

But on the other hand, Vs; = §;®s; = fi;8;®s;, therefore equation (3.2) holds. [
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Conversely, let M be a manifold endowed with an open cover (U;);c; such that

there exists a collection (f;;) ijer of elements of C*(U; NU;,C \ {0}) satistying
UZ‘QU]'#@

the cocycle relations (3.1) and (3.2). Then, thanks to Proposition 3.1.4, there exists

a line bundle L — M having the functions f;; as transition functions. This line

bundle is endowed with a connection V such that Vs; = f;s; where s; is the unit

section associated with U;.

Proposition 3.3.4. Let L — M be a complex line bundle. The space of connections
on L is non-empty, and of the form

{V+58| e (M) eC}
where V is any reference connection on L — M.

Proof. For the existence part, we consider a locally finite open cover (U;);er of M,
together with maps 7; : U; x C — 7~ 1(U;), such that (U;, 7;) is a local trivialization.
Let s; = 7;(-,1) be the associated unit section. Let (x;);cr be a partition of unity
subordinate to the open cover (U;);er. Let t € C>°(M,L) and for i € I, let f; €
C>*(M) be such that t = f;s; over U;. Then we define Vit as

Vt =3 xidfi @ si.
el
By using the Leibniz rule for the differential of functions, it is easily checked that
V is indeed a connection.

Now, let V,V’ be two connections on L — M. Then, by the Leibniz rule, for
any s € C>*°(M, L) and any f € C*(M), we have that

V(fs)=V'(fs) = f(Vs=V's).
This implies that V — V’ is the multiplication by some one-form (. m

One readily checks that if L — M, L' — M are two line bundles with respective
connections V, V', then V ® V'’ defined by

Vs € C*(M,L),Vt e C*(M,L"), (VoV)(s®t)=(Vs)®t+sx (V')

and extended by linearity is a connection on L& L’ — M. In particular, a connection
on a line bundle induces connections on its positive integer powers. For negative
powers of L — M, we only need to show how a connection on L induces a connection
V*on L™!' ~ L*. We can do it by asking that V* ® V = d, the usual differential
on the trivial line bundle. This means that for every ¢ € C*(M, L*) and every
s€C®(M,L),

d(e(s)) = (V7e)(s) + ¢(Vs).
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This uniquely determines V*, and we see on this expression that V* satisifes the
Leibniz rule.

Now, let M, N be smooth manifolds, let . — N be a complex line bundle with
connection V, and let f : M — N be a smooth function. We can define a connection

f*V on the pullback bundle f*L — M.

Proposition 3.3.5. There exists a unique connection f*V on f*L — M such that

(fVx)(f7s) = [ (Vax)s)
for every s € C*(N, L) and every vector field X on M.

Proof. This formula defines the value of (f*V)(f*s) for every smooth section s of
L — N. Now, let t be any element of C*°(M, f*L). Given m € M, pick a local non-
vanishing section u of L — N near f(m). Then f*u is a local non-vanishing section
of f*L — M near m, hence there exists a smooth function g such that t = gf*u
near m. By the Leibniz rule,

(f*Vx)t = dg(X)f*u+g(f*V)(fu) = dg(X) [ u+ gf* (Vapxyw),

which defines f*V for general sections. Indeed, if we choose another local non-
vanishing section v of L. — N, then we have that u = Av for some local non-vanishing
function A\, and t = hf*v near m, with h = gf*\. But we have that

dN(X 1
dh = f*)\dg + gf*d/\, Vdf(X)U = —;)u + def(x)u.

Consequently, we obtain that
dh(X) fv + hf* (Vaxv) = dg(X) fu+ gf* (Vaxu),
hence the value of (f*Vx)t does not depend on the choice of local section. ]

The two previous constructions show that if L — M and K — N are two line
bundles, the data of a connection on each of them induces a connection on the line
bundle L X K — M x N.

3.4 Curvature of a connection

Definition 3.4.1. Let V be a connection on a line bundle . — M. The curvature
of V is the differential form curv(V) € Q*(M) @ C defined by the formula

curv(V)(X,Y) = VxVy = VyVx — Vixy)
for every vector fields X, Y € C*(M,TM).
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It is not immediate that this definition makes sense. However, we have the
following lemma.

Lemma 3.4.2. The curvature curv(V) is indeed a two-form.

Proof. We start by claiming that given a section s € C>*(M, L), the value of the
section

t : =VxVys—VyVxs— V[X,y}s

at a point m € M only depends on the values of X, Y at m. For this we consider
an arbitrary function f € C*(M,R) such that f(m) = 1, and we compute the value
of the section

u = fovys — VYVsz — V[fx,y}s

at m. Using the Leibniz rule, we get that
VyVixs =Vy(fVxs) = fVyVxs+ (Ly f)Vxs.
Moreover, the equality [fX,Y] = f[X,Y] — (Ly f)X yields
Visxyis = fVixyys = (Ly f)Vxs,

so we finally obtain that u(m) = t(m). Hence, t(m) only depends on the value of X
at m. Since the same holds for Y, the claim is proved.

Now we show, keeping the above notation, that ¢ is of the form Fyys where
Fxy is some smooth function. This will define curv(V)(X,Y) = Fxy. Because of
the previous result, it is enough to work locally near some point m € M. We take
a local non-vanishing section sy near m; there exists a smooth function ¢ such that
s = gsp near m. We compute locally

t =Vx ((Lyg)so+ gVyso) = Vy ((Lxg)so + gVixso) — (Lix,v19)s0 — 9V(x,v)S0.
The first term satisfies

Vx ((Lyg)so+ gVyso) = (LxLyg)so + (Lyg)Vxso + (Lxg)Vyso + gVxVysg
and we get a similar expression for the second term:

Vy (Lxg)s0o+ gV xso) = (LyLxg)so+ (Lxg)Vyso+ (Lyg)Vxso+ gVy Vxso.
Remembering the definition of [X, Y], we obtain that t = Fx ys with

VxVysy— VyVixsy— V[X,Y]So
S0

Fxy =

The fact that curv(V) is bilinear antisymmetric is obvious. O
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The curvature can be computed locally thanks to the following result.

Lemma 3.4.3. IfV = d+ locally, then curv(V) = dB. In particular, the curvature
of a connection is a closed form.

Proof. We have the equality
VxVyl = VyVxl = Vixyl = Vx(3(Y)) = Vy(B(X)) — B([X,Y])
which yields
curv(V)(X,Y) = Lx(B(Y)) = Ly (B(X)) = B([X,Y]) = dB(X,Y).
0

This gives a method to construct local primitives of the curvature: take a local
non-vanishing section s of L — M and compute § = Vs/s. In some sense, every
primitive of the curvature can be obtained in this way.

Lemma 3.4.4. Let f € QY(M) ® C be a primitive of curv(V). Then for every
m € M, there exists a local non-vanishing section s defined on a neighbourhood of
m such that Vs = 8 ® s.

Proof. Let m € M and take any non-vanishing local section sy near m. We have
dBy = curv(V) where 5y = Vsg/sg. Since 8 — [y is closed, by restricting the
neihgbourhood of m if necessary, the Poincaré lemma yields a smooth function f
such that § — Sy = df near m. The local section s = exp(f)s, satisfies the desired
properties. O

A straightforward computation shows that if V/ = V + 3 for some 3 € Q'(M) ®
C, then the curvatures satisfy curv(V’') = curv(V) + dB. Thus, it follows from
Proposition 3.3.4 that the cohomology class of the curvature does not depend on
the choice of a connection; we will sometimes call this cohomology class the curvature
class of L. The following result shows how the curvature behaves with respect to
the various operations on line bundles.

Proposition 3.4.5. The following properties hold.

1. If L - M, L' — M are two line bundles with respective connections V, V',
then carv(V ®@ V') = curv(V) + curv(V’).

2. If L — M is a line bundle with connection V, the induced connection V* on
L' ~ L* satisfies curv(V*) = —curv(V).

3. If L — N is a line bundle with connection ¥V and f : M — N is a smooth
function, then curv(f*V) = f*curv(V).
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Proof. 1t suffices to check the results locally.

1. Let s,t be local non-vanishing sections of L. — M and L' — M respectively,
defined over the same open set U C M. Write Vs = f ® s and Vt = v ® t.
Then s ® t is a non-vanishing section of L ® L' — M over U, and

(VoV)sat)=Bs)ot+se(t)=(B+7)s01,
therefore curv(V @ V') = dp + dy = curv(V) + curv(V').

2. Let s be a local non-vanishing section of L — M, with Vs = f ® s, and let s*
be the unique section of L* — M such that s*(s) =1 (at a point m, s(m) is a
basis of L,, and s* is the dual basis of L’ ). Then s* is a local non-vanishing
section and

0=d(s"(s)) = V'(s")(s) + s"(Vs) = V*(s7)(s) + Bs"(s)
so V*s* = — ® s*, which implies the result.

3. Let m € M, and let s be a non-vanishing section of L — N near f(m), such
that Vs = 8 ® s. Then f*s is a non-vanishing section of f*L — M near m.
Furthermore

(fV)(f7s) = (" B)fs,
thus curv(f*V) = d(f*8) = f*(dB) = f*(curv(V)).
[

Definition 3.4.6. A connection is said to be flat if its curvature vanishes. A flat
line bundle is a line bundle endowed with a flat connection. A section of a flat line
bundle whose covariant derivative vanishes is called a flat section.

Lemma 3.4.4 implies that we can always find local flat sections on a flat line
bundle.

3.5 The Chern connection

Definition 3.5.1. Let M be a smooth manifold. A Hermitian line bundle is a
complex line bundle L — M endowed with a Hermitian metric h, that is the data
of a Hermitian inner product! h,, on each fiber L,,, such that the function h(s, s)
is smooth for any smooth section s of L — M.

!Our Hermitian inner products are linear in the left variable and semi-linear in the right variable.



3.5. THE CHERN CONNECTION 35

By the polarization identity, the last condition implies that A(s,t) is smooth for
any two smooth sections of s,¢ of L — M. Note that every complex line bundle
L — M is Hermitian. Indeed, let (U;, 7;);c; be a cover of M by local trivializations
and let (f;);er be a partition of unity subordinate to this cover; given m € U;, define

hi (u,0) = (") (w) (7)1 (v)

for any u,v € L,,, where we recall that 7/" is the linear isomorphism from C to L,
induced by 7;. Then h = Y;c; f;h? is a Hermitian metric on L.

Definition 3.5.2. A connection V on a Hermitian line bundle L — M is said to
be compatible with the Hermitian structure if

d(h(s,t)) = h(Vs,t)+ h(s, Vi)
for every s,t € C*°(M, L).

Let us look at what happens locally. Let s be a local section of L over some
open subset U C M such that h(s,s) = 1, and let 3 be the local one-form such that
Vs =0 ®s. Then, for f,g € C>(U), a straightforward computation yields

(Y (fs),95) + h([s,V(g5)) = d(h(fs,95)) + (B+ B) h(fs, 9s).

Consequently, V and h are compatible if and only if all the forms 3 obtained in this
way are purely imaginary, i.e. of the form 3 = ia with a € QY(U).

Definition 3.5.3. A connection V on a holomorphic line bundle . — M over a
complex manifold M is said to be compatible with the holomorphic structure if

s is a local holomorphic section of L — M <= VZ € C*(M,T"°M), Vzs=0.

If s is a local non-vanishing holomorphic section over some open subset U C M
and Vs = f® s, then V ;s = 0 for every Z of type (1,0) if and only if the form 3
belongs to QM0(U).

Proposition 3.5.4. Let M be a complex manifold and L — M be a Hermitian
holomorphic line bundle. Then there exists a unique connection V on M which is
compatible with both the Hermitian and holomorphic structures. The connection V
is called the Chern connection of L — M.

Proof. Assume that such a connection V exists. Let s € C*(U, L) be a local non-
vanishing holomorphic section of L defined on some open set U C M, and consider
the non-vanishing function H = h(s,s). Let 3 € Q'(U)®C be such that Vs = f®s;
since s is holomorphic and V is compatible with the holomorphic structure, we have
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that 8 € QY(U). Using the compatibility of V with the Hermitian structure, we
also have that

dH = h(Vs,s) + h(s,Vs) = BH + BH.
By identifying the (1,0) parts, this yields

5= 2 = alog 1),

which means that g, hence V, is uniquely determined on U.

To prove the existence, we follow the same reasoning backwards. The fact that
the local connections that we obtain glue together to form a global connection comes
from the local uniqueness. O

Observe that the curvature of the Chern connection of a Hermitian holomorphic
line bundle lies in QY'(M), and is purely imaginary in the sense that it is of the
form i for some a € Q?(M). Indeed, we know from the proof of the uniqueness of
the Chern connection that the local forms 3; € Q'(U;) ® C such that Vs; = 3;s; are
given by 8; = d(log(H;)) where H; = h(s;, s;). Therefore,

curv(V)y, = dB; = 9B; = 58(log H;),

which is a purely imaginary form (see for instance the computation in the proof of
Lemma 2.4.4). The following results are partial converses of this fact.

Proposition 3.5.5. Let (M,w) be a complex manifold, and let L — M be a complex
line bundle over M, endowed with a connection ¥V such that curv(V) € QUY(M).
Then there exists a unique holomorphic structure on L — M which is compatible
with V.

Proof. Let (U;);e; be an open cover of M by trivialization open sets for L — M,
and let s; be the unit section associated with U;. Let (; be the differential form such
that Vs; = 3; ® s;. Let us look for a local non-vanishing section t; = f;s; such that
V z7t; = 0 whenever Z belongs to TH°M. Since

Vit = (df; + [:8i) @ s,

this amounts to asking that df;+ f;; is of type (1,0), i.e. 5fi+fi5¢(071) = 0. We claim
that we can find such a function f;. Indeed, since dB; = curv(V) € Qb(M), we
have that 5550’1) = 0. Therefore, by taking a smaller U; if necessary, the Dolbeault-
Grothendieck lemma (Lemma 2.4.3) yields a smooth function g; such that 550’1) =
dg;. Hence, the function f; = exp(—g;) satisfies the required property. So we get
such a section t;; now, if U; N U; # 0, let F;; be the smooth function such that

t; = F;t; on this intersection. Then for every Z € C>(M, T M)
0= Vzt; = (LzFj)ti + F;jV 5t = (L7 Fyj),
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consequently Fj; is holomorphic. This means that we have found holomorphic tran-
sition functions for L — M. For the uniqueness part, observe that each function
fi is defined up to multiplication by some holomorphic function, which does not
change the holomorphic structure on the line bundle. O

In general, a differential form in Q''(M) NiQ?(M) may not be the curvature of
a Chern connection. In the compact Kéhler case, however, we have the following
result.

Proposition 3.5.6. Let (M,w) be a compact Kihler manifold, and let L — M be
a holomorphic line bundle over M, with curvature class —iw. Then there exists a
Hermitian metric on L — M, unique up to a multiplicative constant, such that the
Chern connection associated with this metric and the initial holomorphic structure
has curvature —iw.

Proof. Let hy be any Hermitian metric on L — M, and let Vg be the corresponding
Chern connection. We look for another Hermitian metric, which will be of the form
h = exp(f)hg for some real-valued smooth function f on M, with Chern connection
V. Remembering the proof of the uniqueness of the Chern connection, we have that
if s is a local non-vanishing holomorphic section and H = h(s, s), then

Vs=0(logH)®s=(0f + d(logho(s,s))) @ s,

which implies that curv(V) = curv(V) + 99 f. Consequently, we want to find some
real-valued f solving the equation

—iw = curv(V,y) + 00f.

But icurv(Vy) and w belong to the same cohomology class, hence icurv(Vy) = w+a«
for some exact form «. Furthermore, « is a real-valued form of type (1,1). So by
Lemma 2.6.3, there exists a real-valued function f such that o = i9df; this function
solves the above equation. Moreover, f is unique up to the addition of a constant,
so h is unique up to multiplication by a constant. O
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Chapter 4

Geometric quantization of
compact Kahler manifolds

Let (M, w) be a compact, connected, Kéhler manifold. The aim of this chapter is to
construct a Hilbert space (or rather a family of Hilbert spaces) which will serve as
the state space of quantum mechanics associated with the classical phase space M.

4.1 Prequantum line bundles

To perform this construction, we need the manifold to be prequantizable, i.e. that
there exists a particular line bundle over it.

Definition 4.1.1. A prequantum line bundle (L,V,h) — M is a holomorphic Her-
mitian line bundle whose Chern connection has curvature curv(V) = —iw.

Such a line bundle does not always exist. The following statement describes the
precise obstruction to this existence. In what follows, we say that two line bundles
with connection (L, V) and (L, V) over M are equivalent if there exists a line bundle
isomorphism ¢ : L — L such that V(¢ o s) = ¢ o (Vs) for every s € C(M, L).

Proposition 4.1.2. There exists a prequantum line bundle L — M if and only if
the cohomology class [w/(27)] lies in the image of H*(M,Z) in H*(M,R). When
this is the case, the inequivalent choices are parametrized by H'(M,T).

This condition amounts to saying that the integral of w on each generator of
Hy(M,Z) belongs to 2nZ. In particular, if M is a surface, the integrality condition
amounts to saying that the symplectic volume of M is an integer multiple of 2.
If M is a simply connected manifold, then H'(M,T) = {0}, which means that if
it satisfies the integrality condition, there is only one choice, up to equivalence, of
prequantum line bundle.

39
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Proof. Assume that there exists a prequantum line bundle L — M. Then the first
Chern class ¢1 (L) is an integral cohomology class. But one can show (see for instance
[13, Theorem 2.2.14]) that it satisfies

i curv(V) w
(L) = [ 2T ] N {27?]
and thus [w/(27)] lies in the image of H*(M,Z) in H*(M,R).

Conversely, assume that the cohomology class of w/(27) is integral. Then it is the
first Chern class of some complex line bundle L — M. Consider any connection V
on L — M; by the aforementioned result, the cohomology classes of curv(V) and of
—iw coincide. It follows from Proposition 3.3.4 that we can find another connection
V whose curvature is equal to —iw. Proposition 3.5.5 then implies that we can find
a holomorphic structure on L — M which is compatible with V. This connection V
may not be a Chern connection, but Proposition 3.5.6 yields a Hermitian structure
on L — M such that the corresponding Chern connection has curvature —iw.

Finally, if there exists a prequantum line bundle L over M, then for any holo-
morphic Hermitian line bundle ' — M with flat connection, L ® F' — M is again
a prequantum line bundle. Conversely, if L — M and L' — M are two inequiva-
lent prequantum line bundles, then ' = L=! ® L’ is a holomorphic Hermitian line
bundle with flat connection. But the holomorphic Hermitian line bundles with flat
connections are classified by H'(M,T) [13, Theorem 2.2.11].

m

One must keep in mind that the result that we have taken for granted in the
proof, stating that the two definitions of the first Chern class-the one from Cech
cohomology, and the one from the curvature of a connection—are equivalent, is not
trivial. We will need this result again later.

Example 4.1.3 (Complex projective spaces). Let M = CP" be endowed with the
Fubini-Study form wgg. Since Hy(M,Z) is generated by the class of CP* ¢ CP",
there exists a prequantum line bundle if and only if the integral of wpg on CP! is
27 times an integer. Let

L:CP' - CP", [20:21]+[20:20:0:...:0]
be the natural embedding of CP! into CP™. On the open set Uy = {2 # 0} C CP!,
we introduce the coordinate w = z;/2g so that
. _tdw A dw
ST U wPy
In polar coordinates w = pexp(ifl), we have that dw A dw = —2ip dp A df, thus

/ . 5 /+°° 2p dp 5
) = 4T (= — 4T.
cpr 1Y o (14 p?)?
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Therefore, there exists a prequantum line bundle for (M, wrg) (and it is unique since
CP" is simply connected). We will see later what this line bundle is.

We will also need the notion of automorphism of a prequantum line bundle.

Definition 4.1.4. An automorphism of the prequantum line bundle (L, V,h) — M
is a diffeomorphism ¢ of L lifting a diffeomorphism ¢,; of M, restricting to linear
isomorphisms on the fibers and preserving both the Hermitian structure i and the
connection V.

The last condition means that *(Vs) = V(p*s) for every s € C*°(M, L), where

(¢"s)(m) = ¢~ (s(par(m)))

for every m € M.

4.2 Quantum spaces

Let (M,w) be a compact, connected, Kéahler manifold, endowed with a prequantum
line bundle L — M. The Hermitian metric on L will be denoted by h. Let us recall
that in the rest of these notes, we will use the abusive notation L* to designate L®¥,
k > 1. For k > 1, the Hermitian metric h induces a Hermitian metric h; on the line
bundles L* by defining

k
hr(ug @ ... Qug, v ® ... Qug) = Hh(uj,vj)
j=1

for pure tensors and imposing sesquilinearity. It also induces a Hermitian metric
h_1 on the dual bundle L* such that

_ #ls)os)
() 0) = 505

for every m € M, every p, ¢ € (L,,)* and every s € L,,. This is equivalent to saying
that we apply the previous formula with L,, ® L} ~ C.

We endow the space C*(M, L¥) of smooth sections of L¥ with the Hermitian
inner product defined by

V0.0 € CX(M, 1Y), (0,0), = [ hu(6.v) du

where p = % is the Liouville measure on M. We define the quantum space at level

k as the space
Hy = H°(M, L")
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of global holomorphic sections of L* — M. The notation H°(M, L¥) comes from
Dolbeault cohomology, see the next section for some explanations. Before going
further, note that it would not have made sense to consider the space H°(M, L*)
for £ < 0, because of the following lemma.

Proposition 4.2.1. For k < 0, we have that H°(M, L¥) = {0}.

Proof. Let k < 0, and assume that there exists a non identically vanishing global
holomorphic section ¢ of L¥ — M. Let H = hy(¢, ¢); since M is compact and H
continuous, H reaches a maximum at a point my € M. Necessarily, H(mg) > 0 and
thus H > 0 on some open neighbourhood U of my. By the discussion contained in
the previous chapter, the curvature of V¥ coincides with d/3 on U, where 8 = B?H. On
the one hand, since L is a prequantum line bundle, we know that curv(V*) = —ikw.
On the other hand, we have that

d(OH) dH YWOH  dH
curv(Vk):dﬁ:(({?{)—mAaH:ﬁ—m/\(‘?H

Since dH vanishes at mg, we finally obtain that
(00H )y = —ikH (M)W, -
In particular, for every X € T,,, M,
(100H )1 (X, Jimo X) = kH (1m0)Wino (X, Jrmg X) < 0
since j and w are compatible, k& < 0 and H(mg) > 0. But we claim that
(100H ) mg (X, jmoX) = —2 (Hess g (mo) (X, X) 4 Hess g (m0) (o X o X)) 5

where Hessy (myg) is the Hessian of H at mg. Since mg is a maximum, this Hessian
is a non-positive bilinear form, and we obtain a contradiction.

In order to prove the claim, we use local coordinates (2, ys)1<¢<n near mgp such
that jo,, = 0,, and j0,, = —0,,, and the associated complex coordinates (z¢)1<s<n-
Then we have that " 2H
00H = — >

£,m—=0 82482,,1

dZe A dim.

Moreover, one readily checks that

0*H B 0*H L 0’H . 0’H N 0’H
0200Z  OT0Tm, Zaxﬁym Zayﬁxm OYeOYrm,

and that

dze N\ dzy, = dxg N dz,, + 1dye N\ da, — idxy N\ dy, + dye A dy, .
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Therefore, a straightforward computation leads to
0*H n 0*H
8$€8xm ayfaym ‘

O0H (0,,,70y,,) = 2i <

We claim that we obtain similar formulas for 00H (9,,, j0,,,), 00H(dy,, jO,,,) and
00H (0y,, jOx,,)- O

Exercise 4.2.2. Check the remaining cases at the end of the proof above (the last
claim of the proof).

As a consequence of the following result, the space H;, introduced above is finite
dimensional for every k > 1.

Proposition 4.2.3. Let 7 : K — N be a holomorphic line bundle over a compact
complex manifold N. Then H = H°(N, K) is finite dimensional.

Proof. We will define a norm on H and prove that the closed unit ball of H for this
norm is compact, which will imply that this space is finite dimensional. Let (U;)1<i<m
be a finite open cover of M by trivialization open sets, and let s; : U; — 7~ 1(U;) be
the associated holomorphic unit section. Let s € H; for every i € [1, m], there exists
a holomorphic function f; : U; — C such that s = f;s; on U;. Now, let (V;)1<i<m be
a refinement of (U;)1<i<n such that K; :=V,; C U; is compact. We define the norm
of s as follows:

Isll = >~ Il fill zo=xc)-
i=1

Now, let (s"),>1 be a sequence of elements of the unit ball of H, and let (f/"),>1,
1 <7 < 'm, be the corresponding sequences of functions from U; to C. By definition
of the norm on H, we have

Vn > 1,Vm €V, |fH(m)] < 1.

By Montel’s theorem for holomorphic functions, there exists a subsequence of ( f]"),>1
converging uniformly to a holomorphic function f; : K1 — C. It follows from a di-
agonal extraction argument that there exist holomorphic functions f; : K; — C,
1 < i < m, such a subsequence of (f"),>1 converges uniformly to f; on K;. On

intersections V; NV}, we have that
Vn > 1, Il =1

where g;; are the transition functions for K. By taking the limit, we see that the
functions fi, ..., f.. satisfy the same relation. Therefore we can construct a global
section s € H such that s, = f;s;. It follows from the definition of the norm that s
belongs to the closed unit ball of H and that s converges to s as n goes to infinity.

O
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Unfortunately, this tells us nothing about the magnitude of this dimension. How-
ever, by using more involved methods, one can prove the following result. This will
be the subject of the next section.

Theorem 4.2.4. The dimension of the Hilbert space H; satisfies

™

dim Hy, = (;)nvol(M) + O(k"—l)

when k goes to infinity, where 2n = dim M.

Remark 4.2.5. This equivalent of the dimension is in accordance with the uncer-
tainty principle. Indeed, this principle implies that the minimal volume that a state
can occupy in phase space is of order (27h)" = (27)"k~". In the limit £ — +o0,
the states forming a basis of H; should fill the whole phase space, so we expect to
have the estimate (27)"k™" dim Hy ~ vol(M).

Remark 4.2.6. It is sometimes useful to add an auxiliary Hermitian holomorphic
bundle K — M and to define the quantum spaces as the spaces of holomorphic
sections of the line bundle LF @ K. We will not deal with this case in these notes.

4.3 Computation of the dimension

This section is devoted to the proof of Theorem 4.2.4. Since the results that we will
need are far beyond the reach of this course, we will only state them, without giving
any proof. Again, we refer the reader to the standard textbooks already mentioned
in the previous chapters.

Let N be a complex manifold of real dimension 2n, and let F' — N be a holo-
morphic line bundle. Let

OPUE) =C(PYN)® F)
be the space of F-valued forms of type (p,q). There exists a natural operator
Op OPI(F) — QPITH(F)

satisfying the Leibniz rule and such that 512; = 0. This operator is constructed by
using the usual 0 operator in local trivializations, and proving that its action does
not depend on the chosen trivialization. We define

ker (9p : Q1(F) — QO+ (F))
N O (Q=1(F))

HY(N,F

and we denote by h?(N, F') the dimension of this space.
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Remark 4.3.1. This definition explains the notation H°(M, L*) that we have used
for the space of holomorphic sections of L*¥ — M.

The Euler characteristic of I — N is the quantity
X(N, F) = th(N, F).
q=0

The Hirzebruch-Riemann-Roch theorem gives a formula to compute this number.
We start by defining some characteristic classes.

Definition 4.3.2. Let ' — N be a complex line bundle over a smooth manifold
N. The Chern character of F' at order j is defined as

o (F)N
4!

ch;(F) =
where the first Chern class of F is seen as an element of H*(N,R), and, given
differential forms «, 3, we have [a] A [B] = [a A f].

Theorem 4.3.3 (The Hirzebruch-Riemann-Roch theorem). Let F' be a holomorphic
line bundle over a compact complex manifold N. Then

X(N, F) = i /M el (F) A td,; (N).

The cohomology class td;(V) is the Todd class at order j of the manifold N. We
will not define it here but we will simply use the fact that tdy(N) = 1. Coming back
to our problem where M is a compact Kahler manifold and L — M is a prequantum
line bundle, if we know how to compute the quantities h4(M, L*) for ¢ > 1, then we
will be able to use this formula to compute the dimension of H,.

Definition 4.3.4. Let N be a compact Kéahler manifold and let I — N be a
holomorphic line bundle. We say that F' is positive if there exists « positive in the
sense that B
—ia (X, X) >0
for every m € M and every X # 0 € TL°M, such that ¢;(F) = [a].
The canonical bundle of a Kéahler manifold N is the line bundle Ky = Q™9(N).

Theorem 4.3.5 (The Kodaira vanishing theorem). Let N be a compact Kdihler
manifold and let F — N be a positive line bundle. Then

Hq(NvKN®F):{O}

whenever g > 0.
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Now, assume that M is a prequantizable compact Kéahler manifold and let L —
M be a prequantum line bundle.

Lemma 4.3.6. There exists ko > 1 such that for every k > ko, K}, @ LF is positive.

Exercise 4.3.7. Prove this lemma. Hint: observe that for X =Y —ijY € T'°M,
the formula —iw(X, X) = 2¢(Y,Y’) holds, where ¢ is the Kéhler metric. Use local
orthonormal bases of T'M with respect to g to conclude.

Applying the Kodaira vanishing theorem to the line bundle F = K}, ® L¥, and
using the previous lemma, we obtain that for k large enough, HY(M, L) = {0}
whenever g > 0. Therefore,

dim Hy, = x(M, L),

and we can use the Hirzebruch-Riemann-Roch formula to compute the right-hand
side. Observe that

1 /i Aj kI Aj
s (1) =[5 (55) 9] = gz [

and remember that tdo(M) = 1. Thus

An

dim Hy, = (;T)n /M “;7 +O(k" ) = (;)nvol(M) +O(k" ).

We will see another derivation of this formula later.

4.4 Examples
Let us now describe a few examples of this construction.

Example 4.4.1 (A non compact example: the plane). We start by reviewing the
example of the plane R?, which does not completely fit in the setting introduced
above, because it is not compact. Nevertheless, it is an important example; firstly,
it serves to understand the previous constructions in a simple context, and secondly
it will be useful when studying the case of the two-dimensional torus.

We equip the plane with coordinates (x,£) and its standard symplectic form
w = dé Adx. We identify it with C by using the complex coordinate z = (z—i€)/v/2,
so that w = idz A\ dz. We consider the following primitive of w:

a= ;(fdx —xdf) = ;(zdé — zdz).
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We endow the trivial bundle L = R? x C — R? with the connection V = d — ia,
the curvature of which is equal to —iw, and with its standard Hermitian structure.
Endowing it with the unique holomorphic structure compatible with both the Her-
mitian structure and V turns it into a prequantum line bundle. In this case, because
of the non-compacity, we define H,, as the space

Hy, = HO(M, LF)n L*(M, LF)

of holomorphic sections of L* that are also square integrable. Let us compute Hj.
The holomorphic tangent bundle T5°R? has as a basis
1

0, = —=(0, +10:),
\/5( +Z£)

and 9; = 0, is a basis of T%'R2. Furthermore, (9., ;) is dual to (dz, dz). Therefore,
1 is a holomorphic section of L if and only if

9
o:v@¢:5f+;w

A globally non-vanishing solution of this equation is

|2
Pv:C—C, z—exp -5 -

Consequently, 1* belongs to H°(R?, L¥). Since this section never vanishes, any other
smooth section of L¥ is of the form fi* for some smooth function f : C — C, and
it is holomorphic if and only if

_of

of &
_5 *Jﬂ?

0= V5. (fo") = 20" + [Vt = 5

that is to say if and only if f is a holomorphic function. Remembering the square
integrability condition, we obtain that

Hy = {fz/Jk f : € — C holomorphic, /(C\f(z)\zexp(—k\zm |dz N dz| < —i—oo} .

These spaces are known to be Hilbert spaces and are called Bargmann spaces [2, 3].

Remark 4.4.2. This whole discussion can be generalized to R?" for n > 1, or to
any finite-dimensional symplectic vector space.

Example 4.4.3 (Another non compact example: the unit disc). Since it does not
require too much work after what we just did, let us investigate another non compact
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example, namely the unit disc D C C, as in Example 2.5.8. We obtained the Kéhler

form
1 dz ANdz

BECERE
As in the previous example, we endow the trivial line bundle L =D x C — D with
the connection V = d — i, where « is the primitive of w given by

w

1zdz

Ty

with its standard Hermitian structure, and with the unique holomorphic structure
which is compatible with both these structures, so that we obtain a prequantum line
bundle. As before, we define H;, as the space of holomorphic sections of L*¥ — D
which are also square integrable. A section ¥ of L — I is holomorphic if and only
if it satisfies the condition

oY z

0= Vo= — +

9: T o -y

The section defined by 1(z) = /1 — |z|? is a globally non-vanishing solution of this
equation. Therefore, we obtain that

Hi = {f@/}k f : C — C holomorphic, / |f(z)|2(1 — |z|2)k_2 |dz N\ dz| < —1—00}
C

with inner product
(F0, "), = [ £ = (=7 |z A dz)

Exercise 4.4.4. Check that (#Hy, (-,-),) is indeed a Hilbert space.

Example 4.4.5 (Complex projective spaces). We already saw that the compact
Kéhler manifold (M = CP", wrg) is prequantizable. However, we did not exhibit any
prequantum line bundle. Remember the definition of the tautological line bundle:

O(-1) = {([u],v) € CP" x C"*'| v € Cu} C CP" x C"*,

with projection 7 : O(—1) — CP"™ defined by 7([u],v) = [u]. It is a holomorphic
line bundle, and it is endowed with a natural Hermitian structure, which is the one
induced by the standard Hermitian structure on the trivial bundle CP" x C"*!,

namely:
n+1

hp (v, w) =Y vw;.
i=1
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Let V be the Chern connection corresponding to these structures. We will prove
that its curvature is equal to iwpg, which will show that the dual bundle L = O(1) of
the tautological bundle, with the induced connection, is a prequantum line bundle
for (M,wrs) (indeed, remember that the curvature of the induced connection on
the dual line bundle is the opposite of the curvature of the original connection). In
order to do so, let us remember the proof of Proposition 3.5.4. Let Uy, ...,U, be
the trivialization open sets introduced earlier: for every j € [0,n], U; is defined as
Ui ={[uo:...:u,] € CP"| u; # 0}. Let us also recall that we have diffeomorphisms

7, :U; xC— 7r_1(Uj), ([u], 2) — ([u], Zu)

Uy
and the associated unit sections are s;([u]) = ([u], %u) Then Vs; = 3; ® s; with
J

B; = d(log H;)

where H; = h(s;,s;). But, using the coordinates w = (%2, ...
J

Uj—1 Uj41 Un )
b . ) ] . )
Uj Uj Uj

we have that

log H; = log (1 + Z ]me) = ¢,

m=1
with ¢; the local Kahler potential introduced in Example 2.5.9. Thus
curv(V) = df; = 00(log H;) = —00(log H;) = iwps.

It turns out that there exists a nice description of the space Hy = H°(M, L*). The
line bundle L* is often denoted as O(k).

Proposition 4.4.6. There is a canonical isomorphism between the space Hj and
the space Cylz1, ..., zni1] of homogeneous polynomials of degree k in n+ 1 complex
variables.

Proof. Let Cg° (C"*1\ {0},C) be the space of smooth homogeneous functions of
degree k from C"™'\ {0} to C, and consider the map

 : C¥(CP", O(k)) — ¢ (C™1\ {0},C)
defined as follows: for s € C*(CP", O(k)) and u € C"**\ {0},
O(s)(u) = (s([u]) ™), .

where (-, -)O(k)[ LO(—) 18 the duality pairing between O(k)p, and O(—k)p,. This

)[u] 70(7k)[u]

map P is obviously linear and injective. It is also surjective; indeed, if f is a smooth
homogeneous function of degree k on C"*!\ {0}, we define a smooth section

s([u]) = ([u], f(u)(u)**)
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of O(k) — CP™. Here u* is the basis of the dual of the line Cu which is dual to wu.
This section is well-defined because if we choose another representative v = Au of
[u], A # 0, we will have v* = A™'u* and so

F) @) = M)A (@) = f () ()"

Clearly ®(s) = f. Hence ® is an isomorphism.

We claim that ® restricts to an isomorphism between Hj and Cglz1, ..., 2n11]-
Indeed, if s is a holomorphic section of O(k) — CP", then ®(s) is a holomorphic
function on C"™'\ {0}. Hartog’s theorem (see e.g. [22, Theorem 2.3.2]) implies that
it can be extended to a holomorphic function on C**!. But a degree & homogeneous
holomorphic function on C*! is a degree & homogeneous polynomial. Indeed, it is
equal to the k-homogeneous part in its power series expansion. O

"+k). This can be rewritten as

In particular, the dimension of H,; is equal to ( M

n—1 k
dimHy, = [] (1 + )

j=0 n—yj

which is equivalent to k™ /n! when k goes to infinity. The following exercise shows
that this is consistent with Theorem 4.2.4.

Exercise 4.4.7. Compute the Liouville measure associated with the Fubini-Study
form, and check that the volume of CP™ is equal to (27)"/nl.

Example 4.4.8 (Two-dimensional tori). In this example, we first show how to
generalize Example 4.4.1 when we consider any two-dimensional symplectic vector
space with any linear complex structure, and then we apply this to investigate the
case of two-dimensional tori. Let (V,wy) be a two-dimensional symplectic vector
space equipped with a compatible linear complex structure j. As above, we consider
the maps

1
oV — R, yl—>§wv(w,y)

for x € V, and we endow the trivial line bundle Ly, = V x C with the connection
V = d—1a, the standard Hermitian structure, and the unique holomorphic structure
compatible with these two, making it a prequantum line bundle. Given a lattice
A C V, we want to quantize the torus T = V/A; this will only be possible if the
symplectic volume of the fundamental domain D of A is an integer multiple of 2.
For the sake of simplicity, we will assume that this volume is equal to 47, and we
refer the reader to [6, Section 4] for the general case (we will explain later why the
following method fails when the volume is equal to 27). In our case the construction
of a prequantum line bundle over T3 can be achieved as follows.
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We want to obtain the prequantum line bundle over T3 as the quotient of Ly
by an action of the lattice A. Hence we need to lift the action of A to Ly in such
a way that all the structures on Ly are preserved by this new action. Recall that
a prequantum line bundle automorphism is a line bundle automorphism preserving
both the Hermitian structure and the connection.

Lemma 4.4.9. The group of prequantum line bundle automorphisms of Ly lifting
translations identifies with H =V x S' with product

(@, u) * (y,v) = (z + y, uv exp(iaa(y)))
for every (x,u), (y,v) € H.
The group H endowed with this product is called the Heisenberg group.

Proof. Let G be the group of such automorphisms and let ¢ € G; then it is of the
form
(z,w) €V X Cr @(z,w) = (z + x,u(2)w) € Vx C

for some x € V and u, : V- — C\ {0} smooth. Since ¢ preserves the Hermitian struc-
ture, u,(z) belongs to S' for every z € V| so it is of the form u,(z) = wexp(i6,(z))
for some u € S! and some smooth real-valued function 6, such that 6,(0) = 0. Now,
let s: 2z (2, f(2)) be a smooth section of Ly. On the one hand, since

(¢7s)(2) = (2, f(z + 2)u" exp(—iba(z + 2))),
we obtain that
(V(¢"9)(2) = (z,u™ exp(—iba(z + 2))(df (2 + ) — if (2 + 7) (0 + dO,(2 + 7))
On the other hand, a straightforward computation shows that
(¢"(V9))(2) = (2,u" exp(—ifa(z + 2))(df (2 + 2) — if (2 + 7)) -
Consequently, ¢ preserves the connection if and only if for every z € V|
di. (2 + ) = e — @ = Q.

In other words, d(6, — a,) = 0, hence 0, = a,. Therefore ¢ = ¢, ,, where

Yeu(z,0) = (2 + z, uexp(ia,(z))w) (4.1)
for every (z,w) € V x C. One readily checks that

Pru © Pyv = (Pz+y,uvexp(iaz(y))>

so the map from H to G sending (z,u) to ¢, is a group isomorphism. ]
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Formula (4.1) explicitly gives the action of H on L. Our goal is to see the lattice
A as a subgroup of the Heisenberg group in order to get an action of A on L. There
are in fact many different ways to do so.

Lemma 4.4.10. Let x : A — S' be any group morphism. Then the set G, =
{(z,x(x))| x € A} is a subgroup of H.

Proof. Obviously the identity element (0,1) of H belongs to G, and the inverse of
an element of G, is in G,. Let z,y € A; then

i

(@, x(x)) * (v, x(y)) = (w +y, x(x)x(y) exp (260(:6, y))) -
Since the volume of A is equal to 47, w(x,y) belongs to 47Z, hence

(z,x(2)) * (1, x() = ( +y, x(x)x(y) = (z +y, x(z +y))
belongs to G|,. O

We see from the computation in this proof that G, is not a subgroup of the
Heisenberg group when the volume of A is 27 instead of 47. Of course the corre-
sponding torus can still be quantized in this case but another method has to be used
(see for instance [6, Section 4] where cocycles for prequantum line bundles are ex-
plicitly given). This construction gives an action of A on L, lifting the action on FE,
which preserves both the connection and the Hermitian structure. Since the trans-
lations preserve the complex structure j, this action also preserves the holomorphic
structure on L. Therefore we obtain, by taking the quotient, a prequantum line
bundle L, — T3. One readily checks that the prequantum line bundles correspond-
ing to distinct morphisms from A to S! are not equivalent. But such a morphism
is characterized by an element of T? = R?/Z?; namely, if (e, f) is a basis of A and

x(e) = exp(2imp), x(f) = exp(2imv), then
x(ae +bf) = exp(2im(ap + bv)) = X, (ae + bf)

for every a,b € Z?. This is consistent with the fact that the inequivalent choices of
prequantum line bundles are parametrized by H'(T%,T) = T? (and this is of course
not the result of luck but the manifestation of some general property that we will
not describe in these notes).

We now consider H with the new product

(x,u) * (y,v) = (x + y, uvexp(ika,(y)))
Then H acts on L¥ where the action is given, in the notation of Equation (4.1), by

Veu(z,w) = (2 + z,uexp(ikay(2))w).
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This induces an action on sections of this line bundle by the formula

((2,w) - 9)(2) = wexp (g’w, z>) ¥z~ 2)

for 2 € V. So we choose (u,v) € T? and thus get an action of A on LF and its
sections. The Hilbert space

Myt = 1 (T3 Ly,,,)

of holomorphic sections of L’;W — T% identifies with the subspace of holomorphic

sections of L{, — V which are invariant under the action of A through G, ,, with
inner product

(60) = (6,6), = [ 60 |

where D is any fundamental domain of A. In other words, H," consists of holomor-
phic sections v such that T* o =1 for every x € A, with

Z, [,V

(T2 )E) = Xl o0 (= st o 42

for any z € V. In order to better understand this space, we start by constructing
a non-vanishing holomorphic section of LY, — V. In order to do so, we choose the
basis (e, f) of A such that w(e, f) = 4w, and we introduce the complex number
T = a + 1b where a,b € R are such that f = ae + bje. One readily checks that
V10 is generated by Z = e — 1 f, hence if (p,q) are coordinates on R? associated
with the basis (e, f) (so that e = 0, and f = 0,), then z = p + 7¢ is a holomorphic
coordinate. In these coordinates, w = 4wdp A dq so

= p
O‘(p,q)<Z) = —27 (q + 7_)

Therefore, a section t € C*(V, Ly ), that is a function ¢ : V' — C, is holomorphic if

and only if
ot 10t P
0=Vyt=————+2 — |t
V= ap 78q+ Z7T(q+7_)

A straightforward computation shows that the quadratic functions g which are so-
lutions of this equation are of the form

9(p,q) = A\p* + (1 4+ 207)pg + 7(1 + A7) ¢”
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for some constant A. If we choose A = —Q—IT, we find g(q,p) = —2—1Tp2 + %qz; if 7 is

the standard complex structure, so that 7 = i, this yields #(z) = exp(—27|z|*) and
we recover the section introduced in Example 4.4.1. However, we prefer, in order to
simplify the following computations, to take A = 0, which means that

t(p, q) = exp(2imq(p + 79)). (4.2)

A straightforward computation shows that for m,n € Z,
(Trens ™) (P @) = exp (2im (k(n® + 2n(p + 7)) — mpu — nv) ) t*(p,q).  (4.3)

Any holomorphic section of LY — V is of the form gt* where g : V — C is

holomorphic, which means that it satisfies ? = T%. By the above equation, this
q P

section is A-invariant if and only if the equality
g(p+m,q+n) = exp (—2i7r (k(m2 +2n(p +7q)) — mp — W)) 9(p,q) (44

holds for every (p,q) € R?. In particular, g(p + 1,q) = exp(2imu)g(p,q) so the
function (q, p) — exp(—2imup)g(p, q) is 1-periodic; consequently,

9(p.q) = exp(2impp) Y gn(q) exp(2imnp)

for some smooth functions g, : R — C. The condition that g is holomorphic reads
G = 2077 (10 + 1) g

for every n € Z, so there exists p, € C such that g,(q) = p,exp(2inT(n + p)q).
Hence we finally obtain that

9(z) = exp(2impz) Y | pyexp(2intnz) (4.5)

nez
where we recall that z = p + 7¢. On the one hand, by taking m = 0,n = 1 in
Equation (4.4), we obtain that g(z +7) = exp(2im(v — k(7 +22)))g(z), which yields

g(z +7) = exp(2im(v — k7)) exp(2impz) Y pnyor exp(2imnz).
nez

On the other hand, we have that

g(z + 7) = exp(2impT) exp(2impz) > pnexp(2irnT) exp(2innz).
nez

Consequently, the sequence (py,)nez satisfies

Vn € Z, Prtar = exp (2im (n+ p+ k)7 — 1)) pu, (4.6)
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and is thus determined by its terms pg,...,por_1. Note that any choice of such
coefficients yields an element of H”. Indeed, a straightforward induction shows
that the above equation yields

Prtomk = exp (2imm ((km +n + p)7 —v)) pp (4.7)

for m,n € Z. But the series Y_,,cz exp (2immk (22 + m7)) is normally convergent
on compact sets, since 7 = 4w /w(e, je) > 0, hence its sum defines a holomorphic
function, and the associated section is A-invariant by construction. The space H"
is therefore of dimension 2k, which is consistent with Theorem 4.2.4. It identifies
with the space of theta functions of order k, parameter 7 and characteristics u, v
[30, Section 1.3].

4.5 Building more examples

To conclude this chapter, we indicate one way to construct new examples from the
ones introduced in the previous section. Let (Mj,wi,j1) and (Ms,ws, jo) be two
compact Kéhler manifolds, endowed with prequantum line bundles (Ly, V) — M;
and (Lo, Vy) — M, respectively. One readily checks that the product M; x M, is a
compact Kéahler manifold, and that the external tensor product (L;XL,, Vi®V3y) —
My x Ms, defined at the end of Section 3.2, is a prequantum line bundle. The
following results relates the quantum spaces associated with M; x M5 to the quantum
spaces associated with M; and M.

Proposition 4.5.1. For every k > 1, there exists an isomorphism
HO(M; x My, LR LY) ~ HO(M,, L¥) @ H°(M,, L),
whose inverse sends s @t to the section pis @ pst.

Before proving this proposition, let us state an intermediate result which is also
useful in its own right. We know from Proposition 4.2.3 that H°(Mi, L) is finite
dimensional; let d; be its dimension. For x = (z1,...2q,) € M{*, let

evy : HO(My, L1) — (L1)y, X ... X (L1)zg,, s+ (s(@1),. .-, s(z4y))
be the joint evaluation map at x.
Lemma 4.5.2. There exists x € M such that evy is injective.

Proof. For x € My, let ev, : H'(My, Ly) — (L1), be the evaluation map sending the
section s € H°(M;, Ly) to s(x). This is a linear form, which is identically vanishing
if and only if x belongs to the base locus

Bs(Ly) = {z € M| Vs € H*(My, L), s(x) =0} = Z(s1)N...N Z(sq,),
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where s, ..., 84, is any basis of H'(My, L1) and Z(s) is the set of zeros of s. Hence,
for x € M, not belonging to the base locus, H, = kerev, is a hyperplane. We claim
that there exists xy,..., 24, € My \ Bs(L;) such that the hyperplanes H,,, ..., H.

y Hag,
are in general position, so that
H, N...NH,, ={0}.
This yields that evy is injective, where x = (x1,... x4 ). O

Exercise 4.5.3. Prove the last claim above. Hint: start by showing that there
exists x,y € M such that H, # H,.

Proof of Proposition 4.5.1. We may, and will, assume without loss of generality that
k=1. Let

¢ HO(My, L) @ H°(My, Ly) — H°(My x My, Ly X L)

be the map sending s ® t to pjs ® pst, extended by linearity; ¢ is clearly injective.
Now, let x = (z1,...x4,) be as in the previous lemma. Since evy is an injective linear
map between two spaces of the same dimension, it is surjective. Hence there exists a
basis s1, ... sq, of HY(Mjy, Ly) such that for any £ € [1,d;], se(x;) # 0 and sy(z,,) =0
for any m # (. For u € H°(M; x My, Ly X L), let v € H°(M; x My, Ly X Ly) be
the section defined as

di
oley) = o) = 3 sule) & Ml

where \y(y) is such that u(ze,y) = se(xe) @ Ae(y). Then for every m € [1,d4],

U(xm7y) = u(xmu y) - SM<fcm) ® )‘m(y) = 0;

hence, by injectivity of evy, v(x,y) = 0. This proves that ¢ is surjective. O



Chapter 5

Berezin-Toeplitz operators

5.1 First definitions and properties

As before, let (M,w) be a prequantizable, compact, connected Kéhler manifold, let
L — M be a prequantum line bundle, and let H;, be the associated Hilbert spaces.
Let L?(M, L*) be the completion of the space of smooth sections of L¥ — M with
respect to the inner product (-, -), introduced earlier, and let II; be the orthogonal
projector from L?(M, L*) to Hj. This projector is often called the Szegd projector.

Definition 5.1.1. Let f in C°(M). The Berezin-Toeplitz operator associated with
f is the operator

Te(f) = i f - Hi — Hy

where f stands for the operator of multiplication by f.

Note that Tj(1) = Idy,. We will investigate the properties of such operators.
Since the norm of Il is smaller than one, a first easy result is the following.

Lemma 5.1.2. For every f € CO(M), [|Ti(H)]l < | flco-

Here ||T'|| stands for the operator norm of the operator 7. We will show how to
obtain a lower bound later. The following result shows what happens for adjoints.

Lemma 5.1.3. If f € C°(M), then
Tu(f) =Tk (f) :

In particular, if f is real-valued, then Ty(f) is self-adjoint; if f takes its values in
St, then Ty (f) is a unitary operator.

o7



58 CHAPTER 5. BEREZIN-TOEPLITZ OPERATORS

Proof. Let ¢, € Hy. Since Il is self-adjoint, we have that

(e(f@), ¥)y, = (fo. Itp)y, = (f o, ), -

We compute the latter quantity:

(fo0h = [ me(fov) du= [ fhu(o.v) du= [ hi(o, f0) dn.

Thus, we obtain that (Il;(f¢),v), = <gb, f¢>k and the same computation as above

shows that this last quantity is equal to <¢, I, ( f¢)>k This proves the statement
of the lemma. O

Furthermore, the Berezin-Toeplitz quantization is also a positive quantization in
the following sense.

Lemma 5.1.4. Let f € CO(M,R) be such that f(m) > 0 for every m € M. Then
Ty(f) is a non-negative operator, in the sense that

for every ¢ € Hy.

Proof. Performing the same computation as in the proof of the previous lemma, we
find that

(). 6) = [ fhu(é.0) dyu > 0.

5.2 Norm, product and commutator estimates

The properties of Berezin-Toeplitz operators that we proved so far were easy conse-
quences of their definition. However, some of their properties are harder to grasp.
For instance, one may ask whether the composition T} (f)7%(g) of two Berezin-
Toeplitz operators is still a Berezin-Toeplitz operator, or the same question for the
commutator [Tx(f),Tk(g)]. One might also want to obtain a lower bound for the
operator norm of Tj(f).

Fix some Riemannian metric on M, and for ¢ € N, consider the following norm
on the space C*(M):

g .
1£lle =2 1VEof lloe:
j=0
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where Vo is the Levi-Civita connection. Observe that we have the inequality
1 flle < Ifllm if £ < m. Now, for any f,g € C*(M), we define the quantity

¢
£, glle = D2 1 lnllglle=rm-
m=0

We also define, for p,q € N, ¢ > p, the quantity

q
Hfngp,q = Z ”meHQH;D-l-q—ma
m=p

so that ||f,glle = |If,gllo.. To avoid confusion, we now simply write ||f|| for the
maximum norm of f. These norms can be extended to the case of vector fields. If
T is an operator, we will write 7" = O( )Hf,ngq if there exists some ky > 1
and C' > 0 depending neither on f nor on g such that its operator norm is smaller
than Ck~N|| f, 9|4 for k > ko. The following precise estimates have been recently
obtained in [19].

Theorem 5.2.1. There exists C > 0 such that for every f € C*(M,R),

1T (NI = 1Ll = CEIfl2-

This result will be proved in Chapter 9.

Theorem 5.2.2. For any f € C'(M,R) and g € C*(M,R),

Tu(£)Ti(g) = Te(£g) + O(k™") (I fllollgllz + 1 11llgll)

and

Ti()Tk(f) = Te(f9) + O(k™) (I fllollgllz + I 1llglh) -

Theorem 5.2.3. For any f,g € C3(M,R),

1), Telo)] = 2 Tl({7,93) + O (k) I s

We will prove these two results in Chapter 8. In order to do so, we will show
how to derive some properties of the Szeg6 projector in Chapter 7.

Let us give some explicit examples of Berezin-Toeplitz operators, without proof
for the moment. The proofs will be given in Chapter 7, where we investigate the
asymptotic behaviour of the projector II.
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Example 5.2.4 (Coordinates on S?). The two-dimensional sphere S? is diffeomor-
phic to CP! = CU{co} via the stereographic projection (from the north pole to the
equatorial plane)

T+ il’Q 1 1

: WN(2)Z?fljggcﬁNZ%Qgﬂﬂﬁzw—-U-

7TN(iU1,fL’2,$3) = 1— 5
In this representation, the complex number z is the holomorphic coordinate on
the open set U; = {[zp : z1] € CP!| 2z # 0} introduced in Example 2.5.9. A
straightforward computation shows that the pullback of the Fubini-Study form is
TNWrs = —wsz2/2 where wsz is the standard symplectic form on the sphere viewed
as a submanifold of R3:

(w2 (0,0) = (1,0 A W)

for u € S? and v, w € T,S*. In the angular coordinates (6, ¢) such that
(21, T2, x3) = (cos O sin p, sin O sin p, cos @)

we have that wg: = —sing df A dp = df N dxs. In the isomorphism between
the Hilbert spaces quantizing CP! and Cy[z1, 2»], this point of view corresponds to
considering, for P € Cy[z1, 25, the polynomial P(z,1) € C[z] of degree at most k.
We claim that in this representation
1 d ) d
Tk(xl) = ((1 - Z2)$ + kZ) s Tk(ZL’Q) = ! ((1 + 22)% - kZ)

k42 k42
and finally

k+ 2 dz

Here we have used the slightly abusive notation Ty (f) for T} ((7@1)* f ), [ ec>(s?.
These claims will be proved in Example 7.2.5.

Th(as) = — <2zd—k1d>.

Exercise 5.2.5. From these formulas, check that

[T (1), Tho(2)] =

This is consistent with the theorem about the commutator estimates; indeed, one
readily checks that {z;, 22} = —2x3. We can also check the norm correspondence
on, for instance, Ty(x3). It is clear that the monomials 1, z,. .., 2" are eigenvectors
of Ty(x3) with eigenvalues —kiﬂ, i%r’;, o k%z Hence, the norm of Ty (z3) is equal
to the absolute value of the largest diagonal element

k 2
——=1->40(k?).
ez ROl

But the maximum norm of z3 is equal to one.
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Remark 5.2.6. We also have that
21 21

[T (2), Tho(ws)] = mTk@l)a [Ty (x3), T (21)] = D)

Example 5.2.7 (On the torus). We come back to Example 4.4.8 where we explained
how to quantize T = V/A, and keep the same notation. One readily checks that
the center of (H,xy) is

Tk(Ig)

1
Zp(H) = —A L
This subgroup naturally acts on H4"”; indeed, if ¢ € HO(V, L) is invariant under

the action of A and (x,u) belongs to Zy(H), then for every y € A,

(¥ X () - ((2,0) - ) = (2, 0) - (4, Xpw () - ¥) = (2,0) -,

hence (x, u)-1 is also invariant under the action of A. We let the subgroup A/2kx {1}
of Z(H) act on H}”; for A € A, we introduce the pullback T, of the action of
A/2k, which is such that for every ¢ € Hi” and x € V,

(T5ax) (@) = exp (—Jw(h2) ) ¥ ( N %> |
We also consider the function
gx - ’]I‘/Q\ — R, x—exp (—;w()\,x)> _

We claim that Tj(gx) = T3 o5, + O(k™1). The proof of this claim will be sketched in
Example 7.2.10, in which we will also express the action of the operators 7, and

T% o), in & particular orthonormal basis.

5.3 Egorov’s theorem for Hamiltonian diffeomor-
phisms

Let ¢ € Ham(M,w) be a Hamiltonian diffcomorphism. Let us recall that if f is
a function in C*(M) generating some Hamiltonian flow ', then the Hamiltonian
flow generated by f o ¢ is ¢~ o4t o ¢. In physical terms, the classical dynamics of
f o ¢ is conjugated to the one of f; but what about the quantum dynamics? The
answer is given by Egorov’s theorem: up to an error of order O(k™!), Ty(f o ¢) is
conjugated to Ty (f) by a unitary operator.

Let us explain what is meant by quantum dynamics. Let H in C*(R x M) be a
time-dependent Hamiltonian generating ¢, and for (¢, m) € Rx M, consider Hy(m) =
H(t,m). Consider the time-dependent family (7j(H;))wcr of self-adjoint Berezin-
Toeplitz operators. Its quantum dynamics is given by the associated Schrodinger
equation.
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Proposition 5.3.1. Let k > 1 be fized. Given any ug € Hy, the ordinary differential
equation

U (t) = —ikTip(Hy)u(t)
u(0) = ug

has a unique solution u(-,ug) € C*(R,Hy). Furthermore, there exists a unitary

operator Ug(t) : Hr — Hg, depending smoothly on t, such that for every ug in Hy,

and every t in R
U(t,UO) = Uk<t)u0

Proof. Existence and uniqueness come from the standard result for linear ordinary
differential equations. Uniqueness implies that the solution depends linearly on the
inital data, and thus yields the existence of Ug(t). In order to prove that Ug(t) is
unitary, we consider Vi (t) = Uy(t)*Ui(t) and compute

Vi(t) = (U1 U (1) + Uil U(0)

Using that U (t) = —ikT(H:)Ux(t) and taking the adjoint, we get that
Vi(t) = ik(Ux(t)* T (Hy) U (t) — Up(t)* T (Hy)Ug(t)) = 0.

Since Vj(0) = Idy,, this implies that Vj(t) = Idy, for all t. Since Hj is finite
dimensional, this proves that Uy(t) is unitary. ]

The family (Ug(t)):er of unitary operators thus defined is the unitary semigroup
associated with (Ty(H;))ier. It is the quantum analogue of the Hamiltonian flow
generated by H;. If H, = H is time-independent, then Ug(t) = exp(—iktTy(H))
where exp is the matrix exponential.

Theorem 5.3.2 (Egorov’s theorem). There exists ko > 1 and C > 0 such that for
every k > ko and for every t € [0,1],

vt DU ~ T(f o )] < ch [ NHa £ 0 6%l1s ds.

We will need the following result in order to prove this theorem.

Lemma 5.3.3. Let (fi)ier be a family of functions of C*°(M) depending smoothly
on the parameter t. Then (Ty(fi))ier depends smoothly on t and

d d
%Tk(ft) =T (dtft> :
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Proof. Let s,t in R; by linearity of g — Tx(g), we get that

(ft fs) - 1 (Tl ) = Tl £).

t—s

Thus we have by the triangle inequality

Hnﬁ (fg n(ﬁ:f—iﬁ)

The first term on the right-hand side of this inequality goes to zero when s goes to
t by definition. The remaining term also goes to zero when s goes to t because

‘ (ﬁ ﬁ_dﬂﬂglﬂ—ﬁ d
t— dt

t—s dt
Hence %Tk(ft) =Tk (%ft) O

= [anon -2

g Delfe) = o (L(fi) = Tk(fs))HJr‘

o0

Proof of Theorem 5.3.2. Consider the Berezin-Toeplitz operator A (t) := Ty (f o ¢")
and the operator By(t) := U (t) Ax(t)Uk(t)*; observe that by Lemma 5.3.3

d
A0 =i ( (7 06)) = T (S 06,
Thus, by Theorem 5.2.3, we have that
A1) = ik [TL(HL), Ax(t)] + Eu(0).

where || Ex(t)|| < Ck™Y|Hy, f o ¢!||1 5 for k greater than some ky > 1 (the same for
every t). We compute the time derivative of By(t):

Bi(t) = —ikTy(Hy) U (t) A () Ur ()" + Up(t)* (ik [T1.(Hy), A (t)] + Ex(t)) Ug(t)
+ kU (1) A (1) Ux (t) " Ti(Hy),

which yields
By(t) = Uk(t) Ex(t)Uk(t)".

Here we have used that Uy(t) and Ty(H;) commute, which can be proved by differ-
entiating the semigroup relation Uy (t)U(s) = Ug(s)Ux(t). Since moreover By (0) =
Ar(0) = Ti(f), integrating this equation gives

Bu(t) = Th(f) + /Ot Us(s) B (s)Uk(s)* ds
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for 0 <t <1, so that for such ¢,

This implies that for 0 < ¢ <1 (since Uy(¢) is unitary):

146() = Ut T U < [ NB() ds < Ck™ [ |1Hy,f 6%l ds.
O]

Example 5.3.4. Let us consider the same data as in Example 5.2.4. The sphere
S? is equipped with the symplectic form w = —ws2/2. Let H = w3; the flow ¢
of H at time t is the rotation around the vertical axis with angle 2¢. Therefore,
if f = 21, then fo ¢™* = —2,5. So we would like to compare U;Ty (1)U, with
—Ty(2), where Uy = exp(—“%2T}(z3)). In order to do so, we define the operator
Ai(t) = exp(—iktTy(z3)) (T (z1) + 1T)(z2)) exp(iktTi(x3)) and compute:

Ay(t) = —ik exp(=iktTi(ws)) ([Ti(ws), Te(w1)] + i[Th(ws), Ti(x2)]) exp(iktTi(x3)).

Here we have used that Tj(x3) and exp(£iktT)(z3)) commute. Using the commu-
tation relations for the operators Ty (z;), j = 1,2, 3, this reads

i
Ty (xa) +

. i 2Tk(x1)) exp(iktTh(x3)),

hence Aj(t) = 725 Ay (t). Therefore,

Ak(t) — exp (_ 2kt ) Ak(()) = exp (— ::]_ﬁ;) (Tk(flfl) + ZTk(?L’Q))

In particular, we obtain that

) ikm
Up (T (x1) + iTk(z2)) Ux, = exp (2

(k'+2)> (Tx (1) + 1Ty(x2)) .

The identification of the self-adjoint part yields:

UiTy(z1)Uy = cos (2(;12)> Ty (xq1) — sin (2(152:2)> Ty(x2).

This finally yields that U;Ty(z1)Uy = —Tk(x2) + O(k™"'), which is consistent with
Egorov’s theorem.
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Remark 5.3.5. Actually, in this example we could get rid of the remainder by
correcting Ty(x3) by multiplication by the factor % This is not a coincidence;
it is linked to the fact that the sphere that we are quantizing is a coadjoint orbit
of SU(2), and that the quantization data is SU(2)—equivariant. This implies that
there is an exact Egorov theorem for rotations on the sphere.

Remark 5.3.6. The discussion at the beginning of this section remains valid when
¢ is a general symplectomorphism. There exists a way of quantizing such symplec-
tomorphisms as asymptotically unitary operators, called Fourier integral operators,
satisfying an analogue of Egorov’s theorem. Nevertheless, the construction of such
operators is much more involved than the one presented here for Hamiltonian dif-
feomorphisms, and we will not talk about it in these notes.
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Chapter 6

Schwartz kernels

In this section we give a quick review of the notion of section distributions and
Schwartz kernels of operators acting on spaces of sections of vector bundles. A good
reference for this material is the classical textbook of Hérmander [23].

6.1 Section distributions of a vector bundle

Let X be a compact, smooth manifold with volume form and let F' — X be a
Hermitian vector bundle over X, whose Hermitian form will be denoted by A’
(throughout we will follow the convention that Hermitian forms are linear on the
left and antilinear on the right). We endow the space C*(X, F) of smooth sections
of F — X with the following inner product:

6 € C¥(X,F) = (6,0)axry = [, 15 (0(2), ¥(a)) da

where the integral is performed with respect to the given volume form on X. We
define the Hilbert space L?(X, F)) of square integrable sections of F' — X as the
completion of C*(X, F') with respect to this scalar product.

Let us define section distributions on X. We endow the space C*(X, F') of
smooth sections of FF — X with the following topology: we choose a finite cover
(Ui)1<i<p of X by open sets which are charts for trivializations of both X and F.
For every i, we choose an exhaustion of U; by compact sets, that is an increasing
sequence (K} ),>1 of compact sets such that U,; K’ = U;. Then we consider the
countable famlly (pj,n,i,'r)j n>1,1<i<p,1<r<rank(F) of seminorms defined by

v Ly X0, A x>

Pinir(®) = max |0 ¢

for every ¢ € C>®(X, F), where, by a slight abuse of notation, ¢’ stands for the
r-th coordinate of the image of ¢ in the trivialization associated with U;. One can

67
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check that the topology induced by this family of seminorms does not depend on
the various choices, and that it turns C*(X, F') into a Fréchet space.

Now, we simply define the space D'(X, F') of distributions as the topological dual
space of C*°(X, F) with respect to this topology, that is to say the space of continuous
linear forms on C*(X, F'). The duality pairing will be denoted by (-|-)pr(x,r).c>(x.7),
which means that

Va € D'(X, F), Vo € C*(X, F), (a|d)px,mc=(x,r) = a(9).
Given a square integrable section ¢ of FF — X, we can view it as a section distribu-
tion by putting
V6 € CR(XF), (Blddpixmecim = (0.6 siem = [ 5 (6(), (@) dos

the map ¢ € L*(X,F) — (¥|)pr(x,r) coo(x,r) I injective and this way we get the
following inclusions:

C™(X,F)C L*(X,F) C D'(X,F).

6.2 The Schwartz kernel theorem

Now, let Y be another compact, smooth manifold with volume form and Y — G be
a Hermitian vector bundle over G. Let

X XY =X, py: XxY Y

be the natural projections. Recall that the external tensor product FXG — X XY
is defined as
FXG=pyF ®pyG.

Given two sections ¢ € C*°(X, F') and ¢ € C*(Y,G), we define a section
¢RY =pxp @pyy € CT(X XY, FRG);

by a slight abuse of vocabulary, we will call such a section a pure tensor. Further-
more, remember that we can define an Hermitian form A% on FIXIG by specifying
its values on pure tensors as follows:

V(z,y) € X x YVf € F,,Vg € Gy, hiza(f ®g) = hL(f)hS(g),

then extending it to the whole C*(X x Y, F X GG) by forcing sesquilinearity.
If V is a complex vector space, let V stand for its complex conjugate vector

space:
Vi={vveV}
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with addition v + w = v + w and scalar multiplication \v = v Moreover, if V' is
equipped with an Hermitian form A", we define the Hermitian form h" on V by the
formula

vo,w eV, A (v,w):=h"(v,w).
These definitions extend to complex vector bundles. If /' — X is a complex line
bundle with connection V, there is an induced connection V on F' — X such that

VXE = VXS

for every s € C*(X, F).
Given a section K € C® (X xY, FKX é), the formula

e X, (Ko@) = [ K(.y)-oly) dy (6.1)

defines an operator K from C*(Y,G) to C*(X, F'). Here, the dot stands for con-
traction with respect to the Hermitian product h“ on G-

VyEY, vaGyv v.gEéyv g.f: hf(f,g)

There exists a generalization of this construction when K only belongs to the space
D’ (X xY FK 6). Of course the previous integral would not make sense anymore,
but we can build on the following observation.

Lemma 6.2.1. If K € C*® (X xY,F x@) and ¢ € C*(Y,G), then

(K(@)|[V)pr(x,p).co0(x,F) = (KW X 5) (6.2)

D' (X xY,FRG),C® (X xY,FRG)

for everyy € C*(X, F). In this formula we view K as an element of D’ (X xY FK é)
and KC(¢) as an element of D'(X, F).

Proof. Since the two sides of the equality that we wish to prove are linear with
respect to K, it is enough to show that it holds when K is of the form

K(z,y) = f(z,y)Kx(z) ¥ Ky (y)

with Ky € C*(X, F), Ky € C*(Y,G). Indeed, we can then conclude by a partition
of unity argument. By construction of the injection of C*(X, F) in D'(X, F), we
have that

(K)o xmexcxr = [ B W), K(@)() dr.
But we have by definition

KO)w) = [ Ky oty) dy= ([ fwph§ @), Kv(w) dy) Kx(a)
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and hence, after substituting in the previous equation:

(K(&) )=o) = /M T bt (W), Kx @A (@), Ky (9)) dady.

But we can write hS (¢(y), K yé( ) SO

(K@) x.me=cxr) = /thmi(wmx ). (o) (Kx BBy (2,)) dady,

which is precisely equal to (K | X gb) DX Y, FEE) o (X XY, FEG)’ O
The advantage of this formulation is that we can now take it as a definition of
K(¢) when K is not necessarily smooth anymore; equation (6.2) defines the action

of the distribution K(¢) on pure tensors and we can then pass to any element of
C>®(X x Y, F X G) by linearity.

Theorem 6.2.2 (The Schwartz kernel theorem). Every K € D’ (X xY, F @é)
defines according to equation (6.2) an operator IKC : C*(Y,G) — D'(X, F) which is
continuous in the sense that for every sequence (¢n)n>1 of elements of C*(Y, G) con-
verging to zero, the sequence (K(¢,))n>1 converges to zero in D'(X, F'). Conversely,
any continuous operator K : C*°(Y,G) — D'(X, F) has a unique section distribution

KeD (X X Y,F&é) such that equation (6.2) holds; K is called the Schwartz
kernel of IC.

We will admit this theorem. For a proof, one can look at the proof of [23,
Theorem 5.2.1] and adapt it to the setting of section distributions.

Example 6.2.3. Assume that Y = X and G = F' (endowed with the same Hermi-
tian form). The Schwartz kernel K of the identity C*°(X, F') — C*(X, F) is given
by the formula

(K|\IJ)D'(XxY,F&@),COO(XxY,F&@) = /XTY(\I’@»!E)) dx
for every ¥ € C*(X x X, FX F). Here we view ¥(x,z) € F, ® I, as an endomor-
phism of F, by using the identifications F, ~ F* and F, ® F} ~ End(F,).
6.3 Operators acting on square integrable sections
Let X,Y, F,G be as in the previous parts, and consider orthonormal bases (1;);>1

and (¢;);>1 of the Hilbert spaces L*(X, F) and L*(Y,G) respectively. Then one
can check that the sequence (¢; X ¢;); ;>1 is an orthonormal basis of the space



6.3. OPERATORS ACTING ON SQUARE INTEGRABLE SECTIONS 71

L? (X X Y,F@@). Given K(-,-) € L? (X X Y,F&é), formula (6.1) defines an
operator K from L*(Y,G) to L*(X, F) which is continuous in the usual L? sense
(exercise: check it). The following result is a derivation of the Schwartz kernel
theorem in this particular case.

Proposition 6.3.1. Let K : L*(Y,G) — L*(X,F) be a bounded operator. Then
K has a Schwartz kernel K(-,-) € L? (X X Y,FXI@), which can be computed as

follows. For any two orthonormal bases (V;);>1 of L*(X, F) and (¢;);51 of L*(Y, G),
we have that

K(z,y) = Z <’C¢ja¢i>L2(X’F) vi(z) ® ¢;(y) (6.3)

1,521
in the L? sense.

Proof. Let ¢ € L*(Y,G). Then

,CSO = Z <’C90a ,lvbi)L?(X,F) ,QZ% = Z <90a ¢j>L2(y’G) <,C¢j7 ¢i>L2(X,F) %

i>1 i,j>1

Observe that for j > 1,z € X andy €Y,

(65 - W) i) = (Vi(2) ® 3;1)) - $(w);

therefore we have that for every x € X,

(003 o i) = [ (04(0) @ B50)) - 0(0) dy.
Using this in the first equation, we finally obtain that
(Kep)(x) = /Y (Z (K¢, Vi) 2 (x .y Yil7) @ ¢j(y)) () dy
ij>1
for every x € X, which was to be proved. O]

For orthogonal projectors, there exists another nice formula, which can be derived
either from the previous result or by a direct computation.

Lemma 6.3.2. Let S be a closed subspace of L*(X, F) and let I1 be the orthogonal
projector from L*(X, F) into S. Let (pg)e>1 be an orthonormal basis of S. Then the
Schwartz kernel K of 11 is given by the formula:

K(z,y) = pi(x) @ e(y).

£>1
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Proof. Let ¢ € L*(X, F). Using the expression

g = Z <¢7 90€>L2(X,F) Pe

>1

and performing the same computation as in the proof of the proposition above,
namely showing that

(6, 00d 2y 91(@) = [ (@) @ ely) - 6(y) dy,

we obtain the result.
O]

In what follows, we will often use the abusive notation K (-,-) for the Schwartz
kernel of an operator K.

Proposition 6.3.3 (Restriction to subspaces). Let K : L*(X,F) — L*(X,F) be
a bounded operator with Schwartz kernel K(-,-) € L? (XQ,F &F). Moreover, let

S C L*(X, F) be a closed subspace of L*(X, F), and let II be the orthogonal projector
from L*(X,F) to S. Then the operator KII possesses a Schwartz kernel K which
satisfies, for any orthonormal basis (v¢)e>1 of S,

K(z,y) =Y (K¢o)(2) © puly).

>1

Proof. Let ¢ € L*(M, L*). Since Iy = 345 (¢, ©0) r2(x.r) e and K is bounded,

Kllp = Z (¢, <P€>L2(X,F) Ky

>1
We use the same computation as in the two previous proofs to finish the proof. [J
Proposition 6.3.4 (Trace of an integral operator). Let K : L*(X, F) — L*(X, F)
be a bounded operator with Schwartz kernel K(-,-) € L? (Xz, FKX F). Then
Tv(K) = / Te(K (2, z)) de.
X

where we see K(x,z) € F, ® F, as an endomorphism of F,.

Proof. By equation (6.3), we have that for z € X,

Tr (K (2,2)) = Y (Koi,05) 1ax ) Tr (05(2) @ 6i(2)) -

1,521
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But the endomorphism ¢;(z)®¢;(x) of F,, corresponds to u € F, — hy(u, ¢;(z))¢;(x),
hence its trace is equal to h,(¢;(z), ¢:i(x)), thus

TI‘ Z K(bh(bj L2(X,F) ((bj(x)v(bz(x))
=1
By integrating, we get

/XTr(K(a:,x)) dr =Y (Ki,$j) 1o (x.p) (95 (2), 9i(2)) 12 )

4,521

which yields

/X Te(K (2,2)) dv = 3 (K i 62) o) = Tr(E).

i>1

O]
Proposition 6.3.5 (Composition and Schwartz kernels). Let K, J : C°(X,F) —
CY(X, F) be two operators with Schwartz kernels K(-,-),J(-,-) € C° (XQ,F&F)
Then their composition K.J possesses the Schwartz kernel 1(-,-) given by

I(%y):/ K(z,z)-J(z,y) dz
X
where the dot stands for contraction with respect to h.

Proof. For ¢ € C°(X, F), we have that

KUg)a) = [ K(@.2)- (Je)(e) dz = [ K@)« ([ Iew)- o) dy) d=

and changing the order of integration we obtain

KU @) = [ ([ K(@.2) Iy dz) - oly) dy.
which was to be proved. O

Proposition 6.3.6 (Schwartz kernel of the adjoint). Let K : L*(Y,G) — L*(X, F)
be a bounded operator with Schwartz kernel K(-,-) € L? <X XY, F &@). Then the

Schwartz kernel K € L2 (Y x X,GX F) of its adjoint satisfies K (y,z) = K(z,v).

Proof. Let ¢ € L*(Y,G) and ¢ € L*(X,G). Then

(Ko.0) ) = [ 0 ([ K@w)-00) dyvia)) do
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Since we have that hl (fy K(z,y)- ¢(y) dy,¢(x)) = ¢(z) - fy K(z,y) - ¢(y) dy, we

can rewrite this as

(K6,0) 1205y = [, ([ 960 K(wy) do) - o) dy.

But we also have that (fXW-K(x,y) dm)gb(y) = ( (1), [x ¥ (z) - K(x,y) d:zc),

therefore, since

V(@) - K(w,y) = hE(K(z,y), ¥(x)) = hy (¥(2), K(z,y)) = K(z,y) - (@),

we finally obtain the equality

(K6,0) 120wy = [0 (8(0). [ Kooy - 0(w) da) dy,

which concludes the proof. O

6.4 Further properties

Norm estimate. The following result provides with a method to derive estimates
for the norm of an operator from estimates for its Schwartz kernel.

Proposition 6.4.1 (The Schur test). Let T be an endomorphism of CO(X, F) with
Schwartz kernel K € CO(X?, FX F). Define the two quantities

Cy=sup | [|[K(z,y)|| dy, Co= sup/ | K (z,y)|dx.
zeX JX yeX v X

Then the operator norm of T satisfies | T||* < C1Cs.
In the course of the proof of this result, we will need the following lemma.

Lemma 6.4.2. Let v € X, G € C°(X?, FKRF) and p € C°(X, F). Then for every

f e LX),
"< (LRI I ) ([ let)l? dy)

|/ 1wy o) d

Proof. Let d be the rank of F, and let aq,...,aq be an orthonormal basis of F.
For every i € [1,d], we define a section G € C°(X, F) by the formula

Gi(y) = a; - G(x,y).
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Let y € X and let 3i,..., 34 be an orthonormal basis of F,. Then (o ® 53)1<u<d
is an orthonormal basis of F, ® F,, and we write G(z,y) = w 1 )\Uoz, ® f; for

some complex numbers A;;. Then Gi(y) = S0 A;B;, so [|GL(y)|]> = L9y | Ayl
Therefore

Z IG5 )IP = IG (@, m)I* (6.4)

Let us also write ¢(y) = Y0y pefe. On the one hand, G(z,y)-¢(y) = X¢ 1 Aijujc.
But on the other hand, h,(¢(y), G%(y)) = 9, Aijuj. Consequently, we obtain the

j=1
following formula:
d

Glz,y) - o(y) = D hy(e(y), Gi(y)) @

i=1

We deduce from this equality that

| FWG@y) ey dy =3 (0. 7G) L

Thus, we have that

2 2 d _
| 10)Gw) - el) dy (0 FGE) s(zmﬂm@mﬂ)wmmwy
=1

where the last equality follows from the Cauchy-Schwarz inequality. But equation
(6.4) implies that

S NG = 3 [ I WPIGOIE dy = [ |FPIGE. ) dy,
i=1 1=1
which concludes the proof. n

Proof of Proposition 6.4.1. Let ¢ € C°(X,F) and let x € X. Let U, C X be the
open subset consisting of the points y € X such that K(z,y) # 0. Then

To)) = [ 1o, J———f AIE @9l oy

1K (z, )

d

-3

i=1

where 1U is the indicator function of U,. Applylng the previous lemma with f =

ly,, G(z, K(x,y)/\/||K(z,y)|| and ¢(y) = /|| K(z,9)|| ¢(y), we get
(o)) < (/qude@( 1Kl dy)

By integrating, this implies that

IT6l3 e < [ ([ NGl dy) ([ 1K@ )6 dy) da.
This yields HT¢||L2(XF < CIC2||¢HL2 (X,F): H



76 CHAPTER 6. SCHWARTZ KERNELS

Composition with differential operators. Assume that F' is endowed with a
Hermitian connection V. Let K € C*(X x X, FX F) and let T be the operator
with Schwartz kernel K. The two following results allow to compute the kernel of
the composition of T" with some differential operator.

Lemma 6.4.3. Let Z € C°(X,TX) be a continuous vector field on X. Then the
Schwartz kernel of Vz o T is equal to (V7 Xid) K.

Proof. Remember that for ¢ € C°(X, F) and z € X,

(T6)(@) = | K(zy)-oly) dy.

Since X is compact, we can differentiate under the integral sign, which yields

(V70T)o)) = [ (V2 Rid) K) (w,) - 6(y) dy,

X

which was to be proved. O

Lemma 6.4.4. Let Z € C'(X,TX) be a C' vector field on X. Then the Schwartz
kernel of T oV z is equal to — (Id X (Vz + divZ)) K. In this statement, we still use

the notation V for the induced connection on F.

Proof. Set R:=T oVy. Let ¢ € CH(X,F) and z € X. Then

(RO)w) = [ K(w.9) - (V20) (4) dy.
Let us consider the function f, = K(z,-) - ¢. Since V is Hermitian, we have that

(Lzfe)(y) = K(z,y) - (Vz0)(y) + (K Vz) K) (2, y) - ¢(y)
for every y € X. Integrating this equality, we obtain:
(RO)w) = [ (L2f)y) dy = [ ((ARVZ) K) (,9) - 6(y) dy.
Let us change a little bit our notation and call x the volume form on X, so that
(Ro)(@) = [ (£2f) n— [ ((ARV2)K) (2.y) - 6(y) dy.
X X
Using the Leibniz rule, we have that

(Lzfs) o= Lg(fapr) = folzp = Lz(fop) — (divD) fop
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where the second equality comes from the definition of the divergence. Since Car-
tan’s formula yields the exactness of Lz(f.u), we obtain after integration:

/X('Cfo> p= —/X(din)fzu

and consequently
(RO)(x) = — [ (@ivZ)K(a.y) - 6(y) dy = [ ((ABV)K) (2.y) - 6(y) dy.

which yields the result. O
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Chapter 7

Asymptotics of the projector II;.

The goal of this chapter is to describe the asymptotic properties of the Schwartz
kernel of the Szegd projector Iy, : L2(M, L¥) — Hy.

7.1 The section F

Let M be the the manifold M endowed with the symplectic form —w and the
complex structure opposite to the complex structure on M. Let A := diag(M x M)
be the diagonal of M x M; observe that it is a Lagrangian submanifold. We want
to understand the Schwartz kernel of a Berezin-Toeplitz operator, and it turns out
that this kernel concentrates on A in a certain sense that we will explain later. In
order to do so, we introduce some special section of L X L — M x M related with
A. We start by introducing some notation, close to the one used in [14], which has
been our main inspiration for this section.

Let V be a smooth manifold. We say that a function f € C*°(X) vanishes to
order N > 1 along a submanifold Y C V if for every m € [0, N — 1], and for any
vector fields Xy, ..., X,

(Lxy .. L, f)y =0.

If K — V is a complex line bundle with connection V, we say that a section
s € C*(V, K) vanishes to order N > 1 along Y if for every m € [0, N — 1], and for
any vector fields X1, ..., X,,,

(VXl e VXmS)\Y = 0.

A function or section is said to vanish to infinite order along Y if it vanishes to
order N along Y for every N > 1. We will denote by Z,,(Y") the set of functions, or
sections (the context will solve this ambiguity) vanishing to infinite order along Y.

Proposition 7.1.1. There exists a section E of LKL — M x M such that:

79



80 CHAPTER 7. ASYMPTOTICS OF THE PROJECTOR Ik

1.VeeM Exzx) =1,

2. for every x,y € M with x # vy, |E(z,y)| <1,

3. for every x,y € M, E(x,y) = E(y,x),

4. forany Z € C*(M,T'"°M), the sections §(Z,0)E and /VV(O,Z)E belong to Too(A).

Such a section is unique up to an element of Zo(A). In this statement, v is the
connection induced by V on LR L, and || - || is the norm induced by h on LX L.

The first property is to be understood as follows: F(x, ) is an element of L,® Ly,
and we identify this bundle with the trivial bundle by means of the metric h. We
begin by proving a slightly weaker version of this proposition.

Proposition 7.1.2. There exists a section E of LKL — M x M satisfying points

1 and 4 of the previous proposition. Such a section is unique up to an element of
Too(A).

Proof. Let s be a local non-vanishing holomorphic section on some open subset
U C M, and let ¢ = —log(h(s, s)), so that h(s,s) = exp(—¢). Then u = exp(¢/2)s
is such that u(x) ® u(x) = hy(u(z),u(x)) = 1 for every = € U. So we look for some

local section F of L X L over U x U of the form
E(z,y) = exp(it(z,y)) u(z) ® u(y)

v;ith Y(z,x) = 0. Since u(x) ® u(y) = exp (%((b(x) + gb(y))) s(x) ® 5(y), we have
that

V(u(z) @ a(y)) = dp ® (u(z) @ a(y)) + exp(0)V(s(z) @ 5(y))
where ¢(x,y) = (¢(x) + ¢(y))/2. Therefore,

VE =id® E +exp(ith + ¢) V(s(z) @ 3(y))

with o (z,y) = ¥(z,y) — L (¢(z) + ¢(y)). Let us introduce some local holomorphic
coordinates 21, ...,2, on U, and let (zf,... 2% 27 ... 2") be the corresponding co-
ordinates on U x U. Since s is holomorphic, V25 = 0 for every Z € C®(M,T"°M),
and the above computation shows that condition 4 in the statement of the Propo-
sition and the fact that ¢ (x,z) = 0 are equivalent to the equations

Pz, 1) = —ig(x), a—ﬁ =0, % _ 0 mod Z(diag(U x U)), 1 <j <n.
0z; 0z}
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We claim that there exists a function ¢, unique modulo Z..(diag(U x U)), satis-

fying these equations. Indeed, these equations force the Taylor expansion of ¢ along
the diagonal to be of the form

z/?(w—irze,w—irzr):—i >

o O

1 (5:5;;2) (w)(24)*(z")?

where we have used standard notation from multivariable calculus. This deals with
the uniqueness part. For the existence part, the Whitney extension theorem (see
e.g. [23, Theorem 2.3.6]) implies that we can construct a function with this given
Taylor expansion along the diagonal. Introducing a partition of unity subordinate
to a finite cover of A by such open subsets U x U and using local uniqueness, we
can construct E globally and prove that it is unique modulo an element of Z,(A).

O

Before showing that E can be chosen to fulfill all the properties required by
Proposition 7.1.1, we state further properties of sections given by Proposition 7.1.2.

Lemma 7.1.3. Let E be as in Proposition 7.1.2, and let us introduce the one-form
ag defined on a neighbourhood of A by VE = —iagp ® E. Then

e ayp vanishes along A,

o there exists a section By of (T*(M X M) @ T*(M x M)) ® C — A such that
for any vector fields X,Y of M x M, Lx(ag(Y)) = Bg(X,Y) along A; more-
over, twice the antisymmetric part of Bg is equal to @ = pjw — piw,

o for everyx € A, for any X, Y € T,(M x M) ® C,

where q is the projection from T,(M x M) ® C onto T>Y(M x M) with kernel
T, A®C.

Proof. We have that for any x € A, T>Y (M x M) ® (T,A®C) = T,(M x M) @ C.
Indeed, let Z € TOY (M x M) NT,A ® C. Since T,A ® C is Lagrangian and Z also
belongs to T,A®C, we have that @(Z, Z) = 0. But since Z belongs to T>' (M x M),

we can write Z = X 4+ 4jX for some X € T, M. Therefore
0=w(X 44X, X —iX) =—-2i0(X,)]X).

Consequently, g(X, X) = &(X,jX) =0, thus X =0 and Z = 0.
Now, for X € T,A®C, ag(X) = 0 because Ejx =1, and for Y € TN (M x M),
ap(Y) = 0 because Vy E = 0. Consequently, ap = 0 along A.
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Bg is well-defined because the value of Lx(ag(Y)) at € A only depends on
the values of X and Y at . Given two vector fields X,Y of M x M, we have

W(X,Y) = dap(X,Y) = Lx(ap(Y)) = Ly(ap(X)) — ap([X,Y])

because the curvature of V is —i@. Evaluating at a point on A and remembering
that ag vanishes along A, we obtain

&(X,Y) = Bp(X,Y) — Bp(Y, X).

Since ap vanishes along A, we have that for x € A, X € ,A® C and Y €
T,(M x M) ® C, Bg(X,Y) = 0; hence

Ve e A, VX,Y € T,(M x M)®C,  Bg(X,Y) = Bg(¢(X),Y).

Therefore, it suffices to prove that Bg(X,Y) = ©(X,Y) whenever X belongs to
T (M x M). But we know that for any X € T%'(M x M) and for any ¥ €
T(M x M)®C, VyVxE =0 on A, which yields

Vo e A, VX € TH (M x M), VY € T,(M x M) ®C, Bp(Y,X) = 0.
We conclude by using that twice the antisymmetric part of By is @. O]

Now, let j denote the complex structure on M x M and let § = @(-,j-) be the
Kahler metric on M x M.

Lemma 7.1.4. We consider E as in Proposition 7.1.2 and introduce the function
p = —2log||E||. Then dyp vanishes along A and the Hessian of p at x € A is the
bilinear symmetric form of T,(M x M) with kernel T,A and whose restriction to
NT.A) is equal to 23.

Proof. Using the compatibility between V and the Hermitian metric on L X L, we
find that d || E||> = —i(ag — ag) ||E|]%, so

dp = i(ap — aF).

Hence dp vanishes along A because ag itself does. Let us compute the Hessian of
pat XY € T,(M x M), which is defined as

Hess, (2)(X,Y) = L4 (Lye)(v)

for any vector fields X, Y such that X (z) = X and Y (z) = Y. By the computation
above, we obtain that
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Since Br(X,Y) = 0 whenever X belongs to T, A, the kernel of this Hessian contains
T, A. Furthermore, since T, A is Lagrangian, its orthogonal complement with respect
to g is jJ(T,A). But if X belongs to j(7,A), we have ¢(X) = X + iJX because
X = X +4jX —ijX, X +ijX belongs to T>' (M x M) and —ijX belongs to T,A®C.
Thus using formula (7.1) we get that

Hess,(X,Y) = —20(GX,Y) =25(X,Y).
for X, Y € (T A). O
We are now ready to complete the proof of Proposition 7.1.1.

Proof of Proposition 7.1.1. Pick any E as in Proposition 7.1.2. The previous lemma
shows that the Hessian of ¢ = —2log || F|| is positive on the orthogonal complement
of TA. Hence, there exists a neighbourhood U of A such that ¢ itself is positive on
U\ A. Thus, modifying E outside U if necessary, we obtain that ||E| < 1 outside
A. Now, observe that if E satisfies conditions 1,2, 4 of Proposition 7.1.1, the section
(z,y) — % (E(z, y) + E(y, :L‘)) satisfies conditions 1,2, 3,4 of this proposition.  [J

Example 7.1.5 (On the plane). Let M = R?> and L = M x C — M as before.
Define £ € C*(M x M,LX L) as

E(z,w) = exp(0) (2) ® B(w)
with ¢(z) = exp (—%) From this expression, it is easy to check that the properties
of FE agree with the ones listed in Proposition 7.1.1; indeed, F(z,w) = F(w, z), £
is holomorphic with respect to z and anti-holomorphic with respect to w, and

1E(z,w)|* = exp (—|z — w]?)

is equal to one when z = w and strictly smaller than one when z # w. The function
¢ is given by (2, w) = |z — w|? and satisfies the properties stated in Lemma 7.1.4.
We can also compute the differential form ag and the bilinear form Bg. Indeed, we
have that

VE = (wdz + zdw — Zdz — wdw) @ E

since Vi = —zdz ® 1. Consequently, we obtain that
ap =i(w — zZ)dz + i(z — w)dw,
and it follows that
Br(X,Y) = (dw(X) — dz(X))dz(Y) + (dz(X) — dw(X))dw(Y).
In particular, we have that Bp(X,Y) — Bg(Y, X) = ©(X,Y) as expected, and
Bp(X,Y)+ Br(Y,X) =2i(dz ® (dw — dz) + dw ® (dz — dw)) (X,Y).



84 CHAPTER 7. ASYMPTOTICS OF THE PROJECTOR Ik

Example 7.1.6 (The unit disc). We consider the unit disc as in Example 4.4.3, and
as in this example we set ¥(z) = /1 — |z]2. We claim that

satisfies the required properties. Indeed, E is holomorphic in z and anti-holomorphic
in w, and E(w, z) = E(z,w). Moreover, we have that

1= =) = |w]*)
|1 — zw|?

1B ) =

9

which is equal to one when z = w and strictly smaller than one otherwise. Indeed,
when 2 # w, we have that 2R(zw) < |2]* + |w|* because |z — w|* > 0.

Exercise 7.1.7. Compute ¢, ar and g for this example, and check that they
satisfy the conclusions of Lemma 7.1.3.

Example 7.1.8 (Complex projective spaces). Remember that on M = CP" en-
dowed with the Fubini-Study symplectic form, the dual bundle O(1) of the tauto-
logical bundle is a prequantum line bundle. Let Uy, ..., U, be the trivialization open
sets and sy, ..., s, be the associated unit sections of O(—1), as defined in Example
4.4.5. For j € [0,n], let ¢; be the local section of L which is dual to s;. Introduce
also the usual holomorphic coordinates on each U;, and define

E(z,w) = (1+ (z,w)) t;(2) @ 1;(w),

where (-, -) stands for the usual Hermitian product on C"; let ||-||c» be the associated
norm. We claim that E satisfies the properties stated in Proposition 7.1.1. It is clear
that F(z,z) = 1, and the norm of E satisfies

114 (z,w) |?

1Bl = ez T 1213

since h(s;,s;)(z) = 1+ ||z||2.. This quantity is strictly smaller than one whenever
z # w because of the Cauchy-Schwarz inequality. Finally, observe that ¢; is holo-
morphic and the function (z,w) — 1+ (z,w) is holomorphic with respect to z and
anti-holomorphic with respect to w. We can also compute the differential form ag.
Since Vt; = —0¢; ®t; where ¢; is the Kéhler potential on U; introduced in Example
2.5.9, we get that

ar =i (% - 00,) - d0,0)
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where f(z,w) =1+ (z,w). This reads

. (Zz_1<zmdwm + Wndzm)  Yom_q Zmdzm, Sor_q Wi dy, )
ap =1 n — - n o n

hence ap indeed vanishes on the diagonal of M x M. Since ag(0z,) and ag(0y,)
vanish, we have that
Bg(X,0z,) =0 = Bgr(X, (0y,)

for every X. By differentiating the expression

(2.)) wy 7
ap(0,,) =
B\ L+ 30 | ZmWy, 1+ S0 1 zm|?

and evaluating at the point (z, z) of the diagonal, we obtain that

1+ n)0. 2pZ
Bg(0.,,0.,) = 0= Bg(0u,,0-,), Br(0s,,0.,)= <( (H L’r@”iuip) : E)

and also

(1 + 2112 ) — )
awp782g - .
B0y, 0) = ( TN

Similar computations yield

A+ 218000y — 207,
Bg(dg,,05,) =0 = Bp(d:,,0s,), B o) = — :
5(0ny: O0) = 0= Bi(05,00.),  Be(Ou, Or) Z( (14 ||2]|2. )2

and finally

(1 + [[2l18n)dep — 2%
(azp,aw)—< (1+2]|2n)? )

Hence, we finally obtain that
(ENEEPY) (14 11201030 = 2p7) (divp(X)dze(Y) — dz(X)dz(Y))
P=

+(1+HZH%H)2£§1 (L4 120120)60p — 207 ) (dzp(X)dine(Y) = duwy(X)ding(Y)),

so the map (X,Y) — Bg(X,Y) — Bg(Y, X) coincides with

(1 I H ” 2 Z ( 1 + H H(cn 5gp prg) (ng A\ dgp — d’wg N d’u_}m) = (Z/,
C" £,p=1

as expected.
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Example 7.1.9 (Two-dimensional symplectic vector space). We come back to Ex-
ample 4.4.8 and keep the same notation. Namely, 7 = a + tb parametrizes the
complex structure on V', and we work with the complex coordinate z = p + 7q. We

consider the section
T

E(z,w) = exp <—b(z — w)2> t(z) @ t(w),

where ¢ was the holomorphic section defined in Equation (4.2). The facts that F
is holomorphic in z and anti-holomorphic in w and that E(w,z) = E(z,w) are
obvious. Moreover, since ||t(p,q)||* = exp(—4nbg?), we have that E(z,z) = 1.
Finally, a straightforward computation shows that

2m
1B w)l? = exp (=12 = wl)

and this quantity is stricly smaller than one when z # w.

7.2 Schwartz kernel of the projector

The following theorem is the most fundamental result in the theory of Berezin-
Toeplitz operators. It describes the Schwartz kernel of the Szegd projector and is
essential to derive most of the crucial properties of these operators.

Theorem 7.2.1 ([11, 14]). The projector 1 has a Schwartz kernel of the form

k n
where the section E is as in Proposition 7.1.1, u(-,-, k) is a sequence of functions in
C>®(M x M,R) having an asymptotic expansion of the form

u(-, -, k) ~ Zk—ﬁw(., y
>0
for the C®-topology, with ug(z,z) = 1, where for any Z € C®(M,T*°M), the
Junctions Lz oyue and Lo zyue vanish to infinite order along the diagonal A of M2,
and Ry = O(k=>°) uniformly in (z,vy).

Here, the meaning of u(-,-, k) ~ Y50k us(-,-) is that for every N > 0, the
function u(-, -, k) — N o k~‘u(-, ) and all its derivatives are uniformly O(k_(N“)).
From this result, we can recover the equivalent of the dimension of H; stated in

Theorem 4.2.4. Indeed, Proposition 6.3.4 yields

dim Hy = Tr(Ily) = /M g (z, z) du(z) = (;)nvol(M) + O(k:”*l).

™



7.2. SCHWARTZ KERNEL OF THE PROJECTOR 87

The rest of this section will be devoted to describing a proof of Theorem 7.2.1.
Before doing so, let us give some examples.

Example 7.2.2 (The plane). Remember that the Hilbert space at level k in the

quantization of the plane is

Hy = {fwk f : € — C holomorphic, /C |f(2)]? exp(—k|z|?) |dz A dZ| < —i—oo}

with Hermitian inner product
(Fohgu*), = [ £)9(2) exp(—h|z[*)ldz A dzl.

One can deduce from the fact that holomorphic functions are analytic that the
monomials (2"9"),>¢ generate Hy. Furthermore, using polar coordinates (p, 6), we
have that

<Zm¢k, z”¢k>k =2 </027r exp(i(m —n)0) d9> (/O+Oo P exp(—kp?) dp)

which is zero whenever m # n, which means that the monomials form an orthogonal
basis of H;. Their norm satisfies

+o0
2"t |2 = dr ( [t ex(—e?) dp) |

A straightforward computation using integration by parts yields that the integral
on the right hand side is equal to n!/(2k"), hence the family

kn+1

gbk,n = Zn¢k7 n Z 0

2mn!

is an orthonormal basis of Hj;. Consequently, the action of the projector II, on
¢ € L*(M, L*) is given by the formula

HkQO = Z <907 ¢k,n>k (bk,n-

n>0

Therefore

1)) = 5 5 ([ oty e (~Eluf) i dwnda) e (~Elor).

|
>0 2mn!

Interchanging the sum and the integral (exercise: justify this!), this yields

Mg)() = [ o (Z (kfj)"> exp (~S(0wl? + 141 ) ta) i o,

n>0
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and finally

_k
2

Mep)2) = [ explert) exp ( (o + |z|2>) o(w) i duw A di

This means that the kernel of the projector is equal to

k k _ k
i (z,w) = o CXP (—2 (|z|2 + |w|* - 22w)> = gEk(z,w),

where F is as in Example 7.1.5. Here u is identically 1 and Ry vanishes.

Example 7.2.3 (The unit disc). On the unit disc, keeping the notation of Example
4.4.3, it is easily seen that the family (2°¢*),cn is an orthogonal basis of Hy, and
that the square of the norm of z‘9* is equal to

1
Ls :47r/ P2 — )2 dp,
0
by using polar coordinates.

Exercise 7.2.4. Prove that
2
k+0—1
(k — 1)( ¢ )

Iy =

for any two integers £ > 1 and ¢ > 0.

By using the orthonormal basis that we obtain in this way, a straightforward
computation shows that

e = (552 (5 (1Y eor) 0w it - (A1) B

=0

where E is as in Example 7.1.6. The last equality comes from the relation
1 X (k+0-1
1—-uwtr = 14
sometimes called negative binomial theorem, which is valid whenever |u| < 1.

Example 7.2.5 (The complex projective line). We recall that on CP! equipped
with the Fubini-Study symplectic form, the line bundle L = O(1) is a prequantum
line bundle, and the Hilbert space H; can be identified with the space Cg[z1, 2o]
of degree k homogeneous polynomials in two complex variables. We should also
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explain what the scalar product on Hj becomes through this isomorphism. Let the
open sets U; and the local sections ¢;, 7 = 0,1, be as in Example 7.1.8. We shall
denote by z the local coordinate on either Uy or U;. To a polynomial P € Cy[z, 29],
we associate the local sections P(1, 2)tk(2) and P(z, 1)tk(2) of Lk. Let us work for
instance in Uy; the Fubini-Study form is expressed as

i dzNdz

P T U 2P

on this open set. The scalar product of P and @) is thus given by

|dz A dZ|

_ AT B (k 4k
(P.Q) = [ PO.20Q02) helth, ) oy
Indeed, observe that Uy is CP* minus a point. Since h(to, to)(z) = (1 + |z[2) 7", we
finally obtain that

P(1,2)Q(1, z)
P}~ [ P00
< 7Q>k C <1+|Z|2>k+2

A basis of Ci[21, 23] is given by the monomials f, = 2{257¢ 0 < ¢ < k. This basis is
in fact orthogonal; indeed, using polar coordinates z = pexp(ifl), we get that

27 oo 2k—(l+m)+1
(fo, fn)y, =2 (/0 exp(i(f — m)@)dQ) (/(: Wdﬂ) ;

which vanishes when ¢ % m.

|dz A dZ|.

Exercise 7.2.6. Prove that for 0 </ <k,

oo 2(k—0)+1 1
[~ -
o (14 p?)k+2 2(k +1)(})

Hint: look for a primitive of the integrand of the form P(p?)/(1 + p*)F! with P
polynomial of degree k — ¢, or use your knowledge of special functions.

The exercise shows that the polynomials

(k+1)(4 )
e = %()zfzg £ 0<I<Ek,
form an orthonormal basis of Cy[z1, z5]. Therefore, we know from Lemma 6.3.2 that
the Schwartz kernel of the projector satisfies
. k P E R F+ 1o (R, ke Tk
(e, w) = 3 en(L, 2)tf (=) @ T w) (o) = 23 (7 ) (i) dh(2) © (),
£=0 £=0




90 CHAPTER 7. ASYMPTOTICS OF THE PROJECTOR Ik

which finally yields

1

(1 + z0)* tE(2) @ th(w) = ;Ek(z, w) (1 + li:)

27 T

where F is as in Example 7.1.8 for n = 1. Here ug = 1 = vy and R, = 0. We can
check that similarly,

_k+1
o

I (2, w') (14 2"w)* 11(") ® t (w)

where 2z’ is the usual holomorphic coordinate on U;.

Exercise 7.2.7. By using the same reasoning, prove that the kernel of the projector
I, for (CP", wpgs), endowed with the dual of the tautological line bundle, is given
by the formula

(2, w) = ((27;'—):]3: E*(z,w) = (;) E*(z,w)

{1 (+5)

p=1

where FE is the section defined in Example 7.1.8. Hint: check that the family

1 (k+n)' ap o1 fo n+1
(2% o ol ae N ap 4. o, =k,

n

forms an orthonormal basis of H;..

Now that we have an explicit expression for the projector Il, let us prove the
claims in Example 5.2.4. We will prove the expression for T (z3) and leave the other
two as an exercise. Remember that working in the trivialization U; corresponds to
sending P(z1,22) to the local section P(z,1)t¥(z). Let ¢ = ft§, f: C — C, be a
local section in L?*(M, L*). Then

k41

)(2) = S5 ([0 20wl o). i)

(e

tdw ANdw '\
EATEDAR

which can be rewritten as

) = S ([ ) idw nao ) )

In particular, since we have that
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then for ¢ = p t¥, p € C[z] of degree at most k, T},(z3)¢ = ¢ t} with

k41 (14 zw)*  [|w]* -1 , _
q(z) = o /«:(1+\w|2)k+2 P p(w) idw A dw.

We want to compare ¢ with the polynomial z%. Since the latter is a polynomial of
degree at most k, we have that

d k+1 1 D)k d
ap _ K+ / (1 + 2w) P (w) idw A duw.
(®

“dz T or Je (U w2 Vaw

Observe that

d(( w >:1—<k+1)yw|2

@ 1+|w|2)k+2 (1+|w|2>k;+3 :

Exercise 7.2.8. Prove the following formula:

(Ltzw)* dp o () (ke D)w -1 , )
/c 0+ [wp) w— - (w) idwNdw = /(C 15 jwp) T [P p(w) idwAdw.

Hint: apply Stokes’ formula in the ball of radius R centered at the origin, and study
what happens in the limit R — +o0.

This implies that z% =Ti(g(-, k))p with

E+1Dz]2=1 Z2—1 2|2
R CES IS SR ETES B T
1+ 2| 1+ 2] 1+ 2|

which yields in terms of 3

(- k) = (mx") w5 + ’; ((ry") s +1).

Therefore we obtain that

d k42

= Ty(x3) + 1d,
and finally
1 d

Exercise 7.2.9. Prove the formulas for T (x;) and Ty (x2).
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Example 7.2.10 (Two-dimensional tori). Let us investigate the case of tori as in
Examples 4.4.8 and 5.2.7. We will exploit Equation (4.6) to construct an orthonor-
mal basis of H}"”. We could proceed in several different ways. For instance we could
compute the scalar product induced on R?* by the isomorphism sending an element
of Hi"" to its coefficients (po, ..., pax_1), and choose a corresponding orthonormal
basis on R?*. We will use a different approach, based on the operators N/or intro-
duced in Example 5.2.7. Firstly, observe that these operators are unitary. Secondly,
if (p, q) are coordinates associated with (e, f) as before, then

1 1
(T2)0x0) (p; @) = exp(—imq)y (p + o CI> ;o (TF)0) (1, @) = exp(imp)y (p, q+ %)

and we deduce from these formulas that
e/Qka/2k = exXp (k) Tf/2k e/2k

Consequently, if Ao is an eigenvalue of 17, and ¢y is a unit eigenvector associ-
ated with A, then 77,4 is an eigenvector for 17, with eigenvalue exp(im/k)Ao.
Therefore, 179y, has 2k distinct eigenvalues

)\0, )\1 = exp(iw/k;))\o, ey >\2k71 = eXp((Qk — 1)7,7('/]{1))\0

and 77 ), sends the eigenspace associated with A, to the one associated with Agq,
for ¢ € Z/2k7Z. Consequently,

Yo, 1 = T optlo, - - -, han—1 = (TF2)* o

forms an orthonormal basis of Hi"”. So we only need to find such a pair (A, 1).
In order to do so, we consider the function gy defined by its coefficients py = 1 and
pn = 0for 1 <n < 2k—1 as in Equation (4.5), and the associated section ¢y = got*.
By Equation (4.7), this gives pomi = exp (2imm (ut + km7 — v)) for m € Z, thus

go(z) = exp(2impz) Y exp(2imm (2kz + pr + kmt — v)).
meZ

One readily checks that

e+ ) -o0(2) ot

Since moreover Te*/%tk =tk we obtain that T2k 90 = exp(imp/k)do. Therefore we
get an orthonormal basis by applying the above construction with 1y = ¢o/||®o]|-
Lemma 7.2.11. As before, let b = ST = 47 /w(e, je) > 0. Then

—e

2
2 __
H¢0Hk \/E
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Proof. Recall that z = p + 7q where (p, q) are coordinates associated with (e, f).
We have that

11
ol = 47T/0 /0 [90(p, @) exp(—4kmbq?) dp dq.
One can check that |go(p, ¢)|> = Xz exp(4ikm(m — n)p) exp(2im,y, »(¢)) with
Omn(q) = (2kq + p)(mT — n7) + k(m?*1 — n*7) + v(n — m) + 2iubg.

By exchanging the integrals and the sum and by applying Fubini’s theorem, and
since the integral of exp(4ikm(m — n)p) on [0,1] is equal to d,,,, we obtain that

Jooll; =4m 3 [ exp (~mb ((m +a) + K(m + 0)?)) da.

meZ

=1

The change of variables v = m + ¢ yields

Y=Y /m“ exp(—dmb{juw -+ ko)) dv= [ exp(—dmblyuw + ko?)) do.

mEZ meZ

By forcing a square to appear in the exponential, we get that

- z_ﬂb/f/_(u)g
/Rexp( Amb(pv + kv®)) dv-exp( ’ > IRexp( Ambk U+2k dv.

We conclude by using the change of variables t = 2v/7wbk(v + (1/2k)) and the fact
that the integral of exp(—t?) over R is equal to /7. O

Let us give explicit expressions for the elements 1, of the orthonormal basis that
we have obtained. We deduce from the previous lemma that

(kb)'/* exp (— ”3Z2>
V2

and by construction ¢, = (77 /2k> Yo = T}y joxtho- On the one hand,

Yo(z) =

exp(2impz) (Z exp(2imm(2kz + pt + kmt — 1/))) t*(2),

meZ

(Tg}/%tk)(z) = exp <i7r€ (22 + ZIi)) t*(2),

while on the other hand

l l
90 (z + > = exp <2i7r,u (z + ;l<;>> > exp(2imm(2kz + pr + kmt — v + 7()).

2k meZ
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Consequently, we obtain the following expression for ¢, 0 < ¢ < 2k — 1:

keb) /4 exp (—mo
Ye(2) = (kb) \/g_w( 2 ) exp(2impz) (Z exp(2i7r«94,m(z))) th(2)

meZ

where the function 0y, is defined as

T

Bum(2) = (£ + 2km) <z +4

> (0 + 2km)? E—mu

We sum up the results so far.

Proposition 7.2.12. The sections vy, 0 < £ < 2k —1, defined in the above equation
form an orthonormal basis of Hi'" satisfying

12500 = exp (W) U,
T5 joxthe = e
for L € Z)2KZ.

By Lemma 6.3.2, the Schwartz kernel of the projector II, satisfies

2k—1

Mk (z, w) = Cy exp(2imu(z—w) (Z > exp(2im(Opm(2) — 94,,1(11))))) t*(2)2t* (w)

{=0 m,n€eZ

with Cy = (27)""Wkbexp ( ”%‘U We write 0pm(2) — Opn(w) = Corormot2kn (2, W)
where

2_
B R O N YT W P
Q’S(z’w)_r<z+2k>+4k ( Qk) TREsTS

We want to show that this kernel is as in Theorem 7.2.1, for the section E introduced
in Example 7.1.9. In order to do so, we will need to evaluate its pointwise norm,

away from the diagonal of T3 and near it. This is the purpose of the next two
lemmas.

Lemma 7.2.13. For every ¢ € (0,1/2], there exists a constant C > 0 such that for
any two complex numbers z = p; + Tq1,w = py + TG satisfying dist(q1 — q2,7Z) > €,
the inequality |1 (z, w)|| < Cexp(—k/C) holds.

Proof. Let z =p; 4+ 7q1 and w = py + 7q2. We have that

\/_b% 1
(2, w)|| < ==Y > exp(—2TKepomm,er2kn (2, w))
(=0 m,ne€Z
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where K, s(z,w) = % + bu(q1 + q2) + S(¢rs(z,w)) + kb(¢? + ¢3). Moreover, for
r,s € 7,

2 2
3 u) b ( u) b
S(Grs(z,w)) = b<q1+2k + + sb G2+ o )+

hence we have that

9 2 2 2
B ) r 7] 2 s
Krs(z,w) =b <k <q1 + Qk) +r <Q1+ 2k:> Tk +k <qﬂ+ Qk) T8 <q2+ 21:) * 4k> ’

which can be written as

(o ) (252
ﬁr,s(Zaw)_kb<<QI+ 2k + g2+ 2% .

Thanks to the inequality (x — y)? < 2(z? + y?), valid for z,y € R, we obtain that
there exists a constant C' > 0 such that

—I—/L) < r—s)2
> L _
Krs(z,w) > Ckb <<q1 + ok + (g —q + o

and it follows by setting ¢ = ¢; — ¢» and replacing m — n by n that

1T (2, w)| < @2’“21 3 exp (—27r0kb (( 0 +m+€;}{“> +(q+n)2)> :

=0 m,n€ez

Therefore ||TTx(z, w)|| < (27)~*v/kbSy 1 Sk» with

2k—1 (+pu 2 )
SM:ZZeXp( <q1+m+%>),Sk,2:Zexp(—C’k(q+n))

(=0 m€eZ ne

where C" = 27bC. We claim that Sy; = O(k3/ 2), this estimate being uniform in
z,w; in order to see this, one can compare the series appearing in S;; with an
integral. We also claim that Sy o < C" exp(—k/C") for some C” > 0 depending only
on ¢. Indeed, since dist(q,Z) > e, we have that

fo0 oo
Sk2 <2 exp (—C'k(n + 5)2) <2 (exp(—C’k:eQ) + ) exp (—C'k,‘n2)> :
n=0 n=1
The claim follows from the fact that

+00 00 !
s vy exp(=C'k)
;exl)( Ckn ) < ;eXp( C'kn) = 1 —exp(—=C'k)’

These two claims allow us to conclude the proof. O]
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Exercise 7.2.14. Prove the claim about Sy in the proof above.

This lemma implies that the kernel of T, is a O(k~>°) outside the diagonal of T3.
The next lemma deals with the near-diagonal behaviour of this kernel. We define a
section R as

Ri(z,w) = Cy exp(2imp(z—w)) z_: > exp(20m(Corokm,eramn (2, w))) | tF(2)@tF (w),

=0 m,n€eZ
m#n

which means that we consider the same formula as the one defining Il except that
the diagonal terms in the double sum have been removed.

Lemma 7.2.15. There exists C > 0 such that, for any z = p1+7q1, w = pa+7q, € C
satisfying |q1 — qa| < 1/2, the inequality || Rx(z, w)|| < Cexp(—k/C) holds.

Proof. Proceeding exactly as in the proof of the previous lemma, we obtain that
| R (z,w)|| < (2m)"*v/kbSk 1Sk 2 for the same Sy, and with

+o0 2
Siam X ew(-Chgn?) <23 ew -k (n+g) )

nez\{0} n=0

where the inequality follows from the fact that |¢| < 1/2. From here we conclude as
in the above proof.

]

This lemma implies that, for (z,w) sufficiently close to the diagonal,

(2, w) = Cy exp(2imp(z — w)) (Z exp (207 o m (2, w))) t*(2) @ t" (w) + O(k:_oo).

MEZ

One readily checks that this reads

(2, w) = @ (

5 > exp (22’7?(771 +p)(z —w) — W)) t*(2)@t* (w)+0 (k:_oo).

MmEZL
We can simplify further thanks to the following lemma.
Lemma 7.2.16. We have that

T exp <2z'7r(m )z — ) — W) -

meZ

5 (s 02,

ne’
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Proof. Let f(t) = exp(2im(z — w)t — k~'xwbt?) and g(t) = f(t + p). Poisson’s sum-
mation formula reads Y,,cz 9(m) = Y,cz§(2mn) where the Fourier transform is

defined as
9(6) = [ exp(=it)g(t)dt

A

With this convention, §(§) = exp(wf)f(f) Moreover, f(t) = exp(2im(z — w)t)h(t)
where h(t) = exp(—k~'wbt?), hence f(€) = h(€ — 2n(z — w)). Since it is standard

that
~ k k&2
h(§) = \/;exp <_47rb> )
we finally obtain that

36 = |/ Eexp (ine — 556~ 2nt: -~ o).

which yields the result. O

Consequently, we finally obtain that for (z,w) close to the diagonal,

(2, w) = 2]; (Z exp <2z’7r,un _ bl = (bZ — w))2>) t*(2) @ t"(w) + O(k"’o).

nez

We need one last lemma, regarding the section

Sk(z,w) = ( > exp <2i7r/m _ kmln = (bZ — w))2>) t*(2) @ t"(w) + O(k’oo).

neZ\{0}

Lemma 7.2.17. There ezists e > 0 and C' > 0 such that ||Sk(z, w)|| < Cexp(—k/C)
for any z = p1 + Tq1, W = P2 + Tq2 satisfying |pr — po| < € and |1 — qa2| < €.

Proof. We clearly have that
km —\)2 2, 2
ISiz o)l < Y exp (TR (0 (= 0)?) — 2bmblad + )
neZ\{0}

and a straightforward computation shows that the quantity in the exponential is
equal to

_kljr ((n —(p2—p1) +algs — @) + 0% (qn — q2)2> ‘

Consequently, we obtain that

ISl < 3 e (<5 (0= - )+ aler - ).

neZ\{0}

and we conclude as in the proof of Lemma 7.2.15. n
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After gathering all the previous lemmas, we finally obtain that

km(z - w)?

k
(=, w) = %exp< b

) t*(2) @ t*(w) + O(k’oo)

for (z,w) sufficiently close to the diagonal. This is consistent with Theorem 7.2.1,
with E as in Example 7.1.9.

Additionally, we can now sketch the proof of the claim in Example 5.2.7. For
A € A, the kernel Ky, of T3, is given by Kj(-,w) = T7 9, (-, w). Writing A =
pae + @ f and z) = py + 7qn, we compute that

(T;/zktk> (2) = exp <2i7rq,\ (z + ;2)) t*(2).

Since moreover

JW( +ZA_)2 e [ _FTE—@) (JZA( _+ZA>)
exp b Z 2/{3 w = exp b exp b z w 4]{5 3

we finally obtain that thanks to the above formula for IIx(-,-) that
Ki(z,w) = i(z,w)G\(z,w, k) + O(k’oo>

near the diagonal, where the function G is defined as

s A\ T s
G,\(z,w,k)—exp(2z7TqA(z+2k) 2 (z w+2k>>.

One readily checks that

™

Galz, 2, k) = exp (2im(p — am) = il = 92(2) + O(k ™),

where we recall that gx(z) = exp(—iw(A,z)/2). We claim that this implies that
T3 o1, = Ti(gr) + O(k™°). One way to prove this is to check that the kernel K}, of
Ty (gy) is of the form

Ki(z,w) = (2, w)Gr(z, w, k) + O(k:_oo)

for some function G5(-, -, k) having an asymptotic expansion in non positive powers
of k£ whose first term coincides with g on the diagonal. This is a general fact which
can be proved by writing

Ki(z,w) :/qu(z,u)g,\(u)Hk(u,w)

and by applying the stationary phase lemma.
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7.3 Idea of proof of the projector asymptotics

In the rest of this section, we will very briefly sketch an idea of derivation of the
asymptotics of the projector. This is a difficult result and writing a complete proof
here would be too ambitious. The approach that we explain here is due to Berman,
Berndtsson and Sjostrand [5]. The main idea is that the Szegd projector is char-
acterized by the fact that it is a reproducing kernel for Hj. This means the fol-
lowing. Let x € M and let u € L, be such that h,(u,u) = 1. Then the formula
&4(y) = I (y, z) - u* defines an element of H;, (it is a coherent vector, see Chapter
9). It satisfies the reproducing property, that is, for any other element ¢ of Hy, we
have the equality

o(x) = (¢, &), ul. (7.2)
Indeed, we have that

(6,60, = /M hi(o(y), &k (y)) mly) = /M@w(y) 1(y).

Moreover, we can write

where the last equality follows from Proposition 6.3.6 since 11, is self-adjoint. Con-
sequently,

0,60 =" [ Melw,) - 6(y) ply) = T (Meg)(@) = @ - o(x)

because ¢ belongs to Hy. This yields equation (7.2).

The proof is divided into two parts, as follows. Firstly, one can construct near
each point of M a local section having the desired asymptotic expansion, and satis-
fying the same reproducing property up to some error; this section yields, in turn,
a local section of L X L. Secondly, one can show that IT, must agree with this local
section up to some error.

Local reproducing kernels. Let U be an open subset of M endowed with a local
non-vanishing holomorphic section s. Let H = h(s,s) and let ¢ = —log H. Since
—iw is the curvature of the Chern connection on L — M, we have that

w = i0d(log H) = idd¢

on U. Any local holomorphic section of L* is of the form fs*, where f is a holomor-
phic function. For any two smooth local functions f, g, we define the quantity

(. 9)os = [, FGexp(=ko) ps
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this defines a scalar product on L?(U, exp(—k¢)u). Observe that it is similar to the
scalar product on L?(M, L*). Let || - ||sx be the associated norm. We define the
space

Hox(U) ={f: U — C holomorphic| || fl|4x < +o0}
of holomorphic functions on U with finite norm.

Let us consider local holomorphic coordinates, so that the coordinate open set
is the unit ball B of C". Fix a smooth function y with compact support contained
in B and equal to one on the ball of radius 1/2. Let K}, : U> — C be a local smooth
function; we associate to K}, the local function

G:U—C, y— Ki(y,x).

Note that this construction is consistent with the one above; indeed, the vector
u = exp(o(x)/2)s(x) is an element of L, with unit norm. Such a function Kj is

called a reproducing kernel modulo O(kz‘N ) for H 4 (U) if for any local holomorphic
function f,

F(@) = O G+ O (K exp(ko()/2)) 1 llos
uniformly near the origin.

Let ¢ be as in the proof of Proposition 7.1.2. Namely, ¢ is holomorphic (respec-
tively anti-holomorphic) in the left variable (respectively in the right variable) up
to a flat function, and satisfies ¥ (z, x) = —ig(z).

Proposition 7.3.1 ([5, Proposition 2.7]). There exist smooth functions (by)e>o such
that for every N > 0, there exists a reproducing kernel K,EN) modulo O(k”_N_l) for
Ho i (U) such that

K,gN) (,y) = (;) exp (@lﬂ;(m, y)) (bo(x, y) + ko (2, y) + .+ Vb (x, y)) .

Roughly speaking, the idea is to investigate the behaviour of well-chosen contour
integrals.

From local to global. Let K ,iN) be as in the above proposition. Then we define
a local section of L X L — U? by the formula

KM (2,y) = KV (2, y) s*(z) @ 3(y).

In particular, we have that

K™(z,y) = (z]jr) (o) (o) + K bilay) + -+ K Voy(a,p).

Therefore, the following result implies Theorem 7.2.1.
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Theorem 7.3.2 ([5, Theorem 3.1]). If x,y € U are close enough, then

—_~—

(2, y) = Ky (2, y) + O(k"N71).

The idea behind the proof of this theorem is to use the reproducing property to
compare these two kernels.
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Chapter 8

Proof of product and commutator
estimates

The aim of this chapter is to prove Theorems 5.2.2 and 5.2.3.

8.1 Corrected Berezin-Toeplitz operators

Given a function f € C*(M,R), we introduce the corrected Berezin-Toeplitz quan-
tization of f:

T = 10 (1 + 9K, ) < H > e (8.1)

where X is the Hamiltonian vector field associated with f. The operator

Puf)=f+ ;gv’;f :C®(M, LF) — (M, L*)

is called the Kostant-Souriau operator associated with f. The Kostant-Souriau
operators satisfy the following nice properties.

Lemma 8.1.1. For any f,g € C>*(M,R),

Pelfg) = PANPU9) — o ({9} + V5, VA, )

Proof. Since Xy, = fX,+ gXy, we have that

_ Lo Low ) _ L ok
P(fg) =1 (g + Z.kvxg) +9 (Z.kvxf) = fP:(g9) +g (“CVXJ :
We can rewrite this as
Lo Lo
Pi(fg9) = Pu(f)Pr(g) — %VXka(g) +9g (ikvxf) :

103
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Let us simplify the second term of the right-hand side; for ¢ € C°°(M, L¥), one has

1
V’)gcf(Pk:(g)Cb) = (Lx,9)¢ + 9V§f¢ + %Vﬁ(fvl)v(ﬂ-

Using that Lx,g = {f, g}, this implies that

Pelfg) = PANP9) — 5 ({79} + V5V, )
[l

This shows that Py(fg) differs from Py(f)Px(g) by a remainder “of order k=", Tt
turns out that for commutators, however, there is an exact (i.e. without remainder)
correspondence principle for Kostant-Souriau operators.

Lemma 8.1.2. For any f,g € C>*°(M,R),

1
[Pe(f), Pr(g)] = %Pk({ﬁg})'
Proof. Since Py(gf) = Pi(fg), the previous lemma yields
1 | — | —
P Pel9) = o (U9) + 595, T, = 9.7} = V5, V%, )
This can be rewritten as
PP, Plo)] = = (20f. 93 + [V, V4,
k\J ), k(g ik 9 il Xp VXl )
Moreover, by definition of the curvature, we have that
V&, Vi, | = carv(VF) (X1, Xg) + Vi, x,00

which yields, since curv(V¥) = —ikw, and since [X;, X,] is the Hamiltonian vector
field associated with {f, g},

V&, VK, = —ik{fgh + V-
Putting all these equalities together, we finally obtain that
P P 1 1 v
P Pelo)] = o ({00} + V)

which was to be proved. O
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The idea behind the proof of Theorems 5.2.2 and 5.2.3 is to derive from the
properties above some estimates for the corrected Berezin-Toeplitz operators and to
take profit of these estimates by comparing the corrected operator T¢(f) with the
usual Berezin-Toeplitz operator Ti(f). In order to do so, we will need the so-called
Tuynman’s lemma, but let us first introduce some notation. Let g = w(-,j-) be
the Kéahler metric on M, let u, be the associated volume form, let grad, be the
associated gradient and let A be the associated Laplacian. We recall that for any

feci M),
Af = divy(grad,f)

where the divergence div,(X) of a vector field X on M is the function defined by
the equality
EX,LLg = dng(X>/Lg.

Proposition 8.1.3 (Tuynman’s lemma). Let X € C*(M,TM @ C). Then
1, V51D, = —Tdiv, (X )1,

where we recall that X0 = (X —ijX)/2. Furthermore, if f € C*(M,R), then

1 1
11, (ikv’;f) My = = (AN,

The following corollary is immediate.

Corollary 8.1.4. For every X € CY(M,TM ® C),

1 _
e (595 ) 1| = o (k)11
In particular, for every f € C*(M,R),
| _ -1
e (9%, ) e = 0 (k) 171

Consequently, for every f € C*(M,R), |T¢(f) = Te())l = Ok fl2-

Proof of Proposition 8.1.5. Set Y = X0, By virtue of Lemma 8.1.5, proving the
first statement amounts to showing that for every ¢ € Hy,

(e (Vi9) . 6), = = (e (div (Y)) , 9), -

Using the facts that II; is self-adjoint and that II,¢ = ¢ whenever ¢ belongs to Hy,
we only need to prove that

Vo € He, (Vi 8) = —(divy(Y)d,0), . (8.2)
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Remember that p, = p the Liouville measure on M. We have that

(divy(V)6,0) = [ divg (V)0 0) o = [ hel(6,6) Ly (83
Now, by integrating the equality

Ly (hi(¢, d)pig) = Ly (hi(d, @) p1g + hi(d, @)Ly fig,

we obtain that

[ hi(6.0) Lymg == [ Ly (hi(6,6)) .

Indeed, by Cartan’s formula, and using the fact that hy(¢, ¢)p, is closed, we have
that Ly (hi(¢, ¢)pg) = d(iy (hi(¢, @)py)), thus its integral on M vanishes. Coming
back to equation (8.3), this yields

(divy(¥)6,0), = = [ Ly (n(0.0) g == [ (m(V46,6) + hal@, Vo))

where the second equality comes from the fact that V* and h;, are compatible. But
Y is a section of 7'M, and ¢ is a holomorphic section of L*, so VE¢ = 0, which
implies that V4 ¢ = V5 ¢ since X =Y + Y, and equation (8.2) is proved.
We now want to apply this to Xy where f belongs to C*(M,R). Observe that
: I, . e
dlvg(X}’O) =5 (divg(Xy) — idivg(j X)) .
We claim that divy(X) = 0; indeed, since p, = p, we have that
divy(Xy)pg = Lx ptg = Lx,pu = 0.
Consequently, divg(X}’O) = —%div,(jXs). Thanks to Lemma 2.6.1, this yields

) 10y L. ot
divy(X;7) = Edlv(gradgf) = §Af,
and the second statement follows. O

Lemma 8.1.5. Let T' be a bounded operator acting on a complex Hilbert space H.
If (TE€,6) =0 for every & € H, then T = 0.

Proof. This is a standard exercise but we still prove it. Let &, € H. Then
0=(T(€+n),&+mn) =(T€&) + (T&n) + (T, &) + (T, n)

which yields

Replacing n by @1, this implies that

and combining these two equalities yields (T'¢,n) = 0. O
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8.2 Unitary evolution of Kostant-Souriau opera-
tors

The goal of this section is to give an alternate, more geometric proof of Lemma
8.1.2, and to use this as an excuse to address the topic of the Schrodinger equation
for these operators. More precisely, given a function f € C*(M,R),we want to look

for solutions of o
th = —ikP(f)V,, teR, (8.4)

where U, is a smooth section of L¥ — M and ¥, € C*(M, L*) is a given initial
condition. We can solve this equation as follows. Given a path v : [0, 7] — M, let

k . 1k k
Ty L) = Ly

be the parallel transport operator in L* with respect to V*. Moreover, let ¢! be the
Hamiltonian flow of f at time ¢.

Proposition 8.2.1. Given Uy € C®(M, L¥), the family of sections ¥, € C*°(M, L*)
defined as
W61 (m)) = exp(— ikt f (1)) ey o (o)

for every m € M, is a solution of (8.4) with initial condition V.

This defines an operator Ug(t) : C®(M,L*) — C(M, L*) sending ¥y to Uy,
which describes the prequantum evolution of the system.

Proof. We fix m € M and ¥, € C>®(M, L*). We claim that it is enough to prove
the proposition for ¢ so small that for every s € [—t,t], the point ¢*(m) belongs to
a trivialization open set V for L. This is because the operator Uy(t) satisfies the
semigroup relation Uy(t; + t2) = Uy (t2)Uk(t1).

Let v be a local non-vanishing section of L over V, and let ¢ = hu”* for some
h € C*(V,R). Moreover, let a be the differential form such that Vs = —ia ® s.
Then we can write Py(f)e = (Py(f)h)u* with

~ , 1
Pe(f)h = (f_ZXfOé)h‘i‘%Eth- (8.5)
Moreover, a standard computation yields

t
0

Tt (£0m)) = exp (i ['(6°)" (i) B(m)u (6! ).
and consequently, if ¥y = hos® on V, then ¥, = h;s* on V where
0
t

hy(m) = exp (zk ( [ (%) tix,a)ds — 1 f(m))> ho(é(m)).
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for every m € M. We only need to compare the time derivative of h; and ﬁk( f)he.
To simplify notation, we will write

0

ot m) = [ (6%)"(ix,0)(m)ds — t£(m).

—t

On the one hand,

OZ? = exp (ik0(t, ) (—(67")"(Lx,ho) + ik ((67)(ix,0) = f) (67 h) -

On the other hand, we have that

0
Loy = exp (iK0(1, ) ((67) (L, ho) + ik((67) o) [ L, (6°) (ix,0))ds )
Using Cartan’s formula, we have that

d((¢°)"(ix,@)) = (¢°)"(d(ix, ) = (") (Lx,a) = (¢°)" (ix,dev).

Since da = i curv(L) = w and (¢°)*(Lx, ) = @, we can write

/_Ot Lx,((0°) (ix,))ds = ix,a— (o) (ix, ),

therefore we finally obtain that

Py(f)hi = exp (ik0(t, -)) ((f — (@) (ix,0)) (67)"ho + ;(W)*(Exfho)) :
which yields the desired formula —ikPy(f)h, = . O

One can check that Uy (t) extends to a unitary operator on L?(M, LF). Tt turns
out that the Kostant-Souriau operators satisfy an exact version of Egorov’s theorem
(Theorem 5.3.2).

Proposition 8.2.2. Let f € C®(M,R) and let Uy(t) be the evolution operator
associated with Py(f). Then

Us ()" Pe(9)Ux(t) = Pr(g © ¢)
for every g € C®(M,R), where ¢' is the Hamiltonian flow of f at time t.

Proof. Again, we can work in a trivialization open set for L, since

Ur(t1412)* Pr(9) Uk (t1+t2) = Ur(ta) " Ur(t1)" Pe(9)Us(t1) Uk (t2),  god" ™ = gog'og™.
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Hence we keep the same notation as in the proof of the previous proposition. If
Up(t)¥y = hyu® on V, the computations performed in this proof yield

0

dhy = exp (K0 ) ((671) (dho) + ik (@ = (6770~ [ (6*)'(ix,da)ds — tdf ) (67" ho) .

—t

We can simplify this further because
(6°)"(ix,da) = (9°)"(ix,w) = —(&°)"(df) = =d((¢")" f) = —df,
hence we obtain that
Lx,he = exp (ik0(t,)) ((67)" (L, ho) + ik (ix, 0 — i, (67 @) (67")"ho) -

Therefore, Equation (8.5) yields

Bulg)he = exp (h0(t,) (67 (Ex ) + (9= ix, ((97)°)) (67 ho).

Consequently, if Uy(t)* Py(g)Ui(t) = qu* on V, we finally obtain that

1 . 5
@=Ly, ho+ (906 —ix, ,0)) ho = Pilg o ¢')ho.

gogt

[]

In order to reprove Lemma 8.1.2 with the help of these two results, it suffices
to write the time derivative of ¢y (t) = Ui (t)* Pu(g)Ur(t) ¥y, for ¥y € C°(M, LF), in
two different ways. On the one hand, by definition of Uy,

doy

5| = kPS), Pe(9)]To.

t=0

On the other hand, since ¢y (t) = Py(g o ¢')¥;, Lemma 5.3.3 implies that

o
dt

- Pk<{f7 g})\:[}(h

t=0

and we conclude by comparing these two equalities that the Kostant-Souriau oper-
ators satisfy the exact correspondence principle.
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8.3 Product estimate
We will need the following result, of which we will give a proof in Section 8.5.

Theorem 8.3.1. There exists C > 0 such that for every f € C*(M),

1P (), T < CRTH -

This estimate is fundamental and allows us to obtain product and commutator
estimates. We now use it to prove Theorem 5.2.2. We compute the difference

1

ikv];(g} {L:-

Ti(f)Ti(g) — Ti(fg) = Wy f[Iy, g]1Lg = I f[ILg, Pr(g)]y, — I f [Hk,
Thanks to Theorem 8.3.1, we know that ||TI;f[ITx, Pe(¢)|IL]| = O&=H] fllollgll2-
The other term can be estimated by writing it as

1 1
v’;(g] I, = TT fT1, (ikv’;(g> 11, — 1L, (@'kvf”Xg) II,..

1
i f |1, —

Both terms can be estimated using Corollary 8.1.4. The first one satisfies

1

anfnk (vﬁg) T,

" = 0(k™) 117 llglz

whereas the second one satisfies
| "
e (95, )

This proves the first estimate of the theorem. To derive the second one, observe that
Ty(fg) is self-adjoint and that the adjoint of Ty (f)Tk(g) is Tx(9)Tx(f), and use the
fact that the operator norm of the adjoint of an operator is the same as the norm
of the operator.

= O(K )£ Xl = O (k) (£ lollgllz + 1/l llgl) -

8.4 Commutator estimate
We first prove commutator estimates for corrected Berezin-Toeplitz operators.

Proposition 8.4.1. For any f,g € C*(M,R),

iz, Tet9) - 705,90 = O 15 el
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Proof. We will compare [T¢(f), T5(g)] with [Pi(f), P:(g)]. In order to do so, we
compute:

I [, Po(f)] [k, Pr(g)] e = B (f) Mg, Pi(g) 1L — I B (f )Lk [Me, Pr(g) 1y
Expanding the first term on the right hand side of this equality, we get
I B (f) [k, Pi(g)| e = T Py (f )11 B (9)I1 — T Pe(f) Pe(9) i
and the second term satisfies
I, P (f )i [T, Pr(g)]He = IL B (f ) i P (9) i — I Py (f )11 B (9) 11, = 0.

Therefore, we have that

10 [k, P ()], Pi(9) Mk = T (f) T (9) — WPk (f) P (9) .
Thanks to Theorem 8.3.1, the left hand side is a O(k=2)|| f|l2]lgl2, thus

[T5(£), T (9)] = e [Pi(f), Pe(9)] T + OK2)|[ fll2llg 2

which yields, using Lemma 8.1.2,

L), T(0)] = ZT7.0) + O gl

We now prove Theorem 5.2.3. Thanks to Proposition 8.1.3, we have that

Te(f) = TE() + 5 THA)

and similarly for g. Consequently, [Tx(f), Tk(9)] = [T5(f), T (g)] + Ry, with

Ri = o [T, TE@)] + 5 [TE(), Te(B0)] + 35 [T(AS), Ti(Ag)]

Let us estimate Ry. Firstly, we have that

T4, TE(0)) = [TH(A ). Tilg)) — 5-[T(AS). Ti(Ag)].

Applying Theorem 5.2.2 to Af € C*(M,R) and g € C3(M,R), we obtain that

([TW(AF), Tilg)] = O(K) (I£lallgllz + 1 fllsllgll) = O (k)11 £ glls-
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Moreover, Lemma 5.1.2 implies that

[T(A), Ti(Ag)l = O [|Afllol[Agllo = OM)I[ fll21lgll2- (8.6)

It follows from these estimates that
1

AN, TE0)] = O(K2)1f.glhs,

A similar reasoning leads to
| L
S TE(. Ti(Ag)l = O (k) I gl

These two results combined with equation (8.6) imply that Ry = O(k™2)||f, gll1.3-
Now, thanks to the previous proposition, we have that

TE). Ti(0)] = T 01) + O (k) gl

Therefore,
[T(f), Ti(9)] = ;quf, g} + QZ;QTk(A{f’ g +O0(k2)I1f, glh,s.

and we conclude thanks to the estimate

Te(A{S 93) = OMA{S, g}Hlo = O f: 915,

which follows from Lemma 5.1.2.

8.5 Fundamental estimates

This section, which follows the same lines as in the article [19], is devoted to the proof
of Theorem 8.3.1; this strongly relies on the asymptotic expansion of the Schwartz
kernel of the projector given by Theorem 7.2.1. Let E € C*(M x M, L* K L*) be
as in this theorem, that is, satisfying the properties stated in Proposition 7.1.1. Let
U C M? be then open set where E does not vanish; observe that U contains the
diagonal A of M?. Define as before a function ¢ € C*°(U) and a differential form
ap € Q'(U) ® C by the formulas

¢ =—2log||E|, VE=—iap®E,

where we recall that V is the connection induced by V on L K L. The function ¢
vanishes along A and is positive outside A. We derived the following properties of
¢ and ag in Lemmas 7.1.3 and 7.1.4:
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1. ag vanishes along A,
2.  vanishes to second order along A,

3. for every & € M, the kernel of the Hessian of ¢ at (z,x) is equal to T, A,
and this Hessian is positive definite on the complement of T{, ,)A.

In what follows, we will need the following additional property.

Lemma 8.5.1. Let f € C*(M,R), and let g € C*(U,R) be defined by the formula
g(z,y) = f(x) — f(y). Then the function

u=g—ag(Xg, Xy)
vanishes to second order along A.

Proof. Tt is clear that u vanishes along A since g and ag do. Now, let Y and Z be
two vector fields on M; we compute for (y,z) € U

(L)Y, 2) = (Ly ) (y) = (L2]) (2) = Lovz) (as(Xy, Xp)) (4, 2).

As before, set @ = piw—piw with pi, p» the natural projections M? — M. Therefore
the first two terms in the above equation satisfy

(Ly ) () = (Lz]) (2) = 0((Y, 2), (Xy, Xp)) (2, y).

Moreover, since dag = icurv(V) = @, the last term in the previous equation can be
written as

Liv.z) (ap(Xy, X)) = 0((Y, 2), (Xy, Xp))+ap(((Y, 2), (X5, X)) )+Lx, xp) (ap(Y, Z)) .
Thus we finally obtain that

Lz = ap(((Xy, Xy), (Y, 2)]) = Lix,x,) (aB(Y, 2)).

The first term vanishes along A because ap does. The second term vanishes along
A because ap vanishes along A and (X, Xy) is tangent to A. O

These properties yield the following result. For u € C°(M?2 R), let Q. (u) be the

operator acting on C°(M, L*) with Schwartz kernel F},(u) = (%)n E*u.

Lemma 8.5.2. Taking a smaller U still containing A if necessary, for every compact
subset K C U and for every p € N, there exists a constant Ck, > 0 such that for
any u € CO(M?,R) with support contained in K, and for every k > 1,

1Qk()]| < Crplulx k™"

where |u|k, is the supremum of |ulp™/% on K \ A, which may be infinite.
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Proof. Assume first that K C V?, where V C M is a trivialization open set for
M, with coordinates 1, ..., xs,, such that V? C U. So we may identify V with a
subset of R?" and assume that we are working in a subset of R*". Since ¢ vanishes
to second order along A, Taylor’s formula with integral remainder yields

plo.y) = 3ol ) ) + [ (1 () + 1 )0, 0)

with v = (0,y — x). The last term is a O(|z — y|*) uniformly on K. Since d*¢(z, z)
is positive definite on the orthogonal of {z = y} C R*, we have that

Aumin (@) [[V]]* < (2, 2) (v,0) < Anax() [J0]|*

whenever y # x, where Ay () (respectively Ajax(x)) is the smallest (respectively
largest) positive eigenvalue of d*¢(z, z). Therefore, there exists C' > 0 such that

|l — ylI?

5 <¢ley) <Ollv - ylI? (8.7)

for every (x,y) € K. Now, let u € C°(M? R) be compactly supported in K. The
previous estimate shows that for every (z,y) € K, x # v,

u(z,y)| o fulz,y)|
o(z,y)p/'2 = CP2||z —y|P’

thus |u(z,y)| < CP2|ulk ||z — y||P on V2. If |u|k, is infinite, the result is obvious.
If not, since || F|| = exp(—¢/2), we have that

2% klle — ol
< | = p/2 / _ —ullP de.
[ 1@ do < (o) Pluley Lo (<2200 1oy ac

The integral on V is smaller that the integral on R?" of the same integrand. The

change of variable v = /& (z — y) yields
e Kl
< —-p/2 / _ P
[, Il do < Skl [ exo (<155 o an

which implies that [ | Fi(u)(z,y)|| de < Ck k7"?|u|k,. A similar computation
leads to [y || Fu(uw)(z,y)| dy < C% k/*|u|k, for some C% , > 0. It follows from
the Schur test that

1Qu(w)l < Creph™Jul i

for some Cgp, > 0.
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Let us now turn to the general case. Taking a smaller U, still containing the
diagonal, if necessary, let (V;)i<i<a be a finite family of trivialization sets of M
such that K c U, V2 C U. Choose a partition of unity 7, (1;)1<i<q4 subordinate

to the open cover M? C (M?\ K) U( ¢ Vf) Let u € C°(M? R) be compactly
supported in K; then

d
U = Zniua Qr(u) = Z Qr(niu).
i=1 '
It follows from the first part of the proof that

Q)| < Crepik ™ (niulicp < Crcpik™ |l

for some constants C'x,; > 0. We conclude by applying the triangle inequality. [

Proposition 8.5.3. For every p € N, for every u € C*(M? R) supported in U and
vanishing to order p along A, there exists C,, > 0 such that for every f € C*(M,R),

1Qu(w)ll < Cuk™2, I[Be(f), Qu(w)]l| < Cuk ™21 f]lo,

where Py, (f) = f—l—ivl)“(f : C®(M, L) — C>*(M, L*) is the Kostant-Souriau operator
associated with f.

Before proving this result, let us state several lemmas.

Lemma 8.5.4. Let u € C®(M? R) be compactly supported in U, and let f €
C?(M,R). Let g € C}(M? R) be defined by the formula g(z,y) = f(x) — f(y)
as before, and define the vector field Yy = (X;, Xy) on M?. Then

[PL(F), Qu(u)] = Qul(0 — ap(Y7))u) + = Qu(Lv,m).
Proof. We start by writing
[PL(F), Qu()] = FQu(u) — Qelw)f + = (T, 0 Qulu) — Qulw) 0 V).

The Schwartz kernel of fQ(u)—Qy(u) f is equal to f(z)Fy(u)(z, y)—Fr(u)(z,y) f(y).
By Lemma 6.4.3, the Schwartz kernel of V’j(f o Qk(u) is equal to (V’“ 1d) Fi(u).

By Lemma 6.4.4, the Schwartz kernel of Q(u) oV’}}f is equal to — (id X V’}}f) Fi(u)
since div(Xy) = 0. Therefore, the Schwartz kernel of [Py (f), Qx(u)] is given by

o .
(f Sid — id ) f + Z.,{V‘Exf,xf)) Fi(uw).
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Remembering the definition of ag, and since u has support in U, we have that
v(Xf X;) J(EFfu) = UV]f/fEk + (Ly,u)E" = (—ikOéE(Yf)u + Eyfu) E*.

Consequently, the Schwartz kernel of [Py(f), Qr(u)] is equal to

Fillg — an(¥y))u) + - Fe(Ly,u);

in other words, [Py(f), Qr(uw)] = Qr((g — ar(Yy))u) + iQk(‘Cqu)' -

In order to prove Proposition 8.5.3, we will investigate the two terms in the
right-hand side of the equality obtained in this lemma. The following result wil help
us dealing with the first term.

Lemma 8.5.5. Let K be a compact subset of U. Then there exists C > 0 such that
for every f € C*(M,R),
lg—ap(Yy)| < Cllfll2y

on K, with g(z,y) = f(z) — f(y) and Yy = (X, Xy) as above.

Proof. Assume first that K C V2 where V is a trivialization open set for M such
that V2 C U. Introduce some coordinates xi,...,Zs, on V. By Taylor’s formula
and equation (8.7), there exist some functions g; € C1(V,R), 1 <4 < 2n, such that
forz,y e V

Zgz Yi — T4 +O( )||f||2’ (8'8)

and the O(yp) is uniform on K. Now, write
Z (7, y)dzy + vi(x, y)dy;)

for some functions uj, v; € C*(V?). Since ap vanishes along A, so does p1;. There-
fore, by Taylor’s formula, there exist some functions p;; € C*°(V), 1 < i < 2n, such
that

) =3 () — ) + O,

Similarly, there exist some functions v;; € C*(V'), 1 < i < 2n, such that

z,y) = iuﬂ@)(yi —2)+0(g).
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Consequently, we have that

ap(r,y) = i (i pii(y)dz; + Vji(y)dyj> (yi — ;) + O(p) i(d% + dy;).

i=1 \j=1 j=1
Now, by Taylor’s formula, dz;(X)(z) = dx;(Xf)(y) + O(gol/2)||f||2. Thus, the
previous formula implies that

2n

ap(Ye)(2,y) = _ri(y)(yi — z:) + O(2)l| f12 (8.9)

i=1

for some smooth functions r;, and the O(y) is uniform on K. Since, by Lemma
8.5.1, the function g — ag(Yy) vanishes to second order along A, it follows from
equations (8.8) and (8.9) that g; — k; = 0 for every i € [1,2n]. Therefore

g9 —ap(Yy) = 0@@)|fl:

uniformly on K.
To handle the general case, we use the same partition of unity argument that we
have used at the end of the proof of Lemma 8.5.2. n

Finally, the following lemma will take care of the second term in the equality
displayed in Lemma 8.5.4.

Lemma 8.5.6. Let u € C®°(M? R) be a function vanishing to order p along A.
Then there exists C' > 0 such that for any vector field X of M? of class C* and
tangent to A, we have that

[Lxul < Ol X 1?2

Proof. We start by proving the lemma for vector fields which are compactly sup-
ported in V2, where V is a trivialization open set of M, endowed with coordinates
X1, ...,To,. Write

2 [ Ou ou n (o ou  Ou

i=1 i=1

Since u vanishes to order p along A and the vector field d,, + 0,, is tangent to
A, the function g—; + gTZ vanishes to order p along A, so by Taylor’s formula, it

is a O(gpp/ 2). Moreover, there exists C; > 0 such that for any C! vector field X

compactly supported in V2, |dz;(X)| < C1[| X ||o. Furthermore, g—; vanishes to order
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p — 1 along A, so it is a O(gp(pfl)ﬁ). We claim that there exists Cy > 0 such that
for any C! vector field X compactly supported in V2 and tangent to A,

[(dyi — dz:)(X)] < Col| X1,

Indeed, take any such vector field X and write it as

2n

X = Zal(:ﬁ,y)@xl + /61($7y)8yb’

=1

where a;(z, ) = 5;(x, z) since X is tangent to A. Now

(A = dz)(X) = G y) = s, p) = [ d(B: = a0) (1= )(w2) + 1o

with v = (0,y — ), by Taylor’s formula. This last term is smaller than a constant
not depending on X times || X||;¢'/2.

Combining all of the above estimates, we obtain the result for vector fields which
are compactly supported in V2. We prove the general case by using a partition of
unity argument. O

Let us now show how to apply all of the above.

Proof of Proposition 8.5.3. Let K denote the support of u. Since u vanishes to order
p along the diagonal, it follows from Taylor’s formula, equation (8.7) and a partition
of unity argument that |u|x, is finite. Consequently, the first estimate follows from
Lemma 8.5.2.

To prove the second estimate, remember that it follows from Lemma 8.5.4 that

[PL(F), @u(u)] = Qel(o — 0m(Y7))u) + = Qu(Lv, ).

It follows from Lemma 8.5.5 that |g — ag(Y})| < C|| f|l2¢ for some constant C' > 0
not depending on f. Moreover, since u vanishes to order p along A, u is a O((pp/ 2).

Thus, (9 — ap(Y;))u = O(go(p+2)/2), and by Lemma 8.5.2,

1Qk((g — ap(Yp))u)| = O (k71| fll2-

Similarly, it follows from Lemma 8.5.6 that |Ly,u| < C'||f|2¢?/? for some C" > 0
not depending on f. Therefore, Lemma 8.5.2 yields

1Qk(Ly,w)| = Ok )| fll2,

and the result follows. O]
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We are now ready to prove Theorem 8.3.1. Write as in Theorem 7.2.1

k

Hk(xay) = (277‘) Ek(x,y)u(x,y7k:) + Rk(l‘ay)a

and let u ~ 7, k~*u, be the asymptotic expansion of u(-, -, k). Choose a compactly
supported function y € C>°(M? R) such that supp(x) C U and equal to one near
A. Fixing m € N, we write

M= 3 KO (xue) + 3"k Qu((1 = )ue) + O <u S ww> R
=0 =0

=0

where Ry, is the operator with Schwartz kernel Ry(+,-). We only need to estimate the
commutator of each of these terms with Py (f). Since yu, is compactly supported
in U, it follows from Proposition 8.5.3 that [Py(f), Qx(xue)] = Ok~ f|l2, so

Pk<f>,§w@k<xue>] — o(k )1l

For the second term, we use the following fact. Let V' be a neighbourhood of A, and
let 7 = sup 2\ | E|| < 1; then for any v € C°(M?) vanishing in V', we have that

1F ()|l < CE"r* vl
for some C' > 0 not depending on v. Therefore this Schwartz kernel is a O(k=>°)||v||o

uniformly on M?, and by Proposition 6.4.1, Qz(v) = O(k=°)||v|l¢. Since 1 — x
vanishes in a neighbourhood of A, combining this fact with the equality

[P (), Qu((1 = X)ue)] = Qi (1 = x)(9 — ap(Yy))ue) + Zi{‘,Qk(ﬁyf((l — X)),

coming from Lemma 8.5.4, we obtain that
[Pk<f>, SR Qu((1 - x)ua] =~ o(k)IIf
=0

It only remains to estimate the commutator [Py(f), Sk] where
Sk = Qk’ (U — Zk’_é’lw> + Rk
=0

The Schwartz kernel S (-, -) of Sk is a O(k”_(m+1)). We conclude the proof by taking
m large enough and using the following lemma.
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Lemma 8.5.7. There exists C > 0 such that for every f € C*(M,R),
1[P(f), Slll < CR"= D] o

Proof. By computing V*(Fj(u — X% k~us)), we obtain that for every vector field
X on M? of class C°, there exists Cx > 0 such that ||[VA S| < Cxk" ™. This
implies that there exists C' > 0 such that for every vector field X on M 2 of class C°,
the inequality ||[V5%Sk| < Ck™ ™| X||o holds. Indeed, let (1;)1<;<, be a partition of
unity subordinate to an open cover (U;)1<i<, of M? by trivialization open sets for
TM?, with a local basis (Yj;)1<j<an, and write

q

q 4n
X =) nX=3 > \NYi,
=1

i=1j=1

where )\;; is a continuous function, which satisfies || A;;|jo < C’|| X]|o for some C" > 0.
Consequently,

q 4n

PIDIP A

i=1j=1

IV5 Skl =

< C'(max Cy,,I|X o
Z7J

To finish the proof, we obtain as in the proof of Lemma 8.5.4 that the Schwartz
kernel of [Py (f), Sk] is equal to

. 1=
<f Kid — id X f + z‘k:v?Xf’Xf)> S

By the above estimate, Y Skl < CE"™|| f||1, and the result follows. O
(X5,X75)



Chapter 9

Coherent states and norm
correspondence

Finally, we prove the lower bound for the operator norm of a Berezin-Toeplitz op-
erator. In order to do so, we use the so-called coherent states.

9.1 Coherent vectors

Let P C L be the set of elements u € L such that ||u|| = 1, and denote by 7 : P — M
the natural projection.

Lemma 9.1.1. Fix uw € P. For every k > 1, there exists a unique vector & in Hy,
such that

Vo e H,  d(m(u) = (6,0, u".
Definition 9.1.2. The vector ' € Hy, is called the coherent vector at w.

Proof of Lemma 9.1.1. Consider the linear form F} defined on H; by

Vo € Hy,  Fi(d) = hi (6(m(w)), u).

Since Hy, is finite dimensional, F}, is continuous, so the Riesz representation theorem
implies that there exists a unique vector & € Hy, such that Fy(¢) = (¢, &), for all ¢

in Hj. But since u* is an orthonormal basis of Lfr(u), we have ¢(m(u)) = Fp(p)u*. O

Lemma 9.1.3. Let T be an operator C°(M, L¥) — C>®(M, L*) with kernel Ty (-, )
and such that 11, T, 11, = T},. Then

1. VzeM, (T (z)="Tx,m(u))- u*,
2. (&, &)y = v - Ti(m(v), w(u)) - wF,

121
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where we recall that the dot stands for contraction with respect to hy.

Proof. Let (¢;)1<i<a, be an orthonormal basis of Hj. By proposition 6.3.3, we can
write the Schwartz kernel of the restriction of T} to Hj as

di;
ij=1
Therefore, for x € M we have that
d
Tz, m(w) - u* = " (Tudi, &), i (Uk»gbi(ﬂ-(u))) ¢;(x),
ij=1

which we can rewrite, because hy, (uk, gbl(w(u))) = (&, di)y, B8

Tio(z,m(u)) - uf = Zk <Tk (Zk: (&, D) ¢i) 7¢j> ¢;(x),
which yields that
Ty (2, m(u)) - ub = Z (Tt 630 65(2) = (Tl ().

This corresponds to the first claim. For the second claim, we use the first one to
write for z in M that hy((Th&4)(x), E8(x)) = hp(Ti(z, 7(u)) - uF, € (x)). Integrating
this equality leads to

(Tu&i's €)ay, = (Th(, (W), €5y,

but the right-hand side of this equation is equal to hy (Tk(ﬂ'(?]), 7(u)) - uk, f};(x)) by
definition of £¢¥, and this term is in turn equal to v* - Tj.(7(v), 7(u)) - u*. O

By taking T} = Il in this proposition, we immediately get the following prop-
erties.

Corollary 9.1.4. For every u,v € P,
1. for every x in M, &4(z) = I (x, w(u)) - uk,
2. (& Ek)y = 08 - T(m(v), m(w)) - ¥, so Ti(m(v), w(u)) = (&, &)y v* @ u”,

3. 11€¢NR = e (), m(u)).
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9.2 Operator norm of a Berezin-Toeplitz operator

In this section, we prove Theorem 5.2.1. By the above corollary and Theorem 7.2.1,
we have that for every u € P,
k n
w2 v
Itz ~ (5 )

when £ goes to infinity. In particular, there exists ky > 1 such that &' # 0 whenever
k > ko. For k > ko, we set & = &/||€¢|lx- Observe also that this means that
the class of £} in the projective space P(Hy) is well-defined. In fact, this class only
depends on 7(u) (because for A € C, & = A\¥€Y) and is called the coherent state at
r=m(u).

Proposition 9.2.1. There exists C > 0 such that for every x € M, for every u € P
such that x = w(u) and for every f € C*(M,R) having x as a critical point,

1T ())& ™ — F(@)& "™, < CEH £l
for every k > ky.

Proof. Let (U;)1<i<m be an open cover of M by trivialization sets, and let (V;)1<i<m
be a refinement of (U;)1<i<, such that V; C U; is compact. Then it is enough to
show that for every i € [1,m], there exists C; > 0 such that for every x € V;, for
every u € P such that x = w(u) and for every f € C*(M,R) having z as a critical
point,

IT(F)EE™ = F)er™], < k1]

for every k > ky. Indeed it will then suffice to take C' = maxj<i<,, C;. So let us
choose ¢ € [1,d] and let us take z € V;, and set A = f(x). Then

II(f—A)ﬁz’normHi:/ViIf( ARG ()P ly +/ s )= APIE ™ W) n(y)-

We will estimate both integrals. Let us introduce some coordinates 1, . .., y2, on U;
such that 2 = (0,...,0), and set q(y) = 33", y7. By Taylor’s formula, there exists
a constant a > 0, not depending on f, such that |f(y) — A| < af| f]|2q(y) for every
y € V;. Therefore,

/V, [F ) = APIE™ ™ WP (y) < o113 / €™ ) a(y)* (y).
In order to estimate this integral, we write:

1€ @I I (y, ) - u*|
165 1% [E59 P

16 (W)l =
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We claim that || (y, z) - u*|| = |1 (y, z)||. This is easily proved by fixing y, taking
v € L, with unit norm, and writing II;(y,x) in the orthonormal basis v* @ a* of

L’;@fﬁ. But it follows from equation (8.7) that there exists 5 > 0 such that for every
y € Vi, |E(y,x)|| < exp(—pBq(y)). Therefore, using Theorem 7.2.1 and remembering

that ||&¢||7 ~ (%)n, we obtain that there exists v > 0 independent of f, x and u
such that

VyeVi, &M WP < Ak exp(—28kq(y)).
Now, on U; we can write u = g dy; A ... A dys, for some smooth function g. So, if
§ = maxyr |g|, we have that

[ ™ W) Pa)ty) < 30k [ exp(-28ka(w)a(w)? d.
By performing the change of variable w = vk y, we finally obtain that

[ e w)lPaw)uty) < ek~

for some € > 0, not depending on f,z,u. Consequently,

1) = ARI6 ™ W)lPa(y) < o%ellf 13472,

It remains to estimate the integral on M \ V;. Since for every y € M, we have that
lf(y) — Al < 2] fllo < 2| f]l2, we immediately obtain that

/M\Z\ () = APIE™ ™ W) *u(y) §4Hf|!§/ & WOIPay)-

We claim that this last integral is a O(k~2). This comes again from the fact that
16 (W) = 1Tk (y, )1/ 116Nk, since there exists r < 1 such that ||E(y,x)|| < r
whenever y belongs to M \ V;. So we finally get that

IGF =M™ ™ e < Cill £ll2k~

for some C; > 0 independent of f,x,u. Since the operator norm of II, is smaller
than one, this yields

I(T(f) = 0™ Ik = IT(f = N&E™ Ik < Cill fll2A ™
which concludes the proof. O]

To prove Theorem 5.2.1, we assume that the maximum of |f| is f(zo) for some
g € M (otherwise, we work with —f), and we apply the previous result to xy and
u € L,,. This gives

1T ()&™ ™ = NI I < CEH L2
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This implies that the distance between ||f|| and the spectrum of Tj(f) satisfies
dist(|| f1l, Sp(Tk(f))) < Ck7||f|l2. Indeed, it is an easy consequence of the spectral
theorem that if A is a bounded self-adjoint operator acting on a Hilbert space, then

1

1A=V < Gesp@y

for every A ¢ Sp(A). So there exists A € Sp(Tx(f)) such that A > ||f]| — CE7Y| f]]2.

Therefore, we have that

T = ma > — k™1 )
1T = _max il 2 171 =

9.3 Positive operator-valued measures

Let us show how the coherent states that we have introduced can be used to describe
Berezin-Toeplitz operators in terms of integrals against a positive operator-valued
measure. Firstly, let us recall what this term means. Let H be a complex Hilbert
space, and let S(H) be the space of bounded self-adjoint operators on H. Let X be
a set endowed with a o-algebra C.

Definition 9.3.1. A positive operator-valued measure on X with values in S(H) is
a map G : C — S(H) which satisfies the following properties:

1. for every A € C, G(A) is a positive operator, i.e. (A&, &) > 0 for every & € H,
2. G(0) =0and G(X) =1d,

3. Gis o-additive: for any sequence (A;);>1 of disjoint elements of C, G(U;j>14;) =
ZjZI G(Aj)-

Such a positive operator-valued measure defines a probability measure pe on X
for every & € H, by the formula pe(A) = (G(A)E, &) for A € C. Given a bounded
measurable function f : X — R, we define an operator [y fdG € S(H) characterized
by the following property:

veen,  (([ 1a6)ec)= [ s

Coming back to the context of Berezin-Toeplitz operators, we consider X = M
with the o-algebra generated by its Borel sets, and H = H, = HO(M,LF). As
before, for x € M and v € L, with unit norm, let & be the coherent vector at wu.
Remember that there exists kg > 1 such that £ # 0 whenever k > ky. We claim
that the function

pr: M =R, we IR
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is well-defined, i.e. only depends on z. Indeed, if v is another unit vector in L,,
then v = \u for some A € S!. But then we have that £ = A\¢¥, so ||€2]17 = ||€2]3.
For k > kg, pi is a positive function. Furthermore, the projection

P]f s Hy — Hy, o — e
€& 1%

&k

is also only dependent on x.

Lemma 9.3.2. Fork > ko, the map Gy, such that dGy, = pi(x) PF 1 defines a positive
operator-valued measure on M.

Proof. The positivity and o-additivity are immediate from the form of Gj. Let us
prove the fact that G(M) = Id. Let ¢ € Hy and y € M; we have that

(@ D6) W) = [ o) (PO y)nlx).
Remember that £(y) = Il (y, z) - u*. Thus,
pr(@) (PEO)(y) = (6,64 €4 (y) = Ty, 7) - ({6, 1) u¥) .
But &} satisfies the reproducing property (7.2), hence (¢, &), uf = ¢(z). So finally

(Ge(M)¢)(y) = /M i (y, ) - o(x)u(z) = (M) (y) = ¢(y)-

Proposition 9.3.3. Let k > ky. For any f € C*°(M,R), Ti(f) = [ fdGy.
Proof. Let Sk(f) = [y fdGk, and let ¢ € H;. Then by definition,

(SN 8) = [ f@) (PEo, 0 prla)n(a)

We claim that for every x € M, (PFo, ¢), pr(x) = hi(o(z), ¢(x)). Indeed, on the
one hand, since &} satisfies the reproducing property (7.2), we have that ¢(z) =
(¢, &), uF. Therefore

hi(6(x), 6(x)) = [ (¢, &) Pha(u®,u®) = [ (0,6, .
But on the other hand, we have that

S T AT

which proves the claim. Consequently,

(Su(N3, ), = | m(F@)o(x). da))u(x) = (T £)o. 0)y

which proves the result. O
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9.4 Projective embeddings

The coherent states construction gives a way to embed M into a complex projective
space. Remember that given a unit vector u € L, the coherent state & € Hy at u
is the holomorphic section of L* — M given by

&ily) = Wi(y, w(w)) - u*,

and that there exists kg > 1 such that for every k > ky and for every unit vector
u € L, & # 0. Hence for k > ky (from now on, we will assume that it is the case),
the class [}] of & in P(Hy) is well-defined, and we saw that this class only depends
on m(u) where 7 is the projection from L to M. Thus we obtain a map

Deon : M — P(Hy), re [, wenH(a).

Since II(+, ) is anti-holomorphic on the right variable, this map is anti-holomorphic.
To get a holomorphic map, we consider

Dpor : M — P(H), x> [(E0,), uen(z).
By Lemma 9.1.1, we have the alternative expression ®pq(z) = [a,] for any u €
7~ (x) with norm one, where v, (¢) = ¢(x) - u* for every ¢ € Hy.

In order to identify P(H;) with CP%/ let us choose an orthonormal basis (¢, )o<j<d,
of Hy, dp = dim(H) — 1, and let us write for any unit vector u € L

dy
& =D N(u)p;
=0

for some complex numbers A\g(u), . .., Ag, (u). Then, using homogeneous coordinates,

Deon() = [Ao(w) .o Ag, (w)],  Pra(z) = [/\g(u) Dot A, (u)} .
The latter is obtained by decomposing (-, £}) in the dual basis (¢} )o<j<d,-
Proposition 9.4.1. The maps P, and @, are embeddings for k large enough.

Proof. Since L* is very ample for k large enough because L is positive, this follows
from the fact that @, is the embedding considered in Kodaira’s embedding theorem
[24, Section 5.3|. Indeed, for j € [0, dx] and = € M, we have that for any unit vector
u € (z):

i () = (), &) u* = Ny (w)u.
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As before, let p, : M — R be the function sending x € M to |3 for any
u € L, with norm one. This function is often called Rawnsley’s function; however,
the reader may encounter this terminology for a slightly different function, since
many authors work with elements u # 0 € L instead of unit vectors.
Proposition 9.4.2. The pullback of the Fubini-Study form by Py, is given by
O wrs = kw + i00log py.

Proof. As in Example 2.5.9, introduce, for j € [1, di], the open subset

U; = {[zo Dot2g) €CPH%; o £ 0}
of CP%. Then on Uj,
_ dp. z 2
wrs = 1001log | > |=| | .
m=0 Zj
Therefore, we have that, on Uj:
_ de |y |2 _ _
&} wps = i001log | Y )\—m = 00 log p, — 100 log | \;|*. (9.1)
m=01| ""J

Now, let u; be a local section of L over U; such that u;(z) is a unit vector of L, for
every z € U;. Then p;(x) = \;(u;(z))u;(z)" is a local non vanishing holomorphic
section of L, thus, remembering the proof of Proposition 3.5.4, we get that

Vkp; = B;®¢;, B =0log H,
on U;, with H; = hi(pj, ;) = |\;(u;)]?. Therefore
—ikw = curv(V¥) = 00log H; = 001og | \;(u;)|?
on U, which, in view of Equation (9.1), yields the result. ]

Thus @} ,wrs = kw whenever py is constant. In this case, applying Proposition
9.3.3 to f =1, we get that

dim Hy, = /M pep(z) = vol(M)py,

therefore p, = dim Hy/vol(M).
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Example 9.4.3 (The complex projective line). Let us come back to Example 7.2.5.
On Uy = {[20, z1]; 20 # 0}, we have the following expression for the kernel of Ilj:

k+1
2

I, (2, w) = (1+ 20)* t5(2) ® fo" (w).

Considering the unit vector

) = i) = VIR 6e)

we get that the coherent state at u(z) has value at w

N
wz), oy k1 2\ k/2 ~ Ak ko o kFL (I4+Zzw)"
&) = = (14 1) (20" hlto2), fo(2))" 1) = =5 = o)
Exercise 9.4.4. Check that p(z) = ||¢"* i = Bl

To understand the coherent states embedding, we expand this coherent state to

k
get a linear combination of the e,(w) = % wh ik (w), 0 < 0 < k:
e (k+1) & | (k)
19 D)= | ——" T Zreg(w).
19 = i 2 L) )
This means that i i
Deon(2) = [1:...: ?) 27k

and finally

k
Droi(z) = [1:...: <€> 2P

is the Veronese embedding of CP' into CP*.
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Appendix A

The circle bundle point of view

The goal of this appendix is to compare the line bundle version of geometric quanti-
zation and Berezin-Toeplitz operators with the circle bundle version of this theory.
To this effect, we begin by recalling some useful facts about T-principal bundles with
connections. Then, we discuss the Hardy space and the Szego projector of a strictly
pseudoconvex domain. Finally, we explain how this enters the picture of geometric
quantization. For this appendix, we assume from the reader a basic knowledge of
Lie groups and their representations.

A.1 T-principal bundles and connections
Let G be a Lie group and let X be a manifold.

Definition A.1.1. A G-principal bundle over X (or principal bundle over X with
structure group G) is the data of a manifold P (the total space) and a smooth
projection 7 : P — X together with an action of G on P such that

1. G acts freely and transitively on P on the right: (p,g) € P x G — pg € P,

2. X is the quotient of P by the equivalence relation induced by this action, and
7 is the canonical projection,

3. P is locally trivial in the sense that each point z € X hass a neighbourhood
U such that there exists a diffeomorphism

o:7m ' (U)—=UxG

of the form ¢(p) = (7(p), 1 (p)), where the map ¢ : 7= 1(U) — G is such that
¥(pg) = ¥(p)g for every p € 71 (U) and g € G.

131
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Let P — X be a principal bundle with structure group G, and let ¢ : G — GL(V)
be a representation of G on some vector space V. There is a free action of G on
P x V on the right:

(p,v,9) €E P XV X G+ (p,g)v:= (pg,gzﬁ(g_l)v) ePxV.

This action induces an equivalence relation on P x V; by taking the quotient, we
obtain a vector bundle (P x V)/G — P/G = X whose fibers (G x V)/G are
isomorphic to V.

Definition A.1.2. We denote by P x,V — X the vector bundle (P x V)/G — X,
and we call it the vector bundle associated to the G-principal bundle P — X and
the representation ¢.

T-principal bundles. Let P — X be a principal bundle with structure group
T = R/27Z and projection 7. The action of # € T will be denoted by

(p,0) € Px T Ry(p) € P.

To this action is associated the vector field dy of P defined as

d

Vp e P Oy(p) = p Ri(p)
t=0

whose flow at time ¢ is equal to R;. The elements of ker(d,m) = span(9ds(p)) are
called the vertical tangent vectors.

Definition A.1.3. A connection on P — X is the data of a 1-form o € Q'(P)
which is T-invariant (Rja = o for every 6 € T) and satisfies ig,a0 = 1.

A connection a € Q(P) induces a splitting
T,P = ker(a,) @ span(dy(p)) = ker(a,) @ ker(d,).

The elements of the hyperplane ker(a,) of T, P are called the horizontal tangent
vectors. Since « is T-invariant, the distribution ker o also is, and the data of a
connection is equivalent to the data of a T-invariant subbundle F of T'P such that
TP = E®ker(dr). By construction, the restriction of d,m to the horizontal subspace
at p is bijective. Thus, given a vector field Y on X, there exists a unique vector field
Y®r on P which is horizontal and satisfies dr (Y1) = Y; it is called the horizontal
lift of Y.

The connections of the trivial T-principal bundle X x T are the 1-forms of the
type B + df, where 8 € Q'(X) and df is the usual 1-form of T.
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T-principal bundles and Hermitian line bundles. Let L — X be a Hermitian
complex line bundle, and let h(-,-) denote its Hermitian form. Let us consider the
subbundle of L consisting of elements of norm 1:

P={uelL; h(uu)=1}.

One readily checks that P is a T-principal bundle over X, with T-action given by
Ry(u) = exp(if)u. Moreover, L is the vector bundle associated with P and the
representation

€T (z+— exp(—if)z) € GL(C)
of T. There is a natural isomorphism of C*°(X)-modules
¢:C¥(X, L) = {f € C¥(P); Ryf =exp(=if)f}, s f=d(s)

where, for u € P, f(u) is the unique complex number such that

where 7 : P — X is the canonical projection. Given any connection « € Q(P) on
P, we consider the connection V on L such that the covariant derivative with respect
to a vector field corresponds to the Lie derivative with respect to its horizontal lift:

VY € C¥(X,TX), Vs € C¥(X,L) & (Vys) = Lynor(6(s)).

This map V is well-defined because ¢ is an isomorphism, and it satisfies the Leibniz
rule because the Lie derivative does and ¢! is C*(X)-linear.

Exercise A.1.4. Carefully check all the above statements.

Lemma A.1.5. The map sending a to V is a bijection from the set of connections
on P to the set of connections on L.

Proof. Let us work with local trivializations. Let U C X be an open subset endowed
with a unitary frame s € C>°(U, L). We get a local trivialization of P over U,

o: Py —=UxT, uw— (n(u),0)
where 6 is the unique element of T such that s(w(u)) = exp(if)u. Now, let us
identify C>(U, L) with C>*(U) by sending the section fs to f, and C*(Py) with
C>(U x T) via ¢. Then ¢(f) = g with

9(x,0) = f(x) exp(—if).
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Using these identifications, a = 3 + df for some 3 € Q'(U). Therefore, given some
vector field Y on U, its horizontal lift is given by Y2 =Y — 3(Y )9y, hence

dg

(Lyrerg) 2,0) = (dxgm - 6(Y)89) (2.0) = (L] + 8(Y) ) (2) expl(i0)

Consequently,
V(fs)=(df +i6) ®s

so V is uniquely determined by a.
m

A.2 The Szego projector of a strictly pseudocon-
vex domain

Let Y be a complex manifold of complex dimension n+ 1. Let D C Y be a domain
(connected open subset) of Y with smooth compact boundary, defined as

D ={yeY|n(y) <0}

with 7 : Y — R smooth and such that dn(y) # 0 whenever y belongs to dD. Let
H be the complex subbundle of T(0D) ® C consisting of the holomorphic tangent
vectors of Y which are tangent to the boundary of D; it has complex dimension n.
The Levi form of D is the restriction to H of the quadratic form 0.

Definition A.2.1. We say that D is strictly pseudoconvez if its Levi form is positive
definite at every point of 9D.

Note that this implies that the restriction o of —idn to dD is a contact form on
0D. Thus we get a volume form p = a A (da)™ on D, and we can consider the
Hilbert space L?(0D) with respect to p. The subspace

H(D) = {f € L*(OD)| ¥Z € C*(0D,H) Lf =0}
is called the Hardy space of D. The Szegé projector of D is the orthogonal projector
I1: L2(0D) — H(D).
A.3 Application to geometric quantization

Coming back to our problem, where M is a compact Kéhler manifold and L — M
is a prequantum line bundle, let us introduce the T-principal bundle P — M which
consists of unit norm elements (with respect to the norm induced by h) of the line
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bundle L. It is such that for every integer k£, we have the line bundle isomorphism
L* ~ P x,, C where s;, : T — GL(C) is the representation given by

sk(0) - v = exp(—ikf)v
We can embed P into L™' ~ P x,_, C via
t:P—Px, ,C, up)=Ip1]

where the square brackets stand for equivalence class. The connection on L~!, that
we still denote by V, induces a connection 1-form o € Q'(P). Let Hor'? be the

subbundle of T'P ® C consisting of the horizontal lifts of the holomorphic vectors of
TM®C. Let
p: L7V =R ues |ul?

and let D ={ue LY p(u) < 1}.

Proposition A.3.1. D is a strictly pseudoconvex domain of L™' and 0D = 1(P).
The bundle H of holomorphic vectors of L™ that are tangent to i(P) is t,Hor™".
Moreover, 1*0log p = ia.

Proof. We begin by proving the second assertion. Let us use some local coordinates.
Let U C M be an open subset such that Py ~ U x T, and let us use coordinates
(z,0) on U x T. Then a = 3 + df for some 3 € Q' (U). Let s~* be the local section
of L=t — U defined by

s Hx) = [(2,0),1] € (U x T) x41 C =~ L|_U1.
Then Vs~ ! =i ® s~!. We pick a function ¢ € C*°(U) such that
¢ + iV = 0; (A1)

we know that such a function exists (taking a smaller U if necessary) thanks to the
Dolbeault lemma. Then

V(exp(¢)s™) = exp(6) (96 + 0 +iB) © s~ = exp(g) (9 + i) @ 57"

hence exp(¢)s~! is a holomorphic section. Let w be the complex linear coordinate

of L7! such that w(exp(¢)s™) = 1, and let (z;)1<j<n be a system of complex
coordinates on U. In these coordinates, the maps ¢ and p read

L:UXT —-UxC, (21,...,20,0) = (21,...,2n,w = exp(if — ¢(2)))

and _
p:UxC =R, (z1,...,2,w) = |w]*exp ((b(z) + (b(z)) :
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Let j € [1,n]; the horizontal lift of 0, is
ailj-or = aZj - ﬁ(az])ae

We compute

(9¢
— 3(1,0) —

the last equality coming from the fact that ¢ — i) = 0 because 3 is real-valued
and satisfies (A.1). Hence

ailjor — azj + Z%

0p.
(9zj o

Therefore, its pushforward by ¢ satisfies

96 9
e (02) = dz (azj + 2'8289) 0., + dw (a +i a¢ ) Bu

which yields

Ly ((95;”) 0, +dw (8,2] + zg¢ ) Oy

Since dw = w(idf — d¢), we finally obtain that

Ly (ahgr) — aZ‘ - ((b + (b)

O
0z;

This implies that ¢,Hor"? is a subbundle of the bundle H of holomorphic vectors of
L' which are tangent to ¢(P); since both bundles have complex dimension n, this
means that they are equal.

Let us now prove the last claim of the proposition. We have that

Op = exp(e+ 6) (@ dw + [w]d (6 + ),

hence d
d(log p) = % +0(o+0).

Consequently,
0(log p) = id — d + 0 (¢ + @) = idf — D¢ + 0.
Remembering (A.1) and the conjugate equality, we finally obtain that

(logp) = i(df + ) =
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It remains to show that D is strictly pseudoconvex. Its Levi form is equal to the
restriction of t*(901log p) to H = 1, Hor'’. But

*(001og p) = —1*(001og p)) = —1*(dD1og p) = —di*(dlog p) = —ida.

Since —ida corresponds to the curvature of the connection on L over U, we have
that

—Zdoz(ﬁgor a}—lor) = —iw(@zj, 854) > 07

-7

which concludes the proof. O

As a consequence of this result, we construct the Hilbert space L?(P) by using
the volume form pip = 52 a A (do)™, the Hardy space

H(P)={f e L(P)|VZeC®(P,H) Lzf=0}C L*P)

as in the previous section and the Szegd projector I : L?(P) — H(P).
Since LF ~ P x,, C, we have an identification

Co(M,L*) — {f € C*(P): Rjf = exp(iko)f}

which sends s € C®(M, LF) to f € C>®(P), where, for p € P, f(p) is the unique
complex number such that s(7(p)) = f(p)p.

Lemma A.3.2. This identification is compatible with the scalar products on C*(M, L¥)
and C>®(P) (i.e. it defines an isometry).

Proof. Let s,t € C®°(M,LF) and let f,g € C°*°(P) be the corresponding functions.
Observe that for p € P,

since h(p,p) = 1. Therefore, we have that

(o9)p= [ 19 1 = [ 7 (e(5,) ap

Since a A (da)™ = df N\ m*w™, we deduce from this equality that

(foa)p = [ Belsit) = {s.0).

which was to be proved. O
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Under this identification, the covariant derivative Vxs corresponds to the Lie
derivative Lyuor f; hence, s is holomorphic if and only if f belongs to H(P), since,
as we saw earlier, H = ¢,Hor"". By Fourier decomposition, we have the splitting

LX(P)=@{f e L*(P)| V0T, R;f=exp(ikt)f}.

keZ

To be more precise, (Rj)ger is a family of commuting self-adjoint operators acting
on L?(P), each R has discrete spectrum (exp(ik))ez, therefore they all have the
same eigenspaces and L?(P) splits into the direct sum of these eigenspaces. Now,
using the above lemma, this yields a unitary isomorphism

L*(P) ~ @ L*(M, LF).

kEZ

Since II commutes with every Ry, 6 € T, we also obtain the unitary equivalence

H(P) = D H (M, L") = D Hy. = D Ha.

kEZ keZ k>0

where the last equality comes from Proposition 4.2.1, and II; corresponds to the
Fourier coefficient at order k of II, that is its restriction to the space L?(M, L*).

One can use this approach to derive another proof of Theorem 7.2.1, in a way
that we quickly describe now. In their seminal article [12], Boutet de Monvel and
Sjostrand obtained a precise description of the Schwartz kernel of this projector,
that we describe now. Let ¢ € C*°(Y x Y') be such that

¢(y> y) = _inv ¢(xv y) = _¢(ya fL‘), 'CZZQS = £Z7‘¢ =0 mod Ioo(dlag(YQ))

for every holomorphic vector field Z, where Z, (respectively Z,) means acting on the
left (respectively right) variable, and Z>(diag(Y?)) is the set of functions vanishing
to infinite order along the diagonal of Y2. It is known that such a function ¢ exists
and is unique up to a function vanishing to infinite order along the diagonal of Y2.

Define ¢ € C>®(0D x 0D) as the restriction of ¢ to D x dD. Then dy does
not vanish on diag(0D x 0D), whereas d(S3p) vanishes on diag(0D x dD) and has
negative Hessian with kernel diag(7'0D xT0D). Thus we may assume, by modifying
¢ outside a neighbourhood of diag(9D x 9D) if necessary, that S¢(ug,u,) < 0 if

Up F Uy

Theorem A.3.3 ([12, Theorem 1.5]). The Schwartz kernel of the Szegé projector
IT satisfies

(g, u,) = /R+ exp(iTo(ug, uy)) s(ug, up, 7) dr + f(ug, u,)
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where f € C®(0D x 0D) and s € S"(0D x 0D x R") is a classical symbol having
the asymptotic expansion

S(Ug, Uy, T) ~ Z T”_jsj(w, Uy).
Jj=0

Theorem 7.2.1 can be inferred from this result, the idea being that one can
deduce the asymptotics of Il when k goes to infinity from the description of the
Schwartz kernel of II, in a way which is similar to the deduction of the behaviour
of the Fourier coefficients of a function at 0o from the regularity of this function.
For a detailed proof using this approach, one can, for example, look at Section 3.3
in [14].
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