Licence de mathématiques - Module EVNCD

Feuille d'exercices numéro 11 : sous-variétés

Exercice 1.

Déterminer, parmi les sous-ensembles définis ci-dessous, ceux qui sont des sous-variétés :

- 1. $\{(x, y, z) \in \mathbb{R}^3 ; x^3 + y^3 + z^3 3xyz = 1\};$
- 2. $\{(x,y) \in \mathbb{R}^2 ; xy = 0\};$
- 3. $\{(x,y) \in \mathbb{R}^2 ; y^2 = x^3\}.$

Exercice 2. Intersection

a. L'intersection de deux sous-variétés de \mathbb{R}^n est-elle une sous-variété de \mathbb{R}^n ?

b. Montrer que l'intersection des surfaces d'équations respectives

$$x^{2} + y^{2} + z^{2} = 9$$
 et $x^{2} + y^{2} - 2x = 0$

est une courbe lisse C (sous-variété de dimension 1) de \mathbb{R}^3 (dessin?). Déterminer l'équation de la tangente à C en un point (a, b, c).

Exercice 3. Dimensions

Soient X et Y deux sous-variétés \mathcal{C}^0 de \mathbb{R}^n .

a. Si $\dim(X) \neq \dim(Y)$, montrer que X et Y ne sont pas homéomorphes. *Indication*: montrer que \mathbb{R}^p et \mathbb{R}^q ne sont pas homéomorphes quand $p \neq q$.

b. Si $\dim(X) = \dim(Y)$ et $X \subset Y$, montrer que X est un ouvert de Y. En déduire que \mathbb{S}^2 n'est pas homéomorphe à une sous-variété de \mathbb{R}^2 .

Exercice 4. Groupes matriciels

Justifer que les groupes suivants sont des sous-variétés de $M_n(\mathbb{R})$, donner leur dimension et l'équation de leur espace tangent en l'identité.

- 1. $Gl_n(\mathbb{R})$,
- 2. $SL_n(\mathbb{R})$,
- 3. $O_n(\mathbb{R})$.

Exercice 5. Contour apparent

Soit S le sous-ensemble de \mathbb{R}^3 d'équation

$$x^3 + yx + z = 0.$$

- **a.** Montrer que c'est une surface lisse (sous-variété de dimension 2 de \mathbb{R}^3). Donner une equation du plan tangent en chaque point.
- **b.** On s'intéresse à la projection π qui à $(x, y, z) \in \mathbb{R}^3$ associe $(y, z) \in \mathbb{R}^2$, et on note π_S sa restriction à S. On appelera point critique de π_S tout point m tel que la restriction de la différentielle de π au plan tangent T_mS ne soit pas un isomorphisme. On notera C l'ensemble des points critiques de π_S . Expliciter C et montrer que c'est une courbe lisse de \mathbb{R}^3 .
- c. Justifier que $\pi_S(C)$ représente le "contour apparent" de S (dessin).
- **d.** Comparer $\pi_S(C)$ avec l'ensemble $4y^3 + 27z^2 = 0$. Interprétation? *Indication*: discriminant.

Exercice 6.

Montrer qu'une sous-variété connexe est connexe par arcs.

Exercice 7.

Exercice de recherche : montrer que l'ensemble des matrices de $M_n(\mathbb{R})$ de rang r fixé est une sous-variété de $M_n(\mathbb{R})$.