Licence de mathématiques - Module EVNCD Feuille d'exercices numéro 5 : espaces de Hilbert

Propriétés générales

Exercice 1. Norme et formes linéaires continues

Soit \mathcal{H} un espace de Hilbert. Montrer (sans utiliser le théorème de Hahn-Banach) que pour tout $x \in \mathcal{H}$ on a :

$$||x|| = \max_{f \in \mathcal{H}', ||f|| \le 1} |f(x)|.$$

Exercice 2. Convergence

Soit \mathcal{H} un espace de Hilbert.

- **a.** Soient $(x_n)_{n\geq 0}$ et $(y_n)_{n\geq 0}$ deux suites d'éléments de la boule unité de \mathcal{H} telles que $\langle x_n, y_n \rangle \to 1$. Montrer que $||x_n y_n|| \to 0$.
- **b.** Soit $(x_n)_{n\geq 0}$ une suite d'éléments de \mathcal{H} qui converge faiblement vers $x\in\mathcal{H}$, et telle que $||x_n||\to ||x||$. Montrer que $(x_n)_{n\geq 0}$ converge vers x.
- **c.** Soit $(x_n)_{n\geq 0}$ une suite d'éléments de \mathcal{H} qui converge faiblement vers $x\in \mathcal{H}$. Montrer que pour tout $T\in L(\mathcal{H})$, la suite $(Tx_n)_{n\geq 0}$ converge faiblement vers Tx.
- **d.** Montrer que toute suite faiblement convergente de \mathcal{H} est bornée.
- e. Soient $(x_n)_{n\geq 0}$ et $(y_n)_{n\geq 0}$ deux suites d'éléments de \mathcal{H} . On suppose que $(x_n)_{n\geq 0}$ converge faiblement vers x et que $(y_n)_{n\geq 0}$ converge vers y. Démontrer que la suite $(\langle x_n, y_n \rangle)_{n\geq 0}$ converge vers $\langle x, y \rangle$.

Exercice 3. Noyaux reproduisants

Soient X un ensemble et E l'espace vectoriel des fonctions de X dans \mathbb{C} . On suppose qu'il existe un sous-espace vectoriel \mathcal{H} de E muni d'une structure d'espace de Hilbert, et tel que pour tout $x \in X$, la forme linéaire définie sur \mathcal{H} par $f \mapsto f(x)$ est continue.

- **a.** Montrer qu'il existe une unique fonction K de X^2 dans \mathbb{C} vérifiant pour tout y de X, la fonction $K(.,y): x \mapsto K(x,y)$ appartient à \mathcal{H} ,
- $\forall f \in \mathcal{H}, \forall y \in X, \langle f, K(., y) \rangle = f(y).$

K est appelé le noyau reproduisant de \mathcal{H} .

b. Démontrer que K vérifie

$$\forall x, y \in X \quad \overline{K(x, y)} = K(y, x).$$

c. Prouver que la famille $\{K(.,y); y \in X\}$ est totale dans \mathcal{H} .

Opérateurs

Exercice 4. Condition suffisante de nullité d'un opérateur

Soit \mathcal{H} un espace de Hilbert sur \mathbb{C} , et soit $T \in L(\mathcal{H})$ tel que pour tout x de \mathcal{H} , $\langle Tx, x \rangle = 0$. Montrer que T = 0. Que dire si le corps de base est \mathbb{R} ?

Exercice 5. Opérateur normaux

Soit \mathcal{H} un espace de Hilbert. Un opérateur $T \in L(\mathcal{H})$ est dit normal si $TT^* = T^*T$.

- **a.** Montrer que T est normal si et seulement si $\forall x \in \mathcal{H}, ||Tx|| = ||T^*x||$.
- **b.** Montrer que si T est normal, il vérifie les propriétés suivantes :
 - 1. $Ker(T^*) = Ker(T)$,
 - 2. $\operatorname{Im}(T)$ est dense dans \mathcal{H} si et seulement si T est injectif,
 - 3. T est inversible si et seulement si il existe $\delta > 0$ tel que $\forall x \in \mathcal{H}$, $||Tx|| \geq \delta ||x||$,
 - 4. si $Tx = \alpha x$ pour $x \in \mathcal{H}$ et $\alpha \in \mathbb{K}$, alors $T^*x = \bar{\alpha}x$,
 - 5. si α et β sont deux valeurs propres distinctes de T, les sous-espaces propres correspondants sont orthogonaux.

Exercice 6. Rayon spectral

Soient \mathcal{H} un espace de Hilbert et $T \in L(\mathcal{H})$. On rappelle que le rayon spectral de T est le réel positif $r(T) = \inf_{n \geq 1} \|T^n\|^{1/n}$, et que le spectre de T est borné par r(T).

- a. Soit $T \in L(\mathcal{H})$. Exprimer la norme de T^*T en fonction de celle de T.
- **b.** Soit T un opérateur auto-adjoint. Montrer que r(T) = ||T||.
- **c.** Soit T un opérateur normal. Montrer que r(T) = ||T||.
- **d.** Soit $T \in L(\mathcal{H})$. Montrer que $||T|| = \sqrt{r(T^*T)}$.

Exercice 7. Opérateurs diagonaux

Soit \mathcal{H} un espace de Hilbert (séparable) et soit $(e_n)_{n\geq 0}$ une base orthonormale de \mathcal{H} . D'autre part, soit $(\lambda_n)_{n\geq 0}$ une suite de scalaires.

- **a.** Montrer que l'opérateur D défini par $\forall n \in \mathbb{N}, De_n = \lambda_n e_n$, est continu si et seulement si $(\lambda_n)_{n\geq 0}$ est bornée. Le cas échéant, que vaut ||D||?
- **b.** Montrer que D est inversible si et seulement si $\inf_{n\geq 0} |\lambda_n| > 0$. Calculer alors $||D^{-1}||$.
- **c.** Montrer que D est compact si et seulement si $(\lambda_n)_n$ tend vers 0.
- **d.** Exprimer D^* en fonction de la suite $(\lambda_n)_{n>0}$.
- \mathbf{e} . Identifier le spectre de D.

Exercice 8. Opérateurs de rang 1

Soient \mathcal{H} un espace de Hilbert et T un opérateur continu sur \mathcal{H} , et de rang 1, c'est-à-dire que $\mathrm{Im}(T)$ est de dimension 1. Soit ψ un élément non nul de $\mathrm{Im}(T)$.

- **a.** Prouver qu'il existe $\phi \in \mathcal{H}$ tel que $\forall x \in \mathcal{H}$, $Tx = \langle x, \phi \rangle \psi$, et que $||T|| = ||\psi|| \, ||\phi||$.
- **b.** Démontrer que $T^2 = \langle \psi, \phi \rangle T$. En déduire que si $\langle \psi, \phi \rangle \neq 1$, alors I T est inversible; calculer alors son inverse.
- **c.** Exprimer T^* en fonction de ϕ et ψ .
- **d.** Quel est le spectre de T?