Licence de mathématiques - Module EVNCD

Feuille d'exercices numéro 6 : différentiabilité

Exercice 1.

a. Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x^3$. Calculer Df(x) et f'(x).

b. Calculer Df(a), pour $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x \sin x$ et $a \in \mathbb{R}$.

c. Soit $f: \mathbb{R}^n \to \mathbb{R}$. On suppose qu'il existe une constante M > 0 telle que pour tout $x \in \mathbb{R}^n$, $||f(x)|| \leq M||x||^2$. Montrer que f est différentiable en x = 0 et que Df(0) = 0.

Exercice 2.

a. Soit $f: \mathbb{R}^n \to \mathbb{R}^p$ une application différentiable en $a \in \mathbb{R}^n$. Montrer que pour tout vecteur $u \in \mathbb{R}^n \setminus \{0\}$, la dérivée de f en a dans la direction u, i.e.

$$D_u f(a) = \lim_{t \to 0} \frac{1}{t} (f(a + tu) - f(a)),$$

existe, et l'exprimer à l'aide de Df(a).

b. Soit $f: \mathbb{R}^* \times \mathbb{R} \to \mathbb{R}^2$ définie par $f(x,y) = (\sqrt{x^2 + y^2}, \arctan \frac{y}{x})$. Montrer que $D_v f(1,0) = v$, pour tout $v \in \mathbb{R}^2 \setminus \{(0,0)\}$.

c. On considère $f: \mathbb{R}^2 \to \mathbb{R}$ définie par f(0,0) = 0 et, si $(x,y) \neq (0,0)$, $f(x,y) = \frac{x^3y}{x^4+y^2}$. Montrer que f est dérivable en (0,0) dans toutes les directions, mais que f n'est pas différentiable en (0,0).

Exercice 3.

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x,y) = \frac{xy^2}{x^2 + y^2}$$
 si $(x,y) \neq (0,0)$

et f(0,0) = 0. Montrer que f est continue sur \mathbb{R}^2 , admet des dérivées partielles en (0,0), mais n'est pas différentiable en (0,0).

Exercice 4.

Soit $\alpha > 0$. Étudier, en fonction de α , la continuité puis la différentiabilité à l'origine de l'application $f : \mathbb{R}^2 \to \mathbb{R}$ définie par f(0,0) = 0 et

$$f(x,y) = \frac{|xy|^{\alpha}}{\sqrt{x^2 + 3y^2}}$$
 si $(x,y) \neq (0,0)$.

Exercice 5.

Soit E l'espace des polynômes de degré inférieur ou égal à n. Etudier la différentiabilité des applications $P \mapsto \int_0^1 (P^3(t) - P^2(t)) dt$ et $P \mapsto P' - P^2$ (si une application est différentiable, on en calculera la différentielle).

Exercice 6.

Soit $a \in \mathbb{R}^n$ et $f: \mathbb{R}^n \setminus \{a\} \to \mathbb{R}^n$ définie par $f(x) = \frac{x-a}{||x-a||^2}$.

a. Calculer Df(x) pour tout $x \in \mathbb{R}^n \setminus \{a\}$.

b. Montrer que $Df(x).h = \frac{Sh}{||x-a||^2}$ où S est la symétrie orthogonale d'axe x-a.

Exercice 7.

On rappelle que, si E et F sont deux espaces vectoriels normés de dimension finie, f une application de E dans F et $x_0 \in E$, on a les implications suivantes :

- "f de classe C^1 en x_0 " \Rightarrow "f différentiable en x_0 " \Rightarrow "f continue en x_0 ",

- "f différentiable en x_0 " \Rightarrow "f admet des dérivées partielles en x_0 ."

Montrer que les réciproques sont fausses en général en étudiant :

$$f(x,y) = \begin{cases} x^2 \sin\frac{1}{x} + y^2 \sin\frac{1}{y} & \text{si } xy \neq 0 \\ x^2 \sin\frac{1}{x} & \text{si } y = 0 \\ y^2 \sin\frac{1}{y} & \text{si } x = 0 \\ 0 & \text{en } (0,0) \end{cases}$$

et

$$g(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}.$$

Exercice 8.

On considère les fonctions

$$f: \mathbb{R}^3 \to \mathbb{R}, \quad (x, y, z) \mapsto 3x^2y + e^{xz^2} + 4z^3$$

et

$$g: \mathbb{R}^3 \to \mathbb{R}^3$$
, $(x, y, z) \mapsto (\ln(1 + x^2 + y^2), x^2 + y^2 - z^2, \cos(xz))$.

Déterminer la matrice jacobienne de f au point (0, -1, 1) et celles de g et $h = f \circ g$ au point (0, 0, 1).

Exercice 9.

Soit B une application bilinéaire de $E \times F$ dans G, où E, F, G sont des espaces vectoriels normés de dimension finie.

a. Calculer DB(a,b), sa différentielle en un point (a,b) de $E \times F$.

b. En déduire, pour f et g deux applications différentiables de I intervalle de \mathbb{R} dans \mathbb{R}^3 , la différentielle des applications :

- 1. $I \to \mathbb{R}^3$ définie par $t \mapsto f(t) \land g(t)$.
- 2. $I \to \mathbb{R}$ définie par $t \mapsto \langle f(t), g(t) \rangle$.

c. Application : soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que pour tout $x \in \mathbb{R}^n$, $\langle Ax, x \rangle = 0$. Montrer que pour tout $t \in \mathbb{R}$, e^{tA} est une isométrie. Indication : dériver l'application $t \mapsto ||e^{tA}x||^2$.

Exercice 10.

On suppose \mathbb{R}^n muni de la norme euclidienne. Soit F un sous-espace vectoriel de \mathbb{R}^n et soit $f: \mathbb{R}^n \to \mathbb{R}$ définie par f(x) = d(x, F).

a. Montrer que pour tout $x \in \mathbb{R}^n$ il existe $y \in F$ tel que f(x) = ||x - y||. Montrer que f est 1-lipschitzienne.

b. On suppose que f est différentiable en un point $x \notin F$. Montrer que $||Df(x)||_{\mathcal{L}(\mathbb{R}^n,\mathbb{R})} \leq 1$.

c. Soit $\varphi:[0,1]\to\mathbb{R}^n$, la fonction définie par $t\mapsto f((1-t)x+ty)$; en calculant $\varphi'(0)$ de deux façons, montrer :

$$Df(x).\frac{x-y}{\|x-y\|} = 1$$
 et $\|Df(x)\|_{\mathcal{L}(\mathbb{R}^n,\mathbb{R})} = 1$.

d. En déduire que y est unique.

Exercice 11.

Soit $g:\mathbb{R}\to\mathbb{R}$ une application de classe \mathcal{C}^2 et $F:\mathbb{R}^2\to\mathbb{R}$ définie par

$$F(x,y) = \frac{g(x) - g(y)}{x - y}$$
 si $x \neq y$, $F(x,x) = g'(x)$.

Montrer que F est de classe C^1 et calculer sa différentielle.

Exercice 12.

- **a.** Soit $f: \mathcal{M}_p(\mathbb{R}) \to \mathbb{R}$ l'application qui associe à une matrice son déterminant. Montrer qu'elle est différentiable et déterminer Df.
- **b.** Pour $n \geq 1$, on considère l'application $\varphi_n(A) = A^n$ de $\mathcal{M}_p(\mathbb{R})$ dans $\mathcal{M}_p(\mathbb{R})$. Montrer qu'elle est différentiable en toute matrice $A \in \mathcal{M}_p(\mathbb{R})$, et calculer $D\varphi_n(A)$.
- c. On désigne par $GL_p(\mathbb{R})$ l'ensemble des matrices inversibles de $\mathcal{M}_p(\mathbb{R})$. Calculer la différentielle de l'application $A \mapsto A^{-1}$ de $GL_p(\mathbb{R})$ dans $GL_p(\mathbb{R})$.

Exercice 13.

Soit \mathcal{E} un espace vectoriel réel muni d'un produit scalaire $(x,y) \mapsto \langle x,y \rangle$ et de la norme associée $||x|| = \langle x,x \rangle^{\frac{1}{2}}$. Soit u un endomorphisme continu de \mathcal{E} que l'on suppose symétrique, i.e.

$$\langle u(x), y \rangle = \langle x, u(y) \rangle$$
 pour tout $x, y \in \mathcal{E}$.

- a. Montrer que l'application $x \in \mathcal{E} \mapsto \langle u(x), x \rangle$ est différentiable sur \mathcal{E} et calculer sa différentielle. En particulier, l'application $x \mapsto ||x||^2$ est différentiable.
- **b.** On définit une application $\varphi: \mathcal{E} \setminus \{0\} \to \mathbb{R}$ en posant $\varphi(x) = \frac{\langle u(x), x \rangle}{\langle x, x \rangle}$. Établir qu'il s'agit d'une application différentiable. Calculer ensuite $D\varphi$. Montrer que, pour un élément non nul $a \in \mathcal{E}$, on a $D\varphi(a) = 0$ si et seulement si a est vecteur propre de a.