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Abstract Let X be a smooth proper curve over a finite field of characteristic p. We prove a product
formula for p-adic epsilon factors of arithmetic Z-modules on X. In particular we deduce the analogous
formula for overconvergent F-isocrystals, which was conjectured previously. The p-adic product formula
is a counterpart in rigid cohomology of the Deligne—Laumon formula for epsilon factors in ¢-adic étale
cohomology (for £ # p). One of the main tools in the proof of this p-adic formula is a theorem of regular
stationary phase for arithmetic Z-modules that we prove by microlocal techniques.
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Introduction

Inspired by the Langlands program, Deligne suggested that the constant appearing in
the functional equation of the L-function of an ¢-adic sheaf, on a smooth proper curve
over a finite field of characteristic p # ¢, should factor as product of local contributions
(later called epsilon factors) at each closed point of the curve. He conjectured a product
formula and showed some particular cases of it, cf. [33]. This formula was proven by
Laumon in the outstanding paper [50].

The goal of this article is to prove a product formula for p-adic epsilon factors of
arithmetic Z-modules on a curve. This formula generalizes the conjecture formulated
in [54] for epsilon factors of overconvergent F-isocrystals, and it is an analog in rigid
cohomology of the Deligne-Laumon formula.

Let us give some notation. In this introduction we simplify the exposition by assuming
more hypotheses than necessary, and we refer to the article for the general statements.
Let k be a finite field of characteristic p, and let ¢ = p/ be its cardinality. Let X be a
smooth, proper and geometrically connected curve over k.

We are interested in rigid cohomology [12] on X, which is a good p-adic theory in the
sense that it is a Weil cohomology. The coefficients for this theory are the overconvergent
F-isocrystals: they play the role of the smooth sheaves in ¢-adic cohomology, or vector
bundles with (flat) connection in complex analytic geometry. These coefficients are also
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known in the literature as p-adic differential equations. As their ¢-adic and complex
analogs, the overconvergent F-isocrystals form a category which is not stable under
push-forward in general. Berthelot [11], inspired by algebraic analysis, proposed a
framework to remedy this problem by introducing arithmetic F-Z-modules (shortly
F-2%-modules) and in particular the subcategory of holonomic modules, see [16] for
a survey. Thanks to works of many people (e.g. [22, 30], ...), we have a satisfactory
theory, at least in the curve case. We note that another approach to p-adic cohomologies
has been initiated by Mebkhout and Narvaez-Macarro [58], and is giving interesting
developments, for example see [8]. Although it would certainly be interesting to transpose
our calculations into this theory, we place ourselves exclusively in the context of
Berthelot’s arithmetic Z-modules throughout this paper. Nevertheless, we point out
that Christol-Mebkhout’s results in the local theory of p-adic differential equations are
indispensable both explicitly and implicitly in this article. The local theory of arithmetic
Z-modules has been developed by Crew (cf. [30, 31]) and we will use it extensively in
our work.

To state the p-adic product formula let us review the definitions of local and global
epsilon factors for holonomic 2'-modules. The Poincaré duality was established for
overconvergent F-isocrystals in the works of Berthelot [14], Crew [28] and Kedlaya [46],
and for the theory of 2'-modules by the first author [4] based on the results of
Virrion [70]. This gives a functional equation for the L-function (Caro [22], Etesse-Le
Stum [38]) of an arithmetic Z-module .#, see section 7.2. The constant appearing in this
functional equation is e(#) := [],., det(—F; H" Fotl) D where f: X — Spec(k) is
the structural morphism, and it is called the global epsilon factor of .Z .

The local epsilon factor of .#Z at a closed point x of X is defined up to the choice of a
meromorphic differential form @ # 0 on X. To define it, we restrict .# to the complete
trait Sy of X at x. To define the local factors e(.#|s,, w), we consider a localizing triangle,
cf. 3.1.9.1; hence, by linearity, it remains to define the epsilon factors for punctual modules
and for free differential modules on the Robba ring with Frobenius structure. The former
case is explicit; the latter was done in [54] via the Weil-Deligne representation attached
to free differential modules by the p-adic monodromy theorem.

The product formula (Theorem 7.2.5) states that for any holonomic F-2'-module .#
on X, we have

e( M) qu(///)(l—g) l_[ e(M|s,, ), (PF)

x€|X|

where g is the genus of X, r(.#) denotes the (opposite of) the generic rank of .Z, |X| is
the set of closed points of X, and w # 0 is a meromorphic differential form on X. This
formula can be seen as a multiplicative generalization of Grothendieck—-Ogg—Shafarevich
formulas for rigid cohomology on a curve, cf. [41, 5.3.2], [26, 5.0], 2.3.1.1 or 4.1.2.1.

The proof of (PF) starts by following the track of Laumon: a geometric argument
(see [50, proof of 3.3.2]) reduces to prove the fundamental case where X =P} and . is
an F-isocrystal overconvergent along a closed set S of rational points of X (by refining
the argument we can even take S = {0, oo}, cf. [43, p. 121]). By saying that .# is an
F-isocrystal, we mean that it is an arithmetic Z-module corresponding to an F-isocrystal
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via the specialization map, see the convention section 0.0.7. In order to conclude, we
need four components: (i) a canonical extension functor .# +— " from the category
of holonomic F-2'-modules on the formal disk to that of holonomic F-2'-modules
on the projective line, overconvergent at oo; (ii) the proof of (PF) for 27-modules in
the essential image of this functor; (iii) the ‘principle’ of stationary phase (for modules
whose differential slopes at infinity are less than 1); (iv) an exact sequence in the style
‘nearby-vanishing cycles’ for certain kinds of 2'-modules.

The first component is provided by the work of Crew [31], extending the canonical
extension of Matsuda for overconvergent F-isocrystals. The second is technical but not
difficult to achieve. The third is the deepest among these four, and a large part of this
paper is devoted to it. This ‘principle’ can roughly be described by saying that it provides
a description of the behaviour at infinity of the Fourier—-Huyghe transform of .#, in terms
of local contributions at closed points s in A,ﬁ where . is singular (i.e. the characteristic
cycle of # does contain a vertical component at s, cf. paragraph 1.3.8). These ‘local
contributions’ are called local Fourier transforms (LFT) of .#, and one of the key points
of our work is to provide a good construction of them. Here, we differentiate from the
work of Laumon, who used vanishing cycles to construct the local Fourier transform of
an {¢-adic sheaf.

A definition of local Fourier transform has been given by Crew [31, 8.3] following the
classical path: take the canonical extension of a holonomic F-2'-module at zero, then
apply the Fourier-Huyghe transform, and finally restrict around oco. However, we need
more information on the internal structure of LFT, and therefore, we redefine it. Our
approach is based on microlocalization inspired by the classical works of Malgrange [53]
and Sabbah [63]. Yet, there are many more technical difficulties in our case because we
need to deal with differential operators of infinite order. We note that the definition
is still not completely local in the sense that it uses the canonical extension and the
Frobenius structure is constructed by global methods. Once we have established some
fundamental properties of LE'T, the proof of the regular stationary phase is analogous to
that of Sabbah [63] in the classical case (see also [52] for its generalizations).

The fourth component is proved using an exact sequence of Crew [31], Noot-Huyghe’s
results on Fourier transform, and the properties of cohomological operations proven in [4].

The end of the proof of (PF) is classical and it follows again Laumon, although there
are still some differences from the £-adic case that we have carefully pointed out in
section 7.5. In particular, in this subsection, we detail the proof of a determinant formula
for the p-adic epsilon factor. This p-adic formula gives a differential interpretation of
the local epsilon factors and promises to have new applications. Indeed, in section 5.2
we give an explicit description of the Frobenius acting on the Fourier-Huyghe transform.
This might provide explicit information on the p-adic epsilon factors, and moreover have
arithmetic spin-offs. For example, in the case of a Kummer isocrystal, by carrying out
this calculation and applying the product formula we can re-prove the Gross—Koblitz
formula. This and related questions will be addressed in a future paper.

Concerning ¢-adic theory, we point out that Abbes and Saito [1] have recently given
an interesting new local description of LFT as well as an alternative proof of Laumon’s
determinant formula for £-adic representations satisfying a certain ramification condition.
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Finally, regarding Langlands correspondence for p-adic coeflicients, we mention the
preprint [5], where the p-adic product formula is used to show the equivalence between
the (conjectural) p-adic Langlands correspondence for GL, over function fields and
Deligne’s hope for petits camarades cristallins for curves, cf. [34, Conjecture (1.2.10-vi)]
and also [27, Conjecture 4.13]. These conjectures have been proven recently in [6], in
which the p-adic product formula plays an essential role.

After this introduction, this article is divided into seven sections. Here, we briefly
describe their content; more information can be found in the text at the beginning of
each section and subsection.

The aim of section 1 is to define the characteristic cycles of holonomic Z-modules
on curves over the field k (which is supposed here only of characteristic p > 0), and
prove some relations with the microlocalizations. For this, we prove a level stability
theorem using microlocal techniques of [3]. The section starts with a short survey of
microdifferential operators of [3].

Section 2 begins the study of local Fourier transforms for holonomic Z-modules. This
section is the technical core of the paper. We start in section 2.1 by a review of Crew’s
theory of arithmetic Z-modules on a formal disk; then we study in section 2.2 the
relations between microlocalization and analytification of 2-modules. This gives several
applications: namely the equality between Garnier’s and Christol-Mebkhout’s definitions
of irregularity (section 2.3). We finish the section by giving an alternative definition of
local Fourier transform (except for the Frobenius structure) in section 2.4. We will see in
section 4 that this LFT coincides with that of Crew and we will complete the definition
in section 5 by endowing it with the Frobenius structure.

Section 3 reviews the cohomological operations on arithmetic Z-modules. In particular,
in section 3.1 we recall the results of [4] which are used in this paper, and in section 3.2
we review the global Fourier transform of Noot-Huyghe.

Section 4 is devoted to the regular stationary phase. In section 4.1 we establish some
numerical results analogous to those of Laumon for perverse £-adic sheaves. In section 4.2
we prove the stationary phase for regular holonomic modules on the projective line.

It is in section 5 that we finally implement the Frobenius in the theory. In section 5.1
we endow the local Fourier transform with the Frobenius induced by that of the global
Fourier transform via the stationary phase isomorphism. In section 5.2 we explicitly
describe the Frobenius on the naive Fourier transform.

Section 6 provides a key exact sequence for the proof of the product formula. This
sequence should be seen as an analog of the exact sequence of vanishing cycles appearing
in Laumon’s proof of the £-adic product formula. The section begins with a result on
commutation of the Frobenius in section 6.1 and we then prove the exactness of the
sequence in section 6.2.

Finally, in the last section, we state and prove the p-adic product formula. We begin in
section 7.1 with the definition of local factors of holonomic modules; then, in section 7.2
we recall the definition of the L-function attached to a holonomic module and define
the global epsilon factor. We state the product formula and we show that it is in fact
equivalent to the product formula for overconvergent F-isocrystals conjectured in [54].
The section continues with the proof of the product formula: some preliminary particular
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cases in section 7.4, and the general case, as well as the determinant formula for local
epsilon factors, in section 7.5.

Conventions and notation

0.0.1. Unless otherwise stated, the filtration of a filtered ring (resp. module) is assumed
to be increasing. Let (A, F;A);cz be a filtered ring or module. For i € Z, we will often
denote F;A by A;. Recall that the filtered ring A is said to be a noetherian filtered ring
if its associated Rees ring @, ., Fi A is noetherian.

0.0.2. Let A be a topological ring, and let M be a finitely generated A-module. We
consider the product topology on A®" for any positive integer n. Let ¢: A®" — M be
a surjection, and we denote by 7 the quotient topology on M induced by ¢. Then J
does not depend on the choice of ¢ up to equivalence of topologies. We call this topology
the A-module topology on M.

0.0.3. Let K be a field, and 0: K — K be an automorphism. A o-K-vector space is
a K-vector space V equipped with a o-semi-linear endomorphism ¢: V — V such that
the induced homomorphism K ®, x V — V is an isomorphism.

0.0.4. Let R be a complete discrete valuation ring of mixed characteristic (0, p), k be
its residue field, and K be its field of fractions. We denote a uniformizer of R by .
For any integer i > 0, we put R; := R/w'T!R. The residue field k is not assumed to be
perfect in general; we assume k to be perfect from the middle of section 2, and in the
last section (section 7), we assume moreover k to be finite. We denote by |-| the p-adic
norm on R or K normalized as |p| = p~ L.

In principle, we use Roman fonts (e.g. X) for schemes and script fonts (e.g. Z°)
for formal schemes. For a smooth formal scheme 2 over Spf(R), we denote by X;
the reduction 2 ®g R; over Spec(R;). We denote Xo by X unless otherwise stated. In
this paper, curve (resp. formal curve) means dimension one smooth separated connected
scheme (resp. formal scheme) of finite type over its basis.

When X (resp. Z7) is an affine scheme (resp. formal scheme), we sometimes denote
C(X, Ox) (resp. T'(Z", Og)) simply by Ox (resp. O ) if this is unlikely to cause any
confusion.

0.0.5. Let 2 be a smooth formal scheme over Spf(R) of dimension d. A system of
global coordinates on 2" is a subset {x{, ..., xs} of T'(Z", Og) such that the morphism
Z — K‘Iﬁ defined by these functions is étale. A system of local coordinates is a system
of global coordinates on an open subscheme % of 2.

Let s € Z be a closed point. A system of local parameters at s is a subset {y1, ..., y4}
of ['(% , Og), for some open neighbourhood % of s, such that its image in Oy ; forms a
system of regular local parameters in the sense of [EGA Ory, 17.1.6]. When d = 1, we say
‘a (local) coordinate’ instead of saying ‘a system of (local) coordinates’, and the same for
‘a local parameter’.

0.0.6. We freely use the language of arithmetic Z-modules. For details see [13, 15, 16].

In particular, we use the notation 9)({")7 @\(gm), _@j@. An index QQ means tensor with Q.
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0.0.7. Let X be a scheme of finite type over k, and Z be a closed subscheme of
X. We put U:=X\Z. We denote by (F-)Isoc(U, X/K) the category of convergent
(F-)isocrystal on U over K overconvergent along Z. If X is proper, we say, for sake of
brevity, overconvergent (F-)isocrystal on U over K, instead of convergent (F-)isocrystal
on U over K overconvergent along Z, and we denote the category by (F —)IsocT(U /K).
Now, let 2" be a smooth formal scheme, and Z be a divisor of its special fibre. Let
U =2 \Z, X and U be the special fibres of 2 and % respectively. In this paper,
we denote 9}&’@02) by @}{’Q(Z) for short. In the same way, we denote O%,@(%Z) by

Oq o(Z). Let .# be a coherent (F—)@I@’Q(Z)—module such that .#|4 is coherent as
an Oy g-module. Then we know that .# is a coherent Oz g(Z)-module by [17]. Let
C be the full subcategory of the category of coherent (F —).@EZVQ(Z)—modules consisting
of such .#. By [13, 4.4.12] and [15, 4.6.7] the specialization functors sp, and sp* induce
an equivalence between C and the category (F-)Isoc' (U, X/K). We will say that ./ is a
convergent (F-)isocrystal on % overconvergent along Z by abuse of language.

0.0.8. The shift of a complex ¥ will be denoted always by brackets €[d]. When
parenthesis appear, like € (i)[d], it means that all the terms of the complex are Tate
twisted i times; cf. 3.1.3 for a definition of Tate twist.

1. Stability theorem for characteristic cycles on curves

The definition of stable holonomic module 1.3.8 and the stability theorem 1.5.1 are the
goals of this section. Theorem 1.5.1 is needed to prove the product formula for holonomic
2"-modules with Frobenius structure on a curve over a finite field. Nevertheless, in this
section, we tried to state the theorems in the more possible generality: in particular, we
do not require k to be perfect, neither we assume the existence of a Frobenius structure
on 2" -modules. Even if we put Frobenius structures, we do not know if the proof of the
stability theorem could be simplified.

1.1. Review of microdifferential operators

We review the definitions and properties of the arithmetic microdifferential sheaves on
curves, which are going to be used extensively in this paper. For the general definitions
in higher dimensional settings and more details, see [3].

1.1.1. Let Z be a formal curve over R. We denote its special fibre by X. Let T*X
be the cotangent bundle of X and 7: T*X — X be the canonical projection. We put
T*X := T*X\s(X) where s: X — T*X denotes the zero section. Let m > 0 be an integer
and .# be a coherent 9( ") _module. One of the basic ideas of microlocalization is to
‘localize’ .# over T*X to make possible a more detailed analysis on .. For this, we

define step by step the sheaves of rings 6’)((':’), g; ), éla\(ggf )Q on the cotangent bundle.

Let i be a non-negative integer. Let us define éa)({l") first. For the detail of this
construction, see [3, 2.2, Remark 2.16]. There are mainly two types of rings of sections
of éo)((':” Let U be an open subset of T*X. If U Ns(X) is non empty, we get I'(U, é”}((:")) =

(7 (U Ns(X)), 9)(;’:)). Suppose that the intersection is empty. Let U’ := 7~ (7 (U))N
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T*X. Then the ring of sections of é"(m> on U is equal to that on U’, and the ring of these
sections is the ‘microlocalization’ of I'(7(U), & (m)) Let us describe locally the sections

rw, éa}((’im). Shrink 2 so that it possesses a global coordinate denoted by x. We denote
the corresponding differential operator by 8. There exists an integer N such that §{NP")m
is in the centre of @)(Z " Let S be the multiplicative system generated by 8VP" ) in 9)((’:1).

The positive filtration on I'(z(U’), @(m)), given by the order of differential operators,

induces a ring filtration, necessarily indexed by Z, on the localization S™!T"(z(U"), 9('"))

Thus the elements in S~!'T" (7 (U), 9)({7)) can have negative order, but they are ‘finite’ in

the sense that only finitely many negative powers of 3¥P")mm can appear in (the total
symbol of) each of them. We define

r', &) = (ST @W”), 2¢M)",

as the completion of this filtered ring with respect to negative order (see [3, 1.1.5] for our
conventions on the completion of a filtered ring).

Taking an inverse limit over i, we define &y £ The sections of & 5&”) can be described
concretely as follows. Let U be an open subset of T*X , and assume V := 7 (U) to be
affine. Let ¥ be the open formal subscheme sitting over V. Suppose moreover that ¥
possesses a global coordinate x, and we denote the corresponding differential operator by
d. For an integer k > 0, take the minimal 1nteger i such that k <ip™,andletl :=ip™ —k.
By the construction of & , the operator 3" )m in @( m) cons1dered as a sectlon of ;@\(m)
is invertible, and the inverse is denoted by 3{~%? ><m> Then we put 3¢k = gl <'">
a{=P")mm . By using [3, Example 2.13], we get

r(,&y) = {Zaka ) my

keZ

ay € 07/, hm ay = 0}

"(m)

Finally, by tensoring with Q, we define &,-'. One of the most important properties of

é@\g}')@ is that we get an equality for any coherent 724 ps Q—module A (cf. [3, Proposition
2.15))

Char™ (#) = Supp(}é")(@ ® _1@(171) L),

where Char™ denotes the characteristic variety of level m (cf. [16, 5.2.5]). The module

d;@\ég' )Q ®, 1 7w 4 is called the (naive) microlocalization of .# of level m. The ring

(gs(%)(@ is called the (naive) microdifferential operators of level m.

1.1.2. In the last paragraph, we fixed the level m to construct the ring of

microdifferential operators. However, to deal with microlocalizations of 2 z, -modules,
we need to change levels and see the asymptotic behaviour. The problem is that there

are no reasonable transition homomorphism (Z(o\(gf)(@ gé/" é for non-negative integers
m’ > m. To remedy this, we need to take an ‘intersection’. Let <§’ m = U (@m))n, where

nez
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( ))n denotes the sub-7~10 4--module of éa CODblbtlng of microdifferential operators

of order less than or equal to n, and put & g’ )Q =&y (m) ® Q. Then there exists a canonical
homomorphism ofn_loegy’(@—algebras Ymom' é’gf"()@ — éad(gg )Q sending 3D o g . We

define é";}"m/) = l/f_l /((o@(m)) ﬂé"(ml) By definition, g”\(;’m/) is the p-adic completion of
5%”'"/), and z;“’\(g'/"g) is g;(j" m') ® Q. When 2" possesses a global coordinate x, we may
write

l—w(ri-v* A(mm))_ Zaka akeo,,l Q’Zakak /\(/?"/"‘l()@7 Zakak /\(m)
keZ k<0 k=0

We note that the last condition } ad* e gggl(@ is equivalent to 3 ad* e :@(m)

Moreover, by construction of I'(T*X T%"(g ))7 the expansion ), a3 9% satisfying the

above conditions is unique, once the coordinate x is fixed (and so is 9). For an

integer k, we put (A(mm))k = A(mm)ﬂ(/\(m) k-

(;(,?(m L) é‘;(m ) and ;5('” D :5"\('" M) (cf. [3, Lemma 4.7]). We call these sheaves
the mtermedlate rings of mlcrodlﬁerentlal operators.
We also recall the following definitions,

We have canonical homomorphisms

9= Im EF. &ho= lm &7
’ ' too ’ m—+00

where the transition maps are induced by the canonical homomorphisms above, cf. [3,
4.11] for more details.

1.1.3. Now, let us explain the relation between the supports of the microlocalizations
of a @(m) -module with respect to intermediate rings and the characteristic variety. Let

Z be a formal curve as in the last paragraph, and let .# be a coherent @E,lm)(@—module.
One might expect that, for integers m” > m’ > m

5

Char(m>(9(m) ®j<m> M) = Supp(A(m ) @ L. (1.1.3.1)

_1(m)
T '@%,Q

This does not hold in general as we can see by the counter-example [3, 7.1]. However,
the statement holds for m’ large enough. The following is one of main results of [3].

Theorem ([3, Theorem 7.2]). There exists an integer N such that 1.1.8.1 holds for any
m’">m' > N.

1.2. Setup and preliminaries

1.2.1. In this paragraph, we introduce some situations and notation. In this paper,
especially in the first two sections, we often consider the following setting, which is called
Situation (L).

Let 2 be an affine formal curve over R. Recall the convention 0.0.4, especially
X; and X. Suppose that there exists a global coordinate x in I'(Z", O ) and
fix it. We denote the corresponding differential operator by a.
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If moreover we assume the following, we say we are in Situation (Ls).

Let s be a closed point in 2", and we fix it. We suppose that there exists a
local parameter at s denoted by ys; on 2 .

We use the following notation.

Notation. Let 2" be a formal curve over R, and % be an open affine formal subscheme
of Z°. We denote % ® R; by U; as usual. Let m’ > m be non-negative integers.

1. We put Z,/Q =T (U, &} ) Ey s =T (U, 65" T)) Emm) . p(fry

”,Q % .Q
’\(m m )) E(mm) F(T* ’\(mm)) (E(m m )) — F(T*U, (g;\(; m )) )’ Eé}r:l,m) —
F(T*U é”(’_” .
Let E be one of ET% O Eg/" 8, Eg/" 6) For a coherent @5’{ g module .7, we denote

by E Q5 A or E® ./ the E-module EQ®p .y 5m INC/)
7 NCRZN

Let x be a closed point in 2. Take a point &, in 7 ~!(x) which is not in the zero
section. Let & be one of sheaves of rings g“} ) é?(}'g), 5;(? (E or é’T 2.0 By the
construction of &, the fibre &, does not depend on the choice of &: and we denote it

by &. Let a pair (&7, &) be one of the four pairs (&™ ') }" "y (g(m m) A(m " )),

(é‘)(m 1) éa(m J’)) (é"TQ, ). For a coherent @(%m) or Qg?Q—module M we wrlte

&' ® Zm /// for (& ® _15m T ///)Ex~ This does not depend either on the choice
2

of &:. We warn the reader that even if & is complete with respect to some topology
we do not take the completion when we take the fibre at &;.

Moreover, assume that we are in Situation (L).

4. We denote by RZ{B}(’" ) the subring of E(m ") Wwhose elements are ‘horizontal

with respect to x’. More precisely, we define

Ry ()" = 1P = a,9" € EG™| Pok = 8k P for any k > 0
nez
We put Ko {9}"") := Ry {8}"™) @ Q and Ry, {9} := Ry {8} jor+!
We note that by the hypothesis of Situation (L), the coordinate x is fixed, and
so is a.

Remark. (i) Let & be a sheaf of rings on a topological space. Then an &-module

M is said to be globally finitely presented if there exist integers a,b > 0 and an
exact sequence &* — &% — .# — 0 on the topological space. By [3, Corollary 5.3],
when 2 is affine, there exists an equivalence of categories between the category of

globally finitely presented (?(m’m,) é?}" g )—modules) on T*X and that

of Ey E"™)_modules (resp. E ( Q —modules) We remind here that if there exists a

coherent @(m)—module A such that #Z = A(m ) ® A, then . is globally finitely

-modules (resp.
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presented, and the same for éo; 0 )_modules.

(ii) Let #: 7*X — X be the natural projection. A sheaf & on T*X is called conic
if the natural morphism # '#,& — & is an isomorphism. In partioular, the
support Supp(&’) of such a sheaf is a conic subset, i.e. if z € Supp(&) C T*X, then
#~1(#(2)) C Supp(&).

By construction the sheaves & of microdifferentials operators are conic (where &
stands for any of the sheaves d;‘;(; (g g Ey (m. D
clearly a local property, it follows that any coherent &-module is also conic.

, etc., introduced before). Since this is

(iii) Every element Q in the ring R%{a}(m"") can be written uniquely as Q =
>0 adlony 4 2 k>0 ad® e with g in a finite étale extension R(2) of R (cf.
1.3.5, 1.3.6), which coincides with R if and only if 2 is geometrically connected. The
rings K 4-{9}" ) and Ry, {9}mm) are subrings of E(m 6) and E;"l_l’m/) respectively.
We remind that they do depend on the choice of coordinate x, and in particular,
we are not able to globalize the construction.

1.2.2. Let Z be an affine formal curve over R and let E be one of the rings Eé’;""'),

Egg 6) or K 35-{8}(’”””,). We finish this subsection by introducing some useful topologies

on E and on finitely generated E-modules. Let us start with E(g?’ml).

For integers k,! > 0, we define a sub-R-module of E\gg’ml) by
Uk = (Egﬁ’m/)),k _I_wlgéng,m’).

I’E\%’m/) with the topology denoted by Zp where the base of neighbourhoods

E‘(m’m/)
v

We endow

of zero is given by the system {Uk i}k i>0. With this topology, E is a complete
topological ring. Let us see that it is complete with respect to this topology. Let {P;}
be a Cauchy sequence in E(ﬂnfm ). Then we may write P; = Q; + R; such that: for any

integers k and [, there exists an integer N such that Q, — Oy € (/E\g?’m/)),k and R, — Ry €
w!E %’m/) for any n > N. By the definition of the topology and the construction of the
ring E\gf' , the limits lim Q; and lim R; exist, and they are denoted by Q and R

i—00 i—00

respectively. Then we see that lim P; = Q 4+ R by definition.

1—> 00
Now, let us define topologies .7 and .7, for any integer n > 0 on E(m’m,). Let n > 0 be

an integer. For integers k,! > 0, we can consider @ ~"Uy; as a sub-R- module of E(} 6),

and we denote by 7, the topology on E%’Q generated by the open basis {&r ™" Uy 1}r.1>0-
This topology makes it a locally convex topological space, and moreover a Fréchet space
by [66, Théoreme 3.12]. The identity map (E(m ) . T — (E(g,"l 6), Th+1) is continuous
by construction. By taking the inductive limit (of locally convex spaces), we define a

£ m,m")

topology, denoted by .7, on E(m ™) Tt makes (E% Q ) an LF-space in the sense of [28,

3.1]. The separateness can be seen from the fact that the convex subset (E o glmm )) r+

E(m " Ei’;%) is open in the 7,-topology for any n and thus in the ﬁ—topology.
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m,m’) Z(m,m")

Let M be a finitely generate Eﬂf@ -module. We denote the (EJQ , Jp)-module
topology on M (cf. 0.0.2) by 7. Let us prove that the topology ., is separated.
Let ¢: (E(m m ))69“ — M be a surjective homomorphism, and put M’ := go((E(m o ))69“)

Consider the quotient topology on M’ using the topology % on E g;f ") 1t suffices to show
that M’ is separated. Indeed, take «, @’ € M such that a # o’. There exists an integer
i >n such that w'a, w'a’ € M'. If M’ is separated, there exists Uy, Uy such that
(wla+ eUr,))N (wia' + @(Up 1)) = 9. Since zzr_"Uk,l D @ "Uy,, we get the claim. Let
us show that M’ is separated. Since E%’m/) is a noetherian complete p-adic ring (cf. [3,
Proposition 4.12]), M’ is also p-adically complete, and in particular, p-adically separated.
Thus, it suffices to show that M’ ® R; is separated for any i > 0 using the quotient

topology 2 from M’. Consider the topology defined by the filtration by order on E;’:”m,).

The topology 2 coincides with the quotient topology via (Eg(r:”m,))@" — M’ ® R; induced

by ¢. Since Eg;’m/) is a noetherian complete filtered ring by [3, Proposition 4.9], we get
that M’ ® R; is separated, and thus the topology .7, on M is separated.

This shows that, Ker(¢) is a closed sub- (E%%), Jp)-module. Thus the topological
vector space (M,.7)) is a Fréchet space. Of course, the identity map (M,.7)) —
M, 7] +1) is continuous. We define the inductive limit topology (of locally convex spaces)
" on M, which is called the natural topology on M. If the natural topology is separated,
then (M, .7") is an LF-space. When it is separated, the open mapping theorem [28, 3.4]

Z(m,m’)

implies that (M, 7’) coincides with the (E 2.0 J)-module topology.

In the same way, we define topologies . and ., on K 3;;{8}(’””"/) and on finitely
generated K 2-{0}™)-modules when we are in Situation (L) of 1.2.1.

1.2.3 Lemma. Suppose we are in Situation (L) of 1.2.1. Let M be a finitely generated

/E\%’g)—module We assume that it is also finite as K{Qf{a}(m’m/)—module. Then the natural

topology as E£ Q ) _module and the natural topology as Kggf{a}(’"’m/)-module are equivalent.

In particular, if moreover M is a free Kgg-{a}(m’m/)-module, then the topologies are
separated, and M becomes an LF-space.

Proof. Let us see the equivalence. Let ¢: (K%-{a}(mv'"’))@“ — M be a surjection. This
surjection induces the surjection (E%i%/))@” — M, and the quotient topology (M, 7))
is defined. Let (M, .¥,) be the Fréchet topology defined using the surjection ¢ and the
(Kgg{a}“"»m’), “)-module structure, as done above in 1.2.2 for .. Since (M, 7)) is a
topological (K g{a}(m’m/),yn)—module by the definition, the homomorphism ¢ defines
a continuous surjective homomorphism of topological modules (K g-{3}™), .,)®4 —
(M, 7). By the open mapping theorem of Fréchet spaces, we see that this homomorphism
is strict, which implies that 7 and .7, are equivalent. The first claim follows by taking
the inductive limit over n. When M is free as a K %{3}(’”’”’/)—module, then it is obvious
that it is separated. O
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1.3. Relations between microlocalizations at different levels

In this subsection, we investigate the behaviour of microlocalizations when we raise
levels. In general, this is very difficult. However, once we know that the supports of
the microlocalizations are stable (cf. 1.3.8), the behaviour is very simple at least in the
case of a curve.

1.3.1 Lemma. Suppose we are in Situation (Ls) of 1.2.1. Let m’ > m be non-negative
integers, and I be a left ideal of E\gg’m); we put M := E;rg’m)/l, Let A be the
g”}"‘m,)—module associated with M (cf. Remark 1.2.1(1)) on T*X, and assume

Supp(#) =7 (s)NT*X.

Then for any integer k, there exists a positive integer N, R € E%’m/) and S € (E\fgf’m,))k
such that

ywW-_wR-Sel.

Proof. Since E %,m’) is a noetherian ring (cf. [3, Proposition 4.12]), there exist n operators

P; e I/Z\%’m/) fori =1,...,nsuch that I is generated by {P;}1<ign- Let Z = 2"\ {s}, and
U be its special fibre. Then by the assumption on the support, there exists Q; € Eﬁ;ml)
for each 1 <i < n, such that

> 0i-P=1 (1.3.1.1)

1<isn
For P € E(@’/"’m/)7 we denote by P the image of P in Eg"’m/), and define w-ord(P) :=
ord(P). We put u := max{w-ord(F;), 0}.
l
For any f € Oy, there exists an integer n such that y;" f € Oy where the overlines

denote the images in Oy or Oy, thus y! f € Og + @Oy . This shows that there exists
an integer N such that for any i =1, ..., n, we can write

yWoi =0 +@R +5;,

—~, ~

where Q) € Eg{l’m,), R; € E(é;”m/), and S; € (E{E;/"’ml))k_ﬂ. Then by 1.3.1.1, there exist R €
/E\,(,;/"’m/) and S’ € (E(%m’m/))k such that

W=>0j-P+oR+5.

Let us show that for any integer k’

-~

(m.m') (m.m") 0m.m") Amm') | Fm.m')
(@E, "™ +(E, " w)NEG"™ =wEy" +(E5" . (1.3.1.2)

It is evident that the right hand side is included in the left one, let us prove the
opposite inclusion. Take elements P € wf(%m’m) and Q € (E\%"’m ))k’ such that P+ Q €
Eg;’ml). Write P =}, .7 a,d" with a, € Oy @, and put Pop =), 1 a,3" and Pgy :=
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Zn<k/ a,d". Then we get P-yp € E( and in particular contained in E(m) N wfg;/"), which
is wkE J) thanks to uniqueness of the expansion ), _;a,0" considered in 1.1.2. By
assumption we have P+ Q € (Eg; " ))k/, which implies the equality 1.3.1.2.

Since yV =Y Q! P; € E\%’m,), we get, by using 1.3.1.2, that

o R +5 e wEp™) 4 (4" ).

Thus the lemma follows. U

1.3.2 Lemma. Suppose we are in Situation (Ls) of 1.2.1. Let m' > m be non-negative
integers, and A be a globally finitely presented gﬁ'f g ) module such that

Supp()NT*X =7~ (s)NT*X.

We denote T(T*X, #) by M. Then we have the following.

(i) The module M s finite over K%{a}wm’). Moreover, if it is monogenic as an
Eé?’g)—module, there exists a p-torsion free Eﬁ%’m ) _module M’', such that M' @ Q =
M, and M’ is finitely generated over Rgg{a}wm’),

(ii) There exists a finite set of elements in M such that for any open affine
neighbourhood W of s in X, T'(T*W, . #) is generated by these elements over
K%{B}(’"””/), If M is generated by a € M, then there exists an integer N > 0 such

that we can take this set to be {(xiyf)a}0<l. j<N

Proof. Let ./ be a coherent sub- g:(m m') -module of #. Let 4" be either A or A /N .
2.,Q
Then by the additivity of supports we know that

Supp(A#)N T*X =72 ' (s)NT*X or 0.

If it is @, then 47|z, =0, and in particular, N':= [(T*X, #/") =0 is finite over
K %{8}(’"””/). By induction on the number of generators of M, we reduce the verification
of both (i) and (ii) to the monogenic case.

From now on, we assume that M is a monogenic module. Fix a generator o« € M.

Let M’ be the sub—E%’m/)—module of M generated by a. Let I be the kernel of the
homomorphism /E\(m’m/) — M’ of left E\(m’m/)—modules sending one to . We note that,
by definition, M’ ® Q = M. Since M’ is p-torsion free, we get that Supp(}"é’)@M) =
Supp(é}" ) & M) where g;(m '")®M denotes the é?(m’m ) module associated with M
(which is equal to # by 1.2.1)7 and the same for é?fm " ) ® M’'. Thus by Lemma 1.3.1
for k = —1, there exists a positive integer N’ and T € wE%lm )+ (Ei;g'f " ))_1 such that
ySN "=T mod I.

To conclude, it suffices to show that M := E%’m,)/(yiv/ —T) is generated over
Rg,y{a}mm’) by 6 := {xi y~{}0<i,j<N where N := N’ +deg(s) since there is a surjection
M" — M’. Since M" and R2{9}"™) are w-adically complete and p-torsion free, the
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conditions of [18, II1.2.11, Proposition 14] are fulfiled, and thus, it suffices to see that
M" | is generated by & over R%{a}wm’)/w. It remains to show that Eg(m’m/)/(y}N/ —T)
is generated over RX{B}(”””’,) by &, where T € (ngm’m/))_l. Since E;m’m/)/(fsN/ —T) and
Rx{a}<"’~f"’> are complete with respect to the filtrations by order, it is enough to prove the
claim after taking gr by [18, II1.2.9, Proposition 12]. Since the order of T is less than zero,
this amounts to prove that the commutative algebra gr(E&m’m/)) /(N /) is generated over
RX0{8}(”””’/) by &. This is a straightforward verification which is left to the reader. [

1.3.3 Lemma. We assume that we are in Situation (L).

(i) Let m" > m. Then we have a canonical isomorphism

+1, ~
E(QO) KQV{B}(”H_I m)®1(x{a}<mm)Em6)

of bi-(K 2-{3}m+1h m') E(m " )) modules. Here the complete tensor product is taken
with respect to the p- adzc topology

(ii) Let m’ = m. Then we have a canonical isomorphism

om,m’) ~ mmYasf (m,m’+1)
E?f = R {9} ®R%{a}(m,m’+l) Z

of bi- (Rgf{a}(mm E(mm+l)) modules. Here the complete tensor product &' is
taken with respect to the filtration by order.

(iil) Let m" > m. For any i > 0, we have a canonical isomorphism

(mm),\, mmYaf (mm+l)
E R {a} ® {3}(»1 m’+1) E

of bi-(Rx, {9} m') E(m o +1)) modules. Here the complete tensor product is taken
with respect to the ﬁltmtzon by order.

Proof. Let us see (i). There exists a canonical homomorphism

(p E(g’;g)—)[{f{a}(m-‘r]m)@ d}(mm (grg‘g)’

sending P to 1 ® P. For short, we denote I'(Z", éa}? H‘m,)) by E, which is considered to
be a subring of E[ Q/) using the canonical inclusion. We know that E® Q= E%E )
where ” denotes the p-adic completion. The image ¢(E) is contained in the image
of RJ-{S}(’”H’m/)@R {d}(mm/)/E\(m’m/) Indeed, let P € E. We denote I'(2, @(mﬂ)) by
D(mH). Then we may write P = P>o+ P~o where P>0 € D(mH) and P.oe E_| C
E(g'gf'm) For Pyp € D( mtl ), we can write Pxo=)_; >08 i) q; where a; € ©g-. Since

this is a finite sum, 1® P> is the image of ), >0 94+ ®a;, and the claim follows.
This implies that the homomorphism ¢ induces the canonical homomorphism

+1,
E%n@m) N Kﬁ,{a}(m+1m)®K%{a}(’nm,)E%g)
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On the other hand, we have the canonical homomorphism

(m+1,m") 3 mm) S(m+1,m')
Vi Ko TRy e GG > BT

To conclude the proof, it suffices to show that wofﬁ: id, ?;701// =id. Since ¥ and
¢ are continuous, to see the former equality, it suffices to verify the identity on E,
which is obvious. Let A := K{gﬁ{a}(’”“””/) NE C /E\%H’m,). To check the latter equality,
it suffices to see after restricting to Im(A ®z E\%’m/) — K%-{a}(m+1’m/>®fg’%/)). Since
this is straightforward, we leave the argument to the reader. ’

Now let us prove (ii). We have a canonical homomorphism

m,mYaf =(m,m'+1) =(m,m")
w Ry {9} ® a (o)’ +1)E£” - E%’ :

On the other hand, we also have the homomorphism

~(m,m'+1 1
L: E'(%}'m—’— ) - Rj{'{ }(mm)®R%{a}(rnm+l)Emm+ )
sending P to 1® P. Since 1/IOL is the canonical inclusion, we get that ¢ is injective.
The target B := Rx{a}( m )®R (9)mam’ H)E(m m'+1) of ¢ is filtered by the tensor product
filtration [51, p. 57] denoted by {B }. Let n <0, and take S:=)"; P, ® Q; in B,. Then

there exists f € O 4 such that

> Pi®Q;=9"0"® f mod B,_i.
1
Suppose S & B,—1. Then f #0. There exists an integer N such that pNB(")(m/) €
Ry {3}mm+D Thus for N’ > N, we get pV'S=1® (p¥ 9" w)). f mod B,_;. If 1®
(PN 3oy . f € Byy, we would get ¥ ou((pN'a™en). £y e (EG™),_y, which is
impossible. Thus, we get 1®(pN,8<"><m/>) - f ¢ By—1. This shows that pN/S ¢ B,_; for
any large enough N’. Thus, gr(Rg{&}(m'ml)QZ)R%{3}(,,,‘,,,/4,.)%3(;’"1/“)) is p-torsion free. In
particular, the canonical homomorphism

. mm oS 2(m,m'+1) mmaf 2(m,m’+1)
L: R%{a} e ®R%{3}(m,m’+l)g.%/ - (R%‘{a} " ®R‘§g{3}(mam/+l)g% )®Q

is injective.
Now, let E[grg’m] = przlm,(/E\(Qm/m)) where o m ng’g“) — E(m ™) is the canonical

Z,Q
inclusion (cf. [3, 5.4]). Consider the following diagram.

,m’ J , - |
B e Ry VR, S 00
Ti
. mhyaSf A(mm+1)
Ry (0} mOBL i B

Let us construct the dotted arrow making the diagram commutative. It suffices to see
that Im(j) C Im(). Let P =) ;, *ay € E%,mj where ay € Og- . Since there exists
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an integer N such that j(p" - P) € Im(i), it suffices to show that j(8*ay) € Im(i) for any
integer k, which is easy. Thus j induces the canonical homomorphism
[m,m'] g mmYSf Z(m,m'+1)
Ejtlf - Rﬁﬁ/ {8} ®R%{3}(m.m’+l)E%
of filtered rings since i is injective. By taking the completion with respect to the filtration
by order, we get the canonical homomorphism
~_ 7(m,m’) mm"YSf (m,m’+1)
@: Eyp ' — Ry {0} ®R%{3}(m.m’+l)E% .
We see easily that $o ¥ = id, ¥ 0@ = id as in the proof of (i), which concludes the proof.
Let us see (iii). The above argument shows that B/B, is p-torsion free for any n € Z.
Since B/By, is p-torsion free and the inverse system {B/B,}, satisfies the Mittag-Leffler
condition, we get (1<iLn B/B,) ® R; = l(gn (B/B, ® R;) for any i. Let B be the completion
n n
with respect to the filtration by order. We get

B® R; = (lim B/B,) ® R; = lim(B/B, ® R;)

n n
~1 ) ~ mm)af (m,m’+1)
_l(ll_n((B®Rl)/Im(Bn)) - RXl{a} " ®RX1{3}(»1,m/+1)EX,' :
n
By using (ii), the claim follows. d

1.3.4 Lemma. Let 2 be a smooth formal curve over R, and w: T*X — X as usual. Then

the algebra 3\(3;16) is flat over n_lﬁé??@,

Proof. By [3, Corollary 2.9] and [13, 3.5.3], we know that ggf/()@ is flat over ﬂ_lggf)@. Tt
—1

Z—15m ,
suffices to show that Tor, Z.Q (é@\(m’m)

20 o) = 0. This amounts to prove

7 DF 0 'y S
Tor, (é”%’(@/éa%v,@ ,e) =0
by the flatness of g;(; /(6. However, by [3, Corollary 5.10 and Lemma 7.8], this is equivalent
to showing that
—1

T “@(5?@ —15m" , >0m)
Tor, 4 ‘@,%',Q/Q%,Q*'):O*

which follows from the flatness of @\(gxml?@ over @(gxm)@ 0

Remark. We do not know if géf ’6/) is flat over @%)Q when the dimension of 2" is greater

than one and m’ > m.

1.3.5. Let 2 be a connected smooth formal scheme over R. Let n be the generic point
of 2, and denote by R(Z") the integral closure of R in the field Oy ;. The ring R(Z) is
a discrete valuation ring as well since it is finite over R and connected. Thus by [37, IV,
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17.7.7], R(X) is étale over R. Moreover R(Z")/w is the separable closure of k in O ,, and
K is geometrically connected over R(Z") by [37, II, 4.5.15]. Put K(2) := R(Z)®Q.
This is an unramified field extension of K. The field K(Z") is called the field of constants
of Z . The reason for this naming comes from the next lemma.

Lemma. Suppose Z is affine and possesses a system of global coordinates {xi, ..., xq}.
We denote the corresponding differential operators by {91, ..., d4}. Then we get

K2 ={feOgqlai(f)=0for 1 <i<d}

Proof. For this, we may assume that R = R(Z"). There exists a finite étale extension R’
of R such that R’ is a discrete valuation ring and 2" := 2" ®x R’ has a R’-rational point.
Note that 2" is also connected and K(Z”) = R'® Q. By Galois descent, it suffices to
show the lemma for 2. In this case the lemma follows from [37, IV, 17.5.3]. g

1.3.6. Let L be a finite field extension of K. Let I be a connected interval in Rxg.
We denote by Ay (1) the ring of analytic functions {ZieZ aix' |aj € L, ' liil loj | pf =
1—> 00

0 for any p € I}. For short, we often denote this by A(I). For real numbers 0 < a < b <
00, we put

Avr(a, bD) = {Za,-xf

i€eZ

o €L, sup{lai|ai} < o0, lim |ai|bi =07.
ieZ i—+400

Similarly, we define Ay 1 ([a, b}). For a series f(x) =) ;.5 a;x" in A,z ({a, b)) and a real
number ¢ € [a, b], we put | f(x)|; := supiez{|ai| ci} e R.

Let wpy := p~V/P"@=D <1 and w := wg. Note that if m’ > m, we get & < w/wy <
w/wp < 1. Then by the definition of K {9} mm") e get the following explicit description.

Lemma. Suppose we are in Situation (L) of 1.2.1. Let L be the field of constants of Z .
Then for any non-negative integers m’ > m, we have an isomorphism

Ko (0} 5 A (00w, ©/om))

sending 0 to x.

1.3.7.  We follow the notation of 1.3.6. Let f := ", a,x" € Ay 1(la, b]) and set I :=

[ log, (b), — logp(a)[, where log), is the logarithm to base p. As in [47, Definition 8.2.1]

we define the function v(f),: I = R, p > —log,(|f|,-») = ing{vp(otn) —i—n,o}, where v,
ne

denotes the valuation of L normalized by v,(p) = 1. If f belongs to A, 1 ({a, b]), v(f) is
defined also at —log,(a). The following lemma generalize [47, Proposition 8.3.2] to the

ring1 Ay (a, b]).

Lemma. Assumea < b € IEXL For every f in Ay r({a, b]), we have the following:

(1) The number of slopes of the graph of the function v(f), is finite.

Un [47] A, 1 (a, b)) is denoted by Lla/x, x/b)y or Lb~'/t,t/a= T with r = x~1.
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(ii) (Weierstrass preparation) There exists P € L[x] and g € Ay r({a, b))* such that
f = Pg.
Moreover, the ring Ax.1({a, b]) is a principal ideal domain and, if a = b, it is a field.

Proof. Let us show (i). Since a, b € |K| and v(f), does not change under extensions of
L, we may assume a,b € |L|. Take y € L such that |y| = a. Changing the coordinate
from x to yx, we get v(f(yx))p = v(f(x))atp and f(yx) € A, ({1, b/al), so we may
assume a = 1. It is enough to prove that the number of slopes of v(f), is finite in a
left neighbourhood of —log,(a) = 0. The valuation of L is discrete, so there exists an
integer ng such that v, (ag,) = nirelg{vp(a,,)} = v(f)o. On the other hand, take ¢ € 11, b[,

and denote p. := —log[,(c) < 0. Take an integer N such that v,(ay)+Npo. =v(f)p,-
Then we have

vp(OlN) = vp(‘xno) P vp(“N)"'pc - (N —ny),

where the first (resp. second) inequality holds by the definition of ng (resp. N). This
implies that ng < N, which concludes the proof of (i).

Thanks to (i), the Newton polygon of f (see [47, 8.2.2] for the definition) also has a
finite number of slopes by [47, Remark 2.1.7 and proof of Proposition 8.2.3]. Therefore,
the proof of (ii) goes exactly as in Proposition 8.3.2 of [47] by using Proposition 8.3.1. The
rest of the proof is now classical: by Weierstrass preparation, every ideal of A, 1 ({a, b])
is spanned by polynomials in L[x], and hence principal. Finally, if a = b, it is enough
to show that every non zero polynomial in L[x] is invertible in A, 1 ({a, a]). By a finite
extension of L, we can reduce to checking this for degree one polynomials, which is
straightforward recalling that A, 1 ({a, a]) is a Banach space with respect to |- |4, cf. [47,
Proposition 8.2.5]. O

Remark. The above lemma (i) and (ii) are stated in [47, Chapter 8, Exercise (4)], but
we point out that they are not true for general a, b € R. Indeed, take a such that log,(a)
is a Liouville number in R. Then, we can take a series f(x) =), ., anx" € Ax,@p({a, b))
such that the infimum —logp(|f(x)|a) = igg{vp(an) —nlogp(a)} cannot be attained by

any n (e.g. log,(a) := :28 107, b >a, and f(x):= D w0 tnx", with o, = p[”logp(aﬂ
for n < 0). By construction, the graph of v(f), has infinitely many slopes approaching
—log,(a) on the left.

For similar reasons it is also necessary that the valuation of L be discrete, as stated
in [47, Remark 8.2.4].

Corollary. Suppose we are in Situation (L). For any non-negative integers m’ > m, the
commutative ring K{gg{a}(m’m” is a principal ideal domain. Moreover, K 9-{3}"™ is a field.

Proof. Let L be the field of constants of 2". Apply Lemmas 1.3.6 and 1.3.7. (|

By this corollary, we get that any finitely generated K‘gg{a}(’"’m/)—module with a
connection is a free Kgg‘{a}(’"’m/)—module by [24, Corollaire 4.3].
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1.3.8. Let 2 be a formal curve, and .# be a coherent @%)Q—module. We say that .Z
is holonomic if the dimension of Char™ (.#) is one or if .# = 0. For an integer m’ > m,
let /™) = @(m ) ®//{ We say . is stable if for any m” > m’ > m, we have

é’a\(m m’ )®

Supp(€y- 0 n~ ' #) = Char™ ().

n—@g;{@
In particular, we have Char(m/)(/// (’”/)) = Char (.#). By Theorem 1.1.3, any coherent
@(m) -module is stable after raising the level sufficiently. We say that a point s € X is a

smgular point of A if 1" (s) C Char™ (.#). From now on, to avoid too heavy notation,
we sometimes denote Char™ just by Char. For a coherent @Ef Q-module M , there exists

a stable coherent 9( ) —module A’ for some m such that @1 2.0 Q' = 4. We define

Char(#) := Char(’")(/// ), and we say that .# is holonomic if .#" is. We deﬁne the set of
singular points of .# as that of .#’. Note that when .# is a coherent F- @%,Q module
(cf. 3.1.1), the definition of holonomicity is equivalent to that of Berthelot as written
in [3, Corollary 7.5]. For the later use, we remind here the following lemma.

1.3.9 Lemma. Suppose we are in Situation (L) of 1.2.1. Let .# be a monogenic stable
holonomic @( m) -module, and o € T(Z", #) be a generator. Let S be the set of singular
points of M . Take s €8, and let yy be a local pammeter of Og 5. Then for any mtegers

m” >m' > m, there exists an integer N such that {x'y] alogi,j<N generate (éay Q m") ®
Mg over K g {9} -m”

Proof. We may shrink 2" so that we are in Situation (Ls) and S = {s}. Then this is just
a direct consequence of Lemma 1.3.2(ii). d
1.3.10. In this paragraph, we consider Situation (L) of 1.2.1 and we follow the notation
fixed there. Let .# be a stable holonomic @%)Q—module and s be a closed point of
% such that Char(.#) D nfl(s). We consider then é/i(%’m/)—module éa;(%’m/) ® Zm M (cf.
Notation 1.2.1.3). It can be seen as a K {9} ™) _module. When we are especially

interested in this K gg-{a}(m'm,)—module structure, we denote this module by ;‘i(gm/)(//l ).
We caution here that this definition is only for this section, and from 2.4.2.1, we use the
same notation for a slightly different object. In the same way, for a :@(m) module .Z’, we

put g;(m " )(///’) = A(m ') ® Gom A" and the same for 9( )-modules etc.

By the condition on the characteristic variety and Lemma 1.3.9, we get that é/i(?é’ml) (A)

is finitely generated over K 4-{3}"™") . Let L be the field of constants of 2". We have the
isomorphism of Lemma 1.3.6

AU = A L(ofop, ofon)) = Kz {0}
sending x’ to 9. We consider & A(m " )(j/ ) as a finitely generated A(m ™) _module using this
isomorphism, and equip it Wlth the following connection: for o € (;@;(6’" )(/// ), we put

V() = (—xa) @ dx’.
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Lemma. The .A(m ™) _module ;5('” - k///) 1s finite free and V is a connection. We denote
its rank by rk(;(i(,’?@m ().

Proof. Let us check that V defines a connection. The additivity is evident and Leibniz
rule follows from the relation 9 - (—x) +1 = (—x) - 9 in the ring of microdifferentials. The

A(m ) _module & A(m’m/)(/// ) is finitely generated by Lemma 1.3.9, and it is endowed with
a connection, hence it is torsion free by [28, 6.1]. Since the ring A( m) = K%{B}(’”’m/) is
principal by Lemma 1.3.7, it follows that T%m ) () is finite free. O

1.3.11 Proposition. Suppose we are in Situation (L) of 1.2.1. Let .# be a stable holonomic
@g;-)@—module. Let S be the set of singular points of M .

(i) For an integer m’ > m and s € S, we get an isomorphism

B @ B (M) = K9}

N a0 ).

K g {9} 0m-m")

In particular, rk(%%’m/)(%)) = rk(g(lm+]’m/)(///)).

(ii) Form' > m and s € S, we get an isomorphism

s 1 ~ ! m'+1
é/i(’%m)®£y(m m'+1) (/g@:(?ém + )(%) = K%{a}(m’m ) ®K%{a}(m,m/+l) go\(%m + )(%)

S,

In particular, rk(cg’ mm H)(///)) rk(ﬁm’ml)(///)),

Proof. Let us see (i). Let % be an open affine neighbourhood of s such that SN % = {s}.

We put M’ := I'(T*U, z?(m g g ® .#), where U denotes the special fibre of % . Since tensor
products commute with dlrect limits, it suffices to show that

Sim4+-1,m") I~ (m+1,m") /
Eua™ ®ggm M =Ka(0) "B g pyonmn M
By Lemma 1.3.3(i), we get

E(W?E m)®A<mm> MINE(mH m)®A<mm)M

= (K y (9} )®K% o Egs ))®Egj{g)M
~ l 7y~
>~ K%{a}(rrw Jm )®K%{a}(m,m’)M/

~ Kl%,{&}(m-ﬁ—l,m )®K%{a}(m,m/)M/-

The last isomorphism follows from the fact that & A(m " )(% ) is finite over K 4-{9}"™ ')

Since moreover 33:(6 " )(% ) is free over K -{3}("™ ), the claim for the rank follows from

the preceding isomorphism.

Let us prove (ii). Since we know that Cop Qm is flat over gg(%m U by [3, Theorem 5.12],
we may suppose that .# is a monogenic module using an extension argument. Let %
be an open affine neighbourhood of s such that SN% = {s}, and U be its special fibre.
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As in the proof of (i), it suffices to show the claim over % . By using Lemma 1.3.2, there
exists a p-torsion free E(é/"m *D_module M’ such that I'(T*%, g"\(éfg Ve a)y=mMeQ

and which is finitely generated as an R{3}m-m'+D_module. Now, we get

=(m,m’) )~ (m,m’) , ’
E% ®E§z.m’+1) M= LliLIlEUI, ®Ez(7-”n +ny M;
~ (m.m) s f
hmE e (mm+1)M/ (1.3.11.1)
Indeed, the first isomorphism holds since E,, Emm) ® M’ is p-adically complete. To check
the second isomorphism, take a good ﬁltratlon on M!. The tensor filtration is good

by [51, Chapter I, Lemma 6.15]. Thus Eg” m)®E(m1m/+1> M] is complete by [51, Chapter
1 U,

IT, Theorem 10] since E( is a noetherian filtered complete ring by [3, Proposition
4.9]. Now by Lemma 1.3. 3(111) we get

E(mm)®f =~ Ry {8}(mm)®f

(m m/+1) {a}(m m+I)M

by the same calculation as in the proof of (i). (For careful readers, we note here that the
same statement of [19, 2.1.7/6,7] holds for filtered rings by exactly the same arguments.
The detail is left to the reader.) Thus by the same calculation as 1.3.11.1, we get

o~

E(m m)®A(mm+l) M = Rl{a}(m m)®Rx{3 (o’ +1) M.

By tensoring with Q, we get what we wanted. O

1.4. Characteristic cycles and microlocalizations

We will see how we can compute the multiplicities of holonomic modules from its
microlocalizations. In general, it is very difficult to calculate the characteristic cycles in
terms of intermediate microlocalizations. However, the construction of the rings of naive
microdifferential operators are simple and formal, and we can calculate the multiplicities
easier.

1.4.1. For a graded ring (A, F;A);cz and a finite graded A-module (M, F;M);cy, the
graded length of M is the length of M in the category of graded A-modules, and we
denote it by g.lg,(M). When glg,(M) = 1, we say that M is gr-simple. We say that A
is gr-Artinian if g.lg,(A) < oo.

Let A be a positively graded commutative ring, and M be a finite graded A-module.
Let p € Proj(A), and

Sp = {1}V {f € A\ Ag | f is a homogeneous element which is not contained in p}.

We denote by Ay the localization S,;l A, and S';] M by My. We note that since Sy, consists
of homogeneous elements, these are respectively a graded ring and a graded module. Let
X := Spec(Ap), V := Spec(A), P := Proj(A). The schemes V and P are schemes over X,
and there exists a canonical section s: X — V. We put V=V \ s(X). Let us denote by
q: V — P the canonical surjection defined in [37, I, 8.3]. Now we get the following.
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Lemma. Let ]\71(*) =B,z M(n) be the quasi-coherent Op-module associated with M.
Let p be a generic point of Supp(M (%)) C P, and q be a generic point of the fibre g~ (p).
Then we get

glg; (Mz) =gy, (My).

Proof. By [37, II, 8.3.6], we get that the fibre of ¢ at p is f: Spec(Ap) — Spec(A(y)), and
Ag is (non—carionically) isomorphic to Ap)lt, t~!1. This implies that qAy = pAj. Since
f«((M5)™) = M (%), the support of the sheaf (M§)™ in Spec(Ap) is contained in V (p), and
there exists an integer n such that p" My = 0. Thus My is a graded Ag/App"-module.
Let N be a graded Ag/App"-module such that N # 0. Then Ny # 0 by the definition of
Ag. This shows that given a chain 0 C Ny C --- € N; = My of graded sub-Ag-modules,
we can attach a chain 0 C (N1)q € --- € (N))q = Mg of sub-Ag-modules. Thus we see
that g.lgAE (Mp) < lgAq (M). To see the opposite inequality, it suffices to show that given
a Ag/p"-module N such that g.lgAE (N) =1 then lg/,Aq (Ng) = 1. Since Ag/p is the only
gr-simple Ag/p"-module, it suffices to show that 1g(A4 ®ay (A5/p)) = 1, which follows by
the fact that qAy = pAj. O

1.4.2. Let A be a noetherian filtered ring, and M be a finite A-module. Let F be
a good filtration on M. Then consider g.18gr(4)(gr(M)). Exactly as in the classical way
(e.g. [20, A.IIL.3.23]), we are able to show that this does not depend on the choice of
good filtrations. Recall that we say an increasingly filtered ring (A, F;A);cz is Zariskian
if it is noetherian filtered and F_; A is contained in the Jacobson radical J(FpA) of FyA.

Example. The field A = k[[r~']|[¢] of formal Laurent series in t~! is Zariskian, filtered by
the filtration given by the degree in . We have gr(A) = k[t~!, ¢], which is gr-Artinian, of
graded length one, and Ig,(A) = g.lggr(A)(gr(A)) =1.

Lemma. Let A be a Zariskian filtered ring such that gr(A) is a gr-Artinian ring. Suppose
moreover that 1g,4(A) is finite and

lg4(A) = g.lggr(A) (gr(A)).
Then for any good filtered A-module (M, M;);c7, we get
lgA (M) = g'lggr(A) (gr(M)).

Proof. First, let (M, M;);cz, be a good filtered A-module and take a sequence of
sub-A-modules

MO>MD D...oMD =0,

We equip M® with the induced filtration. These filtrations are good by [51, Chapter II,
2.1.2] since A is a Zariskian filtered ring. Since the filtration on M® /M *+1 is good and
A is a Zariskian filtered ring, the filtration is separated, and gr(M® /M*+D) £ 0. Thus
we get the strictly decreasing sequence

gr(M) 2 gr(MD) 2 -+ 2 er(M?) = 0.
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This shows that lg, (M) <g.lggr(A)(gr(M)). It suffices to show that if (N, N;) is a
good filtered A-module such that N is a simple A-module, then gr(N) is a gr-simple
gr(A)-module.

Let

A=192M>...21D =90
be a composition series. The hypothesis and the above observation imply that
er(A) 2gr D) 2 2ar(1?) =0

is also a composition series in the category of graded modules. Since any simple graded
A-module is appearing in the series, we get that for any simple A-module N, there exists
a good filtration on N such that the gr(A)-module gr(N) is gr-simple. Indeed, there
exists 0 < k < [ such that N = 1% /1&+D We put the good filtration induced by that of
10 /1*+D on N. Then since gr(1® /1%+D) is a gr-simple gr(A)-module, we get the claim.
Since for any good filtrations F' and G on N, we know that grp(N) and gr;(N) have the
same gr-length, we get that gr(N) is gr-simple for any good filtration. This concludes the
proof of the lemma. O

1.4.3. Let us consider Situation (L) of 1.2.1. Recall the notation of 1.3.10. Let .# be a
holonomic @;’;’)Q—module (not necessarily stable). Let Cycl(’”) (M)= jcgms- = )]+
r-[X] be the characteristic cycle of .# (cf. [2, 2.1.17]). We note that, by construction,
Cycl™ is additive with respect to short exact sequences of @(m) -modules. The integer

my is called the vertical multiplicity of .# at s and the integer r is called the generic rank
(or horizontal multiplicity) of A .

Proposition. We get
p" kg, <m>(5" () = deg; (s) - my,

where L :== K(Z') and deg; (s) := deg(s) - [L : K171

Proof. We may assume that A is a monogenic module by an extension argument

using the flatness of co@x ‘g over n’l@%)(@, cf. Lemma 1.3.4. Let .#’ be a monogenic

.@(ﬁ/m)—module without p-torsion such that .’ ® Q = .#. Since é’gf" ) is flat over .@gf) by

[3, Proposition 2.8(ii)], we note that E™ (') is also p-torsion free. Let L{3P")m}© he
the subring of K 9-{8}" topologically generated by 3tEP")m over L. Then we get

"otk {6}(”’)( ,Q o)) = rk P m) y(0) (f?s(,m)(///))-

We know that g;(m)(///,) is ﬁnite over Ry{3}™ by Lemma 1.3. 2 and in particular,
finite over Rz {371} .= L{3P")m}O N R 5 {3} Since Ry {3P")m}© is a discrete
valuation ring whose uniformizer is @ and &, As(m)(//l "y is p-torsion free, we get that
éa;(m)(////) is free over Ry {9P")m}© Thus, we get
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kom0 Goy ) = 1R ) 0 (B ()

— deg(L/K) L. (EM (M [w)).

k[[a - Y q[a (m)]

Here k[[8—P")en [P ) ] is considered as a subring of Ry {3P" Jm}O) /gy Tt is the ring
given in Example 1.4.2, with 7 := 97" m | so it satisfies the hypotheses of Lemma 1.4.2.
Now, we put A := .#’'/w. Take a good filtration F, of 4. Let & be the generic point of
the fibre 7! (s). Then (grf (4)), is an Artinian (Opmx)e,-module. Note that &"™ (4
possesses a natural filtration induced by the good filtration of A4 (cf. [3, 1.6] or [49,
A.3.2.4]). Thus, we get

s = 120,40 05, @ (N6 = 2l oo | (@™ (D)

by using Lemma 1.4.1. Since the injection Oy [ EP"m ] gr(éa)((f"g)s) induces the
isomorphism Oy ¢[£FP"m] S (gr(é’)((”g))red where £ (EP")m denotes the class of §(EP" ) m

())’

in gr(&y we get

S N (700 -8 RN (I IO ))

= (deg(s) ™" - glgy i ((E (A))).

By using Lemma 1.4.2, we get the proposition. t

1.5. Stability theorem

We summarize what we have got, and obtain the following characteristic cycle version of
Theorem 1.1.3, which is one of the main theorems of this paper. Recall the notation of
paragraph 1.3.10.

1.5.1 Theorem (Stability Theorem for Curves). Let 2" be an affine formal curve over R

in Situation (L) of 1.2.1, and .# be a stable holonomic @;)Q—module Let S be the set

of singular points of ./ , and suppose that .| 9 \s is a convergent isocrystal. Let r be the
generic rank of M .

(i) For anym” > m’' = m, we get
rngbr{a}("”( (///)) =1kg , (700 m”>( )(///)) =1kg , ()00 >( (///))
This number is denoted by ry.

(if) For any m' > m, we get

Cyc1<m>(9"”) D0 M) =r-[X]+p" [K(Z) K1Y deg(s)™ - ry - [77(9)].

seS

Proof. Since .# is stable, we get for any m” > m’ > m,
k(@& () = k(@™ (M) = K(@E'Y ()
by Proposition 1.3.11. Thus (i) follows.
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Let us see (ii). For this, the vertical multiplicities are the only problem. By Proposition
1.4.3, we get for any m’ > m
Ptk oy (B ) () = deg(s) - [K(2) : K171 my (™).
Thus combining with (i), we get (ii). O

1.5.2. Thanks to Theorem 1.5.1 we can now define the characteristic cycles of holonomic
@;2{ Q—modules and prove Corollary 1.5.3. In fact, these have already been defined and

proven for the category of holonomic F—@;{YQ—modules, cf. [16, 5.4.1 and 5.4.3(ii)]. See
also 3.1.1 for the definition of Frobenius structure. In [16] Berthelot used his Frobenius
descent theorem, and we are able to generalize his definition by using the stability theorem
as follows:

Definition. Let 2" be a formal curve, and let .# be a holonomic @EK Q-module. Take

a stable coherent @O%")Q—module A" such that @;Z” 0 QM = #. Let S be the set of
singular points of .#. We define

Cycl(#) =r-[X]+[K(Z): K]- Y deg(s) " -ry-[x~ (9)],

ses

where r is the generic rank of .#’, and r; := rk(cg”:,(%) (///)) € N, which do not depend on
the choice of .#’ by Theorem 1.5.1.

Remark. (i) When .# possesses a Frobenius structure, the characteristic cycle here
coincides with that of Berthelot [16, 5.4.2] (or [2, 2.3.13]).

(ii) By Theorem 1.5.1(ii) and 1.4.3, Cycl is additive with respect to short exact
sequences of holonomic @j@ Q—modules.

(iii) The characteristic cycle has integral coefficients. To prove this we may first assume
that 2" is geometrically connected, indeed Cycl(.#') does not change if we consider
Z as a smooth formal scheme over Spf(R(Z")). Secondly we note that if we base
change 2 by a finite extension, the multiplicities ¢ do not change by construction.
Thus, we may assume that S is rational over K and the integrality of Cycl(.#) is
evident.

1.5.3 Corollary. Let 2 be a formal curve over R. The category of holonomic
.@T% Q—modules is both noetherian and artinian.

Proof. The argument of the proof is the same as that of [16, 5.4.3 (ii)]. We recall
it for the convenience of the reader. We can prove the ascending chain condition as
follows: let (A, C .#),eN be an ascending filtration by holonomic sub-modules. We may
assume .# # 0. The support of Cycl(.#) has dimension one because .# is holonomic.
By additivity of Cycl (cf. Remark 1.5.2(ii)), we have, for all n,

Cycl(a) = Cycl(ato) + Y _ Cycl(tl; | M) + Cycl (M | 4r).

i=1
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Since T*X is a noetherian space and the coefficients (r and ry) appearing in Cycl(.#)
belong to N, we get, for n big enough, Cycl(.#,,/ #,—1) = 0; therefore .4, = M,—1. We
can prove the descending chain condition in a similar way. O

2. Local Fourier transform

The aim of this section is to define the local Fourier transform. We note that the definition
itself is not difficult anymore thanks to works of Huyghe and Matsuda: we can take the
canonical extension, the geometric Fourier transform, and take the differential module
around oo as presented in [31, 8.3]. However, with this definition, we are not able to prove
the stationary phase formula in the way used in the complex case. In this section, we
instead define the local Fourier transform using microlocalizations following the classical
techniques, and prove some basic properties.

2.1. Local theory of arithmetic Z-modules

Since the main goal of this paper (Theorem 7.2.5) is to prove a theorem connecting
local and global invariants, it is indispensable to work in local situations. In the £-adic
case, this was the theory of étale sheaves on traits, in other words Galois representations
of local fields. In our setting, the theory of arithmetic Z-modules on a formal disk by
Crew [30, 31], which can be seen as a generalization of the theory of solvable p-adic
differential equations, should be the corresponding theory. We briefly review the theory
in this subsection.

2.1.1. Let R, k, K be as usual (cf. 0.0.4). We recall that @ denotes a uniformizer of R.
The field k& will be assumed perfect in all section 2, with exception of 2.1.1-2.1.3 and 2.2.
Denote by W (k) a Cohen ring with residue field k (ring of Witt vectors if k is perfect).
For any commutative local ring A, we will denote by my4 (or m) its maximal ideal. If A
is an I-adic ring, for an ideal I of A, we will denote it by (A, I) when we want to specify
the ideal of definition explicitly.

Let (A, m) be a two-dimensional formally smooth local noetherian R-algebra complete
with respect to the m-adic topology, such that p € m, whose residue field kg4 is finite over
k. In this situation, A is complete with respect to the p-adic topology by [37, O, 7.2.4].
Let R4 be the normalization of R inside A, and K4 := Fr(R4). Note that R4 is a discrete
valuation ring. Now we get the following.

Lemma. The R-algebra A is isomorphic to R4[[t]]-

Proof. By [37, Orv, 19.6.5], we get A/w A = k[[¢]l. Moreover, the ring R4[[¢] is a complete
noetherian local ring, formally smooth over R, such that its reduction over k is isomorphic
to A/ A. Thus by [37, Ory, 19.7.2], we get the lemma. O

The situation we have in mind is the following: the R-algebra A is the completion
(/9\1%”’)6 of the local ring O g , of a formal curve 2" at a closed point x, with respect to
the filtration by the powers of its maximal ideal, denoted by mg- .. In this case we put
ky == k@%.X, R, = R@‘%’X, and denotes by K, := Fr(Ry) the field of fractions of Ry.
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We simply denote Spf(A, @ A) by Spf(A). The formal scheme . := Spf(A) is called a
formal disk and it consists of two points: an open point 1« and a closed point s. We
put S = Spf(A, m), which consists of only one point. Note that Crew in [31] used the
notation Spf(A) for Spf(A, m). The reason why we introduced . and 7 will be clarified
in Remark 2.1.4.

2.1.2. In [30, 31], Crew checked that on .7, the theory of arithmetic Z-modules can
be constructed in the same manner. He constructed the ring .@T 70 (resp. .@ (O)) of
Berthelot differential operators (resp. overconvergent at r = 0), cf. [31, (3.1. 5)] He also
constructed analytic variants 9}% 0 and _@% Q(O) of these rings by analytifymg 7" 2.0

and 7 Q(O), where 2" := Spf(R{t}). Here analytification roughly means to tensor with
Ay, K([O 1)) € K[t] and take the completion with respect to a suitable topology Let
us briefly review the constructions of 92 Choose an isomorphism @) 2 x = Rellt]l by

Q
Lemma 2.1.1. For a positive integer » and a non-negative integer i, we define O,; to be

@Xi,x[T]/(pT — ") as defined in [31, 4.1]. When r is divisible by pntl O,.; possesses a
@)((r:’)—module structure, cf. [31, Lemma 3.1.1]. We define a ring

(Z)™ = lim(Uim O, i1 ; ®0y, Z5) @ Q).
no
Although it is not defined explicitly in [31], this ring is used to define Q as inductive
limit of (@(m))an over m. By the remark below this ring depends only on . and not on

the parameter t used to define it, so we denote it by @a“ . The construction of @an (O)

is analogous, by using @)((l_ )(0) in place of .@)((i ).

Remark. In the construction of the rings .@% 0 and .@2;7‘} Q(O), one uses the parameter
t. Thus, a priori the construction depends on this choice. However, if we use another ¢/
such that its image in k[[#]] is a uniformizer to construct the rings, the resulting rings are
canonically isomorphic to those constructed using the uniformizer ¢. Indeed, using the
notation of [31, 4.1], let O,(¢) be the ring O, using the uniformizer ¢. Let ¢’ be another
uniformizer. Then there exists a canonical isomorphism O, g := O,(t) @ Q = O, (1) ® Q.
Moreover, in O, g, there exists an inclusion O,(t) C p~"O,(t') and O, (') C p~" O, ().
Thus the claim follows from the definition of 2" and 2*"(0).

Moreover, Crew generalizes these constructions to define analytification functors,
cf. [31, 4.1],

(=) Coh(@ )—>M0d(@a»“v(@), (=) Coh(@ (O))—>Mod(@a»“v@(0)),

where Coh(—) denotes the category of coherent modules and Mod(—) denotes the

category of modules. They send 9{5« 0 to 9}‘}’ 0 and @% Q(O) to @% Q(0) respectively.
e . an an .

We have injective morphisms ‘957,@ — '@i,(@ and ‘9,?,@(0) — ‘@,ﬁ,(@(o)’ which are

flat (both left and right); the analytification functors are exact; and we have .Z%" =
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an an ~ gjan ) T
@,ﬁ@ ®@1§‘@ M (resp. M™ = ‘@y,Q(O) ®@T57,Q(0) M) for any coherent @y@ module
(resp. @}Q(O)—module) M, cf. [31, Theorems 4.1.1 and 4.1.2].

We define the sheaves @;@, ‘@?,Q by

NS D)=y T Dy ) =75 (O).

NS DY ) =Ty Tr 7% o) = 7% 0).

By the remark above, these sheaves are well-defined. For any _@;7 Q—module M, we can
define a sheaf .#* on .7 by

Ay . Ay . gt . .
DS M) =l T M) =T OV @y M

and similarly we can associate a sheaf on % to any 92« Q—module, by replacing
9}; Q(O) with 9;% Q(O) in the definition above. By construction, the fibres of any

sheaf of 9; Q—modules (resp. 7% Q—modules) M are given by My =T (S, #) and
My =T, #A). Hence the functors I'(, —) and (—)® are equivalence of categories,
quasi-inverse each other, between the category of coherent sheaves of 9; Q—modules

(resp. ZiﬂyQ—modules) and coherent @L@«’ Q—modules (resp. 92;’ Q—modules). We will often

abusively use the same symbol .# to denote a sheaf of coherent “@; Q—modules (resp.
7% Q-modules) and its global sections on ..

2.1.3. Put Oz?K = A, k ([0, 1), define the bounded Robba ring (in fact a field) by
RZK = U Au.x([r, 1}) and the Robba ring by R, x := U Au.x ([r, 1), cf. 1.3.6.

r<l r<l
By Remark 2.1.2, the rings A; x, ([0, 1[), R; x, and Rtb,KA depend on the choice of the
coordinate ¢ of .% only up to a canonical isomorphism: indeed they are the sub-rings of

. . : an an T .
order zero differential operators in & 7 9 G Q(O) and & Q(O) respectively. We denote

these rings by 0%, R and Rg,. We often omit the subscripts and write simply O*, R
and R?.

Let us fix our conventions on the definition of differential modules. In this paper,
we will adopt the definition of Kedlaya [47, 8.4.3]. Namely, we define a differential
Ak ([r, 1[)-module to be a locally free sheaf of finite rank on the rigid analytic annulus
C([r, 1]) over K with a connection. In other words, it is a collection {M,}, .,» .1 where M,
is a finite differential Ak ([r, r'])-module equipped with isomorphisms A([r, r1]) @ M,, =
M,,, for ri < rp, of differential modules, compatible with each other in the obvious sense.

Let us define the category C of differential R-modules. An object consists of a
differential A([r, 1[)-modules for some 0 < r < 1. Let M be a differential A([r, 1[)-module,
and N be a differential A([r’, 1[)—m0dule where 0 < r,r’ < 1. Then we define the set of
homomorphisms by

Home (M, N) := lim Homy(A(s, 1D ® M, A(ls, ID ® N),

s—>1-
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where s > max{r,7’}, and Homy denotes the homomorphism of differential
modules.

For a differential A([r, 1[)-module M, we denote by I'(M) its global sections. The
Fréchet algebra A([r, 1[) = 1(ir_nr<r,<l A([r, r']) is Fréchet—Stein in the sense of [65, Section
3], and any differential A([r, 1[)-module M is in particular a coherent sheaf for A([r, 1]),
under the terminology of [65]. Therefore by [65, Corollary 3.1], the natural map
I'(M) ® Aqrap Alr, r']) = M, is an isomorphism for any r’, and the functor of global
sections is an equivalence on its essential image [65, Corollary 3.3].

Let M be a differential R-module which is defined by a differential A([r, 1[)-module
also denoted by M. We define

I(M) = lim I(A(s, 1D @ M).

s—1-

We note that this is an R-module with a connection.

Definition. (i) We say that M is a free differential R-module (resp. A([r, 1[)-module)
if the module of global sections is a finite free R-module (resp. A([r, 1[)-module).
This is equivalent to saying that I'(M) is finitely presented by [28, 4.8, 6.1].
(ii) We denote? by Hol'(5.») (resp. Hol(n)) the category of differential (resp. free
differential) modules on R .

Lemma. Let M be a free differential R-module, and N be a differential R-module. Suppose
there exists a homomorphism ¢: I'(M) — I'(N) which is compatible with the connections.
Then there exists a homomorphism of differential modules M — N inducing ¢.

Proof. Indeed, there exists 0 <r < 1 and a free differential A([r, 1[)-module M’ which
induces M. Take a finite basis {e;};c; of I'(M’). Then there exists r <r' <1 and a
differential A([r’, 1[)—module N’ inducing N such that ¢(e;) € T'(N') for any i € I. By [65,
Corollary 3.3] this defines a homomorphism A([r/ , 1[) ® M’ — N’ inducing ¢. Taking the
inductive limit, we get what we want. O

Remark. For any differential ideal J of A([r,1[) we can define a differential
A([r, 1[)-module by J = {J ®aqr1p Alr. r'D}, _, . However I'(J) is not equal to J
in general. For example take a differential ideal J of A([r, 1[) of infinite type (cf. [25
Example 3.2]). Since A([r, r']) is differentially simple (cf. [25, Remark 3.1]), the ideal
J @ Aqrap Adr, r']) is equal to A([r, r']), and the differential module 7J is free of rank one.

2.1.4. Starting from here, with the exception of 2.2, we assume that k is
perfect. Let o: ¥ — . be a lifting of the h-th absolute Frobenius morphism. An

i
F—@~ -module (resp. F- Q—module) is a 9~Q—module (resp. yQ—module)

endowed with an isomorphism M 5 o*M. For F- 9~ Q—modules the definition of

holonomicity is the same as that for formal smooth schemes cf. [16, 5.3.5], [31, 3.4].

2The choice of notation Hol is motivated by Lemma 2.1.4.
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An F-@?‘;Q—module (resp. F—@}}Q(O)—module) M is said holonomic if there exists a

holonomic F—@}Q-module A such that A" = M| cf. [31, 5.2]. We denote by F-Hol(.¥)

(resp. F-Hol(ns), resp. F-Hol'(n.#)) the category of holonomic F—@;%—modules (resp.
holonomic F—@E{O)—modules, resp. the category of differential module on R & with
Frobenius structure).

Lemma. The category of free differential R o -modules with Frobenius structure is
equivalent to the category of holonomic F-@}%Q(O)-modules.

Proof. By [68, 4.2.1], we get that, given a free differential R-module M with Frobenius
structure, there exists a free differential R?-module M’ with Frobenius structure such
that R® M’ = M. By [31, Proposition 4.1.1 and Corollary 4.1.1], we have M = (M")*"
which is an F-2%"(0)-module, holonomic by definition. This gives a functor from the
category of free differential R »-modules with Frobenius structure to F-Hol(n ) and, by
construction, this is clearly an equivalence. O

The scalar extension defines a functor denoted by (-)*" from the category of holonomic
F—@;)Q—modules to F-Hol(.¥).

Let . := Spf(A) and .’ := Spf(B) be formal disks. If we are given a finite étale
morphism 7: . — %/, this induces a functor 7,: F-Hol(.) — F-Hol(-¥’), and also the
pull-back 7*. In the same way, if we are given a finite étale morphism of generic points
t': ny — Ny, this defines a functor 7,: F-Hol(ny) — F-Hol(n./) and the pull-back
7/*, and the same for Hol'(n.¢) etc.

Remark. We note here that . consists of a single point. There is no problem as long as
we only consider finite étale morphisms of 7 like T above, but in this paper, we need to
use push-forwards and pull-backs in the situation where only morphisms on 7. like T’
are defined. Under this situation, adding the generic point n¢ by considering .# instead
of .¥ makes descriptions much simpler.

2.1.5. Let us note here some definitions for F-2-modules on a formal disk, that are
used in rest of this section; for more details cf. [31, 3.4] or 3.1.9.
For any 9};’ Q—module M we put jTM = ZT(Z Q(O) ®9;7 . M ; conversely for any

@;7) Q(0)—module A we define ji 4" the @;’) Q-module obtained from .4 by restriction

an,

‘ <Q I
an T . e . +

.@(?Q(O)—modules. The F—Z?Q—module 3 is by definition the holonomic F—.Zﬁ@—module

. + + .. "
of scalars via 2 7 QC—> 9 %Q(O). Similar definitions hold for -modules and

gt T L+ b ) _ an
8:= 95 |V 51 =R /Ogg=R/O™.

By construction § is holonomic and § = §2". We say that a 9}; Q—module A is punctual

(or punctual type) if there exists a finite dimensional K-vector space such that .# =
i1V :=36®k V. By construction a punctual F —@;7 Q—module is automatically holonomic.
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We say that a holonomic 9; Q-module A is of connection type if the canonical

homomorphism .# — j, j*.# is an isomorphism. We have similar definitions of punctual
and connection type for 5;% Q—modules.

2.1.6. Let us recall more notation and definitions from [31], see [31, §1] for details. The
bounded Robba ring R? = RZ» x 18 a discrete valuation field with respect to the 1-Gauss
norm. Let us denote by Op» its integer ring and by K = k() its residue field, where u
is the class of u. Choose a separable closure CP. We set G := Gal(K*P/K), and let I
be the inertia subgroup. Since Ogs is henselian, given a finite separable extension £ of
IC, there exists a unique finite unramified extension R?(£) of R? whose residue field (of
its integer ring) is £. Put R(L) := R Qx» RP(L). Let h be a positive integer, and we put
g = p". We fix a lifting of h-th Frobenius o of K on Oxp, which induces the Frobenius
homomorphism on R? and R, also denoted by o. This extends canonically to R(L). Now,
we put By := IEI)IE R(L) where L runs through finite separable extensions of K inside KC5¢P.
Then this ring is naturally equipped with a G-action, and a Frobenius homomorphism
o. We formally add ‘log’ to get the ring of hyperfunctions: we define B := By[log(u)].
The action of G extends canonically to B, so does o. We also have the monodromy
operator, which is the derivation by log(u). See [31, §1.4]. We put? O = 0" @k KV,
where K" denotes the maximal unramified field extension of K and O™ is A, k ([0, 1[),
cf. 2.1.3. Crew defined an O%\-module by C := B/O%\:, cf. [31, (6.1.1)]. The action of
G, the endomorphism o, and the nilpotent operator N, induce, by quotient, analogous
structures on C. We denote by can: B — C the canonical projection. By definition, the
derivation N: B — B factors through can, and we get var: C — B. These homomorphisms
satisfy the relations N = canovar and N = varocan, cf. [31, §6.1].

2.1.7. Let Delgu(Gx) denote the category of Deligne modules?: i.e. finite dimensional
K" -vector spaces, endowed with a semi-linear action of Gx (which acts on the constants
K" via its residual action), a Frobenius isomorphism ¢, and a monodromy operator N,
satisfying No = q 9N where ¢ = p” in 2.1.6. See [54, Section 3.1] for more details.

In the following, for simplicity, we denote 9{2@ by 2%". Crew classifies holonomic
F-2"*-modules in terms of linear data (cf. [31, 6.1]). To do this, let M be a holonomic
F-2*-module. He defined in [31],

V(M) := Homgan (M, B), W(M) := Homga (M, C).

These are Deligne modules, and define (contravariant) functors V, W: F-Hol(2*") —
Delguw (Gyc). There are the canonical homomorphism V(M) — W(M) induced by can,
and the variation homomorphism W(M) — V(M) induced by var. These satisfy many
compatibilities, they are endowed with an extra structure (the ‘Galois variation’, which
we do not recall here). These kind of objects are called solution data, they form an artinian
category, denoted Solg, and we have an exact functor S: F-Hol(*) — Solg, S(M) =

3In [31, 6.1], he defined O‘Il?ur to be OMQr K'Y, but this should be a typo.

4This terminology was first introduced by Fontaine in [39, Section 1]. These are also called
(¢, N, Gc)-modules, and this terminology is used more widely, especially in p-adic Hodge theory.
However, in our context, we believe that ‘Deligne module’ is more suitable.
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(V(M), W, can, var, .. .); for the details see [31]. The main point is that we can retrieve the
original module M from these linear data. Indeed Crew constructs a quasi-inverse functor
M2 : Solg — F-Hol(¥) factorizing through the category of holonomic F —:@;,Q—modules,
of. [31, 7.1].

We can characterize some properties of M in terms of these linear data. For example M
is connection type if and only if the canonical map V(M) — W(M) is an isomorphism,
cf. [31, Corollary 6.1.2]. The most important property for us is the existence of the
following exact sequence of Deligne modules, cf. [31, Corollary 6.1.1, Lemma 6.1.2].

0 — Homgan (M, O%w) — V(M) - W(M) — Ext_@dn(M O%w) — 0, (2.1.7.1)
Vi>2, Extl,(M,O%,) = Ext,,(M, B) = Ext,,(M,C) = 0.  (2.1.7.2)

Let us mention another property which will be useful later.

Lemma. Let M be a holonomic F-7 Q—module. If W(M)=0 then M is free as
differential O -module, cf. 2.1.5.

Proof. By 2.1.7.1 it follows that V(M) is geometrically constant, which means
that we have an isomorphism V(M)%K @k K™ = V(M) of Deligne modules. By the
construction of the functor M® it follows immediately that natural evaluation map
M — Homgu (V(M), (’)%{,r)GK is an isomorphism of Qg’Q-modules (here Homguwr denotes
homomorphisms of K"-vector spaces). We have isomorphisms of 2% @—modules

Hom gur (V(M), 0%,)7® = Homgu (V(M)K @ K™, 0%,)7% = Homg (V(M)CK, 02,)°
= Homg (V(M)9K, 0%) = (0%) @,

which concludes the proof. O

2.1.8. Let Z be a formal curve over R, and let .# be a holonomic 7 7 Q—module Let
x € Z be a closed point. We denote by .7 := Spf((/)gg’ x) where (’)% x 1s the completion
of O g, for the mg- ,-topology. Let .# be a coherent @f Q -module on 2. Take an open

affine neighbourhood % of x, and we denote by _@ 7.0® M the coherent 9" %0 -module
on %

: A
(@yx,@ ®r(%,@fx@) O, .A)) "

cf. 2.1.2. This does not depend on the choice of %, and we will also denote by @; 0® M
its global sections on .. For a holonomic F—@;&/ Q-module A (cf. 3.1.1), we put

Ms, = (Dl (@M, My, =Dy (0@ M,

which are defined in F-Hol(.*;) and F-Hol(n,#, ) respectively. We note that they do not
depend on the choice of a local parameter of 2 at x (cf. Remark 2.1.2). For example
we have O g gls, = anrlx and O g gly, = R.# . The following lemma combined with [31,
Theorem 4.1.1] shows that the functors |5, and |, are exact.
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Lemma. The functor Z;x,(@@) (—) from the category of coherent @;X’Q-modules to that

of coherent .@;7 Q-modules is exact.

Proof. Let S; be f’z ® R;. In this proof, we denote I'(Z ® R;, 9;’:”) by 9((]'7). It suffices
to show that the canonical homomorphism @[(]’:’) — @_g") is flat. For this, it suffices to
show that gr(@g?)) — gr(.@g")) is flat where the gr is taken with respect to the filtration

by order. This follows from the flatness of Ox, — (Ox, x)”" where the completion is taken
with respect to the m,-topology. (]

2.1.9. Let us recall the canonical extension, which is one of key tools in this paper. For
the detailed argument, one can refer to [31, Section 8]. Let P := P}e and .7 1= Spf(@@o).
Then there exists a functor

F-Hol(.%) — F—Hol(@% (0)): M > M

where F- Hol(@ Q(oo)) denotes the category of holonomic F- @A (oo) modules. By
construction, thls functor is fully faithful, exact, and it commutes Wlth tensor products
and duals. Moreover, we have the following properties (cf. [31, Theorem 8.2.1] and
paragraph after its proof):

1. Mcan|@\{0} is a ‘special’ convergent isocrystal;

2. Mg, = M

3. M regular at oo (for the definition of regularity cf. 2.3.1).
This M is called the canonical extension of M. By these properties, we remind that

when M is a free differential module, M coincides with the canonical extension of
Matsuda in [56, 7.3], and in this case, it sends unit-root objects to unit-root objects.

2.1.10. In 2.1.4 we have characterized holonomic F-2% Q(O) -modules. Let us conclude

this subsection with a lemma characterizing holonomic F 2*-modules.

Lemma. Let M be an F- 9 Q—module Assume that M(0) := 2°L Q(0)(§§)M is a free
differential R-module, and the kernel and cokernel of the canomcal homomorphism
o: M — M(0) are punctual _@~ -modules. Then M is a holonomic F - QyQ—module.
In particular, if there exists a holonomzc F-9'. Q-module M such that A™ =M as

y Q-modules without Frobenius structures, then M is a holonomic F-2%% Q-module.

Proof. We denote by C the full subcategory of the category of 2% Q—modules with

Frobenius structure consisting of objects considered in the statement of the lemma. We
define functors V and W in the same way as [31, 6.1] or especially [31, (6.1.9)], (cf. also
2.1.7). We first claim that V and W are exact functors. To see this, consider the following
exact sequences

0> N —>M-—>M -0,
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0—-> M — M(©O) — N, — 0, (2.1.10.1)

where N; and N, are the kernel and cokernel of « respectively, and thus punctual
@JL —modules by assumption. By hypothesis and Lemma 2.1.4, we know that M (0) and

Nz are holonomic F-2% Q—modules and thus by considering the canonical extensions
(cf. 2.1.9), we get that M’ is a holonomic F- yQ—module as well. Thus, we get

Ext'(M’, B) = Ext!(M’,C) = 0 for i > 0. Considering the long exact sequence induced by
the first short exact sequence above, we get Ext! (M, B) = Ext!(M,C) = 0 fori > 0, cf. [31,
Lemma 6.1.2].

Repeating the same construction of [31, (6.1.10)] and arguments of [31, Theorem 6.1.1],
we get an exact functor 8’ = (V, W, ...) from C to the category of solution data. It suffices
to construct a canonical isomorphism M — M (S'(M)). This can be shown in the same
way as [31, Theorem 7.1.1].

For any holonomic F—_Z%Q—module M, we have A™ = _@;%Q ®@;7.@ M (cf. 2.1.2),

M) = (jyjT)™ (cf. [31, Lemma 4.1.4]), and the analytification of a punctual
module is punctual (cf. [31, Proposition 5.1.1]). Thus, the last claim of the lemma follows
from the first because the analytification functor is exact (cf. 2.1.2). O

2.2. Analytification

In section 2.4, we will define a local Fourier transform. The local Fourier transform
should be local not only in the scheme theoretic sense, but also ‘rigid analytically’. In
this subsection, we will prove a crucial tool (cf. Proposition 2.2.3) which is indispensable
to prove such properties.

2.2.1. In this subsection, we do not assume k to be perfect. Let 2™ be a formal curve,
and take a closed point x in 2. Choose an isomorphism Og- = R[], where R, :=
R@y g cf. 2.1.1. We will define a ring (z;@;(m’m ))a“ in the following way. Let us use the
notation of 2.1.2. To construct the analytification of g"\(; )Q’ we follow exactly the same

way as in [3]; there are several steps. For the first step, we take the microlocalization of
Oypm+1,i @0y, .@)(;?) with respect to the filtration by order (cf. [3, 2.1]) and denote it by

5;;””2 . . Second step, take the inverse limit over i, namely hm & (e ,3 .y and denote it
by é/i([’;,'gﬂ We put (;@\(”2“ 0" (g”;(;"nzﬂ’x ® Q, and we take the inverse limit over n to

define (%(?8)“‘“.

Now, for an integer m’ > m, we want to define the analytification of C/o(;(; ‘g/). Also for

this, we follow the same way as [3]. Put ¢ := p™*1. Let a be either m or m’. Then we
define g,ff)x to be the subring of g’;,(c)x consisting of the finite order operators. Then we

may prove in the same way as [3] that there exists a canonical homomorphism

We define é?f{(’;f"') to be the p-adic completion of (f,{?’;)ﬂé’n(zn;) This ring is

mm’(



310 T Abe and A. Marmora

noetherian by the same argument as [3, Proposition 4.12]. We define %T;"& = ne. jcm/) ®
Q.

Finally we define

>(m,m’) 1 p(mm’)
(éax,(@ )an T L&ngnc,x,(@'
n

Obviously, there exists the canonical inclusion é’;(’?é;ml) — (é/i(%m,))an. In the same way as
for & 9. We define
(éa(m T))an = l(ln (ga;(’rgm-i-k))an’ Xar(l@ . m (éa(m T))an
k m

We point out that the rings (gg(m ) yan &, m, '))‘“‘ & does not depend on the choice of
the isomorphism 0, Zx = Rzl (cf Remark 2.1.1). As an example, we have the following
explicit description whose verification is left to the reader. We recall that |- |, denotes
the r-Gauss norm on O = Ag ([0, 1[) for 0 < r < 1 (cf. 1.3.6). We have

(go;(,m,ml))an

ay, by € O™, and for any 0 < r < 1, there

k) ' .
= Zak8< Yo +Zbk3<k)(’") exists C, > 0 such that |ax|, < C, for any k
k<0 k=0
and limg_ o0 bk = 0.

At last, let us fix some notation. Let .# be a coherent §(m)Q—module Let m” >
m'>m, and & be one of (FUP)" = (FE) 1, @y, (@l Ty, £y We
denote <§"®@%{Q)X My by E Qg M or 5@//1 Th1s notation goes together with
Notation 1.2.1.

2.2.2. We put topologies .7, for n’ >0 and 7 on & m;Cm/) in exactly the same way

Gy 4 ! )

as in 1.2.2. Precisely, we put Uy = énex , and we define a topology

Jh on &, /;(Z" xm) as the topology generated by {Uk,l} as a base of neighbourhoods of zero.

The topology .7, on /;(Tme) is the locally convex topology generated by {@ " Uy} as

a base of neighbourhoods of zero, and 7 is the inductive limit topology. We get that
(ga\(m m’) N _n/éa\(m,m’) _n’;(;(m,m’)
Z,Q

ne.x s dense in (o nex.Q ) where the intersection is taken in

gi(znxm(gg Indeed putting O, := 1<iLni Oy.i, the intersection O g g N Oy is dense in Ope. In

the same way as 1.2.2, for any finitely generated ga;(?xm& -module, the (g;(m ) Fp)-module

ne,x,Q?
topology is separated.

2.2.3 Proposmon Suppose we are in Situation (Ls) of 1.2.1. Moreover, we assume
x =ys. Let m" > m be non-negative integers, and .4 be a holonomic @ir;)(@ module (not

necessarily stable). We assume that

Supp(,ﬁ(m D ®zm HNT*X =7 N (s)NT*X.
7% o
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Then the canonical homomorphism
Erm o ///—>(A(’”'”))a“® M (2.2.3.1)
Q j(m) j(m) L.
is an tsomorphism.

Proof. Suppose that Supp(é‘)} (S ®j(m) M)NT*X is empty. In this case, the source of
Z.Q

the homomorphism 2.2.3.1 is zero. Thanks to the following isomorphism
(é/i(,%’m))an QGm M = (g;(m "y g A(m ) E%Q ® G A ,

the target of the homomorphism is also zero, and we get the proposition. Thus we may
assume that Supp(féf’g ) ®@A<m> ANT*X =77 1(s).

First, we will see that the source of the homomorphism has an Zéa\(m )_module structure
for some integer r. For this, let us start by remarking that . is monogemc Indeed, since
Z is affine, the m-th relative Frobenius homomorphism can be lifted. Let us denote this
lifting by 2 and F: 2" — 2. Let the 9;0[)/ g-module A Dbe the Frobenius descent of

M (cf. [15,4.1.3]). Then by [40, Proposition 5.3.1], there exists a surjection @{(52),’@ - .
Apply F* to both sides. By composing with the canonical surjection @\%)Q — F*@;g),’@,
we get a surjective morphism @g’f)(@ — M.

Denote by ¢: @\(%m?@/[ = / the induced isomorphism, and put I’ := (E(m 1) N
/E\%’m/"_l). By Lemma 1.3.1, there exist Q € E%’m/ﬂ) - E%’m/), R € (E%m +1))—pm’+17
and a positive integer d such that x? —@ Q — R € I'. Since the order of R is less than
—p™*! there exists R’ € E%’ml) such that R = wR’, and we get x/ —w S € f%’m/) g
where S = Q+ R’ € E (m»’m/). By increasing the integer d, we may assume that d is divisible
by pm/"rl For any element P in D(m) =I(Z, @(%m,)x we get x1.P e P-x? —}—pﬁggl).

Ao’y
Ey”

Thus for any operator D € we also get x4-D e D-x? +pfgg’m,). This implies

that for any integer n > 0, there exists S, € /E\fg’m,) such that
nd _ _n Zm,m") 17
x @" Sy € Ey I (2.2.3.2)

Let e be the absolute ramification index of R, and take r > (e + 1)d, which is divisible
by p" . Let a € T(Z, #). We claim the following.

m)mgg(mm)

Claim. For any sequence {P;}i>o in E(m 2.0 which converges to zero seen as

Z(m,m")

a sequence in (é”,’s" ) , ), the sequence {P; - (1Qa)} in E{Qx Q ® M converges to zero

using the (E(m 6) ) -module topology. In particular the sequence converges to zero using
the natural topology which makes the module an LF-space by Lemmas 1.2.3 and 1.5.2.

Let us admit this claim first, and see that there exists a canonical é?(m(g’ )_module

structure on E(m 'y ® . For P € gs(m ') , we may write P = Zi>0 P; with P; € @?’8/)
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and the sequence {P;} converges to zero in é@;('?‘m/) Then the claim says that {P; - (1 ® @)}
converges to zero in E(m 'y ® A . So we may define P - (1 ®«a) by Zl>0 P -(1®a), and

we get the action of @m m) on E,- Emm) ® ./ since the latter space is separated.
Let us verify the claim. By 2.2. 3 2 and the choice of r, we get
x" " =~(im,m’)
n
(;) =ow'T, modE%Q I,

where T, € E(m""/) (e.g. Ty = S(ex1)n € I/Z\(m’m/) when r = (e + 1)d). We denote by d; , the

order of the image of T, in E(m ") Put E, = E(m %) ﬂg’\(m ") Let QO be an element of

(E)y+aoVN E, for some integers N and N’ > 0. We may write

0=>" Qn< )

n=0

where Q, € A 1= EB;;& R {0} xi Then Q, € (A)y + @™ A for any n > 0. Thus, for
any n > 0, we get

x\"
Qn<—) e EQ" v+ EG")+EGn) -1,
p

where M :=max{d; y'—1 |i =1,..., N —1} =dp—1 y'—1. Summing up, there exists an
increasing sequence of integers {Mj}i>0 such that if Q e (E, )N—i—wN/E,, then Q €
(E(m - ))MN,_HV +w (E(m " )) + E(m ™) I'. We can find a sequence of integers {Ni}x>0
such that the sequence {Nk + Mk}k>0 is strictly decreasmg Back to the claim, for any
integer k > 0, there exists ny such that P; € (E,)y, +@ kE, for any j > ng. Then, we
have Pj-a € (p((Egg’m,))MHN,{ + wk(’E\%’ml))), and we get the claim.

There are two natural homomorphisms

o: E(mg ®9(m)%_> /;(2”6!)®9(m)% B ?Téﬁ)@,//f—)E(mm)@)///

where « is induced by the inclusion E (Qf%) — d;@;(’:’;g’/), and B is defined by extending

2m,m’)
&,

linearly the canonical homomorphism .# — E(m m)®/// using the & Q -module

structure on EU" %) ® A defined above. We can check easily that foa =id. Thus «
is injective. Let us see that o is surjective. It suffices to show that « is a homomorphism

of @T& )_modules. Take an element P € ga;('?(g ) Tt suffices to show that

a(P-e)=P-a(e) (2.2.3.3)

for any e € E( ) 0 ®gm A . By density (cf. 2.2.2), there exists an integer n > 0 such that

Pis contained in the closure of E* g) (g(m(g ) ). Consider the (g;(m ') , I»)-module

topologies on the both sides of a. Since the both sides of o are fimtely generated

over gr(’sn(’g? ) they are Fréchet spaces by 2.2.2, and by the open mapping theorem, the

7 (m,m")

topology on the source of « is equivalent to the (E% Q I)-module topology. Since «
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is E%’m/)—linear, it is continuous. Since the target of « is separated, we get that 2.2.3.3
holds by the continuity of «. We conclude that « is an isomorphism.
Let us finish the proof. It suffices to see that
"N @ M — limE ) @ .M (2.2.3.4)

n

m'+1

is an isomorphism where ¢ := p . When .# is a finite projective 'm ps Q—module the

equality is obvious. By the same argument as Lemma 1.3.4, g};";mQ) is flat over 9 Q

for any positive integer i. Since :@( 2.0 is of finite homological dimension, there is a finite
projective resolution &, — .# whose length is [ by [15, 4.4.6] (if fact we can take [ to
be 2). We have the following diagram where the bottom sequence is exact.

0— > (é’i(fé,m/))an QP — .. — (3\(&6171/))“ ® Py —— (é’i(:é,m/))an QM —>0

l | o

0—— 8" © 2 - SIS ® P o' ® M ——0

Let us show that R! hm (/;(lemd@'@j) =0 for any j. This is equivalent to saying
thm g);(znsm(@) =0 since & is finite projective. Let |-|, be the p-adic norm on

g’;;"sm(@) Let E, be the closure of g”z(n"ﬂ;;) .0 in %(?‘;mé) with respect to |- |,-norm. Then

R! 11m E, = R! Lann %(:"sm@) (cf. the proof of [3, Theorem 5.8]). Now, apply [37, O,
13. 2 4 ( )] to the system {E,} with respect to the p-adic norm, and the claim follows.

By applying 1(1Ln to the bottom sequence of the diagram above, we get that the sequence
n

Liﬂ";@;(c m)®@1 — hm@@n:";m(@)(@@o — 1(&13}2")"8@,/// -0
n n n

is exact. Since 2.2.3.4 is an isomorphism for projective modules, by using the right
exactness of tensor product, 2.2.3.4 is an isomorphism in general, and we conclude the
proof of the proposition. Moreover, when we apply L&nn to the bottom sequence of the
above diagram, we get that the vertical homomorphisms are isomorphisms and thus the

(A(m ,m ))dn

top sequence is also exact. This implies the flatness of (& over 7" g,f 0" O

2.2.4 Corollary. Under the hypothesis of Proposition 2.2.3, suppose moreover that .# is
stable. Then for m’" > m the canonical homomorphisms

¥ &
Egﬁ @) ®@(m)%—> ((gz(’% ))an®@\(m) %, E{%/ Q®9(m)%—> Q®9(m)‘%
are isomorphisms.
Proof. Clearly the first equality implies the second one. To prove the first one, it suffices

to show that lim (A(m o ))““(X)/// (& (m/’ﬂ)a“@/// since E}g D is a Fréchet-Stein
&m” Q
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algebra (cf. [3, Theorem 5.8]). For this we only need to repeat the argument of the last part
of the proof of the previous proposition. Namely, we prove that R! 1(1Ln , (;@;(m g ))a“ =0
m S

using [37, O, 13.2.4 (i)]. The detail is left to the reader. O

2.2.5. Let Z be a formal curve over R. Let .# be a stable holonomic @é{m)@—module,
and let s be a singular point of .#. Then by Proposition 2.2.3, for any integers m” > m’ >

m, the module (g”;(%m )@ .M (cf. 1.3.10) possesses a canonical (Qfg))an—module structure,
and in particular, we get a canonical homomorphism

w (g(m))dn®%_> /;(’m ,m )®%
Taking the inductive limit over m’, we get a canonical homomorphism
%lsé — gT@ ® %

By an abuse of language, we sometimes denote the image of @ € M; where Mj is either
(G @M or M5, by 1 @a.

Let % be an open affine neighbourhood of s such that there exists a local parameter at
s and s is the unique singularity of .# in % . Then by the proposition, we get E,, E0. m " ®
M= 3;(6 m ® . . Now we define topologies as follows.

Definition. (i) We equip é” ") @ # with the natural topology as an E;, EUm)_module
which makes it an LF—space by Lemma 1.2.3 and Lemma 1.3.2. Note that this
topology does not depend on the choice of % by the same lemma.

(ii) We equip (.’@\Affa))a“ ® ./ with the projective limit topology of the projective system

of Banach spaces {Onpm-H ®(Z, (;;"%2 ® //Z)}n>0. This makes (@5’%))3“ ® # a Fréchet
space.

Remark. (i) The topology on é,i(g’m”)®/// is also equivalent to the

(Eg/" (g" g , 7)-module topology by Lemma 1.2.3.

(ii) The homomorphism ¥ is continuous by the claim in the proof of Proposition 2.2.3.
In particular, if a sequence {«;} converges to o in (@;%) )" ® .4, the sequence

{l®a,~} converges to 1 @ o in é?(% m )®%.

2.2.6. The following corollary of Proposition 2.2.3 plays an important role when we
prove fundamental properties of local Fourier transforms (cf. Lemmas 2.4.9 and 2.4.10).

Corollary. Let 2 and 2" be two formal curves, and take points x € Z and x’ € 2.
Assume that there exists an isomorphism 1: S — S of formal disks over R.

(i) Let A and .4’ be holonomic @%)Q and @('ﬁfn?@—module respectively, and assume
that ’ ’

((@( )an®%) — (9( )an®%/



Product formula for p-adic epsilon factors 315

as (9( )‘ln modules. Then there exists canonical isomorphisms
LB @)= ENY e (80 9.M) = 8T @

form' >m.

(ii) Let A and A’ be holonomic ‘@i”{,@ and 9}&/,’@—module respectively, and assume
that

bl s, = M5,
as @;‘fﬁQ—modules. Then there exists a canonical isomorphism L*(gj@®///) =
§
Erq® A
Proof. First, let us prove (i). We get

L*g;(r?/l@m ) ® % (%)) L*(go;(f%m/))an ®% (: t*(go;(jam'))an ® ((@(;?Q)dn ®%)

:/) ((;@;(/rfl@m/))an ® ((@E,m,) Q)an ®'///) :) (;@;(/m(én/))an QM
. , ,

~ a(m,m’) ’
(6 gx/’(@ ®% .

Here we used Proposition 2.2.3 two times at (x), and ¢’ denotes the isomorphism induced
by t. To show the equality for & (éf (é), it sufﬁces to use Proposition 2.2.3, Corollary 2.2.4,

and the Fréchet—Stein property of E™ w Q) ) where % is an affine neighbourhood of x.
Now, let us prove (ii). Let .# be a .@% g-module. Let .# ™ be a coherent

@(m)(@ module such that 2[ 0® M = g and the same for .#'™ . Then since these
are coherent, there exists N such that

T 87 Dy )" @M S (T )" @M.
Thus (ii) follows from (i). O

2.3. Equality between two definitions of irregularity

Another important corollary of Proposition 2.2.3 is a comparison result of multiplicities
of characteristic cycles (irregularity of Garnier) and irregularity of Christol-Mebkhout,
cf. Corollary 2.3.2.

2.3.1. Let us review the definitions first. We assume that k is perfect and that there

exists a lifting of h-th absolute Frobenius R — R. Let M be a solvable differential
Ri-module, cf. [47, 12.6.4] or [25, 8.7]. By a result of Christol and Mebkhout (cf. [26,
2.4-1] for free differential modules, or in general [47, 12.6.4]) there exists a canonical
decomposition M = Py~ Mp where My is a differential R x-module purely of differential
slope B. The irregularity of M is defined by irr(M) := Zﬂgoﬂ -1k(Mpg). We say that M
is regular if irr(M) = 0, or equivalently M = M.

Let Z be a formal curve over R, and S be a closed subset of 2  such that
its complement is dense in 2. Let .# be a convergent isocrystal on % := 2\ S
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overconvergent along S. For x in S, we define the irregularity of Christol-Mebkhout
M () = ire( A |,

when irr(#|,,) =0 we say that .# is reqular at x, or that x is a regular singularity
for . We also have the irregularity of Garnier [41, 5.1.2]. For simplicity, we assume
moreover that .# possesses a Frobenius structure. Let us denote by ji.# the underlying
@%’Q—module of ./, which is a priori a coherent @%’Q(S)—module. This is a holonomic

module, and Garnier defined® for x in S
S () = x (R Hom@;{ Q(J'+///, O qls,)) — (me =0y tl) — my(j- M),

where m, (resp. mg —o) denotes the vertical multiplicity at x (resp. the generic rank) of

J+ A, cf. 1.4.3 and Definition 1.5.2. Since .# is an isocrystal we have mg —o(j+.#) =

tk(4), cf. [41, 2.2.5, 2.2.6]. The finiteness of the index x (R Hom+  (jr. 4,0y gls,))
Z.Q

was not known at the time Garnier defined the irregularity; now, using some results of
Crew, based on the local monodromy theorem, this finiteness is easy. Let us mention
that the definition of irregularity of Garnier holds more in general for holonomic
@}’Q—modules; here, since .# is an overconvergent F-isocrystal, the index is indeed
zero, as proven in the next corollary, cf. 2.3.2.1.

Let us recall the Grothendieck—Ogg—Shafarevich type formula (GOS-type formula) as
stated® by Garnier in [41, 5.3.2]: for an overconvergent F-isocrystal .# as above, we have

Keig (U . M) = tK(M ) prig( W) = Y deg(x) - in S (), (2.3.1.1)
xeS
where xiig(%, M) (vesp. xiig(%)) denotes the Euler characteristic for rigid cohomology
of the isocrystal .# (resp. Oz o(5)).

2.3.2. The following corollary has already been announced” by the second author using
a local computation, which is different from our method here.

Corollary. Let .# be a convergent F-isocrystal on 2\ S overconvergent along S. Then
we have

R 'Hom_@T‘%,Q(jJrJ//, Oa gls,) =0. (2.3.2.1)

Moreover, we have
i) = in™M (). (2.3.2.2)

Proof. First of all, let us show the equality 2.3.2.1. The ring Oy gls, has a canonical

2 Q—module structure and identifies with O%) , cf. 2.1.8; let us denote it simply by O".

51n [41], he defined only in the case where x is a k-rational point, but we do not think we need this
assumption here. In [41], O 9 gls, is denoted by sp,Ojy|.
6 Again in [41], Garnier needed to assume x (R ’Hom@»r (+4,0 g gls,)) =0.

Z.Q

"See A. Marmora, About p-adic Local Fourier Transform, Poster two at Journées de
Géométrie Arithmétique de Rennes, available at http://perso.univ-rennesl.fr/ahmed.abbes/
Conference/posters.html.
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Let A — B be a flat homomorphism of sheaves of rings on a topological space T. For
M e D (A) and N € DY(B), we have RHom 4 (M, N) = RHompg(B® 4 M, N). Using
this, we have
. ~ + .
R" Hom@f%@(pr///, O ols,) =R" Homg;x@ (9%,@ ® jy. M, OM)

~ pn T : an
=R Hom@;&’@(.@yxy(@ ® jr M, O")
= R”Homgga;' @(@?x@ ® jr M, O™M)

where the first and the last isomorphism follow by Lemma 2.1.8 and [31, Theorem 4.1.1],
and the second is obtained by taking global sections, cf. 2.1.2 and also 2.1.8.
Since 77 0® J+ M = (j+M)|s, is clearly of connection type, the canonical map

can: V((j4.A)ls,) = W((j+A)ls,)

is an isomorphism, cf. [31, Corollary 6.1.2]. We have R"Homg;r% Q((j+*///)|5.w O%uw) =0
by 2.1.7.1 and 2.1.7.2, from which it follows R"Homgg}x@((j_F//lﬂgx, O*) = 0. The first
claim is proven.

Now, let us start the proof of the equality of the irregularities. The irregularity irrSM
only depends on .#|,, by definition. By Corollary 2.2.6 combined with Theorem 1.5.1,
we get that ir1r)gaI only depends on its analytification as well. This implies that we may
assume 2" = A', x =0, and that .# is the canonical extension of A 1,,. Note that,
thanks to 2.3.2.1, irr)(?ar satisfies GOS-type formula by [41, 5.3.2]. By [25, 1.2], we know
that irrSM also satisfies GOS-type formula.

The equality 2.3.2.2 holds when .# is regular singular at x. Indeed, by the definition
of regularity we have irrSM(/// ) =0, and it suffices to show that irrgar(/// ) = 0. Now,
by using the structure theorem of regular p-adic differential equation [25, 12.3] and the
additivity of irrf$® (cf. [41, 5.1.3]), we may assume that .# is of rank one. For this case
we refer to [41, 5.3.1].

Finally, let us prove the general case. Set % := ﬁls\{x, oo}. By GOS-type formulas, we

get
Xiig (X, M) = K(M) - Y5ig(W ) — it () — i (),
Xiig (U, M) =1K(M) - Y3ig(U ) — S (M) — it ().

By using the regular case we have proven, we get irrgoM(e//l ) = irrgc'fr(,/// ) = 0 since Z is
regular at co. Thus comparing these two equalities, we get what we want. O

2.4. Definition of local Fourier transform

In this subsection, we define the local Fourier transform. We only define the so called
(0, 00')-local Fourier transforms. In section 6.2, we will define an analog of (oo, 0')-local
Fourier transform in very special cases, and we do not deal with (0o, 00’)-local Fourier
transform in this paper.

2.4.1. Let us fix a situation under which we use the Fourier transforms. Let 4 be a
positive integer, and put ¢ := p". We assume that the residue field k of R is perfect.
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We moreover assume that the absolute A-th Frobenius automorphism of k lifts to an
automorphism o: R 5 R.

We assume that the field K contains a root 7 of the equation X?~! 4 p =0 (so that
it contains all of them). The Dwork exponential series 0, (x) = exp(w(x — xP)) in K[[x]]
has a radius of convergence strictly greater than one and it converges for x =1 to a
p-th root of unity ¢ = 6;(1). The choice of & determines a non-trivial additive character
Y : F, = K*, by sending x to ¢*. Conversely if : F, — K* is a non-trivial additive
character, then ¥ (1) is a p-th root of unity in K and the polynomial X?~! 4 p splits
completely in K. There exists a unique root my of XP~! 4 p such that my =y (1) —1
modulo (¥ (1) — 1)? and then we have Or, (1) = ¥ (1). For the details see [10, 1.3].

We denote by &}e,x := Spf(R{x}) (resp. @}M) the affine (resp. projective) line over R
with the fixed coordinate x, and we denote by &}e , (resp. @k ) its dual line. To lighten
the notation we often put A := AR o P:= IPI A/ = Al o and P .= IF’1 . We denote
by 8 and 9’ (or 9, and 3,/ if we want to clarlfy the Coordmates) the dlfferentlal operators
correspondlng to x and x’. We denote by o0 (resp oo’) the point at infinity of P (resp.
IP’/) Let P/ := ]P’XIF” and Z := ({oo} x ]P’/)L.J(IED x {o0'}).

To summarize notation once and for all, we use terminologies of the next section, and
consider the following diagram of couples:

P, 2)

(P, {o0}) (P, {o0'}),

(2.4.1.1)

where p and p’ are the prOJectlons These morphisms are not used till the next section.

If we take 2" to be A (resp. A'), we are in Situation (L) of 1.2.1 using the fixed global
coordinate. We use freely the notation of 1.2.1, especially K&{a}(’"’m/).

For a smooth formal scheme 2" over R, we put 2D := 2" ®r ., R. We denote by y
(resp. y') the local coordinate of P1) (resp. P'1) induced by x (resp. x'). The relative
Frobenius of IPJIL lifts to the morphism Fp: P — PO sending y to x9. We have a similar
morphism for P, and denote it by Fp .

Let us 1ntroduce some notation for a formal disk around a closed point of A. We put
. = Spf(R[u])) and .’ := Spf(R[u']). We denote n.» and .o by n and n’ respectively.
Let E be a finite unramified extension of K, and Rg the ring of integers of E. We put
S := Spf(Rg[[u])) and denote 1.5, by ng. Let s be a closed point of A= Spf(R{x}), my
the maximal ideal of k[x] corresponding to s. We denote by y; the monic generator of
my, and by Vs a lifting of yy in R{x}7 which is a local parameter of A at s, cf. 0.0.5; we
denote also by , Vs its image in Ox 2.s» the completion of the local ring of A at 5. We define
15, S = Spf((’)A’X) — . by sending u to y;. We note that if we take another lifting

yi, then there exists a canonical equivalence of functors tyi‘_v = t)i,z and Ty« = 574, since

ys and y; are congruent modulo . We denote 5 and 54 by 7 and 7y, respectively.
For s € A,l (k), let s be the closed point of A,i defined by s. Let kg be the residue field of
s, Ry be the unique finite étale extension of R corresponding to kg, namely W (k;) @wx) R,
and K be its field of fractions. Let 5 be the closed point of &S = &@ R; defined by s,
and fPTs = ﬁP\’® R. The rational point s corresponds to an element of kg also denoted by
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5, and take a lifting § of 5 in R;. We have the homomorphism o3: .%% — . sending u
to x —§. The functors 0~* and oz, do not depend on the choice of 5 up to a canonical
equivalence. We denote o and oz, by o7 and o, respectively.

By the étaleness of Ry over R, there is a canonical inclusion Ry — OA We define
Tz S — Sk, by sending u to x —7%. Also in this case, 1:~ and Tz, do not depend on the
choice of § up to a canonical equivalence and we denote them by T, and Ty, respectively.
Let t/: noor — 1’ be the finite étale morphism induced by sending u’ to 1/x’. Summing
up, we defined the following morphisms:

&}ex Lk

s

lt T oo — 1.
5

Ts

Here ¢ is the base change morphism.
Now, we recall that |7| = w, and we get the following isomorphism

T Ak w0 (0, 0n')) = Ak x (@O, 0/on]) = Kz{0)™™), (2.4.1.2)

where the first isomorphism sends u’ to wx~!, the second is that of Lemma 1.3.6, thus
tw)=md"L.

2.4.2. Let .# be a stable holonomic @(m) -module and let S C A be the set of its
singular points, i.e. closed points s such that n_l(s) C Char(#), cf. 1.3.8.

We follow the notation of 1.2.1. In particular, for m” > m’ > m non-negative integers
and s € S, we consider the microlocalization

é/i()%‘m )®//Z: (g;(m ' ® ,lj(m)T[ //)gx

(cf. Notation 1.2.1.3). It is a finite K&{a}(’”,*m”)—module by Lemma 1.3.2, and using 7,
this can be seen as a finite Ag v ([wp', @ })-module. We put

Gty = (Bl @t Vi a > (7% - a@dn'), (2.4.2.1)

which is considered as a differential Ak ,/([wy/, wy7})-module. The fact that V defines a
connection follows formally from the relation dx = xd + 1 in g”j’” o ), and the verification
is similar to that for formal microlocalization, cf. [52, around (1.1)]. We warn the reader

that the same notation @/”’\(% o’ )(/// ) has been used in 1.3.10, but from now on, we refer
only to 2.4.2.1. The difference between the connections defined in 1.3.10 and 2.4.2.1 is
due to the change of variable from zero to co Vla the isomorphism u’ — 7x~!.

For a fixed m’, the projective system {:(6 " )(///)} S defines a differential module
on Ak v ([wy, 1) by Proposition 1.3.11, which is denoted by é‘;(g’ﬂ (). This defines a

differential R, g-module which does not depend on the choice of m’ up to a canonical
isomorphism by the same proposition.



320

T Abe and A. Marmora

Definition. (i) Let .# be a holonomic @% Q(oo)—module. Let s in A be a singular point

(if)

of /. Take a stable coherent @g’é—module ™ such that @% 0 QM™M= g

Then .#™ defines the differential R, k-module é“’s("(g’ﬂ(/// (my which does not
depend on the choice of m’ up to a canonical isomorphism. We see easily that
this does not depend on the choice of .# ™ as well in the category of differential
R-modules. We denote this differential R-module by 5379’00,) (M), or ﬁjis’]?o,) (A)
if we want to indicate the base, and we call it the local Fourier tmnsfofm of M

at s. When s is not a singular point of .#, we put 9\,5‘?’00/)(///) = 0. This defines a
functor

F 50 Hol(@%’Q(OO)) — Hol'(n)

for any closed point s € A. Here Hol denotes the category of holonomic modules,
and Hol'(") denotes the category of differential R o-modules (not necessarily free),
cf. Definition 2.1.3. If no confusion can arise, we omit the subscript =.

Let M be a holonomic F —ngQ—module, and let s € Al(k). Take the canonical
extension M“" of M at s: this is an F —:@%h 0
along {5, 0o}, we have M“"|s. = of M, and oo is a regular singular point (cf. 2.1.9).
We define the local Fourier transform of M at s to be F G0 (peany We denote

it by @ff’oo/)(M), or @;ﬁ;o/)(M) if we want to indicate the base. This defines the
functor

-module on P \ {¥, 0o} overconvergent

¢§Ts,w’); F-Hol(.) — Hol/(n/KS)-

If no confusion can arise, we omit the subscript 7.

We sometimes denote m € I'(¥, M) by m € M. As in 2.2.5, any m € M defines an
element in ®°)(M). We denote this element by 7.

2.4.3 Remark. (i) By using the stationary phase Theorem 4.2.2, we may prove that

(i)

the local Fourier transforms are free differential R-modules. Moreover, we can also
prove that the local Fourier transform coincides with that defined by Crew (cf.
Corollary 4.2.3). Using this, we will endow local Fourier transforms with a Frobenius

structure later in section 5.

In Definition 2.4.2(ii) above, we can also construct CDJ(,O’OO,) in a purely local way

(i.e. without using canonical extensions). For a holonomic 7% -module M with
Frobenius structure, we define the local Fourier transform to be &* ® gan M, and
put a connection in the same manner as in 2.4.2.1 above.

A problem of this construction is to see that this is a free differential R-module. For
this, we need to compare with Definition 2.4.2(ii), and this is why we did not adopt
this definition. Namely, the module coincides with (0 (M) by Lemma 2.4.5
below. As written in (i), we will prove that ®(©:° (M) is a free differential R-module.
This shows that &2 ® M defines a free differential R-module, which is what we
wanted.
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By this comparison, once we have the stationary phase formula, the functor
E*™ ®gan (—) from the category of holonomic 2*"-modules with Frobenius structure
to the category of &*"-modules, is exact by Proposition 2.4.7 below. However, we
do not know if £2" is flat over 2" or not.

2.4.4 Example. Here are some basic examples to illustrate Definition 2.4.2. More
properties will be proven in the sections 4 and 5.

(i)

(iii)

(iv)

Consider the holonomic F —.@EB’Q—module O™ (with the trivial Frobenius structure).
The point zero is not singular, hence by definition ®©(O™) = 0. A posteriori
this can be also computed by Remark 2.4.3(ii): tensor the presentation Z*" A
M — O — () with &,

Consider the F—@?’Q—module 8, cf. 2.1.5. The canonical extension §y := §" at zero

has the following presentation on A
o1 X gl -
Q&Q - Q&Q — dolz — 0.

The R-module ®©°(8) is free of rank one (the easiest way to prove this is to use
Corollary 4.1.3); the connection is trivial (it follows immediately by the definition).
As we have mentioned, we endow it with Frobenius structure in section 5, and this
structure is also trivial, which follows from the global Fourier transform and the
stationary phase theorem, cf. 5.1.8.

Consider the connection type holonomic F —.@? Q—module R. Again we can compute

CD(O’OO/)(R) globally, or locally (with exception of Frobenius). To proceed locally, we
can consider the presentation of R

g 5 g R 0,

as 2*-module (Crew’s solution data functor S permits to show that this is a
presentation, cf. 2.1.7); then tensoring with &*" we reduce to the case (ii) above
and so ®©-)(R) = R, endowed with the trivial connection. To proceed globally we
consider R®" = Op (0, 00) and use the global Fourier transform and the stationary
phase. We obtain the trivial Frobenius structure on ®©.9)(R). The details are left
to the reader.

For any m > 0, the .’@\f{) -module @Lm) is stable but not holonomic. For any closed

A(m m’ )(Q(m)) = A(m ") , which is not of

point s of & and m” >m’' > m, we have
finite type as Ak, ([wm’, w7 })-module.

2.4.5 Lemma. Let .# be a stable holonomic @<mé-m0dule, and let s in A be a singular

point of M. We get an isomorphism F(é‘;(% ')(///)) = é”s(%’ﬂ ® A . In particular, for a
holonomic .@% Q(oo)—module A and its singularity s € A, we get [(F6X) () = 6;_{-@ ®

N
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Proof. Using Proposition 2.2.3 and Corollary 2.2.4, there exists an affine open
neighbourhood 7% of s such that for m’ > m

~

EQ el es =85 @pm M, Eyl @M =EE" @0 4.
Thus we get the lemma by the fact that EEZ 8 is a Fréchet—Stein algebra (cf. [3, Theorem
5.8]). O

2.4.6. Let E be an unramified finite extension of K. Then there exists a finite étale
morphism r: g — . sending u to u. This defines a functor Resg :=ry. Then the
following diagram of functors

E

Resg
F-Hol(.%g) F-Hol(.%k)
(Dg),oo/)L lq)(l(g,oo/)
F-Hol'(n};) ————— F-Hol'(ny)
ResE

K

is commutative up to a canonical isomorphism. The verification is straightforward.

2.4.7 Proposition. The functors F©°) and &) are ezact.

Proof. For .Z©° it follows from Lemma 1.3.4. For ®©°) use the fact that taking
canonical extension is exact. O

2.4.8 Definition. For's € R, we define a free differential R, x-module L(5) in the following
way. The underlying module is R, k. The connection is defined as follows:

V() =5 -7u>Qdu.

Let " be an element of R whose class in k is equal to that of 3. Then there exists a
canonical isomorphism L&) — L) sending one to exp(w (5’ —5)u~'). This shows that
the differential module L(5) only depends on the class s of 5 in k.

Now, take an element s € A'(k). Let 5 € K, be a lifting of s in k;. Then we get a
differential Rg,-module L(8). As proven above, this does not depend on the choice of
liftings up to an isomorphism. We denote this abusively by L(s). This is called the Dwork
differential module.

2.4.9. Using the notation of 2.4.1, we have two lemmas. The definition of

F—@% Q(oo)—modules is recalled in 3.1.1.

Lemma. Let .# be a holonomic F—@%Q(oo)—module, and s € A}((E). Then there exists a
canonical isomorphism ’

TN M@K S O Fordls,)

in the category Hol’(n/KS). Here # ® K denotes the pull-back of A to &Y = &@R R;.
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Proof. There exists a canonical isomorphism «: .% — .%%. Using Corollary 2.2.6, it
suffices to show that there exists a canonical isomorphism o (#Z ® K)|s; S s,- The
verification is straightforward. O

2.4.10 Lemma. Let .# be a holonomic F—@% Q(oo) -module, and s € Ai(%). Then we have
a canonical isomorphism ’

T (M) = Resy (@O Tyl |5,) ORy, L(5)).

Proof. When s is a k-rational point, the lemma follows by using Corollary 2.2.6. When
s is not a rational point, we need to check that Res? (FCN g @ Ky)) = F6 ()
by using the notation and result of Lemma 2.4.9 above. The verification is easy. O

3. Complements to cohomological operations

In this section, we review some known results on six functors which are indispensable in
this paper, and give complements to properties of geometric Fourier transforms defined
by Noot-Huyghe. The proofs for the properties of geometric Fourier transforms are almost
the same as that of [50], so we content ourselves by pointing out the differences.

3.1. Cohomological operations
3.1.1. In this section, we assume k to be perfect. Let & > 0 be an integer, and we put

g = p" as usual. We assume that there exists an automorphism o : R 5 R which is a
lifting of the absolute A-th Frobenius on k. Let 2" be a smooth formal scheme over R.
We define 2 by the following Cartesian diagram.

X —Z

| o

Spf(R) ——= Spf(R)

For a QEK’Q—module A, we denote by .#° the _@I@,’Q—module defined by changing base

by o. Note that even when there is no lifting of the relative Frobenius F )((};)k: X—-X
to a morphism of formal schemes 2 — 27/, we are able to define the pull-back
functor F* from the category of .@T%, -modules to that of .@T%f Q-modules (cf. [15,

Remarques 4.2.4]). Recall that an F (h) .@T g-module is a pair of a @% .g-module

A and an isomorphism # — F (h)*/// v We often abbreviate F by F if there is
nothing to be confused. Let Dcoh(@% Q) be the derived category of Z%f Q—modules

with bounded coherent cohomology. We define a complex of F Ul)—@j@, Q—modules as
(-@jg Q) endowed with an isomorphism ®: .#Z* — FW*(#*)°
in Db h(@f @) We say that such a complex (.#Z°, ®) is holonomic if its cohomology

a complex .#* in D?

coh

sheaves are holonomic F®- @% Q—modules, and we will denote by F- Dﬁol(@% Q)
the category of holonomic F (h)—_@i@- Q—complexes with bounded cohomology, cf. [16,
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5.3.5]. Let Z be a divisor of the of X. We denote by F(h)—Dﬁol(@;f Q(Z)) the full
subcategory of F (h)—Dﬁol(ng Q) of complexes .# such that the canonical homomorphism
M — @I”K,Q(Z) ®@2€Q M is an isomorphism, cf. [22, 2.1.2]. We call them holonomic

(complex of) F(h)—@%‘Q(Z)—modules.

3.1.2. Let R be a discrete valuation ring finite étale over R, and let € be an

object of F(h)—Dﬁol(Spf(R/)). Let ®: € — F®W*% be the Frobenius structure of %.
There exists a canonical o-semi-linear homomorphism ¢ — F®*%° sending x to

1®x. The composition € — FMW*g° —:T> %, where the first homomorphism is the
o

canonical homomorphism, makes 4 a complex of o-K-vector spaces. We note that this

homomorphism is in fact a quasi-isomorphism since o is. This correspondence induces

an equivalence between F (h)—Dﬁol(Spf(R)) and the category of finite o-K-complexes, and

we identify them.

3.1.3. Let us fix notation for Dieudonné-Manin slopes and Tate twists. Recall that
we denote by e the absolute ramification index of K. We denote by K, (t) the ring of
non-commutative polynomials defined by the relation ra = o (a)t, for every o« € K. For
any o € K and integer s > 1, we put

KB 1= Ko (1)) Ko (1)1 — ),

endowed with the Frobenius action given by the multiplication on the left by ¢. It is a
o-K-module of rank s. When o (@) = @w, we normalize the Dieudonné-Manin slope so

that it is purely of slope A := %}EO‘) For any smooth formal scheme 2~ over R, we denote

by O(g?séh) the pull-back of K (@%¢") by the structural morphism of 2 .

Let us define Tate twists. For any @; Q—module A and integer n, we put

M(n) = M B0y Oialéy(g:eh).
This is called the n-th Tate twist of .# . Let us define the twist by a Dieudonné-Manin
slope A € Q. There is a unique way to write A = -=-, where r and s are coprime integers
and s > 0 (if A = 0 by convention we put »r =0 and s = 1). Let @ € A be a uniformizer;
for any coherent ‘@T%f’(@-module A and A € Q, we put

[ (@ ™" ;seh)
MY = ///®O%,@ O%Q ,

which is usually called the twist® of .# by the slope A. When o(w)=w, its
Dieudonné-Manin slope is indeed shifted by +A. The notation .#Z® is slightly abusive
because it depends on the choice of the uniformizer @, whereas that for Tate twists
is intrinsic. We give analogous definitions for overconvergent F-isocrystals? and free
differentials modules with Frobenius structure over the the Robba ring.

8This is called décalé in French.
9For an overconvergent F-isocrystal, in [54], M® was denoted by M(1). We modify here the notation to
avoid any possible confusion with Tate twists.
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3.1.4. To fix notation, let us review the theory of arithmetic Z-modules concerning
this paper. For more thorough treatment of the formalism, see [6, 7].

We say that (27, Z) is a d-couple if 2" is a smooth formal scheme and Z is a divisor of
its special fibre. Here, Z can be empty. Let (%, W) be another d—couple A morphism of
d- couples [ (Z,2) > (¥, W)is amorphlbm f X — % such that f(%\Z) CHU\W
and f L(W) is a divisor. The morphism f is called the realization of f, and if it is unlikely
to be confused, we often denote f by f. Let P be a property of morphisms. We say that
the morphism of d-couples f satisfies the property P if f satisfies the property P.

Let 2" be a smooth formal scheme over R, X be its special fibre, and Zk be its Raynaud
generic fibre. Then we have the specialization map sp: Zx — 2 of topoi. Recall that,
we say that a 7 2.0 -module ./ is a convergent (F-)isocrystal if sp*(.#) is a convergent
(F-)isocrystal, and the same for overconvergent (F-)isocrystals (cf. 0.0.7).

Let (% Z) be a d-couple, and we denote by Dg 7 the dual functor with respect

to (Z)-modules. If it is unlikely to cause any confusion, we often denote
this by D. Let f: (£,2)— (@ W) be a morphism of dcouples We have the
extraordinary pull-back functor f from the category of coherent 7)) Q(W)—modules

to that of @%’Q(f_l(W))—modules (cf. [16, 4.3.3]). Let # be a bounded
coherent (F—)@;,Q(W)—complex. When F(//[) is coherent, we define f'(.#) to
be @;{’@(Z)®f!(///). Suppose in turn that f"oD@,W(///) is a bounded coherent
(F—)@;K)Q(f_l(W))—complex. In this case, we put

frat =Dy zof oDy w)(A).

Now, suppose that the morphism of d-couples f is a proper morphism. We have the
push-forward functor ﬁ_ from the category of coherent 9:2{’@( f~1(W))-modules to that of
coherent @;’Q(W)—modules. Let .4 be a (F—)_@L;;’Q(Z)—module. Suppose .4 is coherent
as a _@}K’Q(f’l(W))-module. Then we denote by ji.# this coherent module. We define
f+(A) to be the coherent @;/ Q(W)—module ﬂ(j+ (/). Assume in turn that D g~ z(A")
is coherent as a @ Q(f 1(W))-module. We define

fih =Dy wo froDg z)(AN).

When we are given .# and .4/ in LDQ qc(gg)(Z)) (cf. [16, 4.2.2, 4.2.3] for the notation

. i
when Z is empty, but the construction is the same), we denote the object .# ®H‘@ o Q(Z)JV

in LDY, (TSNZ) by M DN

3.1.5. In this paragraph, let us summarize some properties of the cohomological
functors defined in the previous paragraph which will be used later in this paper. We
recall the convention 0.0.8 about shifts and Tate twists. Let f: (2, Z) = (%, W) be a
morphism of d-couples. We denote respectively by dg-, doy, d the dimension of 27, %,
and d g —dg . Then we get the following.

1. If f is smooth and of constant relative dimension, we get f'= f+(d)[2d] (cf. [4,
Theorem 5.5]). If f is a closed immersion of connected formal schemes and .# is
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an overconvergent F-isocrystal, we get f'(.#) = fH(.#)(d)[2d] (cf. [4, Theorem
5.6]).

2. If f is proper and f|5,g-\z: X\ Z— ¥\ W is also proper, we get fi — fy (cf. [4,
Theorem 5.4]).

3. Let .4 be an object of Dfoh(@j;g@(Z)) and .4 be an object of Dfoh(@T@Q(W)).
There exists a canonical isomorphism fi (4 ® f' ) = fo.ld @ N (cf. [21, 2.1.4].
The compatibility with Frobenius pull-back can be seen easily from the definition

of the homomorphism).
By using 1 above, we get Do 7(Og o(Z2)) = Og (Z)(—dg). Now, we define! the
twisted tensor product ® on Z to be Do zMg z2(-) @Dy z(-)). We note that the

definition is slightly different from that of [59]. The main reason we introduce this new
tensor product is the following.

4. Assume that f is a morphism of connected formal schemes. There exists a
canonical isomorphism f'((—=) ® (—=)[d] = f'(—) ® f'(—). Similarly, we also have
FHHREN[=d] = fH()Rf (=) (cf. [4, 5.8]).

The following result enables us to compare these two tensor products in special cases.

5. Assume 2 is connected. If .# be an overconvergent F-isocrystal, and .4/ be
a coherent F—@}{ Q(Z)—module. Then we get AN = . # QN (dy) (cf. [4,
Proposition 5.8]).

3.1.6. Now, let us see the base change theorem. Consider the following Cartesian
diagrams of d-couples.

(2.2~ (2, 2)

.f/L a lf
(@/a W/) té (@7 W)

Here, we say that the diagram of d-couples is Cartesian if it is Cartesian for the underlying
smooth formal schemes, and 2\ Z' = (2 \ Z) x@nw (% \ W). Then we get i' o fy =
fioi" (cf. [4, Theorem 5.7]). This isomorphism is compatible with Frobenius structure
by the same theorem. We call this the base change isomorphism.

Assume that f is proper. In this case, for a bounded coherent (F )—_@‘%’Q—complex
M, we get it o fi(M) = f] oi"t (M) if the both sides are defined. This follows by using
DoD =id [70, II, 3.5]. This is also called the base change isomorphism.

3.1.7. We also have the Kiinneth formula. Namely, let f: 2" — 2" and g: ¥ — %'
be smooth morphisms between smooth formal schemes over a smooth formal scheme 7.
Let D be a divisor of the special fibre of 7. We denote by D 4-¢, (resp. Dy, D') be the

divisor of the special fibre of 2 (resp. & O 2 xay W' ) which is the pull-back of D.
Let .# (resp. /") be an element of Q&)qc(@%)(D%-)) (resp. L_D)fé’qc(.@g)(Doy))). Then

101n [7], the notation ® and ® are used for slightly different functors.
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we get
(f X+ (MR ) N) = (fr )R ) (8+:H)

in L_D)fé qc(.’@im,xg 2(D")). To check this, we apply the Kiinneth formula [4, Proposition

4.9] to the diagram

\ /

xid idx
P gt gy ” X8

and //mgg py O (Dgyr) on 2 x 7 %' and O g(D ) x%gw) N on X' xg.

(

3.1.8. In this paragraph, let us see the relation between the rigid cohomology and
the push-forward of arithmetic 2-modules. Let 2™ be a proper smooth formal scheme of
dimension d. Let Z be a divisor of the special fibre of 2", % be the complement, and U be
its special fibre. We denote by sp: Zx — £ the specialization map where 2k denotes
the Raynaud generic fibre of 2. Let f: (£, Z) — Spf(R) be the structural morphism.
Let .# be a coherent @;{,Q(Z)—module which is overconvergent along Z. Suppose that it
is coherent as a @;{’Q—module. In 3.1.5, we noted that D g~ 7z (O 2 ¢(2)) = O g o(Z2)(—d).
For an isocrystal M, we denote by MY the dual as isocrystal. This isomorphism leads us
to the following comparison of dual functors (cf. [4, Corollary 3.12]):

sp*(Dgr z (M) = (sp™ ()" (—d). (3.1.8.1)
We get the following relation with the rigid cohomology:

AN fotl) = HYF (U, sp* 4)(d), (3.1.8.2)
where d = dim(U). For the details of the proof, see [4, 3.14]. To see the relation for
cohomologies with compact support, we use the Poincaré duality of rigid cohomology to

get
A (frtl) = HIF(U, sp* ) (d). (3.1.8.3)

rig,c

For the detailed account, one can refer to [4, 5.9].
When 2 is a curve, and for a holonomic @;{ Q(Z )-module .# , we get that the following
pairing

H(fydl) x ™ (iDy (M) — K (3.1.8.4)
is perfect. This can be seen from [4, 5.5].

3.1.9. For the later use, we review the cohomological functors iy, j*, ji, i', and D
in the theory of formal disks. Let ./ be the formal disk over K. For an object M in
F-Hol(n), j+(M) is by definition the underlying F-7% Q—module. For an object N in

F-Hol(.¥), we denote _@?} Q(O) ® N in F-Hol(n) by j*M. We denote by i: {0} — . the
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closed immersion. The definitions of the functors iy, i', j' = j1 are essentially the same
as in the global case, and are used frequently in [31], so for the details see [31, 3.4, etc.].

Now, we denote by Do (resp. D,) the dual functor with respect to .@*;Q (resp.

;E,Q(O)). These define functors from F-Hol(.¥) (resp. F-Hol(n)) to itself by [31, 5.2].
For an object M in F-Hol(n), we define jM := Do j, ID,(M), and for an object N in
F-Hol(.%), we put itN := (i'D&N)" where ¥ denotes the dual of o-K-vector spaces.
By using facts in 3.1.5, we get isomorphisms i+ Dy, =Dy i} and jTDy =D, jT. By
using these isomorphisms, the localization triangle [31, 3.4.3] induces the following
distinguished triangle:

4+ +l

Gt = id > ipit 5 (3.1.9.1)

Definition. For a holonomic F-2% Q—module M, we put V(M) :=V(D M) and ®(M) :=

W@ »M), and call them the ne-ar’by cycles and the vanishing cycles respectively. These
define functors

v, O F—Hol(.@?’(@) — Delgu(Gi).
We note here that when M is a free differential module on R with Frobenius structure,
we get D, (M) = MY (—1), where ¥ denotes the dual as a R-module by 3.1.8.1. For example
Y(R) =VMR)(1) = K*(1). On the other hand, if M is of punctual type such that M =

V ®k § where V is a K-vector space with Frobenius structure, we get that ® (M) = Viur.

3.1.10 Lemma. Let M be an object of F-Hol(n). Then we get the following exact sequence:

0— M=) ®k 8 - iM — jM — M/dIM(1) ®k § — 0.

Proof. Since jjtjiM = jM, we get W(j, M) = W(j, M) by [31, Proposition 6.1.1]. We
also get W(jiM) 5 ®(jiM). Thus, 2.1.7.1 induces the following exact sequence:

0 — Homgan (D(j+ M), O%w) = ®(i M) - ®(ji M) — Extl@an(]D)(jJrM), Zur) — 0.
We get isomorphisms
RHomgan (D o (j4- M), O*) = RHom g (O (—1), j+ M) = RHomgum ) (R, M)(1).
Here the first isomorphism follows from the fact that D gives an anti-equivalence
of categories combined with the isomorphism D »(0O*) = O (—1), and the second by

adjunction. Thus the lemma follows. O

Remark. We note that the dimension of M?=0 and M/dM over K are the same by the
index theorem of Christol-Mebkhout [25, 14.13].
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3.2. Geometric Fourier transforms

3.2.1. We briefly review the definition of geometric Fourier transform due to
Noot-Huyghe [59]. For simplicity, we only review under the situation of 2.4.1.

To define Fourier transforms, we need to define an integral kernel .%; of the transform.
We define a convergent F-isocrystal on Al overconvergent along oo denoted by .Z; in
the following way. Let ¢ be the coordinate. As an (’)@}“’Q(oo)—module7 it is (’)@}MQ(OO).

We denote the element corresponding to one by e. We define its connection by
V(e) = —me®dt.

This module is equipped with Frobenius structure. The Frobenius structure ®: F*.%, 5
% is defined by

D(1Q®e) :=exp(m(t —t))e.

Now, let us consider the situation in 2.4.1. There exists the canonical coupling u : A x
A — Al , sending ¢ to x ® x’. By the general theory of overconvergent F- isocrystalb the

pull- back pL*.Z is a convergent F-isocrystal on A x A’ ‘overconvergent along Z on P”. This
is a coherent 9@,, (Z)-module, and its restriction to AxA s nothing but s~ 1(u'.%).
By abuse of language, we denote this 9@,1 Q(Z)—module by u'.Z;[—1], or sometimes by
Z - In the same way, there exists a unique coherent complex of @I,, Q(Z)—modules
whose restriction to A x A’ is ANt ZLy). We also denote this by ut.%,[1].

3.2.2. Now, let us recall the definition of the geometric Fourier transform. We
continuously use the notation of 2.4.1. Recall the diagram 2.4.1.1. Let .# be a coherent
@% Q(oo)—module. Noot-Huyghe defined the geometric Fourier transform of .#Z to be
Fn (M) = pg_(gn,u ®E(;)@,,Q(oo) P!//[—Z])
(=P’ L ®,, (oo P H1-3D). (3.2.2.1)
She also proved that p; (L%, ®Hé@/ 49 p' ) is well-defined, and also showed an

analog of the result of Katz and Laumon [60, Theorem 3.2]. Namely, the canonical
homomorphism

P} (L @05, o0y P HN=2]) = Fr (M) (3.2.2.2)

is an isomorphism. Since Fourier transform is defined using three cohomological functors
! . . . .
p;, ®, p’, and there is a canonical Frobenius structure on 4% ,, Fourier transform

commutes with Frobenius pull-backs. In particular, if .# is a coherent F' —92{ Q—complex,
there exists a canonical Frobenius structure on the complex %, (.#).

3.2.3 Lemma. We have a canonical isomorphism

wt L (D21 = W'y
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Proof. Note that H|&x&’\{(0,0’)} is smooth. This shows that u'.%, and put. % (1)[2] are
generically isomorphic by 3.1.5.1. The module u'.%,[—1] is concentrated at degree zero,
and it is finite over (’)@Q(oo). This implies that it is an overconvergent isocrystal along
00. Since the dual of an isocrystal is also an isocrystal, u*.%; is also an overconvergent
isocrystal along co. Moreover, both sides are overconvergent F-isocrystals. Thus, the two
modules in the statement are isomorphic by using [44] and [67, Theorem 4.1.1]. O

3.2.4. Let s be a closed point of A. Let ks be the residue field and K; be the
corresponding unramlﬁed extension of K, Ry its valuation ring. Then there ex1sts a
closed immersion iy : ]P’ R, < ]P’/I’e sending x’ to (s, x"). We define (s - x’) =i -

In the same way, given a closed point s’ in A , we define Z(x-s’) on P. When s is
a rational point, we can check that 7 (& (s-x)|,_,) = L'(s), where L'(s) is the Dwork
differential module 2.4.8 on 7%’

3.2.5. Finally, let us review a fundamental property of Fourier transform shown by
Noot-Huyghe. There exists an isomorphism of rings

G T@L 2L () = T @, 2 (00))

sendmg x' to 719 and 9’ to —mx. It 1s also shown by Noot-Huyghe that coherent
(oo) modules corresponds to F(IE” (oo)) modules by taking global sections.

leen a coherent F(IF’, .@@ Q(oo)) -module M , we denote by Znaive,r (M) the coherent

r (IP/ QA Q(oo ))-module obtained from M via transport of structure by ¢. For m € M

we denote by m the correspondmg element of Fnaive r (M).
Let .# be a coherent _@@ Q(c>o) -module. We denote by Znaive.r(-#) the coherent

“@%’ Q—module corresponding to ﬁnaive,n(r(@, M)). We call this the naive Fourier
transform of .#. Then Noot-Huyghe shows in [59, 5.3.1] that there exists a canonical
isomorphism

T (M) = Pogiven (A)[—1]. (3.2.5.1)
We often denote by m € .# to mean m € I‘(ﬁP\’, ). For simplicity, we will often omit the
index 7 in the notation Fnaive x (A) or Fyp (M).

3.2.6. Standard properties of £-adic geometric Fourier transform explained in [50, 1.2,
1.3] hold also for p-adic Fourier transform with suitable changes. Since the proof works
well with few changes, we leave the reader to formulate and verify these properties.
Although the most of these properties are not used in this paper, we still need a few
analogous results. We will write the statements of these results with short comments of
the proofs.

3.2.7 Proposition ([50, 1.2.2.2]). Let V be a coherent F—_@gpf(R) g-module (i.e. a finite
dimensional o —K -vector space). Then, we have a canonical isomorphism
F (@ (V) Zig+(V)(D),

where q (@, 00) — Spf(R) denotes the structural morphisms, and iy : Spf(R) — P is the
closed immersion defined by 0 in IP'.
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Remark. When V is trivial, another calculation for this Fourier transform was carried out
by Baldassarri and Berthelot in [9]. In their calculation, there is no Tate twist contrary
to our calculation here. This is because the definitions of the Frobenius structures on

the geometric Fourier transform are slightly different. For the precise argument, see [4,
Remark 3.15(ii)].

3.2.8. Let .#’ be the dual geometric Fourier transform: the functor .#': Dfoh(ﬁ%, Q) —
Dfoh(‘@?? Q) defined in the same way as .% except for reversing the role of p and p’. We

get the following inversion formula.

Theorem ([50, 1.2.2.1]). Let .# be a coherent F—@%Q(oo)-module. Then, there exists a
functorial isomorphism ’

F o F(MN2]= ().

Remark. We may also prove the theorem in more general cases: let 2~ be a smooth formal
scheme over Spf(R), and let & be a locally free sheaf of finite rank r on Z". Consider the
projective bundle p: &£ := PEeoo ) > Z to define the geometric Fourier transform
(cf. [59, 3.2.1]). Then the theorem is reformulated as .#' o Z ()[4 —2r] = 4 (r). Let
Z be the divisor at infinity of &. For the proof, we need to show that there exists
an isomorphism 7, (0O o(Z)) = O 4 glr](r). This can be seen from [61, Corollary 4.4]
and [4, 3.14 or 3.15(i)].

3.2.9. Let a € (q—1)"'Z. We define a convergent F-isocrystal .#, on @\{O, oo}
overconvergent along {0, co} in the following way. As an O@Q(O, oo)-module, it is
isomorphic to O@’Q(O, o0). We denote the global section corresponding to 1 by e. We
define its connection by

V(e) = (ozx_l) -e®dx.
The Frobenius structure ®: F*.7, = JHy 1s defined by

D(1Qe) := x4 D ¢

We often use the same notation .%#; for the underlying holonomic @% Q(oo)—module. This
is called the Kummer isocrystal. ’

Proposition ([50, 1.4.3.2]). Let j: (f@, {0, o0}) — (@ {oo}) be the canonical morphism of
couples. Assume o & Z. Then we get that the canonical homomorphism

Jiit A — A
is an isomorphism. Moreover, let G(«, ) be the following K -vector space with Frobenius

structure:

Ga, m) == Hyj, (Ap \ (0}, o ® Z).

Then, we have

Fa ()] = H—a @ G(a, m) (D).
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Proof. The first statement follows from Lemma 3.1.10. For the latter claim, the proof
works essentially the same as in [50] by replacing m* by m' and using the Kiinneth formula
3.1.7. The Tate twist appearing here comes from the isomorphism 3.1.8.2. O

4. Stationary phase

In this section, we will prove the stationary phase formula when the differential slope at
infinity is less than or equal to one. However, in this section, we do not consider Frobenius
structures on the local Fourier transforms, so the stationary phase in this section is still
temporary. This will be completed in the next section.

Throughout this section, we continuously use the assumptions and notation
of paragraph 2.4.1.

4.1. Geometric calculations

4.1.1. Following [50, 2.2.1], we will define several invariants which will be used
throughout this section. Let M be a solvable differential module on the Robba ring,
cf. [47, 12.6.4] or [25, 8.7]. We denote by tk(M) the rank, by irr(M) the irregularity (cf.
2.3.1), and by pt(M) the greatest differential slope of M as usual. By a result of Christol
and Mebkhout (cf. [26, 2.4-1] or in general [47, 12.6.4]), we get the differential slope
decomposition M = P Mg where Mg is purely of slope . For any interval I C [0, oo,
we put My := @ﬁel Mg C M. Let .4 be a holonomic F—@%Q(oo)—module. For any closed

point x in K, we put

(M) = —tk(A1;,) <0, sx(M):=—ire(A),,) <0,
ro( M) = dimg (i M), ax (M) =1 (M) + 55 (M) =1 (M),
where z can be taken to be any closed point in &, and iy: Spf(Ry) — A is the closed

immersion for x. The following lemma compares these invariants to the generic rank and
the vertical multiplicity, cf. 1.4.3.

4.1.2 Lemma. We preserve the notation. Let

Cycl( A1) =r-[A"T+ Y my [ (@)l
xelAl]

Recall that w: T*A! — A is the canonical projection and |A'| is the set of closed points.
Then we have r(#) = —r and, for any closed point x € A, ay (M) = —my.

Proof. This follows from Corollary 2.3.2. t

Let C be a complex of Dé’oh(ﬁgpf(m’@) = Dgn(K—mod), where the latter category is the
derived category of complexes of K-vector spaces whose cohomology is finite dimensional.
We put x(C) := Zi(—l)i dimg 7 (C). Let S be a closed subset of ﬁ and ¢g: (@ S) —
(Spf(R), ¥) be the structural morphism of d-couples. For a holonomic F—@%}’Q(S)—module

M, we put X(@\S, M) = x(q+M).
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By GOS-type formula for arithmetic Z-modules [2, 2.4.7] combining with the
above lemma, we get the following variant of GOS-type formula, for a holonomic
F—:@% Q(oo)—module M

XA, ) =r( )= deg(x) - ar (M) +irr(M ). (4.1.2.1)

xelA

This can be shown by the GOS-type formula 2.3.1.1 of Garnier as well by using the fact
that xg(%,—) = —x (%, —) for % C P (cf. 3.1.8.2) and dévissage.

4.1.3 Corollary. Let .# be a holonomic @%Q(oo)—module, and let x € |’&| be a singular
point of A . Then we get ’

tk(ZCD (L)) = — deg(x) - ax (A).

Proof. This follows from the definition of the local Fourier transform (cf. 2.4.2), using
the stability theorem (cf. 1.5.1-1), combined with Proposition 1.4.3 and Lemma 4.1.2. O

4.1.4 Lemma. Using the notation of Lemma 4.1.2, we get ry(M) = r(A) if and only if
my, = 0.

Proof. When my, =0, we know that .# is a convergent isocrystal on an open
neighbourhood of x, and the lemma follows easily. Let us check the ‘only if’ part. We
know that dimguw V(.Z) = rk(.#) by [31, (6.1.11)]. By [30, 2.2], we get

it = RHom(.#|s,, O™)* [1],

where * denotes the dual in the derived category Dgn(K -mod). The exact sequence 2.1.7.1
implies dimguw W(.#|s,) =0, and thus W(#|s,) = 0. By Lemma 2.1.7, .#|s, is a free
differential @*-module, and in particular m, = 0. O

4.1.5 Lemma. Let M be a solvable free differential module on the Robba ring R over
K. We further assume that M is purely of differential slope 1. Let L(s) be the Dwork
differential module, for s € A,ﬁ k), cf. 2.4.8. We consider the tensor product M @5 L(s)
as a differential R, -module. Then we get the following.

(i) For almost all s € A}C(E), we get
irrg, (M QR L(s)) = rk(M),

where itk denotes the irregularity as an R, -module.

(ii) There exists an s #0 in k such that the irreqularity irrg, (M ® L(s)) s less than
rk(M).

Proof. Let us prove (i). We use the induction on the rank of M over Rg. Suppose there
exists a geometric point s such that

irr(M ® L(s)) < tk(M), pt(MQ L(s)) =1.
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These conditions show that M ® L(s) has at least two slopes including 1. Thus, there
exists the canonical decomposition M ® L(s) = M{ @ M’ where M| is purely of slope
one, and M’ is purely of slope less than one, and these modules are non-zero. Thus, we
get the decomposition

M®g Ky = M| ® L(—5) ® M__; ® L(—s).

Since M is purely of slope one, both M| ® L(—s) and M’ ; ® L(—s) are purely of slope
one as well. Thus by the induction hypothesis, the lemma holds for these two modules.
This implies that the lemma also holds for M.

If pttM ® L(s)) =1 for any s, we get the lemma by the above argument. Suppose
pt(M ® L(s)) < 1 for some s. Then for any s’ # s, we get pt(M ® L(s")) = 1. If there
exists § # ¢ such that irr(M ® L(s')) < rk(M), then we may use the above argument.
Otherwise, the lemma is trivial.

Now, let us move to (ii). By using [57, 2.0-1], there exists a number @ in K whose
absolute value is one, and an integer /4 such that the irregularity of M ®exp(7tax_1’h) is
less than tk(M). Here we are using the notation of [57]. We remind that in [57], there is an
assumption on the spherically completeness of K. However, as mentioned in [57, 2.0-4],
this hypothesis is used only to use a result of Robba, and when p # 2, the assumption was
removed by Matsuda as written there. This result was extended also to the case p = 2 by
Pulita [62, Theorem 4.6], and we no longer need to assume the spherically completeness
here. Arguing as the proof of [41, 4.2.3(ii)] using [55, 1.5]'!, there exists a number a’
in K whose absolute value is one such that exp(nax_ph) is isomorphic to exp(ra’x~!) as
differential R-modules, and the latter is isomorphic to L(a’) where the overline denotes
the residue class. O

4.1.6. Let & be a coherent F—@%Q(oo)—module. We denote by & := A (Fx(&)) the

geometric Fourier transform and by S (resp. S’) the set of singular points of & (resp. &)
in A (resp A"). We have the following analog of [50, 2.3.1.1].

Proposition. (i) r(&") = Y cgdeg(s) - as(&) + k(& ]y 11,000 — T ((E o) 11,000) -
(i") 7(&) = 3 gy deg(s) -ay () + k(&' Iy 1.00) — (S 1) 11,000) -
(ii) Fors' € A'\{0'}, we get

rg (&) = r(&") +1k((Ep)1) —Ir((E15,)1 ® L (x -5 ).-
(ii"y For s € &\ {0}, we get
rs(&) = (&) + k(&' o)1) —Ir((E"5,)1 ® L (s - X |pso)-

(iii) ro/ (") = r(&") +1k((Elp)0.1D) — irr((Elpe 10,10 -
(ii") ro(&) =r(&) +1k((&"]; )01 — irr((E']; 0.1

1n [55], p # 2 is assumed extensively. However, the proof of Lemma 1.5 works also for p =2 without
any change.
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Proof. The idea of the proof is the same as that of [50]. We sketch the proof. By the base
change Theorem 3.1.6, we get

re(&) = —x(A, EQ ZL(x-5")).

Let us prove (i). Since both sides of the equality are invariant under base extension, we
may assume that § consists of k-rational points. We have a,(&) = a,(& ® L (x -s')) for
s, 8" # 0 since .Z(x - s") has no singular points in A. Using 4.1.2.1, it remains to show

=1 (&) =i (Elyy, @ L (x -5 p) = k(& o 1,00) = ITU(E )11, 000)

for almost all s” € k. This follows from Lemma 4.1.5(i). The claims (ii) and (iii) follow
from (i) and 4.1.2.1, and (i)', (ii)’, (iii)’ follow by the involutivity 3.2.8 of the geometric
Fourier transform. O

4.1.7 Corollary. Let & be a holonomic F- QA (oo) module such that 0 is the only

singularity, and it is reqular at infinity (i.e. 1rr(co@|,7m) =0). Then &', the first cohomology
of the geometric Fourier transform, is not singular except for 0/, we have sy(&') =0,
ay (&) = r(&), and the differential slope at o0’ is strictly less than 1.

Proof. By (ii) of Proposition 4.1.6 and the hypothesis that & is regular at co, we get for
s"#£0 in A/,
rs/(éa/) = r(g/)s

which shows that my = 0 for s’ # 0’ by Lemma 4.1.4. Thus &’ is not singular except for
0.
Now, by (ii’) of the proposition, we get for s # 0, co
rk((é"/|noo)1) —irr((£’,|,]m)1 ® Z(s ~x/)|,700) =0. (4.1.7.1)

Suppose (&”|y)1 #0. Then by Lemma 4.1.5(ii), there exists s # 0 such that the
irregularity of (&”[;,,)1® L (s -x")|;, is less than r((&"];,)1), which contradicts with
4.1.7.1. This shows that (6'|,..)1 = 0. Now, we get

ay (&) = sy (&) =r(&) —ry (&)

= — (tk((& [ )10.1D) — T (Ely.)10,1D)
= k(&) = r (&), (4.1.7.2)

where the second equality holds by (iii) of the proposition and the third by the assumption
that & is regular at infinity. Combining with (i’), we get

r(&) =r(&) + 50 (&) + k(& )11,000) — IT((E” 5011, 000)-
Thus,
50/ (&) = 1T (& |11, 000) — IK((E |11, 000) = 0.

On the other hand, we have sy (&’) < 0 by definition. This shows that sy (&’) = 0, and
((g)/|ﬂoo)]1y00[ = 0. Thus ay (&) = r(&) by 4.1.7.2. O
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4.2. Regular stationary phase formula

4.2.1. Let .# be a holonomic @ (oo) module. Let s € A be a singular point of .Z .
Recall the notation of 2.4.1 and Deﬁmtlon 2.4.2. We have a canonical homomorphism

AN T (M) = Fraiven (M)l — T (8] @ M) = T*T(FE (M),

where the second homomorphism sends @ ® m (« € Ry ,and m € F(@, M) to a(1@m).
The first isomorphism is the isomorphism by Noot-Huyghe 3.2.5.1, and the second one
is that of Lemma 2.4.5. We see easily that this homomorphism is compatible with the
connections. By construction (cf. 2.1.8) the source is a free differential R-module, thus
we get a canonical homomorphism of differential R-modules

oy AN T (M), — T TS )

by Lemma 2.1.3.

4.2.2 Theorem (Regular Stationary Phase). Let .# be a holonomic F- @IQ(OO) -module

whose differential slopes at infinity are less than or equal to 1. Let S be the set of singular
points of M in A. Then the canonical homomorphism

(@s)ses: AN Fn( M)y, — P> T (M) (4.2.2.1)

ses
is an isomorphism.

Proof. First of all, we will reduce to the case where § consists of rational points. There
exists an unramified Galois extension E of K such that S consists of kg-rational points
where kg denotes the residue field of E as usual. Note that

cgznaive,n('//)'noo/ Rk E = ngnaive,n(/% Rk E)|noo/,
F N M)y @k E— P F (M &k ),

s'>s

where the direct sum in the second isomorphism runs over the set of closed points of &1Rl;
which map to s. Indeed, the first isomorphism follows since the cohomological operators
used in the definition of geometric Fourier transform are compatible with base change.
The second isomorphism follows from Lemmas 2.4.10 and 2.4.9. Since the left hand sides
of these two isomorphisms have the action of G := Gal(E/K), we define a G-action on
the right hands sides by transport of structure. Note that the G-invariant parts are
isomorphic to Faive x (A )n,, and F(s,:09) (M) respectively. By definition, the following
diagram is commutative

Ay

T/*gﬁ(s,oo/) (M)

|

By T F (M ®K E),

ynaive,n (-//1) |770C/

g\naive,n(% Rk E)|1700/ Do,
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where 7 denotes 7’ over E. Thus, if the theorem holds for .# ®g E, then it also holds
for .4 by taking G-invariant parts, and the claim follows. From now on, we assume that
S consists of rational points.

Now, for a moment, let .# be a holonomic .@% Q(oo)—module which may not possess
Frobenius structure. In this situation, let us check that oy is surjective for any s € S. By
the exactness of Fourier transforms and local Fourier transforms (cf. Lemma 2.4.7 and
3.2.5.1), it suffices to show the claim when .# is monogenic. Suppose it is generated by
mo € F(ﬁF\’, ). Let N be a differential A, ([r, 1[)-module, where ¢’ := 1/x’, satisfying the
following:

1. R ® N = Fnaive,n (A) |noo/ where Roo 1= Rfyocd
2. there exists an element m; € N which is mapped to 1 ® o in Fnaive,x (A1, by
the canonical injective homomorphism N — Fnpive n (A M-

om)

Now, let .# ™ be a stable coherent .0
m( in F(ﬁls, ™) such that :@%Q(oo)@@//l(’") = .# and 1®my is sent to mqg via this
isomorphism. Then there exists an integer m’ such that m" > m, w, > r and a; is induced

by the homomorphism A([w,/, 1[) @ N — t’*@@s(m/’” (™) sending 1 ®my to 1® (mp)".
To see that this is surjective, it suffices to show that the canonical homomorphism

(00)-module generated by a single element

61 A, o) @ N — T*EM ) ()

is surjective for any m” > m’. We have the local parameter y; = x —s around s. By the
choice of N, 1 ® (y'mg)" is also contained in 6(N) for any positive integer n. Indeed, we
have

1@ ('m))" = (= '8y — )" (1® (m()") = 0((w 128y —5)" - my).

Thus, the surjectivity follows from Lemma 1.3.9.
Let M be an object of F-Hol(.), and let M§" be the canonical extension of M at 0.
Then the homomorphism

<?fnaive,ﬂ(1‘/182111)“7%/ g T/*CD(O’OO)(M)

is surjective by the argument above. By Corollary 4.1.7, the greatest differential slope of
Fnaive,n (Mg, is strictly less than one. The surjectivity of the homomorphism implies
the following:

(*) The greatest differential slope of ®©-° (M) is strictly less than 1 for any
object M in F-Hol(.¥).

We get back to the situation where .# possesses a Frobenius structure. For s € S, we
know that

T (M) = 0O (1l |5) ® L(s)
by Lemma 2.4.10. Thus we get the following;:

The greatest slope of FEN gy is equal to one for s € S\ {0}.
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We put M’ := Faive.n (A )|y, - For a k-rational point s in &1, we define
M" :=L(s) ® (L(—s) @ M")j0.1] C M.

By definition, M” is a direct factor of M’, and in particular, there exists a canonical
projection py: M’ — M'. Take two distinct points s, t € S, and consider the canonical
homomorphism

L(=5)® M" 22% [(—s) @ F&) ) = O (g, 5.

Since L(—s)@M" Z L(—s+1) ® (L(—t) ® 4 ")0,1, we get that the source is purely of
slope one. We know that the greatest slope of the target is strictly less than one by (*).
This shows that the homomorphism is zero. Thus the homomorphism

M" s M5 o Z6D ()

is0ift #s.
Let s be a point in § and let S; := S\ {s}. By using the same argument, the canonical
homomorphism } ¢ M" < M 25 M’ is zero. This shows that Y tes, M"NM" =0 in

M’, and thus, the canonical homomorphism @ ¢ M — M’ is injective.

Now, since M" — .F6:°) (L) is surjective, the homomorphism
L(=)®M — L(=)®@ F) () = 00D (i |5,)
is also surjective. Since the target has slope <1, the homomorphism
(L(=)® Mo, > L(=5) @ F& ()
is surjective, and we deduce that the composition
ot M — M 2> FOD ),

is surjective as well. Thus, we get that the canonical homomorphism

Pum* > m P FeD ), (4.2.2.2)

seS seS

is also surjective and is equal to @, g Bs. This leads us to the following inequalities:

tk(M') > ) rk(M") > Y k(F D () = kM),
ses ses
where the last equation holds by Corollary 4.1.3 combined with Proposition 4.1.6(i) using
the assumption that the greatest slope of .# at infinity is less than or equal to one. Since
a surjection of differential R-modules with the same ranks is an isomorphism, we get
that 4.2.2.2 is an isomorphism. Since an injection of differential R-modules with the
same ranks is an isomorphism, we have @, ¢ M"”* = M’, and combining these, we obtain
the theorem. O

4.2.3 Corollary. Let M be a holonomic F-9% Q—module. Then the local Fourier transform

@02 (M) coincides with fﬂ'w/(M) of Crew [31, (8.3.1)]. In particular, the local Fourier
transform is a free R-module.
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Proof. Apply the stationary phase formula to the canonical extension of M. O

4.2.4 Corollary. For any holonomic F—.@?Q—module M, the differential slope of

@09 (1) s strictly less than 1. Moreover, when M is an R-module, we have

k(@) (j M) = rk(® @) (jiM)) = tk(M) +irr(M),
irr(@©°D (j M)) = irr(@ ) (jyM)) = irr(M),

using the cohomological functors of 3.1.9.

Proof. Let us see the first claim. Let .# be the canonical extension of 7j(M). By
stationary phase formula, it suffices to see that the slope of Fnaiver (#)|;,, is strictly
less than one. For this, apply Corollary 4.1.7.

Let us prove the latter claim. The first equalities hold by Lemma 3.1.10 and its remark.
Let us calculate the rank and irregularity of P(0.09) j+M). Let .# be the canonical
extension of 7j(j+M). For the rank, apply Corollary 4.1.3. It remains to calculate the
irregularity. We put .#’ := Fpaive.r (). By Proposition 4.1.6(i) and (iii’), we get

r(AM") = ag(M) = r (M) —ite(M |y,) = ro(A),
ro(A) =r( M)+ k(A" |y ) —irc(A ]y ,).

Since tk(A"|;, ) = —r(A"), we get irt(M |y,) = irr(A"];,,). Thus the corollary follows.
O

5. Frobenius structures

In this section, we endow the local Fourier transform with Frobenius structure. We define
the Frobenius structure using that of geometric Fourier transform. In the first subsection,
we show that, with this Frobenius structure, the stationary phase theorem is compatible
with Frobenius structures. In the second subsection, we explicitly describe this Frobenius
structure in terms of differential operators.

Throughout this section, we continuously use the assumptions and notation
of paragraph 2.4.1.

5.1. Frobenius structures on local Fourier transforms

5.1.1 Definition. For a coherent 9% Q(oo)—module M, recall that we have the canonical

isomorphism Faive x () = HNTF (M) (cf. 3.2.5.1). Since the geometric Fourier
transform is defined by cohomological operators, .%#; commutes with Frobenius
pull-backs. By transporting structure, we have a canonical isomorphism

€En- Fﬁ,(«gmaive,n('/{)g) :) ynaive,n(Ff;v//U)v

where .#° is the pull-back by Frobenius morphism. When .# is a coherent
F—@%Q(oo)—module, we define a Frobenius structure on Fnaiver(#) using this

isomorphism.
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5.1.2 Lemma. There exists an operator Yy € @%, Q(oo’) such that the following condition
holds: let .# be any coherent ‘QA(UQ
structure). For any m € 1"(]}”(1) M), we have

(00)-module (which may not possess Frobenius

e y(1QM) = Ty - 1@m.

Moreover, the operator Y, is compatible with base changes. We omit m in the notation
Y if there is nothing to be confused. Note that Y is not unique in general.

Proof. Let us take an operator Y, such that
ey (10D =Tr (@),
P.Q
The existence follows easily from the fact that the homomorphism

4 Q(OO/) = ynaive,n(@" (00)) — ynalve x(F* @" (00)),

B.Q

where the second homomorphism is induced by the surjection Z (oo) -~ F*gl (00),

B.Q

is surjective; in other words, @ is a generator of Fnaive x (F* @A (00)) over @A (oo’ ).

P.Q
For m € #, let us denote by p: @I (oo) — # the homomorphism bendlng one to
m. Then by the functoriality of geometrlc Fourier transform, we get the following
commutative diagram:

F* naive (0)
F*(Fsive. (D (00)) ——— F*(Fraive,n (M)
ewl €
Fraiven (F* T (00)) ———— o Fraiven (F*.M).
Thus the lemma follows. O

5.1.3 Definition. Let M be a holonomic F- @ 9.0 -module. Let 5 € Al(k) We denote by
# the canonical extension of oM at 5. Recall the notation of 2.4.1. Let

&yt T Fnaiven (M), — D& (M)

be the isomorphism given by the stationary phase theorem. Here we used abusively the
notation t’/ and oo on P® K. Since F* and 7, commute, the isomorphisms & and € 4
induce an isomorphism €y s as follows

F*@;h
_—

ems: FH(@5°) (M) F* (v, Puaive, (M),

f) ‘L'; (F*tgznaive,n (///) |7)oo)

r;(e/ﬂ)‘floo F* (@)
BN

T (Foaiven (F* M)y ) —=2 &) (F*M).

~

We define the Frobenius structure on CD(O'OO/)(M ) by composing this isomorphism with
the isomorphism of functoriality Q(ﬁ’oo/)(F M) = <I>(5’°°/)(M ) induced by the Frobenius
structure of M.
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5.1.4 Lemma. Let .# be a holonomic F-@%Q(m)-module. Let s be a k-rational point

of A}c, and ys be the translation isomorphism of@ sending s to zero. Then we have an
isomorphism compatible with Frobenius structures

Fa(yy M) = T (M) © L (=5 - X).
Proof. The proof is formally the same as that of [50, 1.2.3.2] using the Kiinneth formula
3.1.7, so we leave the details to the reader. O
5.1.5 Lemma. Let M be a holonomic F - @an -module, and s be a k-rational point of Al
Then we have the following isomorphism compatzble with Frobenius structures:
(M) = 0O (M) ® L(s).

Proof. Let .#; denote the canonical extension of t;(M) at s. By the previous lemma,
we know that ﬁ(y;///s) ®L(s-x') = F(M;). By definition, the stationary phase
isomorphism

F Yyl = F O (g ) = 70D (b
is compatible with the Frobenius structures. Tensoring both sides with L(s), we get the
lemma. O
5.1.6 Proposition. Let M be a holonomic F-9% Q—module, and s € Ai(%). Recall the
isomorphism
Ms: FX(@E (M) S o) (F*u)
in Definition 5.1.3. Then for any m € M, we have
c(®m) =,(T)-T@m.
Here, Y is the operator of Lemma 5.1.2.

Proof. Since Frobenius structures are compatible with base changes and Y, does not
depend on the base as well, we may suppose that s is a k-rational point by Lemma
2.4.9. From now on, we assume that s := s is a rational point. Let M be the canonical
extension of M at s. Let eyen be the unique homomorphism making the following
diagram commutative.

F*(?(S,OO/) (Mcan)) ~ F*(q)(s,oo/)(M))

€ can \LGM.S
v

y(x,oo’)(F*Mcan) ; CD(S’OO,)(F*M)

Here the horizontal isomorphisms are induced by the canonical isomorphism M = M|,
For any x’ € F(P(l) M), we get

enen(1®3) = T,(1) - 1®x/ (5.1.6.1)
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by Lemma 5.1.2. Let N be a differential A(]r, 1[)-module with Frobenius structure such

that R® N = Fnaive,n (M|, and let M#™ be a stable 9\1%11)) Q—module such that

@£(1) Q®///(’") = M| zay). We note that N < F 6.9 (pgean) There exist an integer

n and isomorphisms
Ao ID®N = &GP (™). A{wnin. 1) ® F*N = 55V (Fr ™)

inducing the stationary phase isomorphisms. We note that the outer square of the diagram

F*A(lon, 1D ® N ——= F*&" D (") FH(F 6D (o))

~ e<") leMcan
Y

A([wn+h» 1[) Q F*N - (g)x(n+h,1')(F*j/(m))( - g(s,oo/)(F*Mcan)

is commutative. Let €®™ be the unique ig)gorphism making the above diagram
commutative. We have €™ (1®%) = t/(Y)-1®x for any x € .#"™ by the injectivity
and 5.1.6.1. We put ¢ = a ob. By changing m, we may take n = m.

Let x € M. We may assume that x € (@X(,'g)a“(@/// 0m) by increasing m if necessary.

This element can be seen as an element of %%’m/) ® A ™ with some integer m’ > m (cf.
2.2.5). By Remark 2.2.5 (ii), there exists a sequence {l ® xx} in Im(.#Z" — 3’:‘(?6”"/) ®
M) with x; € 4™ which converges to x in %%,m/)®%(m) using the topology
induced by the gi(%’m/)—module structure. Consider the topology induced by the finite

Kig(]){a}(’”’ml)—module structure. By Lemma 1.2.3, these topologies are equivalent, and
we get that the same sequence converges to x also in this topology. Since

F*g\(i,?é’m )(//{(m)) ~ K&{B}(m"'h’m +h) ®K (1){8}<’"~m/) g’?s(’m,m )(j/(m))

A

by definition, the sequence {1 ® (1 ®xx)} in F *é/i%’m/) (™) converges to the element

1 ® x using the K&{E)}(m'*‘h'm/"’h)—module topology. Since €™ is a homomorphism of finite
K&{a}(”’+h’T)—m0dules, it is in particular a continuous homomorphism of topological
modules over the noetherian Banach algebra K&{B}(’""’hj). Since the topology is
separated, we get

c€M1@®) = lim ™1 %) = lim 7/(T)-(1®x)"
1—> 00 1—> 00
=7,(V)- lim(1®x)" =7,()-(1®x)".
11— 00
Now, we get
ens(19%) = c(€™ (1 @) = c(r,(N1®x)") = /(1)1 ®x)")

and the proposition follows. O
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5.1.7 Definition. Let .# be a holonomic F-@{; Q(oo)—module. Let s be a singularity of .#Z

in A. Take a geometric point 5 € A}((E) sitting over s. We define the Frobenius structure
on .Z -2 () by using the canonical isomorphism of Lemma 2.4.10

F 6 () = Resk (0 (10l |5,)).
The Frobenius structure is well-defined since it does not depend on the choice of s by
Proposition 5.1.6.
5.1.8 Theorem. The reqular stationary phase isomorphism 4.2.2.1 is compatible with
Frobenius structure.

Proof. To show this, it suffices to show that the following diagram is commutative.

F*g\naive,n(%”nm -~ @seS T/ F*F(5:00) (A)
<g\naive,ﬂ (F*%”r]m = @sES r/*{g‘(&,oo) (F*-/l)

The left vertical arrow is defined by the Frobenius structure of geometric Fourier
transform, and the right vertical arrow by Definition 5.1.7. To show that it is
commutative, it suffices to show the commutativity for 1 ®m € F* Zgive () for any
m € /. This follows from the description of the vertical isomorphisms in terms of the
operator Y given in Lemma 5.1.2 and Proposition 5.1.6. (]

5.2. Explicit calculations of the Frobenius structures on Fourier transforms

To calculate the Frobenius structure of Fourier transforms concretely, the results of the
last subsection imply that we only need to determine the differential operator Y. To
calculate this, it suffices to calculate the isomorphism

P = E—@l ( F (Jnalve H(@A(l) Q(OO))) _> fnalve H(F @A(l) Q(OO))

concretely, which is the goal of this subsection.

5.2.1. Recall the notation of 2.4.1, and consider the following diagram.

fp?//

@/FL, \f@/
x ’

]P;//( 1) Fo

/\

Here, (¥ means ®g , R, and small letters x, y, x’, ¥’ denote the coordinates. The middle
vertical morphism Fp, is defined by sending y and y’ to x? and x’¢ respectively. By the
definition of the morphisms, we note that the diagram is commutative.

PO P
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To proceed, we will review the construction of the fundamental isomorphism
A T (F, ((00)) = Friven (D5 ,(00))
of Noot-Huyghe 3.2.5.1. Recall that, by definition,

PO =R 5@y oy Ol P =R, (9%%@// @8 ., <—)>.

Consider the Spencer resolutlon [59, 4.2.1]:

IPW (Z) ® /\ ‘%P///]P - @ @,Q(Z)
Here 5, /P denotes the relative tangent bundle of P’ over P. She showed that we can

calculate & (.@% Q(oo)) using this resolution, namely, there exists an isomorphism

T ~ o+
F (T g0 = 1y <@IE}’>/<—IP’” (2) ©91, @ (gﬂ 1 B0z 4(2) 91"@(2) ®/\ 9113”@)) :
Then, she defined a homomorphism
i i . T
(@P/(_]p// (Z) ®9%’/,Q(Z) (jﬂ,}l, ®O@//1Q(Z) @A//’Q(Z))) g ynalve,zt (9@’(@(00))
(5.2.1.1)

and showed that this factors through the geometric Fourier transform. Let us recall how
5.2.1.1 is defined. We identify

1 1
Py 500D =03 ®(Op @ %,

The homomorphism 5.2.1.1 sends ((dx WRIR1® ([dx A dx’)) ® (e ® P) to P where e is
the canonical section of 2, (cf. 3.2.1). To verify that this defines a homomorphism,
see [59, 5.2.1, ete.].

Before starting the calculation, we introduce the Dwork operator. Let 2~ be a smooth
formal scheme possessing a system of global coordinates {x1, ..., xq}. Let {x], ..., x}} be
the system of global coordinates of 2 (" induced by pulling-back {x, ..., x4}. Assume
we have a lifting of the relative Frobenius morphism 2" — 2 (1 sending x] to x . Then

LT X e vl

1<1<d 9=1k=>0

(Z) ® wsn). (5.2.1.2)

we put

in (%2, @(h)(@). If there is nothing to be confused, we denote Hg- by H. We note that
even if ¢ ¢ K, the operator is defined over K, and do not need to extend K to define this
operator. For the details, we refer to [42].

By applying FX to 5.2.1.1, we get the homomorphism

1 T
B g (2) (gn(’,zt ®O@//(1)1Q(Z) @P//(l) Q)) g Ff;/ynaive,n(@@])’Q),

/p* <@@/(1) (_]Pw(l) Q(Z) ®jT
where Zé& on P’M denotes the base change of % . From the next paragraph, we
start to calculate the Frobenius commutation homomorphism on the source of the
homomorphism. For this, we always use the identification 5.2.1.2.
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5.2.2. Let us calculate the canonical homomorphism of sheaves on i

1
¢: /p*( P P Q(Z) ®@A (2) ("gﬂ(’/)ll ®O@/(1)1Q(Z) P//(l) Q(Z)))

//(1)
T T
- p*@]P/(_P// (Z) ®.@ﬂ;/‘©(z) ("gf[,,uv ®O@//_Q(Z) @A//_)@’Q(Z) ® F];@P Q(OO))

In this paragraph, for simplicity, we denote 9 (Z)7 7)1

B P (Z) etc. by Z5, D5 5

etc., and we identify sheaves and its global sectlons
In the following, we will compute ¢ (ag) where g := 1 ® ((dy/)v R1®1®(dyA dy’)) ®
(e®1) is a global section of the source of ¢. First, we get an isomorphism

FA (%’(Ue[@”(]) ® //(I) (g 1) ®OA,/(1) ]p//(l))) — %R—P” ®%,, IP’” (j(l) ®O %//(I)).

pr(l)

By [4, Proposition 2.5], the element o is sent to
ap = () ® 1@ Hx' V@ @[dx Adx)) @xi X" Hex ).
Now, we get an isomorphism

1 ~
9A’(—]P’” ®.}§// B (j( ) ®OA//(1) %”(1)) g %’(—@” ®9@// (ZJT 1% ®O]P>” P//%”(l))

using the Frobenius structure of .%; . This Frobenius structure F*.%, ,, — %, sends
1®e to exp(m((xx’) — (xx")9)) -e as written in [9, (2.12.1)]'2. Using this, «; is sent by
this isomorphism to

= ((dx))¥ @ 1 ® Hx'~@D(dx, A dx)))
=:A
@x?7'x' " exp(n((xx”) — (xx)1)) - e @(1 @ 1)).
=FE

Then we get a homomorphism

Do 5 @7, (Lo ®05, F Do) = Do 0 @, (Lo 05, F Doy 500,
which sends a2 to a3 := A® x4 ¥ (E® (1®1®1)). Then we have an isomorphism
Do 3 ®75, (L ®05, Fo Do 500) = Do 0 O, (e ®05, T3 ® Fi D),

which sends a3 to a4 :=AQxI W NEQU®D®(1®1)). Summing up, the
homomorphism ¢ sends

19 ([dx)"®1®1® (dxe Adx))@ (@) > Ax! Y (Ee (1)@ (1e1)).

12Note that in [9], our 7 is equal to —7 in their notation, and this is why we get (xx’) — (xx’)¢ instead
of (xx")4 — (xx").
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5.2.3. Let us finish the calculation of ®. Consider the following commutative diagram

B
Pi%% 581, (Lrn®0s Z5_5) Fnaive,n (72(00))
| ;
p;‘@ﬁ;/e@// ®_@%H (gﬂ,ﬂ ®O‘// ‘@]Pw F*-@p(l) (OO)) — P naive, n(F" (1)(00))

where we have omitted QQ in subscripts and (Z) to save space. The homomorphisms «
and § are the canonical homomorphisms induced by the homomorphism 9% Q(oo) —

F*@]}:(l) Q(oo), B is nothing but 5.2.1.1, and y is the homomorphism of Noot-Huyghe

3.2.5.1. By the computation of the last paragraph, we have
P11 = y (o).
Since these sheaves are _@A Q(oo) -modules, we identify the sheaves with their global

sections. Since /(A ® x97! ’q YE®(1®1))) = a4, all we have to calculate is (o B)(A®
x17 1Y E® (1®1))). Let

exp(r(t —t?)) = Z ant”

n>0

Then we get
ﬂ(((dx’)v ®1® Hx' "D @ (dx Adx')) @ x4 x4~
x (exp(e((xx) = (xx)) e @ (1@ D))

=8| (@) ®1®Hx Vg @[dxAd))® Zan(xx)"xq it e@(1®1)
n=0

=B D () ®1® " k" Hx'" ™) @ (dx Adx)) ® (e® (1@ x"x71))
n=>0

= (’q THy'—a~ 1) Zanx
n=0

'ﬂ(((dx/)v RIR®I®[xrAdx))® (e®(1 ®x”xq_1))>

— ( q— le/ (g— 1) Za x .(xnxqfl)A
n=0

a\" [ —o '
= (x"~ VHx'—a~ 1) Zanx < ) ( > -1.
4

n=0

Summing up, we get the following theorem.
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5.2.4 Theorem. Let .# be a coherent .@%m Q(oo)-module. We write

exp(mw(r —t?)) = Z ant”

n>=0

with a, € K. The canonical isomorphism ®: Fﬂ;’f, (S naive.n (M) 5 ﬁnaive,n(F{;‘j/) can be
described as follows: for any m € F(@(l), M), we have

, —"\" [ —d"\4!
d(1®@m) = (x/qfl.H@.xHq*l)) .Zanx/"< ) ( - ) (1®@m)".

T
n>0

6. A key exact sequence

To show Laumon’s formulas, one of the key point was to use the exact sequence appearing
in the proof of [50, 3.4.2]. This exact sequence was deduced from an exact sequence
connecting nearby cycles and vanishing cycles. Since our definition of local Fourier
transforms does not use vanishing cycles, we need some arguments to acquire an analogous
exact sequence, which is the main goal of this section.

6.1. Commutation of Frobenius

In this subsection, we show a commutativity result of Frobenius pull-back and
microlocalization. This result is used to define a Frobenius structure on microlocalizations
defined in the next subsection.

6.1.1. Let 2 be an affine formal curve over R. We consider the situation in paragraph
3.1.1. We moreover suppose that 2 and 2~ possess a global coordinate denoted by x
and x’ respectively, and that the relative Frobenius homomorphism 2~ — £ sends x’
to x4. For any smooth formal scheme, we can choose such x and x’ locally, with the same
property. We denote by 9 and 9’ the differential operators corresponding to x and x’
respectively. We denote by X; and X/ the reduction of 2" and 2" over R; as usual.

Lemma. Leti and m be non-negative integers. Let ®: @;{:’M) — F*@)(Z’) be the canonical

i

homomorphism of Berthelot [15, 2.5.2.3]. Then (8’<pm)(m))‘”i+I is in the centre of .@)(("{1) and,

for any positive integer 1,

¢((8(Pm+ll>(m+h))ll7i+l) =1® (a’(!’m)(m))lpiﬁ. (6.1.1.1)

Proof. To have lighter notation we will put, for every n and m, 3" = @P" Yy,

The case i = 0 of the first statement is proven in [13, 2.2.6], and the general case goes
similarly.

i+1 .

To finish the proof we show the second claim by induction on i. We put N; := p
When i =0, it has already been verified in [15, 2.2.4.3]. Suppose that the statement is
true for i and let us prove it for i + 1. By induction hypothesis, for any [, we may write

n IN; my!Ni .
@(a(p +h>(m+h)) — 1® a/(P >(m) +wl+l Z fr(l) ® a/(r)(m) (61.12)
r
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in 2" | for some f(l) € Oy . By the first part of the lemma 8<pm+h)g'€+h> is contained
Xz{+1 ) r Xi+1 - by p )
in the centre of @)(Zl:h). For any integer j > 0, we get

m+h)[Ni

lN( 1
a(p (m+h) . <1 ® a (m) + Jw!+1 Z f(l) ® a (Wl)a (m) Jj— )

)

Nl]

+jo't! Zf“) ® 0/ P )

j+1)

m N;i(j Nj
— ey +(j+l)w’+]Zf(’)®8 Y P Vany (6.1.1.3)

where - in the first line stand for the left action of .@)((leh) n F *9('" Thus, we get

t+

m+h)1)1 i m+h)(l’71)lN

(mt+h)) = 9P" )iy <1 Q9P (m) + it Z f(l) Q9" “'”)

p—DIN;
(1 ® 8 (m) —+ pwl+1 Z f(l) ® a/ (m) a/<P (f,,) )

ICAS

PIN;

— 1 ® 8’([7 )(m) ,

where for the second equality, we used 6.1.1.3 (p — 1)-times. Thus, the equality 6.1.1.1
holds for i + 1, and the lemma follows. O

6.1.2. We keep previous notation. Let i and m be non-negative integers. First, let us
construct a canonical homomorphism

(g;)((rin-i-h) - F*@@;l?n (6.1.2.1)

compatible with &, where F* denotes n’l(’)xi@)n_lo ;- Let N be the exponent pi*!

in Lemma 6.1.1. Let S,4; be the multiplicative system of .@(m+)

(3(P’"+h m+m)N “and S, be that of 9}(({) generated by (8P )N which is also contained

generated by

in the centre of 9)((’7). For a (non-commutative) ring A, we denote by A[¢] the ring of
polynomials in the \’/ariable ¢ such that ¢ is in the centre. We know that S;leh .@)((':Hh) =
@)((’7*”)[é-]/((a(p’””)(m%))]vg —1). Define a @)(ZLM) [¢]-module structure on F*S,ZIQ;;?) b
putting

C(f @ Dmy = F g D@ P my=N,

This structure defines a  homomorphism @)((':l+h)[§] — F*S,. 1@)(;7) of left
_@)(('?+h)[§]—modules by sending one to 1® 1. Since (8(pm+h)(m+”>)N (1@ (P )Ny =
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1®1, the homomorphism factors through .@;{?M)[{] — S,;j_h.@)((rerh), and defines a
well-defined homomorphism

o1 (m+h) —1 gy(m)
a: S, P — F'S, @Xf

compatible with ® and sending (8<”m+h><M+h))_N to (/P")m)~N_ For an integer k, we
denote by (F*S,;l.@)(:?))k =10y, ®r-10,, (Snjl‘@)(:?))k. By the choice of coordinates

(cf. 6.1.1), a(@ Mty = gx9=1 @ 3'Ven . This implies that, for any integer k, we get
— h —
(X((Smih@)({:l-'— ))k) C (F*Sml.@)((’?))[kp—h]+Npm+h .

Thus by taking the completion with respect to the filtration by order, @ induces 6.1.2.1.
Let m">m be an integer. The homomorphism 6.1.2.1 makes F*éa)(('f) a left

5)((';'/%) -module. Thus the canonical homomorphism F *@;’7) — F*g;(’{"/) of left
@;’:’M)—modules induces
’ h 7
éa)((rln +A) ®@)((r:z+h) F*.@(’?) — F*é(’)((’? ),

This is an isomorphism. Indeed, since F *@)((’7) is flat over @)((”'_Hrh), cf. [15, Corollary

2.5.7-(1)], we get that the canonical horrllomorphism induced by the injective

homomorphism wé"(m o g(m +h)

)

"+h "+h
wg)({,n +h) ®@)((,7+h> F*:@;r?) — é[}({ln ) ®_@)<(r?+h> F*9;7)

is injective. Since wé"(m +h ®j(m+h) F*Q(m) = éa(m +h) ®j(m+h) F*.@ is an isomor-

phism, by the induction on i, it remains to prove the claim for i = O In this case the
verification is stralghtforward, and left to the reader.

Since Oy, is free of rank g over OX/ F* commutes with taking inverse limit over i.
Thus by takmg the inverse limit, we get a homomorphism W, : g;(erh) F *g;(é,",). For
an integer m’ > m, this induces a canonical homomorphism

/+h T !
Bt B @ pen PTG~ FER.

This is an isomorphism since both sides are complete with respect to the p-adic filtrations
and its reduction over R; is an isomorphism for any i.

6.1.3. We keep using notation of 6.1.1 and 6.1.2. Let m’ > m be integers. We will

first define a homomorphism @/”\(%Hh mEh g *(;‘aj(;,’m/)

Let & be either @(m+h) or g};gh,m M considered as a subgroup of (g;(m+h,m’+h). For

compatible with ¥,, and W, .

non-negative integers b > a, we consider g(%’i’b) as a subring of é‘a\(f’) 2(;,) using the
canonical inclusions. Then we claim that ¥V,(&) C F *é;(;/m) where e is m or m’, and

Vle = V,|g. For & = @<m+h) the claim is nothing but the compatibility of W, and
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®. Let us see the claim for & = gs(xm;h,m +h

\I/m/(8<_kp m'+m) for large enough integer k, and thus W, (8 )’ )y =W, (8 o’ +h))

holds for any p051tlve integer n. By a standard contlnmty argument, we get the claim.
g;(m+h ,m’+h) @(m —+h) + g(?(m+h ,m’+h) in a&*ferh)

. By definition, we get W, (0{7%" Yo+ =

Since is equal to , we get the desired

homomorphlsm Now, we get the followmg

Lemma. The canonical homomorphism

S0n'+hm'"+h) 0m) Z0n'm")

Ey " ® s F*9y) — F*&, ™ (6.1.3.1)
s an tsomorphism.

Proof. Since F *.@ , is locally projective over ./@\(('%"Jrh), the canonical homomorphism

h, h h
c?(m+ '+ )®9(m+h) F*@(m) é?(}+ )®9(m+h) F*Q(m/) — F @m )Q

is injective. Thus we get the injectivity of 6.1.3.1. Let us see the surjectivity. Since

Fm = g}(m’,m”)/(g;(m’,m”))ih it suffices to show that the image of 6.1.3.1 contains

(F*&4 2. This follows from the fact that (F*&% % )y = (F*&Y )0, and the
surjectwlty of the homomorphism S,,. O

6.1.4 Lemma. Let .# be a coherent é(m?(@—module. Then there exists a canonical
isomorphism

t * ~ Yyl
Ey (@ F M FH &y, o ® M),

Proof. Since tensor product is right exact and F* is exact, it suffices to prove the lemma
for A = @(,'T’? Q by the coherence of @gf? o Since inductive limit commutes with tensor

product, it suffices to see that the homomorphism & (mgh’ﬂ ®F *@%?Q — F*& ég",:’g is

an isomorphism. Since F *@\(g? Q is locally projective over @%g) , this claim follows from

Lemma 6.1.3 above by taking the inverse limit over m”, and we conclude the proof. [

6.1.5 Remark. The construction does not depend on the choice of x and x’, and
Lemma 6.1.4 holds for any smooth formal curve 2. Since x’ is determined uniquely
when x is determined, it suffices to see that the construction only depends on x. This
verification is left to the reader.

6.2. An exact sequence

In this subsection, we construct a key exact sequence. We consider the situation in
paragraph 2.4.1. First, we use a result of the previous subsection in the following
definition.

6.2.1 Definition. Let .# be a holonomic F—@%Q(oo)—module, and consider é"(;Q QM =

(éa;f@®%)§0 (cf. Notation 1.2.1.3). This module is naturally a %, g module by
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Corollary 2.2.4. Now, we get the following isomorphism

t ~ et ~ t
b ® A T Eyg®@ F M — F* (&)o@ M),

where the first isomorphism is induced by the Frobenius structure ®: .# — F*.4, and
the second by Lemma 6.1.4. This defines a Frobenius structure on 5J o® A . We denote
this F—@f;% Q-module by w(A).

: T PR el (Mm% ._ peprr emT)
6.2.2. Recall that, in 1.2.1, we put EX,Q = T(T*A, g&(@)’ ro = C(T*A, @(0&,@ ),
Dlnm’y | _

io T F(f’*&, %’%m/)), etc.. We claim that the ring isomorphism of the naive
Fourier transform ¢: F(f@, Q%Q(oo)) = F(@, @%, @(oo’))7 x> 719, 0 > —mx’ (cf.
3.2.5), extends to a ring homomorphism ¢: 93;00 Q(O) — E%/Q, which fits into the
following commutative diagram

L

NERZONES) . ®. 7, ()

P (O ——————— - - EL

where the right vertical injection is

restriction

o ot / N7 ~ P, —1 ot Pk AN/ of _ it
rd®, .@@’Q(OO ) ——— I'(A, @K’,Q) — I(T*A", @K’,Q) — I'(T*A', g&,@) = EK,

Q’
and the left one is the natural injection sending x to u~! and 9 to —u2d,, with u := x~!
the local parameter of .%s;. Such a morphism ¢’ should send u to 78’ ™! and 8, to 7 —18"%x’.
Let us construct /. We recall that, for every n,m > 0, the integers q,(,m) >0and 0<

r,(,m) < p™ are defined by n = q,S’") p"+ r,i’") . First, we have a continuous homomorphism,
for every m’ > m > 0,

’o. =(m,m")

Ly RIull — E&,’Q
sending u to P Indeed, to check that is well-defined, it is enough to note that
the sequence 7P""/(p™!)" goes to zero when n goes to infinity. By construction, l:n/
is independent of m, compatible with natural morphisms changing the level m’, and

continuous for the (@, u)-adic topology of R[[u] and 7,-topology (cf. 1.2.2) for n >0
on ng&l ). Now we are going to extend this morphism to three different kinds of rings.
First, for any integer r = cp
to a morphism

’"/“, with ¢ € N\{0}, the morphism L;n, extends by continuity

O, = RIuNT}/(pT —u') — EL2” (6.2.2.1)
sending T to 7'p~'9'™" = (x"/r)) (pe)! p~10' @) Second, for s:=p"*!, the

morphism L;” , extends by continuity to a morphism

By := RIul{Z})/ W Z — p) — Eg"(g’) (6.2.2.2)
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sending Z to pr 9" =sla= (p/pHd’*)™_ Third, for m”" <m—2 and m > 2, the
morphism ¢, extends to a continuous morphisms

79— (&’"& (6.2.2.3)

sending 9, to 719’ 2x'. To verify this, it is enough to prove that the sequence {8L(,n)("’//) }n>0

is sent to a sequence converging to zero in E (m m) . We have
<> " q,S’”")! 0”5y

My _ qn ! (m"y ._ om) Z(m,m’)
8u n' 8 | — Qn = n' o c @K’,@ C ELA@,Q .

We consider the spectral norm [—['™ of 9(”’), cf. [40, Remark 2.1.4-(ii)], we

want to compute ||Q(m”)||’(’”) Recall that Hx ”/(m) H 9’ H/(m)

p~1/P" (=D and || = wp. For every integer n > 0, (8’ x/)" is divisible by (n!)? in 9&,,
more prec1sely we can prove by induction the relation

j=2n ,.
n+1 ; i
3 = (n! Ni—ng/lil 6.2.2.4
( n!)? ZO(J_”H)(“ ( )
where 8'l/1 = 8’j/j!. Using 6.2.2.4, and denoting by o (—) the sum of p-adic digits, we get

1 W, J
1Y '™ < |nl)> sup f<—°)
n<j<2n !\ @n

2"—20(’1)+infngjg2n{U(j)—p%} 2n—20(n)—2—;$l
= w, < W r ,

wo /Wy, where w, =

and finally we have

” (m " 4
g (@7%x')" g =g )=o) — 2

i ||/(m)
(m"™) —
H QO ‘ - n! " = “o
For m > 2 and m” < m — 2, this is converging to zero when n goes to +o0.
Now, since EY S) is complete, combining morphisms 6.2.2.1, 6.2.2.2, and 6.2.2.3, we

get, for any m’ > m > 2,
= S Bm=2) _ pmm)
Opm/_H ®R[[u]]Bpm+l®R[[u]].@yoo —> E&/,Q .
Taking the inverse limit on m’ and tensoring with Q, we have

m/

2 > ~ ~  Am—2 4
(7 (m )(0))an = (l(in(opmm®R[|u]]Bp,n+1®R[[u]]@goo ))> — E(mQ)
Q

and finally by a direct limit on m we get the homomorphism / we wanted.
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Lemma. Let .# be a holonomic F-@%Q(oo)-module. Then the F-2*™-module
W(Fnaive,x (M) only depends on A |y .

Proof. First, we note here that as modules, we have

M = 97,0081 (o) -

Since .# possesses a Frobenius structure, we know that .# is a coherent 758 Q—module.

Thus, we get
9%,..a ®a1, M~ T3, o0 ©g1 o) <

by [31, Theorem 4.1.2]. We denote by

~

r Q(O)—)E C—>é"’5pO,Q,

AQ

the composition of the homomorphism defined in 6.2.2 and the canonical inclusion. We
have

M(ynaive,n(%)) = Cgaar(l),)(@ ®_@j (00) ng.naive,n('//)
P.Q

an +
eyo/,Q ®_@%/Q(oo) (@A“Q(OO) ®L, <%)

.
@@Q(OO)
%@ 0 A -

To see that it is compatible with Frobenius isomorphisms, it suffices to apply
Proposition 5.1.6. U

6.2.3. We use the notation of 2.4.1. Let M be a holonomic F-%%, Q—module Let us
define an LF-topology on &*" @ M. Let .# be the canonical extensmn of M at zero. By
Corollary 2.2.4, we know that

é”““@M%E%Q@,//Z.

Let .#™ be a stable coherent @émé—module such that 91% 0® M™ = 4. For m' > m,

since E(A ) is a Fréchet—Stein algebra, any finitely presented module becomes a Fréchet

AQ
space. By taking m’ to be sufficiently large, we may suppose that EQ"QT) Q.MM is
finite free over K A{B}(’"/ D by Corollary 4.2.3. There exist two topologies on EA L ®
M the Fréchet topology induced from the E,& 0 " _module structure denoted by 7,

and topology induced from the finite free K&{a}(’”/ D-module structure denoted by 7.
Since (E(m - ®.#4"™, T) is a topological KA{B}(’" D-module as well, we get that .7 and

T are equlvalent by the open mapping theorem. Now, we put on EA ® A the inductive

limit topology. By the observation above, the inductive limit topology coincides with the
RE h_I)n , KA{B}(’” ‘D-module topology (cf. Lemma 1.3.6). Since R is an LF-space and
m
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the module is finite free over R, we get that the inductive limit-topology is separated and
® M becomes an LF-space. Thus this defines an LF-space structure on &*" @ M. By

usmg Remark 2.2.5 (ii), we note here that this is also a topological 2*"-module. Thus,
if 2@ M is finite over 2*", this LF-space topology coincides with the 2*"-module
topology by the open mapping theorem.

6.2.4 Lemma. Recall the notation of 3.1.9. Assume that w(.#) is a holonomic
F—@;‘}Q-module. Then the scalar extension homomorphism M |s, — u(A) induces an
isomorphism

O(M|s,) — D(u(A)).

Proof. Let N be a holonomic F-Z%"-module such that M := &*" ® N is also a holonomic
F-2*-module. First, we will show that & @ g M = M. Let

(X:M—)éaan®@anM, ﬁ:(gaan(g@anM—)M,

be the homomorphisms mapping m +— 1 ® m and P ® m — Pm respectively. Obviously,
we get Boa =id. It suffices to show that « is surjective. Let N and M be the
canonical extensions of N and M respectively. By Corollary 2.2.4, we get

can an can
M= E§Q®N , ENQM= E&Q®M .

Using 6.2.3, we endow these with the LF-space topologies (or equivalently the 2*"-module
topologies). Since these are equipped with 2*"-module topologies and « is Z*"-linear,
o is continuous with these topologies (cf. [19, 3 7.3/2]). To see the surjectivity of a, it

suffices to show that it is a homomorphism of EL Q—modules Since d is invertible in E& o

we get that a(9™ m) = 9~ ! @ m. This shows that « is hnear with respect to the subring
E generated by DA 2.0 and 3~!. Note that E is dense in E& o Since the target of « is an
LF-space, it is separated, and we get the claim.

Now, since the category F-Hol(.¥) is abelian by [31, Theorem 7.1.1], we define the

F-2*-modules K, C by the following exact sequence of F-Z*"-modules:
0— K — Als, > n(#)— C— 0.

Here the middle homomorphism is the canonical homomorphism. By the definition of
Frobenius structures (cf. 6.2.1), this homomorphism is a homomorphism of modules with
Frobenius structures. Take £2"® gan, and we get an exact sequence by Remark 2.4.3 and
the claim above:

0> EE"QK — w(H) — w(H)— E"QC — 0.

This shows that S K = & ® C = 0. Let N be a holonomic F-2*-module such that
SN QN = 0. Let N be the canonical extension of N. We have

gTQ@)Ncanwéaan@N_o

This shows that there are no singularities for N at 0, so N is a convergent isocrystal around
zero. In particular, we get an isomorphism N = (0*)®" of differential modules for some
integer n (note that in the isomorphism, we are forgetting the Frobenius structures).
Applying this observation to K and C, we get that these are direct sums of trivial
modules. Since ®(O*) = 0 and the functor ® is exact, we finish the proof. O
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6.2.5. Let .# be a holonomic (F-) (oo) module. We define #|  :=

Homy (R, , #|y..)- When .4 possesses a Frobemus structure, this is a K-vector space
with Frobenius structure. There exists a canonical homomorphism

R @k Mlsy = Ml (6.2.5.1)

This homomorphism is injective, and compatible with Frobenius structures if they exist.
When this injection is an isomorphism, .# is said to be unramified at infinity. This is
equivalent to saying that .#|,,, is a trivial differential module.

Lemma. Let .# be a holonomic F- @i(@(oo) module unramified at infinity. Then the
F-2*-module u(Fnaive.x (A)) is holonomic.

Proof. Since u(Fnaive,x(#)) depends only on .Z|,, and the claim does not depend
on the Frobenius structure by Lemma 2.1.10, we may suppose that .# is isomorphic
to O@’Q(OO)EB” where n = 1k(.#). In this case, we know that Fnaive.r(A#) is equal to
iy (K®") by Proposition 3.2.7. Now, v+ K|z = @&Q/(x’), and we may check directly
that é”da,nQ /5&{‘(@ -x’ is generated over @gff(@ by 8'~!. Thus the claim follows using Lemma
2.1.10 once again. (]

6.2.6 Lemma. Let .# be a holonomic F—.@% Q(oo)—module which is unramified at infinity.
Then we have ’

cD(ynaive,n(%NSO/) = (Kur Rk '/Asoo)(l)-

Proof. By Lemma 6.2.5, we get that wu(Fnaiver(A)) is finite over @8}?@. Thus by
Lemma 6.2.4, it suffices to calculate @ (u(Fnaive.x (A))). Since pu(Fnaive.x («#)) depends
only on .Z|,,, we may assume that .4 = .|, Qg (’)@Q(oo). Indeed, its R-module
around oo is isomorphic to .#|;,, as differential R-modules with Frobenius structures
using the isomorphism 6.2.5.1. In this case, we may use Proposition 3.2.7 to get that

ng.naive,7'r(=//) = i0/+(=///|soo)(1)‘

Now, using Proposition 6.2.4 again, it suffices to calculate ®(Fnaive.r (-#)ls, ), which is
nothing but what we stated, and concludes the proof. O

6.2.7 Remark. We believe that u(Fnaive » (#)) is a holonomic F-%Z*"-module even when
A is not unramified at infinity, and pu(Fnaive,z (#)) is closely related to the (oo, () local
Fourier transform of Laumon. However, we do not need this generality in this paper, and
we do not seek such functor further.

6.2.8 Proposition. Let .# be a holonomic F-Z. i (oo)—module which is an overconvergent

isocrystal on a dense open subscheme U OfAk, and assume that it is unramified at infinity.
We denote by j: (]P’ IP’I \U) —> (]P’ {oo}) the canonical morphism of couples. Then there
exists an exact sequence of Deligne modules:
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0— H (Uxw, #)— V(Fy (///.)|SO/)(—2)

rig,c
— (K" @k A5, )(—1) — (Uguw, M) — 0. (6.2.8.1)

ngc

Here, by abuse of language, we denoted Hr’lgc(U sp*(A)) ® K" by H. (Ugw, #), and

M = jijT. M using the cohomological functors of 3.1.4.

rlg c

Proof. By 2.1.7.1, there is an exact sequence:

0 — Hom g (DT ()5, , Ou) = VDT (M) 5,) — WD T (M) 5,)
— Extl; (DT (M) |5y . Ou) — 0.

Consider the following Cartesian diagram:

P, {oo})) —— (7", Z)

qol O lp/
{0} ——— (P, {o'}).
10/
By [30, Theorem 2.2], we get
Extigt(Degzn(///!Nso/, ) = H 1(l (DD-F (M) @ K" = '~ 1(l (Fn (M) ® K™

for any i. We get the following calculation:

A (Fr (M) = A G (P @ pA)[1[-3]
L Ao 1§ (1L ® P A)-2)
= A qoud (1 ZeBp' ) (~D)[-2]
= Ao (W ZeBpt )2
2 A ol it LB p 112
S (qog((’)@(@(oo)é///!))[l]

L A (quADDIN S HE2 U, 4)(2).
Here @ follows from Noot-Huyghe’s theorems 3.2.2.2 and 3.2.5.1, @ from the base change
Theorem 3.1.6, @ from 3.1.5.5, @ from 3.1.5.1 and Lemma 3.2.3, ® from 3.1.5.4, ® from
poto =id@ (o), and gty = Op g(00) (by construction of ut %), @ from 3.1.5.5
again, and ® from 3.1.8.3. For the calculation of ®(Fnaive,x (-#1)[s, ), it suffices to apply
Lemma 6.2.6, and the fact that #)|s, = A |, . O

lsoc
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7. The p-adic epsilon factors and product formula

In this section, we prove the product formula for p-adic epsilon factors and the
determinant formula relating the local epsilon factor to the local Fourier transform. We
start in section 7.1 by defining the epsilon factors for holonomic modules over a formal
disk, then we state the main theorem (the product formula) in section 7.2. Its proof
takes the rest of this paper. We begin in section 7.4 by proving it for F-isocrystals with
geometrically (globally) finite monodromy: this proof is slightly more technical than the
¢-adic one and we need some generalities on scalars extension in Tannakian categories,
which we collect in section 7.3. We finish the proof of the main theorem in section 7.5
where we give also the determinant formula.

7.1. Local constants for holonomic Z-modules

7.1.1. Let us fix some assumptions for this section. Let F be a finite subfield of &,
p" be the number of elements of F, so that F is the subfield of k fixed by the h-th
absolute Frobenius automorphism o. Let A be a finite extension of Q, with residue field
F and absolute ramification index e. We put K := A Qwm) W(k). It is a complete discrete
valuation field with residue field £ and ramification index e. We denote by R its ring of
integers. We endow K with the endomorphism ox = idy ® 0. The subfield of K fixed by
ok is A. We say that ok is a Frobenius of K of order h. Let vg denote the valuation of
K normalized by vg (K*) = Z.

We assume (except for section 7.3) that k is finite with g = p/ elements, and that the
order h of the Frobenius og divides f, so that f = ah for an integer a. We will see later
(cf. Remark 7.2.7) that, in the proofs, it is not restrictive to assume 2 = f and so F =k
and K = A.

We choose an algebraic closure @p of K, and we denote by F its residue field. We
choose also a root 7w of the polynomial X?~! 4+ p and we assume 7 € A. We recall (cf.
2.4.1) that the choice of 7 determines a non-trivial additive character ¥, : F, — K*. By
composing ¥, with the trace map try/r,: k — Fj, we get a non-trivial additive character
k — K* that we denote also by .

7.1.2. To fix notation, we review some results collected in [54]. See [54] for more
details. We follow the notation and the assumptions of 2.1.1 and 7.1.1. In particular
& = Spf(A) denotes a formal disk, n & its geometric point, S = Spec(A/w A) its special
fibre, s = Spec(k,) the closed point, and n = Spec(K) the generic point of S. We recall (cf.
Lemma 2.1.1) that I = ks (u)), for any u in A lifting an uniformizer of A/w A. We put
5 := Spec(F), and we choose a geometric algebraic generic point 7. We identify (s, 5)
with Z by sending any n € Z to F " where F: x — x~7 is the geometric Frobenius
in m(s, 5). Let us denote by v: m1(n, n) — 7 the specialization homomorphism and by
W(n, i) := v~ Y(Z) (resp. I, :==kerv) the Weil (resp. inertia) subgroup.

Let Repgu(WD(n, 1)) denote the category of Weil-Deligne representations: i.e. the
category of finite dimensional K"-vector spaces V endowed with an action p: W(n, ) —
AutKur(V) and a nilpotent endomorphism N: V — V, satisfying p(g)Np~'(g) = ¢"® N,
for any g € W(n, n).
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On the other hand, p-adic monodromy theorem gives an equivalence of Tannakian
categories (nearby cycles)!3

W(—1): F-Hol(n.o) — Delguw (r1(n, 7).

For the twist (—1), see 3.1.9. Let (V, ¢, N) € Delguw(mr1(n,7)) be a Deligne module.
We can endow V with a linear action p: W(n, n) — AutKur(V) by putting p(g)(m) :=
2@ ® (m)), for all m eV and g € W(n, 7). In this way we obtain a Weil Deligne
representation (V, p, N) and we denote by

Li: Delgu (1 (0, 7)) — Rep (WD (1, 7)) (7.1.2.1)

this functor of ‘Frobenius linearization’. Since Weil-Deligne representations are linear,
we will often implicitly extend the scalars from K" to Q,. Composing the functors

W(—1) and L; and extending the scalars to @p, we obtain a faithful exact ®-functor
WD: F-Hol(ny) — Rep@p(WD(n, m) (cf. [54, 3.4.4]).

7.1.3.  Now, let us introduce local epsilon factors. Langlands [48] defined local epsilon
factors extending Tate’s definition for rank one case, and in [32], Deligne simplified the
construction of the epsilon factors for Weil-Deligne representations. Deligne’s definition
translates well to free differential R »»-modules with Frobenius structure F-Hol(n ), via
the functor WD recalled above. Here, we extend it from F-Hol(n ) to F-Hol(’) by
dévissage.

We follow the notation and the assumptions of 2.1.1,2.1.4,3.1.9,7.1.1 and 7.1.2. Let M
be a holonomic F-2% Q—module w e Ql K/ @ Don-zero meromorphic 1-form, and p a Haar

measure on the additive group of K with values in K. We denote by ¥ (w): K — K"*
the additive character given by a +— ¥y (Trk/]pp (Res(aw))) (cf. [50, Remarque 3.1.3.6]).
The next proposition allows us to define the (local) epsilon factor of the triple (M, w, w).

Proposition. There exists a unique map
—%
ex: (M, 0, 1) > ex(M, 0, 1) € Q,

satisfying the following properties.

(i) For every exact sequence 0 — M’ — M — M" — 0 in F-Hol(.), we have
ex(M, 0, 1) =ex(M', 0, 1) - ex(M", @, j1).
(i) If M is punctual, i.e. M =iV for some ¢-K-module V, then
ex (M, o, ) = detg (=F; V)™,

where F = ¢“ is the smallest power of the Frobenius ¢ of V making it linear (cf.
see 7.1.1 for the definition of the integer a).

31 [54, (3.2.18)] the functor W(—1) was denoted by S, the field of constants K by C, the category of
free differential modules over R o by F—Isoczn (0|C) or PM(R &), and the field K = k(n) by K.
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(iii) If the canonical homomorphism ji jTM — M is an isomorphism, then

ex(M, 0, ) = &0(j M), Yz (@), ",
where &y is the local epsilon factor defined in [54, 3.4.4).
Proof. Immediate by applying the distinguished triangle 3.1.9.1 and [54, 2.19 (2)]. O

In the following, we will always assume u(A/@ A) = 1; to lighten the notation, we put
&M, w) == e (M, w, ). Moreover, for a free differential R-module M with Frobenius
structure, we define sgg(M, w) = oM, ¥r(®), n) and €"8(M,w) := (M, Yy (w), 1)
using the notation of [54, 3.4.4]. For a complex C of F—@yy@—modules with bounded
holonomic cohomology, we put

£(Co0) = [[eric, o).
i€Z

7.1.4 Remark. Let M be an object of F-Hol(). We define jiy (M) :=Im(jiM — jM).
Then we have

e"E(M, ) = e (jir (M(1)), ).

This follows from Lemma 3.1.10 and [54, (3.4.5.4)]. For intermediate extensions in a wider
context, see [7, 1.4 and 4.3.12].

7.2. Statement of the main result

7.2.1. Let us begin by fixing notation and definitions of global objects. We follow the
notation and assumptions of 7.1.1. Let X be a (smooth) curve over k. We denote by C
the number of connected components of X @ F and by g the genus of any of them. Let
nx be the generic point of X, and we choose a geometric point 7x over ny. We denote by
|X| the set of closed points of X. For any x € |X|, let m, be the maximal ideal of Oy y,
ky its residue field, iy : Spec(ky) — X the canonical morphism and Ky := K ®@wx) W(ky).
Let 6X,x be the completion of Oy , for the m,-adic topology, Ky the field of fractions
of (/Q\X,x7 ny = Spec(K;) the generic point of Sy := Spec(@\xgx), 7, (resp. X) a geometric
point over 7, (resp. x). Let us denote by k(X) the field of functions of X and by Q}((X)/k
the module of meromorphic differential 1-forms on X. For every non-zero w € Qli(X) Jk

and x € |X|, we denote by w, € Qlle/kx the germ of w at x, vy (w) the order of w at x.

7.2.2. Let X be the smooth compactification of X over k, and Z := X \ X. There exists
a smooth formal scheme 2 over Spf(R) such that 2" ®gk = X by [SGA I, Exp. III,
7.4]. The category F<’1)-Dg01(9% Q(Z)) (cf. 3.1.1) does not depend on the choice of 2~
up to canonical equivalence of c&;tegories using [11, 2.2.1]. We denote this category by
F(h)-Dﬁol(X) and call it the category of bounded holonomic F(h)-@;(’(@-complea:es.

Now, let f: X — Spec(k) and f~: (Z',Z) — (Spf(R), ¥) be the structural morphisms.
The functors f; and Dg 7 (cf. 3.1.4) do not depend on the choice of 2" up to
equivalences. By abuse of language, these are denoted by f+ and Dy respectively.
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We note that f; can also be used, and in the same way, we can consider the functor
Jie F(h)—Dﬁol(U) — F(h)—Dﬁol(X) for an open immersion j: U — X.

Let R’ be a discrete valuation ring finite étale over R, and let 4 be an object of
F(h)—Dﬁol(Spf(R’)). The associated og-semi-linear automorphism % 5% (cf. 3.1.2) is
denoted by ¢4 . From now on we denote the K-linear automorphism ¢g, by F (cf. 7.1.1
for the definition of a).

7.2.3. 1In [22], Caro defines the L-function of a complex € in F(h)—Dfl’ol(X). Let us recall
the definition. We set!?

LX, %, 1):= [] detg, (1 — %8 plee@); i)~
xe|X|

= [ []detx, (1 — 142 peet); @y
x€|X|rez

Recall that FdeeW) .= pdee®) @ ig the smallest linear power of the Frobenius. Using a result
of Etesse-Le Stum, Caro gave the following cohomological interpretation of his L-function
(cf. [22, 3.4.1)):

)r+1

L(X, %, 1) = [ [ detx (1 =t F: 7 (f6))""
reZ
For careful readers, we remind that in [22], the definition of Frobenius structure of
push-forward is re-defined so that it is compatible with adjoints (cf. [22, 1.2.11]). However,
this coincides with the usual definition (see [4, Remark 3.12]).
Now, assume that f is proper. Then f; can be replaced by fy. By Poincaré duality
3.1.8.4, we get the following functional equation:

L(X, €. 1) = e(®) 1"V L(X, Dy (%), 17,
where
£(%) = det(—F: £, %) =[] det(—F: A (fr ) VT
rez

and F is the smallest linear power of the Frobenius. This invariant is called the (global)
epsilon factor of €. Finally, for € in F—Dﬁol(X), we put r (%) := Ziez(—l)ir(%i%) using
the notation of 4.1.1. When % is a module, r (%) is nothing but the opposite of the generic
rank of €.

7.2.4 Remark. Let U be a non-empty open subscheme of a proper curve X, and M be
an overconvergent F-isocrystal on U over K. Etesse—Le Stum [38] defined the L-function
for M by

LeL(U, M, 1) = ]_[ detg, (1 — rdee® pdee®), j* pry=1

xe|U|

14The definition of the L-function is slightly different from that of Caro. We have chosen a different
convention in order that L(X, f+K, t) coincides with the L-function of X.



Product formula for p-adic epsilon factors 361

We are able to interpret this global invariant in terms of the global invariant we have just
defined in the following way. Let j: U < X be the open immersion and fy: U — Spec(k)
be the structural morphism. Put € := j(sp,M)[—1](—1). Then the L-function coincides
with that given by Etesse—Le Stum; namely, we get L(X, %, t) = LgL (U, M, t). The easiest
way to see this might be to use the cohomological interpretation of the two L-functions,
and the fact that

H(f+6) = A (fur(sp,MI-11(=1))) = H}, (U, M),
where the second isomorphism holds by 3.1.8.3. See also [4, Remark 3.12] for some

account.

7.2.5 Theorem (Product Formula). Let X be a proper (smooth) curve overk, € a complex
mn F(h)—Dﬁol(X) and w € Qllc(X)/k a non-zero meromorphic form on X. We have the
following relation between the global and local factors:

£(%) =g "D T e(ls,, ), (PF)
x€e|X|

where q denotes the number of elements of k, C denotes the number of geometrically
connected components of X, and g is the genus of any of them. We recall that €|s,
denotes the complex of modules defined by restriction (cf. 2.1.8) from X to its complete
trait S, at x.

The proof of the product formula will be given in section 7.5.
7.2.6 Corollary ([54, Conjecture 4.3.5]). Let U be an non-empty open subscheme of a
proper curve X, M an overconvergent F-isocrystal on U over K, and w € Q,l(X)/k a

non-zero meromorphic form on X. For any x € |X|, let us denote by M|, the free
differential Rk -module associated with M at ny. We have

2
l_[detK(_F, Hriigyc(U’ M))(—l)t+1 ch(l—g)rk(M) 1_[ q;X(a))rk(M)detM(x)vx(a))
i=0

xe|U|
< T ey, 0. (PF*)
xeX\U
where F 1= ¢%, q, 1= q%&W dety (x) := detg, ((pgxdeg(x); i¥M) and vy (w) denotes the order

of w at x.

Proof. Let us prove that (PF) implies (PF*): we need only to specialize all the factors.
Let j: U < X be the open immersion. We replace € := ji(sp,M)[—1](—1) in (PF). Then
for x € |U|, we get

£(Cs,, wx) = £0 5 (M|, ;) - detg, (—p 2 F M)~ = (M), , )
= U @KOD gogy (x)x@),

where the first equality follows from the localization triangle 3.1.9.1 and 3.1.5.1, and the
second (resp. third) from [54, (3.4.5.4)] (resp. [54, (2.19-2)]). Finally, for every x € X\U,
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by definition, we have ¢(€|s,, wx) = 83g(M|,]X, wy ). Considering Remark 7.2.4, we get the
corollary. 0

7.2.7 Remark. (i) Note that in [54], the curve X was assumed to be geometrically
connected for simplicity, so that C = 1. Since the product formula (PF) is
immediate for punctual arithmetic Z-modules, the two statements (PF*) and (PF)
are equivalent by dévissage.

(ii) By definition, the global factor e(¥¢) appearing in (PF) and (PF*) does not change if
we replace the Frobenius g¢ of € by its smallest linear power ¢Z,. The same is true
for the Weil-Deligne representation WD(%'|;,,) and a fortiori for the local factors.
Replacing ¢4 by ¢ is equivalent to assuming & = f, thus F =k and K = A in
7.1.1.

7.3. Interlude on scalar extensions

In this subsection, we recall a formal way to extend scalars (cf. [35, p. 155]) in a general
Tannakian category, with the intention of use in section 7.4. Most of the proofs are formal
and they are only sketched. To shorten the exposition, we may implicitly assume that
the objects of our categories have elements, so that they are A-vector spaces endowed
with some extra structures. For a general treatment, see [35]. In this subsection the field
k is only assumed to be perfect, whereas in the rest of section 7 it is finite.

Let A be a Tannakian category over A. Assume that the objects of A have finite length.

7.3.1 Definition. Let A’ be a field extension of A and M an object of A. A A’-structure
on M is a homomorphism of A-algebras Ay : A" — EndA(M).

Let Ap (resp. Ay) be a A’-structure on M (resp. N). A morphism f: M — N in A
is said to be compatible with the A’-structures if for every a in A’ we have Ay () f =
fAy (). The couples (M, Ay), where Ay is a A’-structure on an object M in A, form a
category, whose morphisms are the morphisms in A compatible with the A’-structures.
We denote this category by Ax/. Sometimes, we denote simply by M an object (M, Ay)
in Ay

7.3.2. We define an internal tensor product in A,/ as follows. Let (M1, A1) and (M>, A,)
be two objects in A,/. Since M} ® M; has finite length, there exists a smallest sub-object
t: I — M| ® M, such that, for all @ in A’, the image of 11 (a) @ idy, — idpy, ® A2(a) factors
through . We put M| ® M, = Coker(t). There are two natural A’-structures on M| ® M,
given respectively by the endomorphisms A1 (a) ® idy, and idy, ® A»(a). By construction
they induce the same A’-structure Ay, e/m, on My ® M. The couple (M1 ® M2, Ay g/ m,)
defines an object of A,/ denoted by (M1, A1) ® (M2, Ap). It satisfies the axiom of the tensor
product in the category Axs, which makes A,/ a Tannakian category.

7.3.3 Example. Let U be a non-empty open subscheme of a proper curve X, 77 a geometric
point of X. The category Rf:p£§g (m1(U, ) ar of representations with local finite geometric

monodromy is equivalent, and even isomorphic, to Repff/ (1 (U, 1)) as Tannakian category.
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Let K be a field as in 7.1.1, and A’/K be a finite Galois extension. By construction, the
category Isoc™ (U, X/K) s of overconvergent isocrystals with A’-structure is equivalent,
as Tannakian category, to Isoc’ (U, X/A' @4 K).

Now assume k to be a finite field with ¢ = p/ elements and that the order of the
Frobenius is f, so that ox =idg. If A’/K is totally ramified, then F-Isoc'(U, X/K)as
is equivalent to F-Isoc' (U, X/A’) as Tannakian category, where oy :=ida/. If A’ is not
totally ramified, an overconvergent F-isocrystal with A’-structure M’ on U over K can
be identified with an overconvergent isocrystal on U/A’, endowed with a ‘Frobenius’ ¢
which is A’-linear although only of order f.

7.3.4. Let V be a finite dimensional A-vector space and M an object of A. The tensor
product V ® M is defined canonically in [35, p. 156 and p. 131] as an essentially constant
ind-object. In particular, if A’/A is a finite field extension, the product A’ ® » M can be
endowed with the A’-structure induced by the multiplication of A’, so it belongs to Ax:
we have a functor of eztension of scalars A’ @ —: A — Apr. If ay, ..., a, is a base of A’
over A, then A’ ® M is isomorphic to EB?:la,'A ®p M, with an obvious meaning of the

latter.

7.3.5. Let S: A— B be an additive functor between two categories A and B as in
section 7.3. It extends to a functor Sp/: Axs — By defined by functoriality as

Sa (M, A) = (S(M), S(A): a— S(h(a))).

By the additivity of S, it is clear that Sp/ commutes with the extensions of scalars
A ®A —. Moreover, if S is compatible with ® and right exact, then S,/ is compatible
with the inner product ®' defined in 7.3.2: this is a consequence of the construction of
®', considered that A’/A is a finite extension and § commutes with finite direct limits
and ®. Finally, if S is an equivalence of Tannakian categories so is Sx’.

7.4. Proof for finite geometric monodromy

The goal of this subsection is to prove the product formula in the case of overconvergent
F-isocrystals with geometrically finite monodromy, in particular for F-isocrystals which
are canonical extensions: see Proposition 7.4.7 and Corollary 7.4.8. Although the proof for
overconvergent F-isocrystals with finite monodromy is analogous to that of [50, 3.2.1.7]
and it is given in [54, 4.3.15], there are some technical difficulties to show that for
geometrically finite case, and we treat this case by using the formal scalar extension
reviewed in the previous subsection.

In 7.4.1 and 7.4.2, we define local and global ‘constants’ for generalized isocrystals
in F-Isoc'(U/K),. They will be seen as elements of the @p—algebra of functions
Spec(A’ @ @p) — @p. To avoid any confusion with constant functions, we employ the
term factors instead of ‘constants’. For simplicity, we will often assume that the order of
Frobenius is f, so that A = K and og = idg, cf. 7.1.1; we might state the definitions and
prove the lemmas in the general case, but this is not needed for proving Proposition 7.4.7.

7.4.1. Assume h = f,and so A = K (cf. 7.1.1). Let A’/K be a finite Galois extension,
U be a non-empty open subscheme of a proper curve X, and (M, 1) € F-IsocT (U, X/K) .
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The Weil-Deligne representation WD(M|, ) is a (A’ ®k @p)—module with a linear
action of p, and N, . For any p € Spec(A’ ®k @p), we denote by (WD(MMX)A’)p the
localization of WD(M|;, ) at p; it is stable under p,, and N, . Let us define the local
factors as functions Spec(A’ ®g @p) — @p. For any x € |X|, we set:

1. tk(M,)): p+— dim@p((WD(MMX)A/)p), which does not depend on x.

d —
2. det(0): > detg (0, (F; (KerNy )hoy) = detg 05, @, @k, My)p)
(cf. [54, (3.4.5.3)] for the equality).
3. Let w # 0 be in Q}C(X)/k, and py, be the Haar measure on K, with values in @p

normalized by Mx(éx,x) =1 as usual, and ¥ (wy): Ky — @; is also the additive
character associated with y (cf. 7.1.3). As already appeared in [32, 6.4], the epsilon
factors s(r)lg((M, My ¥(wy), my) are defined by

P> g0 (WD(M ) a0y ¥ (@), o).

Let us write simply 8(r)ig((M, My, » wx), instead of 6{)ig((M, Ml U@y), px).

7.4.2. Asin 7.4.1, assume h = f, and so A = K. Let (M, X) be in F-Isoc™ (U, X/K)a-
The rigid cohomology groups (with and without supports) of M inherit a A’-structure,
so that they are F-isocrystals with A’-structure on Spec(k) over K; we denote them
respectively by Hriig(U, M), and Hriig,c(U’ M)y (cf. 7.3.5). They are A’-vector spaces
endowed with linear Frobenius isomorphisms ¢. To shorten the notation, let H denote
either Hr"ig’c(U, M), or H;'ig(U, M)y

We define det(—F; H) as the constant function Spec(A’®g @p) — @p, P
detpa/(—F*; H). We denote by det(—F*; HrTg,c(U’ M) /) the product ]_[1.2:0 det(—F;
Hrii U, M)p). From the long exact sequence of rigid cohomology, it follows that
det(—F*; H* (U, M),s) is multiplicative for short exact sequences and so it is defined

rig,c

on the Grothendieck group of F-Isoc™(U/K) .

Remark. In the general case, where h| f, the group H is a module over the semi-local ring
A ®p K and we endow it with the (A’ ® o K)-linear endomorphism F = ¢“, where a =
hf~'. The module H decomposes as @peSpec(A’@AK) Hy. For every p € Spec(A’ ®a K),
the localization Hy, is a vector space over the field K’ := A’ @5~ K (where A” := A'NK C
@p is a finite unramified extension of A), and F induces a K’-linear endomorphism of
Hy. We define det(—F; H) as the composition of the canonical map Spec(A’ @ @p) —
Spec(A’ @4 K), induced by the inclusion K C @p, and the function Spec(A’ @ K) — @p
sending p to detg/(—F; Hy). We do not use this remark in the following.

7.4.3. Let us follow the notation of 7.4.1 and 7.4.2. Let us state a variant of the
product formula (PF*) for overconvergent F-isocrystals in F -Isoct(U, X/K)r. Let U be a
non-empty open subscheme of X, M’ = (M, A) be in F-Isoc' (U, X/K)x and w a non-zero
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element of Qlt(X) /K The product formula for M’ is the following relation

det( F*; Hr”l‘gc(U, M’)A/)fl =qc(]7g)rk(M/) 1_[ qf“(“’)rk(M/)deth(x)v*'(w)
xe|U]|

x ]_[ a”g(M/ , wy) (7.4.3.1)
xeX\U

between global and local factors associated with M’.

7.4.4. Assume h = f and so A = K. Let U be a non-empty open subscheme of X, and
M an overconvergent F-isocrystal on U over K. For any finite Galois extension A’/K,
we can define an overconvergent F-isocrystal A’ ® g M with A’-structure (cf. 7.3.4).

Lemma. The F-isocrystal M satisfies the product formula (PF*) if and only if N @x M
satisfies the product formula with A’ -structure 7.4.5.1.

Proof. For an abelian category A, we denote by Gr (A) its Grothendieck group. In this
proof we put A = F-Isoc’ (U, X/K). The formula (PF*) (resp. 7.4.3.1) is a relation on the
Grothendieck group of A (resp. Ap/) with values in Q (resp. in the group of units of the

Ql,—algebra @p Spec(A'®x Q) )

are homomorphisms v: Gr (A) — @: (resp. vpr: Gr(Ay) — (@p Spec(A ®KQ”))*). By the
definitions of these factors, cf. (7.4.1-7.4.2), it follows the commutativity of the diagram

. Each factors v appearing in the equality (PF*) (resp. 7.4.3.1)

-k

Gr (A) Q,

o

vaAr  — Spec(A'®kQ
Gr (Ay) —2= (@, P

where the right vertical homomorphism maps each element ¢ of @; to the constant

function Spec(A’ ®k @p) — @p of value c¢. Since this homomorphism is injective we
conclude. O

7.4.5. We recall that the theorem of Tsuzuki [69, (7.2.2), Theorem 7.2.3] gives

an equivalence G': F-Isoc'(U, X/K)"* — RepA (m1(U,7y)), between the categories of
unit-root overconvergent F-isocrystals on U over K and continuous A-representations
of m(U,7x) with local geometrically finite monodromy. We say that a unit-root
overconvergent F-isocrystal M € F-Isoc'(U, X/K)* has global finite monodromy if the
associated representation GT(M) factors through a finite quotient of m(U,7y); we
say that M has global geometrically finite monodromy if the restriction of GT(M) to
71 (U @ T, nx) factors through a finite quotient.
The following lemma extends [54, Theorem 4.3.15] to isocrystals with A’-structure.

7.4.6 Lemma. Assume h = f, so that A =K and og =idg. Let A'//K be a finite
Galois extension and U be a non-empty open subscheme of X. Let M' = (M, ) be an
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overconvergent F-isocrystal with A'-structure on U over K. Assume M is unit-root with
global finite monodromy, then the formula 7.4.3.1 is satisfied.

Proof. By a base change to the algebraic closure k" of k in k(X), we may assume that X is
geometrically connected, i.e. C = 1. If A’/K is totally ramified, we may put o/ := idps;
then the category F-Isoc'(U, X/K)x identifies to F-Isoc' (U, X/A'), cf. Example 7.3.3,
and so we finish by [54, Theorem 4.3.15].

Let us treat the general case. For any representation p: 7 (U, nx) — AutK(W) and

any closed point x € | X|, we denote by W, the representation w1 (nx, 17x) — m1(U, nx) LS
Autg (W) We put V= GT(M),M, and V,;X = GR,(M/),]X (cf. 7.3.4) which will be treated
as a A’-vector space with a linear action of W (1, 7). Let us start by proving the following
statement.

Claim. The (@p ®x A)-module WDAr(M,;X) is free and for any p € Spec(@p ®kx N, we
have WD (M) )p = Q, ®n' V] .

Proof of the claim. Let us compute W(—1) A’(Mv/h) and WDA/(M;]X). Their monodromy
operators N are zero, because M is unit-root. Let us denote by M(f(\ "'®k Vy,) the
sub-K""-vector space of Kur ®k Vy,, spanned by the finite orbits under the action of
71 (nx, Ny). By [54, 3.3.6], we have W(=1)(M,,) = M(f(\‘" ®k Vp,). Since M has finite
monodromy, we get W(—1)(M,, ) = K" ®k V,, endowed with the diagonal action of
w1 (N, 1) (it acts on K" via the residual action). Hence WD(M,,,) = @p ®k Vy,, where
the action of W1y, 11,) is nothing else than the extension by linearity of the action of
W (. 7lx). We finish by the equality WDA/(M; ) =Q,®k V; =Q,®x A'®@x V, . W

To establish the product formula for M’, it remains to prove the following relation:

(1—g)rk(M) vx (w)rk(M)

-1 LogrdM) 7. I Vx(@)
detyr (= F*; Hi, (U M) =g Wk T g ™™ detar (o, (Fo): (V) )™")
xe|U|
X 1_[ 8(r)ig(V’x,a)x).
xeX\U

The proof of this equation works in the same way as the proofs of [54, Theorem 4.3.11

and 4.3.15], by replacing A (resp. tk(M)) with A’ (resp. Ir}(\(,ﬂl/l()l) O

7.4.7 Proposition. Let X be a proper curve over k, U be a non-empty open subscheme of
X, and M be an overconvergent F-isocrystal on U over K. Assume that M is unit-root
with global geometrically finite monodromy. Then M satisfies the product formula (PF*).

Proof. In this proof we put 7 :=7y for brevity. Let p: m(U,7) — AutA(V) be the
representation associated with M by GT, cf. 7.4.5. By assumptions, M has global
geometrically finite monodromy: i.e. the restriction of p to (U & F, i) factors through
a finite quotient . In particular, the representation p factors through a quotient Q of
m1(U,7n) which is an extension of Z by the finite group /. By Remark 7.2.7, we may
assume that the order of the Frobenius ¢y of M is f, so that K = A and og = idg.
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Let us show how we can reduce to the case of global finite monodromy which
is treated in Lemma 7.4.6. The equation (PF*) that we have to prove is a relation
in the Grothendieck group of F-Isoc™ (U, X/K). By Lemma 7.4.4, we can extend
scalars to any finite Galois extension A /K. The equivalence G' above extends to an
equivalence of Tannakian categories G' at F- IsocT(U X/K)%, — Rep @ U, M)ar (cf.

7.3.5). We identify RepK(m(U, ) ar with RepA,(m(U, 7)) (cf. Example 7.3.3). The

product formula is a relation in the Grothendieck group of Repf\g,(m(U ,7M)); we may
assume that the representation is absolutely irreducible. By a classical argument using
Schur’s lemma (cf. for example [50, Proof of 3.2.1.7] or [32, Variant 4.10.3]), the
representation (V', p’) is isomorphic to (V, §) @ (A’, x), where p: 71 (U, ) — AutA/(V)
factors through a finite quotient and x : w1 (U, 7) — (A")* is an unramified character. Let
Dj\, : Repflf (U, ) pr = F-Isoct (U, X/K)'\, be a quasi-inverse of Gj\,. Let us put M’ :=
DI, ((V',p'), My =D\, ((V,p)) and My := D}, ((A', x)). We have M’ = M; ® M, in
F-Isoc™ (U, X/K)%, (cf. 7.3.2). By construction, M has global finite monodromy and M is
constant as isocrystal, i.e., My = *N, for N € F-Isoc(Spec(k)/K)', and ¢: U — Spec(k).
Since (*N is a constant 1bocrybta1 we have Hr’1 U, M, Q *N)py = Hrlig’C(U, My @ N
By a direct calculation analogous to that of the proof of [54, 4.3.6], we reduce to the case
of global finite monodromy, which is proven in Lemma 7.4.6. O

7.4.8 Corollary. Let M be in F-Hol(n.s,). Then the canonical extension M satisfies the
product formula (PF*).

Proof. By Kedlaya’s filtration theorem [45, 7.1.6], there exists a filtration
M=MyD>M D---DM;=0

such that the quotient M;/M;y; is isoclinic for every i. By applying the canonical
extension functor 2.1.9, we get an analogous filtration on M". Considering that
the equation (PF*) we have to prove is a relation in the Grothendieck group of
F —IsocT(Gm,]P’,i /K), we may assume M to be isoclinic of Dieudonné-Manin slope A €
Q. By the definition of Dieudonné-Manin slopes, A belongs to the discrete subgroup
(tk(M)eh)~'Z. Taking a finite totally ramified extension of A does not affect the local
factors; therefore, by extending A to such an extension of degree rk(M), we may assume
that A belongs to (eh)~'Z. So the isocrystal K is of rank one by construction. We
put M:=M®K". We have M = M()‘), with M unit- root. By applymg [54, Lemme
4.3.6] to M = (MC‘“‘)(A), we may assume A = 0. Since M is unit- root, M has global
geometrically finite monodromy by the very construction of the canonical extension
(cf. [29, 2.6 and 2.7]), and we finish by Proposition 7.4.7. O

7.5. Proof of the main result
‘We use the notation of 2.4.1.

7.5.1 Lemma. Let E be an overconvergent F-isocrystal on A,l. Suppose that it is regular
at infinity. Then E is a constant overconvergent F-isocrystal.



368 T Abe and A. Marmora

Proof. Let ¢ denote the structural morphism of A,i. By construction of the rigid
cohomology [28, (8.1.1)], we have Hrzig(Al, E)=0 and, by the GOS formula for
rigid cohomology, we get dimg Hr(i)g(Al, E) —dimg Hég(Al, E) = Xrig(Al, E) =1k(E). In
particular hg := dimg Hr?g(Al, E) > 1k(E). By [23, 2.1.2], there is an injection of
F-isocrystals L”‘Hr(i)g(A1 , E) — E, so that hyp = rk(E) and E is isomorphic to the constant
isocrystal L*Hr?g(Al, E). O
7.5.2. Let & := Spf(k[[ul), -’ := Spf(k[u']). We put K :=k(u), K :=k(u'). Let
Moo Sy — &' sending u’ to 1/x". For a free differential module M with Frobenius
structure on 7, using the canonical extension, there exists a canonical overconvergent
F-isocrystal on G, denoted by .# such that it is tamely ramified at zero and .Z|,_ , =
n’,(M). We denote W (.#|s,) by Vi (M).

On the other hand, suppose moreover that M is of rank one. Using the linearization
functor 7.1.2.1, we get a character

x = (LroW)(M): G — K"™.
For f € K™, we put
M(f') = (x orec)(f') € K",

where rec: K* — G';‘é’, is the reciprocity map normalized ¢ la Deligne (i.e. it sends
uniformizers of K’ to elements of G’;‘g whose image in Gib is the geometric Frobenius

When M is regular of rank one, we get
tr(F*; Wy (M)) = M(—u). (7.5.2.1)

This can be seen in exactly the same way as [50, 3.5.2.1], and we leave the details to the
reader.

Remark. We need to be careful for the multiplicativity. Namely, given rank one free
differential modules M, M’, M” such that M = M’ ® M”, we have

M=D(f) =M =D)(f") - M"(=D(f).
See 7.1.2 for an explanation.
7.5.3 Proposition ([50, Théoreme 3.4.2]). Let U C Al be an open subscheme, and we put

S:=A"\U. Let A be an overconvergent F-isocrystal of rank r on U which is unramified
at infinity. Then we get

det(RT o (Ugue, 4 [1]) ® det(K* @k 4 |5.)(—r)
= Q) Wi (det(® " (izys 1)) (—ys — 1)

seS

as Deligne modules, where ys = k(A |,,) +irr(A|,,), and we used the notation of 5.1.9.
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Proof. Using the notation of Proposition 6.2.8, we get

det(W (Fnaive ()] 5))(—2)) = det(H, Uk, A)[1]) @ det(K" @k A |5, (=1))
as Deligne modules by the same proposition. Since the G -action on the right hand side
is unramified (i.e. the action of the inertia subgroup is trivial), the left hand side is also
unramified. Since V is an exact functor and commutes with tensor product, we get an

equivalence of functors detoV = V o det. On the other hand, for a free differential module
M, we get D, (det(M)(—1)) = det(D,(M(—1))). Thus, we get

det(W (Fnaive (A )]5,)(=2)) = W (= 1) (det(Fnaive (A4 )]s, (=1))). (7.5.3.1)

We note that the singularity of Fpaive(A') in A is only at 0’ by Corollary 4.1.7, and
we showed that det(Fpaive(#')) is unramified at 0. Thus there exists an overconvergent
F-isocrystal 4" on A such that JV@_{O/} = det(ﬁnaive(///’))@_{o,}.

Now, we get

</V|r;oo = det(g\naive(%/”nw(_l))
=)t det(F D (') (- 1))

seS
= () det(® O (izgy 1)) (—¥5) @ L(S),

seS
where § := ) _¢¥s-tr(s), by the stationary phase formula 5.1.8, Lemma 2.4.10, and
Corollary 4.2.4. We note that the differential slope of dD(O’OO,)(j!ts*/Am) is strictly
less than one by Corollary 4.2.4 for any s € S. Thus, the differential slope of
det(dD(O’oo,) (jr ts*%|ns)) is also strictly less than one. Since the rank is one, the differential
slope of det(tb(o’oo/) (jr rs*///|,7:)) is zero for any s € S by the Hasse—Arf theorem [25, 14.12].
Thus

N =N QL (—6-x)

is an overconvergent F-isocrystal on A , and regular at infinity. By Lemma 7.5.1, 4"
is in fact a constant overconvergent F-isocrystal. By 7.5.3.1 and the fact that W(—1)
commutes with ®, the proposition follows. O

7.5.4 Theorem (p-Adic Determinant Formula). For any free differential R o-module with
Frobenius structure M, we get

enE(M, du) = (=1)7 det(® ) (jiM))(—y — D),
where y := rtk(M) +irr(M).

Remark. (i) Before proving the theorem, we remark that the right hand side of the
equality is multiplicative with respect to short exact sequences by Remark 7.5.2.

(ii) Although the idea of the proof is exactly the same as ([25], Theorem 3.5.11), we
include the complete proof of the proposition since there are considerable of minor
differences in the quantities appearing (especially the Tate twist —y — 1 in the
statement of the theorem), and we think that it might help the reader to understand
the differences with the ¢-adic case.
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Proof. Let V be a og-K-vector space of dimension one. Then the theorem holds for a
free differential R-module M if and only if it holds for M ®x V. Indeed, by [54, 2.19 (2)],
we have

en (M ® V, du) = sp8(M, du) - det(F; V)7 .
On the other hand, we see that
o0 (M @k V) = 0O (jiM) @k V

by using Proposition 5.1.6. Thus, the claim follows.

First we will treat the case where M is regular. Since both sides are multiplicative,
we may assume that M is irreducible. By Kedlaya’s slope filtration theorem, we get
that M is isoclinic (for Dieudonné-Manin slopes). Since both sides of the equality are
stable under base change by a totally ramified extension of A, we may assume that
the Dieudonné-Manin slope A of M is in (eh)"'Z. Since the equality is stable under
twisting and (MM)® = M it suffices to show the proposition for M, and we may
suppose that M is unit-root. Thus, it corresponds to a geometrically finite representation
of Gx denoted by p. Since M is assumed to be regular, we know that there exists a
finite extension k’/k such that p is the induced representation of G, of rank one where
L := k' ®; K. This shows that there exists a finite unramified extension L of K, and a
free differential R;-module with Frobenius structure My such that M = f,M; where
f: R < Rp is the canonical finite étale homomorphism. By 2.4.6, we get

@D (jiM) = £ (@ (jiMy)).

For the calculation of e(r)lg, use [54, 2.14 (2)]. It remains to show the theorem for M, and
thus, we may assume that M is of rank one.

In this case we can write M = J, 1, ® W such that W is a trivial differential module
if we forget the Frobenius structure, and % is the Kummer isocrystal (cf. 3.2.9). Then
we may suppose that W is trivial by the observation at the beginning of this proof. It
remains to show the theorem in the M = J7|,, =: Fuq case.

Now, first, assume that o ¢ Z. Then jijTFuy = Fu, by Proposition 3.2.9. By the
stationary phase formula and the same proposition, we get

0% (Fug) = (Ao ® Gla, m)(1)) |y, = Fitg ® Gar, )(1).
Furthermore, we have
W(Fug) = V((Fug) (—1)) = (B Fua)*=0(1)

by definition (cf. 3.1.9). Combining these, we get \Il(CD(O’OO/)(.Fua))(—Z) > (BQ Fua)="®
G (a, ). The space (B® Fug)?= is the sub-K “-vector space spanned by x ~%e where e is
the canonical base of Fugy. Let @ =i -(g —1)~', and xq be the i-th power of Teichmiiller
character k* — K". Then we get

r(F*; G(a, 1)) = = ) Xa(x) - Y (x)

xek*
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by [38, 6.5] using the fact that Hriig(Gm, Hy ® Ly) =0 for i #1 (which can be proved by
GOS-formula for example). Now, let us treat the case where @ = 0, and thus M = R. In
this case, we get an exact sequence

0—46(1)—> jR—> j+R—8§—0.

We get ®©-°)(j,R) = j,R by using Proposition 3.2.7 and Theorem 3.2.8. Thus, we
obtain ®©-°)(j,R) = j, R(1). Combining all of these, we get

1 ifa=0
—x (=1 > Xa(x) Yr(x) ifa #0.

xek*

On the other hand, let ¥ := (reco WD)(M). By using [64, XIV §3, Proposition 8|, we
get

det(@ O (i Fug))(=2) () =

Xa_l(x) xek*CcK*
X(x) = Xe(=1) x=u
1 xel+m

(note that the image of the geometric Frobenius is different, so we need to calculate
(x7",a™") with n = ¢ — 1 in the notation of [64].). This shows that

-1 ifa=0
X(=D- Y X)) - Yr(x) if a #0.

xek*

608 (Fit, du) =

Thus the theorem follows in this case.

We denote by r the rank of M. By taking the canonical extension, there exists an
overconvergent F-isocrystal .4’ on P\ {0, 1} regular at 1, and .4 "Tno = 75 (M). We put
M= DL (00)®,+ #'. By Corollary 7.4.8, we get

P.Q j@@

det(—F; HX(A'\ {0, 1}, )" - ¢" - det(—Foo; A |,.) = €h2(M, —du) - )5 (A |,, —dx]y).-
On the other hand, by Proposition 7.5.3, we get
det(—F; H*(A'\ {0, 1}, .4))7" - ¢" - det(—Foo; A 5.,)
= (—1)7 det(@ > (i M) (—y — D) (=u') - (= 1) det(® ) (it |))(—r — D)(—u)

taking 7.5.2.1 into account (which is applicable because the differential modules
det(tb(o’oo/)(. ..)) are regular of rank one). By considering the regular case proven above,
we get the theorem. O

7.5.5 Corollary. Let U CA,l be an open subscheme, and M be an overconvergent
F-isocrystal of rank r on U which is unramified at oo. Let S:= A'\U. Then we get

det(—F; Hjjy (U, M))™" - " - det(— Foo; Moo) = [ [ &0 (M1, —dxy,).

seS
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Proof. The proof is exactly the same as [50, 3.5.2] using Proposition 7.5.3, and we leave
the details to the reader. O

7.5.6. Proof of Theorem 7.2.5 The proof is essentially the same as [50, 3.3.2]: it is a
reduction to Corollary 7.5.5. We point out a difference from [50]: to prove that the right
hand side of the product formula does not depend on the choice of the differential form
w, we proceed by dévissage and we use [54, Proposition 4.3.9]. We leave the details to
the reader. ]
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