Fatou, Julia, Montel,
The Great Prize of Mathematical Sciences of 1918, and Beyond
by Michèle Audin

Fatou, Julia, Montel,
le grand prix des sciences mathématiques de 1918,
et après...
by Michèle Audin

REVIEWED BY JEAN-PIERRE KAHANE

1915

The war in Europe is raging furiously. Millions of soldiers died in its first months. Among those who fought valiantly, and were gravely injured, was a former student of the Ecole Normale Supérieure. He had entered the School in 1911 and was one of the brightest students ever seen, ranking first in the entrance competition both at the Ecole Polytechnique and the Ecole Normale Supérieure, showing promise of becoming an important mathematician. In 1915 and during the following years, while undergoing intensive medical treatment—including multiple surgeries—at the military hospital of Val de Grâce, he wrote hundreds of pages of difficult mathematics on various subjects. This remarkable character was Gaston Julia.

Meanwhile, the French Academy of Sciences continued to meet every Monday, to receive and publish scientific contributions as “Notes aux Comptes Rendus”, and to accept plis cachetés (sealed papers). The academy decided to launch a competition for a Grand Prix on a theme in mathematics that seemed ripe and promising: the investigation of global properties of iterations of rational mappings in the plane. Gabriel Koenigs, not yet a member of the Academy, had already investigated the local properties and, more at the heart of the subject, Pierre Fatou had a series of striking examples of exotic behaviour for the closure of the orbits. Fatou had published a Note in 1906 on the subject while writing his dissertation on trigonometric and Taylor series, and he certainly was considered as a natural competitor. The Grand Prix was to be awarded in 1918.

Fatou had entered the Ecole Normale Supérieure in 1898, four years after Paul Montel, Henri Lebesgue, and Paul Langevin. Montel’s most famous achievement is the introduction of normal families (familles normales) of analytic functions, one of the first and best examples of the importance of the notion of compactness in analysis. Both Fatou and Julia used normal families as soon as they appeared in 1917. Given a rational function R and its iterates $R^n (n = 1, 2, 3, \ldots)$ the points around which the R^n are a normal family constitute an open set; the complementary set is closed and it is called now the Julia set. Fatou had designated it by F (probably for frontier), and Julia by E^*, the derivative of the set E consisting of the repelling periodic points of all iterates.

1916, 1917, 1918—the war was still raging, and academic life went on. Julia defended his thesis and proceeded immediately to work on the iteration problem. Fatou, pushed by Montel, wrote his mémoires on the subject. On March 15, 1915, the Academy expelled Felix Klein and two other German scientists for a text they signed about the German army; Charles de la Vallée Poussin from Louvain (destroyed by the German army) was elected instead. In 1918 Fatou did not compete for the Great Prize; there were three competitors: Samuel Lattès, Salvatore Pincherle, and Gaston Julia. On November 11, 1918, Armistice Day, the General-in-Chief, Marshal Foch, was elected as member of the Académie des Sciences. On December 2, Gaston Julia received the Great Prize, his mémoire was “crowned”.

Most of the book is a description of this period from different angles: the characters, the mathematics involved, and the atmosphere in France and in particular at the Academy at the time. It is a fascinating piece of work. Inside the frame that I have just described, Audin draws the portraits, the environment, the foreground, and the background, and does it with her own views, her feelings, and her passion for mathematics and for the truth. Although the period 1915–1918 is both the beginning and the crux of the book, Audin continues to explore academic life afterward—how people evolved and how mathematics went on.

Audin uses modern terms when necessary to explain the papers of Fatou or Julia, and figures not contained in the original articles. For instance, we see the common boundary of the basins of attraction of the function $\frac{1}{2}(z + z^2)$, one of the first examples considered by Fatou, a Jordan curve with no tangent line at any point. We see also the “basilica”, named after the basilica St. Marco in Venice and its reflection in water viewed by BENOIT MANDELBROT, as the Julia set for the function $z^2 - 1$.

Although Fatou certainly had such figures in mind, there is no trace of them. Julia also had similar figures in mind, and fortunately some of them were kept: handwritten figures were included in plis cachetés he had sent to the Academy. One of them is the Julia set of the function $\frac{1}{2}(3z - z^3)$, reproduced on the cover of the book. We can now make better figures with computers, but clearly all the analytic developments in the papers of Fatou and Julia have geometric roots and, as Audin claims, figures were drawn. There are remarks or comments of this sort throughout the book: about the terms in use (who introduced the term “réflexif”, the term “Julia set?”), the relations with other theories (the Newton method for computing the roots of an equation, the Kleinian groups and their study by Poincaré), the normal families and the points J of Julia, the modern developments...
The book also covers the relations between Julia and Montel. Apparently they were quite smooth in 1932 but turned tense later. A report by Paul Lévy in 1965 provoked an exchange of letters about the points J of a family of analytic functions compared to the irregular points of Montel—Lévy showed that these two notions defined the same points and Montel wanted his contribution to be recognized. Paul Montel appears frequently in the book and not only through the “normal families”. He was more than just a decent dean of the Faculty of Sciences of Paris in a difficult period, that of the German occupation.

In 1965 Montel was 89 and, Audin observes, judging from his writing, far from senile. I can confirm this. The large amphitheater of Orsay, named now amphithéâtre Henri Cartan, had just been constructed, and I heard Paul Montel speaking without microphone with a clear and powerful voice, jokingly describing his life: he had never been ill, but he had recently contracted a serious disease: une incurable longévité. He died in 1975, aged 98. Fatou had died in 1929, and Julia would die in 1978.

Between Julia and Fatou there had been no competition. Fatou was an astronomer, more exactly adjoint-astronomer—he was promoted to a full position as astronomer only two years before his death. He was highly appreciated by leading mathematicians, Hadamard, Lebesgue, Montel, to name a few. In his writings he was as unselfish as possible. For example, what Fatou called the Parseval relation is due to him alone. Lebesgue had to push him to write his thesis, on trigonometric and Taylor series; in his books Lebesgue mentions discoveries of Fatou (for instance, the first and best example of a trigonometric series that converges everywhere without being a Fourier-Lebesgue series). Reading Fatou is a pleasure. Comparing the mémoires of Fatou and Julia reveals very different personalities from the very beginning. Posterity has reestablished Fatou’s position as a mathematician; Milnor has said: “The most fundamental and incisive contributions were those of Fatou himself. However, Julia was a determined competitor and tended to get more credit as a wounded war hero.”

About half of the book is devoted to Fatou, with unpublished letters and testimonials. Michèle Audin investigates traces of his life by consulting the archives of the French Mathematical Society (of which he was an active member) as well as collections of letters held by his family. His works are listed in the bibliography, and I know no other place where this list can be found. His letters reveal an exceptional personality, clear and generous. There is plenty of good mathematics in these letters, including problems, and I suggested once that the book should be read starting with these letters in the Appendix.

Fatou had no students. Julia however had a late and bright student, Jacques Dixmier, and Alain Connes was a student of Dixmier. Montel was the director of many theses, at a time when the direction was purely formal. The thesis of Fatou, the normal families of Montel, and the contributions of Julia to the theory of functions quickly became classical, but the matter of iteration and the mémoires of Fatou and Julia remained untouched in France for almost 60 years, becoming popular only now with the explosion of complex dynamics. (In Sweden they were better known: Carlsson became interested in the 1960s, and his student Hans Brolin wrote his dissertation on iteration of rational mappings in 1965). Why did it take so long in France? The
book does not answer the question but there are some facts to take into consideration. In France, the war killed half of the possible future mathematicians, and the younger generation reacted against the older one. Moreover Picard was opposed to the theory of sets and all new matters in mathematics, and he had great influence and power at the time. Iterations came back in a different way, through the works of Denjoy in the 1930s. Adrien Douady became interested in the mémoires of Fatou in the late 1970s. Benoît Mandelbrot had been advised by his uncle Szolem Mandelbrojt to read Fatou and Julia in the 1950s, which he did, but he turned to linguistics and other matters before rediscovering the Julia sets and describing the Mandelbrot set in the 1980s.

Michèle Audin makes the cutting comment that Julia’s main contribution to mathematics, apart from his work on iteration and more generally complex analysis, may have been the way he collected money for the publication of the Collected Works of Henri Poincaré. This raises a serious question. The French are slow to publish the collected works of their best mathematicians. Poincaré is one exception, Julia another. Actually the last volume of the Collected Works of Gaston Julia contains discourses by Julia and on Julia, in particular at the occasion of his Jubilee, and it tends to give a glorious impression. It is worth reading that volume as a complement to Audin’s, and to have a look at the others of a more scientific character. The Collected Works introduce the reader to the personality of Julia as well as to his scientific achievements. The reader is left to judge.

For Fatou and Montel this possibility doesn’t exist and it is a pity. Audin has a strong sympathy for Fatou and a definite esteem for Montel. In my opinion this is fully justified, even if she strikes a blow at the glorious figure of Julia. It would be desirable to have the collected works of Montel and of Fatou for many reasons, in particular as a complement to this book.

The book is impressive in its content, the amount of information it gives, and in the quality of the investigation and of the exposition. For many readers, as for myself, the fact that the author is present on every page with a remark, a comment, and sometimes a mockery, will make it more pleasant and easy to read. In a way you discover the author as well as the characters she paints. I like her judgment and style, but I understand that they may irritate other readers. Mathematics is not out of the world, and things in the world are not a model of smoothness. To express in the same book the beauty of mathematics, the ugliness of the war, and how that interacts with the life of real people, seems to me a remarkable achievement.

Note. This report was written after reading the original version of the book, that is, the French version. The English version is more than a translation, it is enlarged and the presentation is different. It should be observed that it is the first book of a new subseries of the Springer Lecture Notes in Mathematics devoted to the history of mathematics. The creation of this new subseries is good news. I only regret that the new version contains no reference to the previous one, except an appreciation on the back of the cover. A book devoted to history should include its own history.

I thank Hannab Katznelson for her help in preparing the English version of this text.

Laboratoire de mathématique
Université Paris-Sud
F-91 405 Orsay cedex
France
e-mail: jean-pierre.kahane@math.u-psud.fr