Modèle macroscopique avec congestion pour le déplacement de troupeaux de moutons

Laurent Navoret

IMATH, Toulon, Jeudi 2 Décembre 2010

Déplacement collectif dans les populations animales

interactions locales sans leader ⇒ mouvement collectif

 modèles forces sociales [Aoki] [Vicsek] [Couzin] [Helbing] [Bertozzi] [Cucker-Smale]

modèle individu-centré $(X_k(t), V_k(t)), \ k \in \{1, \dots, N\}$

$$\frac{dX_k}{dt} = V_k, \quad \frac{dV_k}{dt} = F_k$$

 $\begin{array}{l} \rightarrow \ F_k \ = \ r \acute{e} pulsion\ -attraction \\ alignement \\ \rightarrow \ |V_k| \approx const. : auto-propulsion \end{array}$

Déplacement collectif dans les populations animales

interactions locales sans leader ⇒ mouvement collectif

 modèles forces sociales [Aoki] [Vicsek] [Couzin] [Helbing] [Bertozzi] [Cucker-Smale]

modèle individu-centré $(X_k(t), V_k(t)), \ k \in \{1, \dots, N\}$

₽

modèle macroscopique

à grande échelle $(\rho(x, t), u(x, t))$

Déplacement collectif dans les populations animales

interactions locales sans leader ⇒ mouvement collectif

 modèles forces sociales [Aoki] [Vicsek] [Couzin] [Helbing] [Bertozzi] [Cucker-Smale]

Projet ANR Parnurge

- \rightarrow étude du comportement du moutons
- → quantifier les interactions (l'action de suivre un congénère) [Pillot,Bon]
- \rightarrow description macroscopique

Troupeaux de moutons : mouvement collectif et congestion

Similutes avec le traffic routier [Berthelin et al.], les foules [Bellomo Dogbé], ...

- Congestion : contrainte de non-chevauchement des particules
 - ightarrow existence d'une densité maximale ho^*

 \rightarrow transition entre des domaines congestionnés et des domaines non-congestionnées

→ dynamique incompressible/compressible

• déplacement d'un troupeau de mouton : tous les moutons ont un **module de vitesse constant**

Plan

1 Dérivation du modèle macroscopique

Modèle particulaire Modèle cinétique et changement d'échelle hydrodynamique Modèle macroscopique

2 Etude de la transition congestionnée/non-congestionnée

Le modèle asymptotique Dans la phase congestionnée La dynamique de l'interface

3 Simulations numériques

Méthodes numériques pour la congestion Méthodes numériques pour la contrainte géométrique sur la vitesse

4 Conclusion

Plan

1 Dérivation du modèle macroscopique

Modèle particulaire Modèle cinétique et changement d'échelle hydrodynamique Modèle macroscopique

2 Etude de la transition congestionnée/non-congestionnée Le modèle asymptotique Dans la phase congestionnée La dynamique de l'interface

③ Simulations numériques

Méthodes numériques pour la congestion Méthodes numériques pour la contrainte géométrique sur la vitesse

4 Conclusion

Modèle microscopique

- interactions de type attraction-répulsion (pas d'alignement)
- N moutons : positions $X_k \in \mathbb{R}^2$ vitesses $V_k \in \mathbb{R}^2$, avec $|V_k| = 1$

$$\frac{dX_k}{dt} = V_k,$$

$$\frac{dV_k}{dt} = (\operatorname{Id} - V_k \otimes V_k)(\underbrace{\mathcal{F}_k^a}_{\text{attraction}} - \underbrace{\mathcal{F}_k^r}_{\text{répulsion}})$$

- \mathcal{F}_k^a dans la direction du barycentre de la distribution de masse l'intérieur du disque de rayon R_a
- \mathcal{F}_k^r dans la direction du barycentre de la distribution de masse l'intérieur du disque de rayon R_r

Modèle microscopique - constrainte sur V

- interactions de type attraction-répulsion (pas d'alignement)
- N moutons : positions $X_k \in \mathbb{R}^2$ vitesses $V_k \in \mathbb{R}^2$, avec $|V_k| = 1$

$$\frac{dX_k}{dt} = V_k,$$

$$\frac{dV_k}{dt} = (\mathsf{Id} - V_k \otimes V_k) (\underbrace{\mathcal{F}_k^a}_{\text{attraction}} - \underbrace{\mathcal{F}_k^r}_{\text{répulsion}}),$$

$$\bullet |V_k|^2 = 1 \quad \Rightarrow \quad \frac{dV_k}{dt} \perp V_k$$

 $\Rightarrow (\mathsf{Id} - V_k \otimes V_k) = \text{projection orthogonale}$ sur la droite orthogonale à V_k .

\Rightarrow Quantité de mouvement non conservée

Modèle microscopique - attraction à longue portée, répulsion à courte portée $\frac{dX_k}{dt} = V_k,$ $\frac{dV_k}{dt} = (\mathsf{Id} - V_k \otimes V_k)(\mathcal{F}_k^a - \mathcal{F}_k^r),$ • $\mathcal{F}_k = \nu_k \xi_k$ $\rightarrow \nu_k$, intensité $\rightarrow \xi_k$ = barycentre de la distrib. de masse dans le disque $D(X_k, R)$ $=\left(\sum_{k=1}^{N} (X_k - X_j)\right) / \left(\sum_{k=1}^{N} 1\right)$ force d'attraction : longue portée et intensité modérée

force de répulsion : courte portée et forte intensité

 $R_r \ll R_3$ et $\nu_3 \ll \nu_r$

 $\nu_{k}^{r} = \nu_{r} \left(\sum_{i \in \mathbf{V}} \sum_{\mathbf{X}_{i} \in \mathbf{R}} 1 \right) \qquad \begin{array}{c} \nu_{r} \text{ tend vers } +\infty \text{ quand la densit} \tilde{A} \textcircled{C} \text{ locale} \\ \text{tend vers une densit} \tilde{A} \textcircled{C} \text{ maximale} \end{array}$

Limite champ moyen

- f(x, v, t) fonction de distribution dans l'espace des phases, $x \in \mathbb{R}^2, v \in \mathbb{S}^1$
- Grand nombre de particules en interactions : $N \to +\infty$ (limite champ-moyen)

$$f^N(x,v,t) = \frac{1}{N} \sum_{k=1}^N \delta(x - X_k(t)) \ \delta(v, V_k(t)) \quad \xrightarrow[N \to +\infty]{} f$$

• f satisfait : $\partial_t f + v \cdot \nabla_x f + \nabla_v \cdot ((\operatorname{Id} - v \otimes v) (\mathcal{F}_a - \mathcal{F}_r) f) = 0$

$$\mathcal{F}_{a,r}(x,v,t) = \nu_{a,r}\xi_{a,r}, \quad \xi_{a,r}(x,t) = \frac{\int_{D(x,R_{a,r})} (y-x)\rho(y,t)dy}{\int_{D(x,R_{a,r})} \rho(y,t)dy}$$
$$\rho(x,t) = \int_{v} f(x,v,t)dv = \text{densit}\acute{e}$$

Changement d'échelle dans le modèle cintique

• Dynamiques à grandes échelles de temps et d'espace : changement d'échelle hydrodynamique

$$\tilde{x} = \eta x, \quad \tilde{t} = \eta t, \quad \eta \ll 1$$

Répulsion :

1 $R_r = O(\eta)$ 2 $\nu_r = O(1)$

 $\rightarrow \mathcal{F}_r = \eta \nu_r \frac{\nabla_x \rho}{\rho}$

 \rightarrow force de répulsion locale

Attraction :

1 $R_a = O(1)$ 2 $\nu_a = O(\eta)$

$$\rightarrow \mathcal{F}_{a} = O(\eta)$$

 \rightarrow force d'attraction non locale

• **Congestion** : ho^* densité maximale et $u_r(
ho) \to +\infty$ quand $ho \to
ho^*$

Modèle cinétique

$$\partial_t f + v \cdot \nabla_x f + \nabla_v \cdot \left(\left(\mathsf{Id} - v \otimes v \right) \left(\mathcal{F}_a - \mathcal{F}_r \right) f \right) = 0$$

Force d'attraction non locale

$$\mathcal{F}_{a} = \nu_{a}\xi_{a}, \quad \xi_{a}(x,t) = \frac{\int_{D(x,R_{a})} (y-x)\rho(y,t)dy}{\int_{D(x,R_{a})} \rho(y,t)dy}$$

Force de répulsion locale

$$\begin{aligned} \mathcal{F}_r &= \nu_r(\rho) \frac{\nabla_{\times} \rho}{\rho} =: \nabla_{\times} p(\rho) \\ \text{avec } p \text{ tel que } p'(\rho) = \nu_r(\rho)/\rho \end{aligned}$$

Modèle macroscopique

- Moments : densité $\rho = \int f(x, v, t) dv$ quantité de mouvement $\rho u = \int_{v} v f(x, v, t) dv$
- Hypothèse monocinétique : $f(x, v, t) = \rho(x, t)\delta(v, u(x, t)), |u| = 1.$ "Localement, il y a une seule vitesse"

Intégration de l'équation cinétique conduit au système

$$\begin{aligned} |u| &= 1\\ \partial_t \rho + \nabla_x \cdot \rho u &= 0\\ \partial_t u + u \cdot \nabla_x u + (Id - u \otimes u)(\nabla_x \rho(\rho) - \mathcal{F}_a) &= 0 \end{aligned}$$

Plan

1 Dérivation du modèle macroscopique

Modèle particulaire Modèle cinétique et changement d'échelle hydrodynamique Modèle macroscopique

2 Etude de la transition congestionnée/non-congestionnée Le modèle asymptotique Dans la phase congestionnée La dynamique de l'interface

③ Simulations numériques

Méthodes numériques pour la congestion Méthodes numériques pour la contrainte géométrique sur la vitesse

4 Conclusion

Limite asymptotique de congestion

Modèle sans attraction : $\mathcal{F}_a = 0$

$$\partial_t \rho + \nabla_x \cdot \rho u = 0,$$

 $\partial_t u + u \cdot \nabla_x u + (Id - u \otimes u) \nabla_x p(\rho) = 0$
 $|u| = 1$

- Pression singulière : $p(\rho) \xrightarrow[\rho \to \rho^*]{} +\infty$
- Apparition de deux dynamiques : Pour $[\rho \ll \rho^*] \rightarrow$ faible répulsion Pour $[\rho \sim \rho^*] \rightarrow$ congestion

Pour accentuer cette différence : change p en εp

• Pour
$$\rho < \rho^*$$
, $\varepsilon p(\rho^{\varepsilon}) = O(\varepsilon)$
• $\varepsilon p(\rho^{\varepsilon}(x,t)) \xrightarrow[\varepsilon \to 0]{} \begin{cases} 0 & \text{si } \rho^{\varepsilon}(x,t) \to \rho < \rho^* \\ \overline{\rho}(x,t) \in [0, +\infty[& \text{si } \rho^{\varepsilon}(x,t) \to \rho^* \end{cases}$

Limite asymptotique de congestion

Modèle sans attraction : $\mathcal{F}_a = 0$

$$\partial_t \rho + \nabla_x \cdot \rho u = 0,$$

 $\partial_t u + u \cdot \nabla_x u + (Id - u \otimes u) \nabla_x p(\rho) = 0$
 $|u| = 1$

- Pression singulière : $\rho(\rho) \xrightarrow[\rho \to \rho^*]{} +\infty$
- Apparition de deux dynamiques : Pour $[\rho \ll \rho^*] \rightarrow$ faible répulsion Pour $[\rho \sim \rho^*] \rightarrow$ congestion

Pour accentuer cette différence : change p en εp

• Pour
$$\rho < \rho^*$$
, $\varepsilon p(\rho^{\varepsilon}) = O(\varepsilon)$
• $\varepsilon p(\rho^{\varepsilon}(x,t)) \xrightarrow[\varepsilon \to 0]{} \begin{cases} 0 & \text{si } \rho^{\varepsilon}(x,t) \to \rho < \rho^* \\ \overline{\rho}(x,t) \in [0, +\infty[& \text{si } \rho^{\varepsilon}(x,t) \to \rho^* \end{cases}$

Modèle avec deux phases

$$\partial_t \rho^{\varepsilon} + \nabla_x \cdot \rho^{\varepsilon} u^{\varepsilon} = 0$$

$$\partial_t u^{\varepsilon} + u^{\varepsilon} \cdot \nabla_x u^{\varepsilon} + (Id - u^{\varepsilon} \otimes u^{\varepsilon}) \varepsilon \nabla_x \rho(\rho^{\varepsilon}) = 0$$

$$|u^{\varepsilon}| = 1$$

•
$$\varepsilon \rho(\rho^{\varepsilon}(x,t)) \underset{\varepsilon \to 0}{\longrightarrow} \begin{cases} 0 & \operatorname{si} \rho^{\varepsilon}(x,t) \to \rho < \rho^{*} \\ \overline{p}(x,t) \in [0,+\infty[& \operatorname{si} \rho^{\varepsilon}(x,t) \to \rho^{*} \end{cases}$$

• A la limite $\varepsilon \rightarrow 0$, deux phases :

Dans la **phase diluée** $ho <
ho^*$,

Dans la phase congestionnée $\rho = \rho^*$

$$\begin{aligned} |u| &= 1\\ \partial_t \rho + \nabla_x \cdot \rho u &= 0\\ \partial_t u + u \cdot \nabla_x u &= 0\\ \bar{p} &= 0 \end{aligned}$$

Dynamique des gaz sans pression

|u| = 1 $\rho = \rho^*, \quad \nabla_x \cdot u = 0$ $\partial_t u + u \cdot \nabla_x u$

$$+(Id-u\otimes u)
abla_{x}ar{p}=0$$

Euler incompressible

La phase congestionnée

• Euler incompressible avec contrainte sur le module de la vitesse

•
$$\nabla_x \cdot u = 0$$
 et $|u| = 1$

- \rightarrow *u* constant sur les droites orthogonales à *u*
- ightarrow u est constant

• équation elliptique satisfaite par \bar{p} sur chaque droite

$$-
abla_x \cdot ((Id - u \otimes u)
abla_x \overline{p}) =
abla_x^2 : (u \otimes u)$$

 \rightarrow conditions aux limites ? non fournies par l'analyse asymptotique formelle

→ modèle asymptotique incomplet

Conditions de bords

Problème de Riemann 1D à travers l'interface entre une région congestionnée $C_t = \{x, \rho(x) = \rho^*\}$ et une région non-congestionnée

$$\cos \theta = u \cdot \mathbf{n}$$

Problme de Riemann 1D avec arepsilon>0

•
$$u = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$$

Système 1D

$$\partial_t \rho + \partial_x (\rho \cos \theta) = 0$$

$$\partial_t \cos \theta + \cos \theta \partial_x \cos \theta + \sin \theta^2 \partial_x \varepsilon p(\rho) = 0$$

→ système non conservatif !

Formulation conservative 1D

En divisant par $\sin \theta^2$, on obtient le système conservatif

$$\begin{aligned} \partial_t \rho &+ \partial_x (\rho \cos \theta) = 0\\ \partial_t \Psi(\cos \theta) &+ \partial_x \left(\Phi(\cos \theta) + \varepsilon p(\rho) \right) = 0\\ \Psi(u) &= \frac{1}{2} \log \left((1+u)/(1-u) \right), \quad \Phi(u) = -\log \left(1/\sqrt{1-u^2} \right) \end{aligned}$$

Système strictement hyperbolique

- champs non linéairement dégénérés à la limite arepsilon
 ightarrow 0.
- solutions faibles entropiques pour le problème de Riemann (somme d'ondes de chocs et de raréfactions)

Résolution du problème de Riemann 1D et limite des solutions arepsilon
ightarrow 0

Restrictions :

→ Valide pour $\theta \in]0, \pi[$.

 \rightarrow pas unicité de la formulation conservative mais des comportements communs

$\label{eq:limite} \begin{array}{l} {\rm Limite} \ \varepsilon \to 0 \ {\rm dans} \ {\rm les} \ {\rm problèmes} \ {\rm de} \\ {\rm Riemann} \end{array}$

Intersection des courbes d'ondes :

Conditions aux bords

- Limite arepsilon
 ightarrow 0 dans les solutions du problème de Riemann
- interface Congestionnée ($\rho=\rho^*)$ / Non-congestionnée (0 < $\rho<\rho^*)$

 \rightarrow conditions de Rankine Hugoniot donnent le saut de pression et la vitesse de l'interface

$$\begin{split} \bar{p}_{\mid\partial C_t} &= \frac{[\Psi(u \cdot n)][\rho(u \cdot n)]}{[\rho]} - [\Phi(u \cdot n)]\\ \sigma &= \frac{[\rho(u \cdot n)]}{[\rho]} \end{split}$$

• interface Congestionnée ($ho=
ho^*$) / Vide (ho=0)

$$\bar{p}_{|\partial C_t} = 0$$
$$\sigma = u \cdot n$$

Conditions de bords

Collision entre deux régions congestionnée

ightarrow problème de Riemann ne fournit pas de solution : $ar{p}=\infty$

 \rightarrow en 1D, collision entre deux domaines congestionnés avec un delta en temps pour la pression

• u déterminée par

 $(\Psi(u) - \Psi(u_L))(x_c - x_L) + (\Psi(u) - \Psi(u_R))(x_R - x_c) = 0$

• analogie avec les modèles bi-phasiques [Bouchut et al.]
 → en 2D, géométrie de la collision plus complexe...

Plan

1 Dérivation du modèle macroscopique

Modèle particulaire Modèle cinétique et changement d'échelle hydrodynamique Modèle macroscopique

2 Etude de la transition congestionnée/non-congestionnée Le modèle asymptotique Dans la phase congestionnée La dynamique de l'interface

Simulations numériques

Méthodes numériques pour la congestion Méthodes numériques pour la contrainte géométrique sur la vitesse

4 Conclusion

Méthodes numériques pour la congestion¹

- Simulations numériques des collisions
- Sans contrainte sur la vitesse : système d'Euler avec la contrainte de congestion

$$u \in \mathbb{R}^{2}$$

$$\partial_{t}\rho + \nabla_{x} \cdot (\rho u) = 0$$

$$\partial_{t}(\rho u) + \nabla_{x} \cdot (\rho u \otimes u) + \varepsilon \nabla_{x} p(\rho) = 0$$

- Schémas préservant l'asymptotique arepsilon
 ightarrow 0
 - → grandes vitesses d'onde dans les domaines incompressibles : asymptotique faible-Mach dans les domaines congestionnés
 - → la stabilité requiert de l'implicitation
 - → capturer numériquement la dynamique de l'interface

^{1.} Travail en collaboration avec Pierre Degond et Jiale Hua

Schéma semi-implicite

Schéma semi-discrétisé en temps $(\rho^n, (\rho u)^n) = (\rho, \rho u)(n\Delta t)$

1) implicite pour la densité ho :

$$\frac{\rho^{n+1} - \rho^n}{\Delta t} + \nabla_x \cdot (\rho u)^{n+1} = 0$$

$$\frac{\rho^{n+1} - \rho^n}{\Delta t} + \nabla_x \cdot (\rho u)^n - \Delta t \nabla_x^2 : \left(\frac{(\rho u)^n \otimes (\rho u)^n}{\rho^n}\right) - \Delta t \varepsilon \Delta_x \rho(\rho^{n+1}) = 0$$

2 semi-implicite pour ρu :

$$\frac{(\rho u)^{n+1}-(\rho u)^n}{\Delta t}+\nabla_{\times}\cdot\left(\frac{(\rho u)^n\otimes(\rho u)^n}{\rho^n}\right)+\varepsilon\nabla_{\times}\rho(\rho^{n+1})=0,$$

- \rightarrow implicite \Rightarrow stabilité
- → résolution de l'équation elliptique en la variable p : contrainte sur la densité satisfaite $\rho^n = p^{-1}(p^n) < \rho^*$

 \rightarrow discrétisation des dérivées spatiales par volumes finis : conservativité

Schéma semi-implicite

Schéma semi-discrétisé en temps $(\rho^n, (\rho u)^n) = (\rho, \rho u)(n\Delta t)$

() implicite pour la densité ρ :

$$\frac{\rho^{n+1} - \rho^n}{\Delta t} + \nabla_x \cdot (\rho u)^{n+1} = 0$$

$$\frac{\rho^{n+1} - \rho^n}{\Delta t} + \nabla_x \cdot (\rho u)^n - \Delta t \nabla_x^2 : \left(\frac{(\rho u)^n \otimes (\rho u)^n}{\rho^n}\right) - \Delta t \varepsilon \Delta_x \rho(\rho^{n+1}) = 0$$

2 semi-implicite pour ρu :

$$\frac{(\rho u)^{n+1}-(\rho u)^n}{\Delta t}+\nabla_x\cdot\left(\frac{(\rho u)^n\otimes(\rho u)^n}{\rho^n}\right)+\varepsilon\nabla_x\rho(\rho^{n+1})=0,$$

 \rightarrow implicite \Rightarrow **stabilité**

→ résolution de l'équation elliptique en la variable p : contrainte sur la densité satisfaite $\rho^n = p^{-1}(p^n) < \rho^*$

 \rightarrow discrétisation des dérivées spatiales par volumes finis : conservativité

Schéma semi-implicite

Schéma semi-discrétisé en temps $(\rho^n, (\rho u)^n) = (\rho, \rho u)(n\Delta t)$

1) implicite pour la densité ho :

$$\frac{\rho^{n+1}-\rho^n}{\Delta t} + \nabla_x \cdot (\rho u)^{n+1} = 0$$

$$\frac{\rho^{n+1}-\rho^n}{\Delta t} + \nabla_x \cdot (\rho u)^n - \Delta t \nabla_x^2 : \left(\frac{(\rho u)^n \otimes (\rho u)^n}{\rho^n}\right) - \Delta t \varepsilon \Delta_x \rho(\rho^{n+1}) = 0$$

2 semi-implicite pour ρu :

$$\frac{(\rho u)^{n+1}-(\rho u)^n}{\Delta t}+\nabla_{\mathsf{x}}\cdot\left(\frac{(\rho u)^n\otimes(\rho u)^n}{\rho^n}\right)+\varepsilon\nabla_{\mathsf{x}}\rho(\rho^{n+1})=0,$$

- \rightarrow implicite \Rightarrow **stabilité**
- → résolution de l'équation elliptique en la variable p : contrainte sur la densité satisfaite $\rho^n = p^{-1}(p^n) < \rho^*$

 \rightarrow discrétisation des dérivées spatiales par volumes finis : conservativité

Deux méthodes

Méthode directe :

- adaptation de la méthode [Degond, Tang, 2010]
- composition de la pression : $p(\rho^{n+1}) \rightarrow p_0(\rho^n) + p_1(\rho^{n+1})$ avec $p = p_0 + p_1$

Méthode de jauge :

• méthode directe + décomposition de Hodge [Degond, Jin, Liu, 2007]

Deux méthodes

Méthode directe :

- adaptation de la méthode [Degond, Tang, 2010]
- composition de la pression : $p(\rho^{n+1}) \rightarrow p_0(\rho^n) + p_1(\rho^{n+1})$ avec $p = p_0 + p_1$

 $p = p_0 + p_1$

Méthode de jauge :

• méthode directe + décomposition de Hodge [Degond, Jin, Liu, 2007]

Convergence

- dans les zones congestionnées : préservation de l'asymptotique
- calcul de l'erreur en norme L¹

Paramètres			Direct	Gauge 1
ε	Δx	Δt	e(W)	e(W)
10 ⁻²	1/200 1/800	1/1000 1/4000	$\begin{array}{c} 7.6793 \times 10^{-3} \\ 1.7934 \times 10^{-3} \end{array}$	$\begin{array}{c} 7.8588 \times 10^{-3} \\ 1.8646 \times 10^{-3} \end{array}$
10-4	1/200 1/800	1/1000 1/4000	$\begin{array}{c} 4.2631 \times 10^{-3} \\ 1.3085 \times 10^{-3} \end{array}$	$\begin{array}{c} 4.9486 \times 10^{-3} \\ 1.4253 \times 10^{-3} \end{array}$
10 ⁻⁸	1/200 1/800	1/1000 1/4000	$\begin{array}{c} 7.0600 \times 10^{-3} \\ 1.7611 \times 10^{-3} \end{array}$	$\begin{array}{c} 5.8159 \times 10^{-3} \\ 1.4624 \times 10^{-3} \end{array}$

→ numériquement, préservation de l'asymptotique

Simulations numériques

• Condition initiale : $\rho_0(x) = 0.7$

Collision

Méthode numériques pour la contrainte géométrique sur la vitesse²

Cadre : modèle de Vicsek

• modèle micro : positions X_k , vitesses V_k avec $|V_k| = 1$

$$\begin{aligned} \frac{dX_k}{dt} &= V_k \\ dV_k &= (\operatorname{Id} - V_k \otimes V_k)(\nu \bar{V}_k dt + \sqrt{2d} dB_t^k) \\ \bar{V}_k &= \operatorname{Direction} \text{ moyenne dans le disque de rayon R} \\ dB_t^k &= \operatorname{Bruit blanc} \end{aligned}$$

• modèle macro [Degond,Motsch,07] :

$$\partial_t \rho + \nabla_x \cdot (c_1 \rho u) = 0$$

$$\partial_t \rho u + c_2 \nabla_x \cdot (\rho u \otimes u) = -\frac{d}{\nu} (\mathsf{Id} - u \otimes u) \nabla_x \rho$$

$$|u| = 1$$

→ pas de congestion

^{2.} Travail en collaboration avec Sébastien Motsch

Méthode numériques pour la contrainte géométrique sur la vitesse

Système hyperbolique non-conservatif

$$\partial_t \rho + \nabla_x \cdot (c_1 \rho u) = 0$$

$$\partial_t \rho u + c_2 \nabla_x \cdot (\rho u \otimes u) = -\frac{d}{\nu} (\mathsf{Id} - u \otimes u) \nabla_x \rho, \quad |u| = 1$$

- Multitude de solutions : non-unicité des solutions (discontinues)
 → problème asymptotique incomplet
 - → quelle solution sélectionner?

Méthode : utilisation du schéma numérique pour sélectionner la "bonne" solution : celle qui correspond au système particulaire

- 1 schéma basé sur la formulation conservative
- 2 schéma basé sur une relaxation de la contrainte

$$\partial_t \rho u + c_2 \nabla_x \cdot (\rho u \otimes u) + \frac{d}{\nu} \nabla_x \rho = -\frac{\rho}{\kappa} (1 - |u|^2) u, \quad \kappa \ll 1$$

Résultats

→ méthode de splitting concorde

Plan

Dérivation du modèle macroscopique

Modèle particulaire Modèle cinétique et changement d'échelle hydrodynamique Modèle macroscopique

2 Etude de la transition congestionnée/non-congestionnée

Le modèle asymptotique Dans la phase congestionnée La dynamique de l'interface

3 Simulations numériques

Méthodes numériques pour la congestion Méthodes numériques pour la contrainte géométrique sur la vitesse

4 Conclusion

Conclusion

- Dérivation d'un modèle macroscopique avec congestion et contrainte sur la vitesse
- Limite singulière pour le modèle macroscopique : transition congestionnée/non-congestionnée
 → Etude de la transition compressible-incompressible
- Méthodes numériques pour la contrainte de congestion et la contrainte sur la vitesse

Perspectives :

- ajout d'interactions d'alignement (modèle de Vicsek)
- Simulations numériques et comparaison avec le modèle microscopique
- modèle bi-fluide avec des moutons au repos et des moutons en mouvement