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• Numerical simulation of interfaces between two fluids

upwind anti-diffusive

• Lagrange-projection (or Lagrange-remap) schemes

+ anti-diffusive tool for the interface

Þ 2nd order schemes
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The 5 - equations model (1)

Sharp interface model between two fluids in one model

ρ = ρ1

u = u1

e = e1

ρ = ρ0

u = u0

e = e0

density
velocity
energy

• compressible Euler system (u = u1 = u0)

∂tρ + ∂x(ρu) = 0
∂t(ρu) + ∂x(ρu2 + p) = 0
∂t(ρe) + ∂x [u(ρe + p)] = 0

∂t(ρy) + ∂x(ρyu) = 0
∂tz + u∂xz = 0

• z = “color” function Þ“indicator function”

• y = mass fraction of the phase 1 Þ“conservative variable”



The 5 - equations model (2)

• z = “color” function Þ“indicator function”

ρ = z ρ1 + (1− z) ρ0 (total density)
ρu = z (ρu)1 + (1− z) (ρu)0 (total momentum)
ρe = z (ρe)1 + (1− z) (ρe)0 (total energy)

• pressure

in [z = 1], p = p1(ρ1, ε1), ε1 = e1 −
u2

2

in [z = 0], p = p0(ρ0, ε0), ε0 = e0 −
u2

2

Γ(t)

fluid 1
z = 1
P = P1

fluid 0
z = 0
P = P0

• theoretically y = z ∈ {0, 1}



The 5 - equations model (3)

• numerical diffusion of the interface
y 6= z ∈ [0, 1]

• ρ, ρu, ρe, p in the region [0 < z < 1]
0<z<1

fluid 1
z = 1
P = P1

fluid 0
z = 0
P = P0

ρ = z ρ1 + (1− z) ρ0

ρu = z (ρu)1 + (1− z) (ρu)0

ρe = z (ρe)1 + (1− z) (ρe)0

if 0 < z < 1, p = p1(ρ1, ε1) = p0(ρ0, ε0)

where ε1, ε0 solve

 p1(ρ1, ε1) = p0(ρ0, ε0)

zρ1ε1 + (1− z)ρ0ε0 = ρε
(isobaric closure)
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The numerical scheme

• Lagrange-projection: separate the acoustic waves / the
“material” waves

∂tρ + ∂x(ρu) = 0
∂t(ρu) + ∂x(ρu2 + p) = 0
∂t(ρe) + ∂x [u(ρe + p)] = 0

∂t(ρy) + ∂x(ρyu) = 0
∂tz + u ∂xz = 0



The numerical scheme

• Lagrange-projection: separate the acoustic waves / the
“material” waves

∂tρ + ρ ∂xu + u ∂xρ = 0
∂t(ρu) + ρu ∂xu + ∂xp + u ∂xρu = 0
∂t(ρe) + (ρe) ∂xu + ∂x(pu) + u ∂x(ρe) = 0

∂t(ρy) + (ρy) ∂xu + u ∂x(ρy) = 0
∂tz + u ∂xz = 0︸ ︷︷ ︸ ︸ ︷︷ ︸

acoustic convection



The numerical scheme

Notation: JX Ki = (Xi+1/2 − Xi−1/2)

Lagrange
step

(wn → w̃)

acoustic
scheme

Li ρ̃i = ρn
i with Li = 1 +

∆t

∆x
JunKi

Li (ρ̃u)i = (ρu)n
i −

∆t

∆x
JpnKi

Li (ρ̃e)i = (ρe)n
i −

∆t

∆x
JpnunKi

ỹi = yn
i , z̃i = zn

i

Projection
step

(w̃ → wn+1)

convection

ρn+1
i = ρ̃i + ∆t

∆x Jρ̃unKi − ∆t
∆x ρ̃iJunKi

(ρu)n+1
i = ρ̃ui + ∆t

∆x Jρ̃uunKi − ∆t
∆x ρ̃uiJunKi

(ρe)n+1
i = ρ̃e i + ∆t

∆x Jρ̃eunKi − ∆t
∆x ρ̃e iJunKi

(ρy)n+1
i = ρ̃y i + ∆t

∆x Jρ̃yunKi − ∆t
∆x ρ̃y iJunKi

zn+1
i = z̃i + ∆t

∆x Jz̃unKi − ∆t
∆x z̃iJunKi



The fluxes

Notation: JX Ki = (Xi+1/2 − Xi−1/2)

Lagrange
step

(wn → w̃)
acoustic
scheme

• Compute JunK, JpnK ?

ÞRoe type fluxes for ui+1/2 and pi+1/2

Projection
step

(w̃ → wn+1)

convection

• Compute Jρ̃unK ?

(ρ̃un)i+1/2 = ρ̃i+1/2u
n
i+1/2

ρ̃i+1/2 = zi+1/2(ρ̃1)i+1/2 + (1− zi+1/2)(ρ̃0)i+1/2

Þ upwind flux for ρ̃1 and ρ̃0 computed from y

• Compute zi+1/2 ?

Þ anti-diffusive flux for z



Anti-diffusive flux

Anti-diffusive flux = as downwind as possible
= if ui+1/2 > 0, zi+1/2 is the nearest value to zi+1

ensuring stability and consistency

Example: ∂tz + u ∂xz = 0, with u = 1
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flux at (x = 0.6)
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t = 0∆t



Anti-diffusive flux

Anti-diffusive flux = as downwind as possible
= if ui+1/2 > 0, zi+1/2 is the nearest value to zi+1
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Example: ∂tz + u ∂xz = 0, with u = 1
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Anti-diffusive flux

Anti-diffusive flux = as downwind as possible
= if ui+1/2 > 0, zi+1/2 is the nearest value to zi+1

ensuring stability and consistency

Example: ∂tz + u ∂xz = 0, with u = 1
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Anti-diffusive flux

Anti-diffusive flux = as downwind as possible
= if ui+1/2 > 0, zi+1/2 is the nearest value to zi+1

ensuring stability and consistency

Example: ∂tz + u ∂xz = 0, with u = 1
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Anti-diffusive flux

Anti-diffusive flux = as downwind as possible
= if ui+1/2 > 0, zi+1/2 is the nearest value to zi+1

ensuring stability and consistency

Example: ∂tz + u ∂xz = 0, with u = 1
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Anti-diffusive flux

Anti-diffusive flux = as downwind as possible
= if ui+1/2 > 0, zi+1/2 is the nearest value to zi+1

ensuring stability and consistency

Example: ∂tz + u ∂xz = 0, with u = 1
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Anti-diffusive flux

Anti-diffusive flux = as downwind as possible
= if ui+1/2 > 0, zi+1/2 is the nearest value to zi+1

ensuring stability and consistency

Example: ∂tz + u ∂xz = 0, with u = 1
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Upwind flux
Diffusion of the interface with the upwind flux:

zi+1/2 =

{
zi if ui+1/2 > 0
zi+1 if ui+1/2 < 0

Example: ∂tz + u ∂xz = 0, with u = 1
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Upwind flux
Diffusion of the interface with the upwind flux:

zi+1/2 =

{
zi if ui+1/2 > 0
zi+1 if ui+1/2 < 0

Example: ∂tz + u ∂xz = 0, with u = 1
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Upwind flux
Diffusion of the interface with the upwind flux:

zi+1/2 =

{
zi if ui+1/2 > 0
zi+1 if ui+1/2 < 0

Example: ∂tz + u ∂xz = 0, with u = 1
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Upwind flux
Diffusion of the interface with the upwind flux:

zi+1/2 =

{
zi if ui+1/2 > 0
zi+1 if ui+1/2 < 0

Example: ∂tz + u ∂xz = 0, with u = 1
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Upwind flux
Diffusion of the interface with the upwind flux:

zi+1/2 =

{
zi if ui+1/2 > 0
zi+1 if ui+1/2 < 0

Example: ∂tz + u ∂xz = 0, with u = 1
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Upwind flux
Diffusion of the interface with the upwind flux:

zi+1/2 =

{
zi if ui+1/2 > 0
zi+1 if ui+1/2 < 0

Example: ∂tz + u ∂xz = 0, with u = 1
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Upwind flux
Diffusion of the interface with the upwind flux:

zi+1/2 =

{
zi if ui+1/2 > 0
zi+1 if ui+1/2 < 0

Example: ∂tz + u ∂xz = 0, with u = 1
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Numerical exemple

Sod test-case :

ρ` = 1.0
u` = 0.0
p` = 1.0

z = y = 1

ρr = 0.125
ur = 0.0
pr = 0.1

z = y = 0
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Numerical exemple

Sod test-case :

ρ` = 1.0
u` = 0.0
p` = 1.0

z = y = 1

ρr = 0.125
ur = 0.0
pr = 0.1

z = y = 0
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o

exact solution
upwind - 400 meshes
anti-diff - 400 meshes
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Muscl strategy

• linear reconstruction for the fluxes

w̃i (x) = wi + σi (x − xi )

σi = minmod

(
wi − wi−1

∆x
,
wi+1 − wi

∆x

)

i − 1/2

i

i + 1/2

Wi−1
Wi

Wi+1

first order

i − 1/2

i

i + 1/2

Wi−1

Wi

Wi+1

W L
i W R

i

second order

• second order fluxes in the Lagrange step for the Roe fluxes
in the projection step for the upwind fluxes

Þ but keep the anti-diffusive flux for z: we can not do better !



Improvement

• maximum principle on y is not satisfied (Sod test case)
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• in the projection step, keep the order 1 upwind flux (i.e. for
(ρ̃0)i+1/2, (ρ̃1)i+1/2) in the projection step at the interface
[0 < z < 1]



Comparison with order 1

Sod test case
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Comparison with order 1

Sod test case: zoom on the rarefaction
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Comparison with order 1

Sod test case: zoom on the shock
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Comparison with order 1

Sod test case: zoom on the contact
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Numerical order

Orders for the Sod test-case:

ρ u p

Order 1 upwind 0.63 0.82 0.77

Order 1 anti-diff 0.75 0.82 0.78

Lagrange order 2 anti-diff 0.86 0.88 0.85

Lagrange-projection order 2 upwind 0.83 1.03 1.08

Lagrange-projection order 2 anti-diff 1.08 1.04 1.10

Comments:

1 upwind → anti-diffusive : improve the order for ρ

2 with the order 2 method, orders are improved

but numerical order . 1 (discontinuous solutions)

3 Lagrange order 2 + projection of order 2

better than Lagrange order 2



Numerical order

Orders for the Sod test-case:

ρ u p

Order 1 upwind 0.63 0.82 0.77

Order 1 anti-diff 0.75 0.82 0.78

Lagrange order 2 anti-diff 0.86 0.88 0.85

Lagrange-projection order 2 upwind 0.83 1.03 1.08

Lagrange-projection order 2 anti-diff 1.08 1.04 1.10

Comments:

1 upwind → anti-diffusive : improve the order for ρ

2 with the order 2 method, orders are improved

but numerical order . 1 (discontinuous solutions)

3 Lagrange order 2 + projection of order 2

better than Lagrange order 2



Numerical order

Orders for the Sod test-case:

ρ u p

Order 1 upwind 0.63 0.82 0.77

Order 1 anti-diff 0.75 0.82 0.78
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Numerical order
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Comments:

1 increasing order + decreasing absolute error

2 no possible order 2 (discontinuous solution)



Conclusion

What has been done

• one-dimensional codes (C and Scilab)

• rewriting the Lagrange-projection scheme to integrate Muscl strategy

• desactivation of the Muscl procedure at the interface for preserving
the anti-diffusive property

Results

• space order is improved

• no better order in a test case with continuous solution

• wall-heating disappears with mesh refinement

Work in progress

• order 2 in time: no major improvement

• 2D simulations by directionnal splitting

• reducing the wall-heating phenomenon
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