Second order anti-diffusive Lagrange-remap scheme

SIMCAPIAD project

Marie BILLAUD, Benjamin BOUTIN, Filipa CAETANO, Gloria FACCANONI, Samuel Kokh, Frédéric Lagoutière & <u>Laurent Navoret</u>

CEMRACS 2010, Wednesday, August 25 2010

• Numerical simulation of interfaces between two fluids

upwind

anti-diffusive

- Lagrange-projection (or Lagrange-remap) schemes
 - + anti-diffusive tool for the interface

 $\rightarrow 2^{nd}$ order schemes

Outline

1 The model

2 The numerical scheme

3 Second order in space

Outline

1 The model

2 The numerical scheme

③ Second order in space

The 5 - equations model (1)

Sharp interface model between two fluids in one model

$\rho = \rho_0$	density
$u = u_0$	velocity
$e = e_0$	energy
	$ \begin{array}{l} \rho = \rho_0 \\ u = u_0 \\ e = e_0 \end{array} $

• compressible Euler system ($u = u_1 = u_0$)

$$\begin{array}{rcl} \partial_t \rho & + & \partial_x(\rho u) & = & 0 \\ \partial_t(\rho u) & + & \partial_x(\rho u^2 + p) & = & 0 \\ \partial_t(\rho e) & + & \partial_x[u(\rho e + p)] & = & 0 \end{array}$$

$$\begin{array}{rcl} \partial_t(\rho y) &+& \partial_x(\rho y u) &=& 0\\ \partial_t z &+& u \partial_x z &=& 0 \end{array}$$

z = "color" function → "indicator function"
 y = mass fraction of the phase 1 → "conservative variable"

The 5 - equations model (2)

•
$$z =$$
 "color" function \rightarrow "indicator function"
 $\rho = z \ \rho_1 + (1-z) \ \rho_0$ (total density)
 $\rho u = z \ (\rho u)_1 + (1-z) \ (\rho u)_0$ (total momentum)
 $\rho e = z \ (\rho e)_1 + (1-z) \ (\rho e)_0$ (total energy)

pressure

in
$$[z = 1]$$
, $p = p_1(\rho_1, \varepsilon_1)$, $\varepsilon_1 = e_1 - \frac{u^2}{2}$
in $[z = 0]$, $p = p_0(\rho_0, \varepsilon_0)$, $\varepsilon_0 = e_0 - \frac{u^2}{2}$

fluid 1 z = 1 $P = P_1$	$\Gamma(t)$
	fluid 0 z = 0 $P = P_0$

• theoretically $\textbf{y} = \textbf{z} \in \{\textbf{0}, \textbf{1}\}$

The 5 - equations model (3)

- numerical diffusion of the interface $y\neq z\in [0,1]$

• ρ , ρu , ρe , p in the region [0 < z < 1]

$$\begin{array}{ll} \text{if } 0 < z < 1, \quad p = p_1(\rho_1, \varepsilon_1) = p_0(\rho_0, \varepsilon_0) \\ \\ \text{where } \varepsilon_1, \varepsilon_0 \text{ solve} \begin{cases} p_1(\rho_1, \varepsilon_1) = p_0(\rho_0, \varepsilon_0) \\ \\ z\rho_1\varepsilon_1 + (1-z)\rho_0\varepsilon_0 = \rho\varepsilon \end{cases} \text{ (isobaric closure)} \end{array}$$

Outline

1 The model

2 The numerical scheme

③ Second order in space

The numerical scheme

• Lagrange-projection: separate the acoustic waves / the "material" waves

$$\partial_t \rho + \partial_x (\rho u) = 0$$

$$\frac{\partial_t(\rho u)}{\partial_t(\rho e)} + \frac{\partial_x(\rho u + \rho)}{\partial_x[u(\rho e + \rho)]} = 0$$

$$\begin{array}{rcl} \partial_t(\rho y) &+& \partial_x(\rho y u) &=& 0\\ \partial_t z &+& u \ \partial_x z &=& 0 \end{array}$$

The numerical scheme

• Lagrange-projection: separate the acoustic waves / the "material" waves

$$\begin{array}{rcl} \partial_t \rho & + & \rho \ \partial_x u & + & u \ \partial_x \rho & = & 0 \\ \partial_t (\rho u) & + & \rho u \ \partial_x u + \partial_x p & + & u \ \partial_x \rho u & = & 0 \end{array}$$

$$\partial_t(\rho e) + (\rho e) \partial_x u + \partial_x(\rho u) + u \partial_x(\rho e) = 0$$

convection

The numerical scheme

Notation:
$$[X]_{i} = (X_{i+1/2} - X_{i-1/2})$$

Lagrange
step
 $(w^{n} \rightarrow \tilde{w})$
 $L_{i}(\tilde{\rho}\tilde{u})_{i} = (\rho u)_{i}^{n} - \frac{\Delta t}{\Delta x}[\rho^{n}]_{i}$
 $L_{i}(\tilde{\rho}\tilde{u})_{i} = (\rho u)_{i}^{n} - \frac{\Delta t}{\Delta x}[p^{n}u^{n}]_{i}$
 $L_{i}(\tilde{\rho}\tilde{e})_{i} = (\rho e)_{i}^{n} - \frac{\Delta t}{\Delta x}[p^{n}u^{n}]_{i}$
acoustic
scheme
 $\tilde{y}_{i} = y_{i}^{n}, \quad \tilde{z}_{i} = z_{i}^{n}$
Projection
 $p_{i}^{n+1} = \tilde{\rho}\tilde{u}_{i} + \frac{\Delta t}{\Delta x}[\tilde{\rho}\tilde{u}u^{n}]_{i} - \frac{\Delta t}{\Delta x}\tilde{\rho}\tilde{u}_{i}[u^{n}]_{i}$
 $(\rho u)_{i}^{n+1} = \tilde{\rho}\tilde{u}_{i} + \frac{\Delta t}{\Delta x}[\tilde{\rho}\tilde{u}u^{n}]_{i} - \frac{\Delta t}{\Delta x}\tilde{\rho}\tilde{u}_{i}[u^{n}]_{i}$
 $(\rho e)_{i}^{n+1} = \tilde{\rho}\tilde{e}_{i} + \frac{\Delta t}{\Delta x}[\tilde{\rho}\tilde{u}u^{n}]_{i} - \frac{\Delta t}{\Delta x}\tilde{\rho}\tilde{e}_{i}[u^{n}]_{i}$
 $(\rho y)_{i}^{n+1} = \tilde{\rho}\tilde{y}_{i} + \frac{\Delta t}{\Delta x}[\tilde{\rho}\tilde{y}u^{n}]_{i} - \frac{\Delta t}{\Delta x}\tilde{\rho}\tilde{y}_{i}[u^{n}]_{i}$
convection

(

The fluxes

Notation:
$$[X]_i = (X_{i+1/2} - X_{i-1/2})$$

Lagrange step $(w^n \rightarrow \tilde{w})$ acoustic scheme

• Compute $\llbracket u^n \rrbracket$, $\llbracket p^n \rrbracket$?

 \rightarrow Roe type fluxes for $u_{i+1/2}$ and $p_{i+1/2}$

 $\begin{array}{c} \textbf{Projection} \\ \textbf{step} \\ (\tilde{w} \rightarrow w^{n+1}) \end{array}$

• Compute $[\widetilde{\rho}u^n]$?

$$(\widetilde{\rho}u^{n})_{i+1/2} = \widetilde{\rho}_{i+1/2}u^{n}_{i+1/2}$$

$$\widetilde{\rho}_{i+1/2} = z_{i+1/2}(\widetilde{\rho}_{1})_{i+1/2} + (1 - z_{i+1/2})(\widetilde{\rho}_{0})_{i+1/2}$$

 \twoheadrightarrow upwind flux for $\widetilde{\rho}_1$ and $\widetilde{\rho}_0$ computed from y

- Compute $z_{i+1/2}$?
 - \rightarrow anti-diffusive flux for z

convection

Anti-diffusive flux = as downwind as possible = if $u_{i+1/2} > 0$, $z_{i+1/2}$ is the nearest value to z_{i+1} ensuring stability and consistency

Anti-diffusive flux = as downwind as possible = if $u_{i+1/2} > 0$, $z_{i+1/2}$ is the nearest value to z_{i+1} ensuring stability and consistency

Anti-diffusive flux = as downwind as possible = if $u_{i+1/2} > 0$, $z_{i+1/2}$ is the nearest value to z_{i+1} ensuring stability and consistency

Anti-diffusive flux = as downwind as possible = if $u_{i+1/2} > 0$, $z_{i+1/2}$ is the nearest value to z_{i+1} ensuring stability and consistency

Anti-diffusive flux = as downwind as possible = if $u_{i+1/2} > 0$, $z_{i+1/2}$ is the nearest value to z_{i+1} ensuring stability and consistency

Anti-diffusive flux = as downwind as possible = if $u_{i+1/2} > 0$, $z_{i+1/2}$ is the nearest value to z_{i+1} ensuring stability and consistency

Anti-diffusive flux = as downwind as possible = if $u_{i+1/2} > 0$, $z_{i+1/2}$ is the nearest value to z_{i+1} ensuring stability and consistency

Diffusion of the interface with the upwind flux:

$$z_{i+1/2} = \begin{cases} z_i & \text{if } u_{i+1/2} > 0\\ z_{i+1} & \text{if } u_{i+1/2} < 0 \end{cases}$$

Example: $\partial_t z + u \ \partial_x z = 0$, with u = 1

 $t=0\Delta t$

Diffusion of the interface with the upwind flux:

$$z_{i+1/2} = \begin{cases} z_i & \text{if } u_{i+1/2} > 0\\ z_{i+1} & \text{if } u_{i+1/2} < 0 \end{cases}$$

Example: $\partial_t z + u \ \partial_x z = 0$, with u = 1

 $t=1\Delta t$

Diffusion of the interface with the upwind flux:

$$z_{i+1/2} = \begin{cases} z_i & \text{if } u_{i+1/2} > 0\\ z_{i+1} & \text{if } u_{i+1/2} < 0 \end{cases}$$

Example: $\partial_t z + u \ \partial_x z = 0$, with u = 1

 $t=2\Delta t$

Diffusion of the interface with the upwind flux:

$$z_{i+1/2} = \begin{cases} z_i & \text{if } u_{i+1/2} > 0\\ z_{i+1} & \text{if } u_{i+1/2} < 0 \end{cases}$$

Example: $\partial_t z + u \ \partial_x z = 0$, with u = 1

 $t=3\Delta t$

Diffusion of the interface with the upwind flux:

$$z_{i+1/2} = \begin{cases} z_i & \text{if } u_{i+1/2} > 0\\ z_{i+1} & \text{if } u_{i+1/2} < 0 \end{cases}$$

Example: $\partial_t z + u \ \partial_x z = 0$, with u = 1

 $t = 4\Delta t$

Diffusion of the interface with the upwind flux:

$$z_{i+1/2} = \begin{cases} z_i & \text{if } u_{i+1/2} > 0\\ z_{i+1} & \text{if } u_{i+1/2} < 0 \end{cases}$$

Example: $\partial_t z + u \ \partial_x z = 0$, with u = 1

 $t=5\Delta t$

Diffusion of the interface with the upwind flux:

$$z_{i+1/2} = \begin{cases} z_i & \text{if } u_{i+1/2} > 0\\ z_{i+1} & \text{if } u_{i+1/2} < 0 \end{cases}$$

Example: $\partial_t z + u \ \partial_x z = 0$, with u = 1

 $t = 6\Delta t$

Numerical exemple

Sod test-case :

$$\begin{array}{l}
\rho_{\ell} = 1.0 \\
u_{\ell} = 0.0 \\
p_{\ell} = 1.0 \\
z = y = 1
\end{array}$$

$$\begin{array}{l}
\rho_{r} = 0.125 \\
u_{r} = 0.0 \\
p_{r} = 0.1 \\
z = y = 0
\end{array}$$

Numerical exemple

 $\begin{array}{ll}
\rho_{\ell} = 1.0 & \rho_{r} = 0.125 \\
u_{\ell} = 0.0 & \mu_{r} = 0.0 \\
\rho_{\ell} = 1.0 & \rho_{r} = 0.1 \\
z = y = 1 & z = y = 0
\end{array}$

exact solution -1 upwind - 400 meshes anti-diff - 400 meshes 0.8 rho 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8

Sod test-case :

Outline

1 The model

2 The numerical scheme

$M {\rm USCL}\xspace$ strategy

• linear reconstruction for the fluxes

$$\widetilde{w}_i(x) = w_i + \sigma_i(x - x_i)$$

$$\sigma_i = \min \left(\frac{w_i - w_{i-1}}{\Delta x}, \frac{w_{i+1} - w_i}{\Delta x}\right)$$

 second order fluxes in the Lagrange step for the Roe fluxes in the projection step for the upwind fluxes

 \rightarrow but keep the anti-diffusive flux for z: we can not do better !

Improvement

• maximum principle on y is not satisfied (Sod test case)

• in the projection step, keep the order 1 upwind flux (i.e. for $(\tilde{\rho}_0)_{i+1/2}$, $(\tilde{\rho}_1)_{i+1/2}$) in the projection step at the interface [0 < z < 1]

Sod test case

Sod test case: zoom on the rarefaction

the rarefaction is improved

Sod test case: zoom on the shock

the shock is improved

Sod test case: zoom on the contact

the anti-diffusive contact is preserved

	ho	и	p
Order 1 upwind	0.63	0.82	0.77
Order 1 anti-diff	0.75	0.82	0.78
Lagrange order 2 anti-diff	0.86	0.88	0.85
Lagrange-projection order 2 upwind	0.83	1.03	1.08
Lagrange-projection order 2 anti-diff	1.08	1.04	1.10

Orders for the Sod test-case:

Comments:

- () upwind \rightarrow anti-diffusive : improve the order for ρ
- 2 with the order 2 method, orders are improved

but numerical order $\lesssim 1$ (discontinuous solutions)

3 Lagrange order 2 + projection of order 2

better than Lagrange order 2

	ho	и	р
Order 1 upwind	0.63	0.82	0.77
Order 1 anti-diff	0.75	0.82	0.78
Lagrange order 2 anti-diff	0.86	0.88	0.85
Lagrange-projection order 2 upwind	0.83	1.03	1.08
Lagrange-projection order 2 anti-diff	1.08	1.04	1.10

Orders for the Sod test-case:

Comments:

1 upwind \rightarrow anti-diffusive : improve the order for ρ

2 with the order 2 method, orders are improved

but numerical order $\lesssim 1$ (discontinuous solutions)

3 Lagrange order 2 + projection of order 2

better than Lagrange order 2

ho	и	p
0.63	0.82	0.77
0.75	0.82	0.78
0.86	0.88	0.85
0.83	1.03	1.08
1.08	1.04	1.10
	ρ 0.63 0.75 0.86 0.83 1.08	ρ u 0.63 0.82 0.75 0.82 0.86 0.88 0.83 1.03 1.08 1.04

Orders for the Sod test-case:

Comments:

() upwind \rightarrow anti-diffusive : improve the order for ρ

2 with the order 2 method, orders are improved

but numerical order $\lesssim 1$ (discontinuous solutions)

3 Lagrange order 2 + projection of order 2

better than Lagrange order 2

Comments:

- 1 increasing order + decreasing absolute error
- 2 no possible order 2 (discontinuous solution)

Conclusion

What has been done

- one-dimensional codes (C and Scilab)
- rewriting the Lagrange-projection scheme to integrate Muscl strategy
- desactivation of the Muscl procedure at the interface for preserving the anti-diffusive property

Results

- space order is improved
- no better order in a test case with continuous solution
- wall-heating disappears with mesh refinement

Work in progress

- order 2 in time: no major improvement
- 2D simulations by directionnal splitting
- reducing the wall-heating phenomenon