Second order anti-diffusive Lagrange-remap scheme

SIMCAPIAD project

Marie Billaud, Benjamin Boutin, Filipa Caetano, Gloria Faccanoni, Samuel Kokh, Frédéric Lagoutière \& Laurent Navoret

CEMRACS 2010, Wednesday, August 252010

- Numerical simulation of interfaces between two fluids

upwind

anti-diffusive
- Lagrange-projection (or Lagrange-remap) schemes
+ anti-diffusive tool for the interface
$\rightarrow 2^{\text {nd }}$ order schemes

Outline

(1) The model
(2) The numerical scheme
(3) Second order in space

Outline

(1) The model
(2) The numerical scheme
(3) Second order in space

The 5 - equations model (1)

Sharp interface model between two fluids in one model

$$
\begin{array}{c:cc}
\rho=\rho_{1} & \rho=\rho_{0} & \text { density } \\
u=u_{1} & u=u_{0} & \text { velocity } \\
e=e_{1} & e=e_{0} & \text { energy }
\end{array}
$$

- compressible Euler system $\left(u=u_{1}=u_{0}\right)$

$$
\begin{array}{ll}
\partial_{t} \rho & +\partial_{x}(\rho u) \\
\partial_{t}(\rho u)+\partial_{x}\left(\rho u^{2}+p\right) & =0 \\
\partial_{t}(\rho e)+\partial_{x}[u(\rho e+p)] & =0 \\
& \\
\partial_{t}(\rho y)+\partial_{x}(\rho y u) & =0 \\
\partial_{t} z+u \partial_{x} z & =0
\end{array}
$$

- $z=$ "color" function
\rightarrow "indicator function"
- $y=$ mass fraction of the phase 1
\rightarrow "conservative variable"

The 5 - equations model (2)

- $z=$ "color" function

$$
\begin{array}{llllll}
\rho & = & \rho_{1} & +(1-z) & \rho_{0} & \text { (total density) } \\
\rho u & = & (\rho u)_{1} & +(1-z) & (\rho u)_{0} & \text { (total momentum) } \\
\rho e & =z & (\rho e)_{1} & +(1-z) & (\rho e)_{0} & \text { (total energy) }
\end{array}
$$

- pressure

$$
\begin{array}{ll}
\text { in }[z=1], & p=p_{1}\left(\rho_{1}, \varepsilon_{1}\right), \\
\varepsilon_{1}=e_{1}-\frac{u^{2}}{2} \\
\text { in }[z=0], & p=p_{0}\left(\rho_{0}, \varepsilon_{0}\right),
\end{array} \varepsilon_{0}=e_{0}-\frac{u^{2}}{2} .
$$

- theoretically $\mathbf{y}=\mathbf{z} \in\{\mathbf{0}, \mathbf{1}\}$

The 5 - equations model (3)

- numerical diffusion of the interface $\mathbf{y} \neq \mathbf{z} \in[\mathbf{0}, \mathbf{1}]$
- $\rho, \rho u, \rho e, p$ in the region $[0<z<1]$

$$
\begin{array}{llll}
\rho & =z \rho_{1} & +(1-z) & \rho_{0} \\
\rho u & =z(\rho u)_{1} & +(1-z) & (\rho u)_{0} \\
\rho e & =z(\rho e)_{1} & +(1-z) & (\rho e)_{0}
\end{array}
$$

```
fluid 1
z=1
P= P
```

fluid 0
$z=0$
$P=P_{0}$
if $0<z<1, \quad p=p_{1}\left(\rho_{1}, \varepsilon_{1}\right)=p_{0}\left(\rho_{0}, \varepsilon_{0}\right)$
where $\varepsilon_{1}, \varepsilon_{0}$ solve $\left\{\begin{array}{l}p_{1}\left(\rho_{1}, \varepsilon_{1}\right)=p_{0}\left(\rho_{0}, \varepsilon_{0}\right) \\ z \rho_{1} \varepsilon_{1}+(1-z) \rho_{0} \varepsilon_{0}=\rho \varepsilon\end{array} \quad\right.$ (isobaric closure)

Outline

(1) The model
(2) The numerical scheme
(3) Second order in space

The numerical scheme

- Lagrange-projection: separate the acoustic waves / the "material" waves

$$
\begin{array}{ll}
\partial_{t} \rho+\partial_{x}(\rho u) & =0 \\
\partial_{t}(\rho u)+\partial_{x}\left(\rho u^{2}+p\right) & =0 \\
\partial_{t}(\rho e)+\partial_{x}[u(\rho e+p)] & =0 \\
\partial_{t}(\rho y)+\partial_{x}(\rho y u) & =0 \\
\partial_{t} z+u \partial_{x} z & =0
\end{array}
$$

The numerical scheme

- Lagrange-projection: separate the acoustic waves / the "material" waves

$$
\begin{array}{lllll}
\partial_{t} \rho & +\rho \partial_{x} u & +u \partial_{x} \rho & = & 0 \\
\partial_{t}(\rho u) & +\rho u \partial_{x} u+\partial_{x} p & +u \partial_{x} \rho u & = & 0 \\
\partial_{t}(\rho e) & +(\rho e) \partial_{x} u+\partial_{x}(p u) & +u \partial_{x}(\rho e) & = & 0 \\
& & +\begin{array}{ll}
u \partial_{x}(\rho y) & = \\
\partial_{t}(\rho y) & +(\rho y) \partial_{x} u \\
\partial_{t} z & +\underbrace{u \partial_{x} z}_{\text {acoustic }}
\end{array} & =0 \\
\underbrace{}_{\text {convection }} &
\end{array}
$$

The numerical scheme

Notation: $\llbracket X \rrbracket_{i}=\left(X_{i+1 / 2}-X_{i-1 / 2}\right)$

Lagrange

step

$\left(w^{n} \rightarrow \tilde{w}\right)$
acoustic
scheme
$L_{i} \widetilde{\rho}_{i}=\rho_{i}^{n}$
with $L_{i}=1+\frac{\Delta t}{\Delta x} \llbracket u^{n} \rrbracket_{i}$
$L_{i}(\widetilde{\rho u})_{i}=(\rho u)_{i}^{n}-\frac{\Delta t}{\Delta x} \llbracket p^{n} \rrbracket_{i}$
$L_{i}(\widetilde{\rho e})_{i}=(\rho e)_{i}^{n}-\frac{\Delta t}{\Delta x} \llbracket p^{n} u^{n} \rrbracket_{i}$
$\widetilde{y}_{i}=y_{i}^{n}, \quad \tilde{z}_{i}=z_{i}^{n}$

Projection	ρ_{i}^{n+1}	$=\widetilde{\rho}_{i}+\frac{\Delta t}{\Delta x} \llbracket \widetilde{\rho} u^{n} \rrbracket_{i}$
step	$-\frac{\Delta t}{\Delta x} \widetilde{\rho}_{i} \llbracket u^{n} \rrbracket_{i}$	
$\left(\tilde{w} \rightarrow w^{n+1}\right)$	$(\rho u)_{i}^{n+1}$	$={\widetilde{\rho u_{i}}}_{i}+\frac{\Delta t}{\Delta x} \llbracket \widetilde{\rho u} u^{n} \rrbracket_{i}-\frac{\Delta t}{\Delta x} \widetilde{\rho u_{i}} \llbracket u_{i}^{n} \rrbracket_{i}$
	$(\rho e)_{i}^{n+1}$	$=\widetilde{\rho e_{i}}+\frac{\Delta t}{\Delta x} \llbracket \widetilde{\rho e} u^{n} \rrbracket_{i}-\frac{\Delta t}{\Delta x} \widetilde{\rho e_{i}} \llbracket u^{n} \rrbracket_{i}$
convection	$(\rho y)_{i}^{n+1}$	$=\widetilde{\rho y}_{i}+\frac{\Delta t}{\Delta x} \llbracket \widetilde{\rho y} u^{n} \rrbracket_{i}-\frac{\Delta t}{\Delta x} \widetilde{\rho y}_{i} \llbracket u^{n} \rrbracket_{i}$
	z_{i}^{n+1}	$=\widetilde{z}_{i}+\frac{\Delta t}{\Delta x} \llbracket \widetilde{z} u^{n} \rrbracket_{i}-\frac{\Delta t}{\Delta x} \widetilde{z}_{i} \llbracket u^{n} \rrbracket_{i}$

The fluxes

Notation: $\llbracket X \rrbracket_{i}=\left(X_{i+1 / 2}-X_{i-1 / 2}\right)$

Lagrange

step
$\left(w^{n} \rightarrow \tilde{w}\right)$
acoustic
scheme

- Compute $\llbracket u^{n} \rrbracket, \llbracket p^{n} \rrbracket$?
\rightarrow Roe type fluxes for $u_{i+1 / 2}$ and $p_{i+1 / 2}$
- Compute $\llbracket \widetilde{\rho} u^{n} \rrbracket$?

Projection step
 $\left(\tilde{w} \rightarrow w^{n+1}\right)$

convection

$$
\begin{aligned}
& \left(\widetilde{\rho} u^{n}\right)_{i+1 / 2}=\widetilde{\rho}_{i+1 / 2} u_{i+1 / 2}^{n} \\
& \widetilde{\rho}_{i+1 / 2}=z_{i+1 / 2}\left(\widetilde{\rho}_{1}\right)_{i+1 / 2}+\left(1-z_{i+1 / 2}\right)\left(\widetilde{\rho}_{0}\right)_{i+1 / 2}
\end{aligned}
$$

\rightarrow upwind flux for $\widetilde{\rho}_{1}$ and $\widetilde{\rho}_{0}$ computed from y

- Compute $z_{i+1 / 2}$?
\rightarrow anti-diffusive flux for z

Anti-diffusive flux

Anti-diffusive flux $=$ as downwind as possible
$=$ if $u_{i+1 / 2}>0, z_{i+1 / 2}$ is the nearest value to z_{i+1} ensuring stability and consistency

Example: $\partial_{t} z+u \partial_{x} z=0$, with $u=1$

Anti-diffusive flux

Anti-diffusive flux $=$ as downwind as possible
$=$ if $u_{i+1 / 2}>0, z_{i+1 / 2}$ is the nearest value to z_{i+1} ensuring stability and consistency

Example: $\partial_{t} z+u \partial_{x} z=0$, with $u=1$

Anti-diffusive flux

Anti-diffusive flux $=$ as downwind as possible
$=$ if $u_{i+1 / 2}>0, z_{i+1 / 2}$ is the nearest value to z_{i+1} ensuring stability and consistency

Example: $\partial_{t} z+u \partial_{x} z=0$, with $u=1$

Anti-diffusive flux

Anti-diffusive flux $=$ as downwind as possible
$=$ if $u_{i+1 / 2}>0, z_{i+1 / 2}$ is the nearest value to z_{i+1} ensuring stability and consistency

Example: $\partial_{t} z+u \partial_{x} z=0$, with $u=1$

Anti-diffusive flux

Anti-diffusive flux $=$ as downwind as possible
$=$ if $u_{i+1 / 2}>0, z_{i+1 / 2}$ is the nearest value to z_{i+1} ensuring stability and consistency

Example: $\partial_{t} z+u \partial_{x} z=0$, with $u=1$

Anti-diffusive flux

Anti-diffusive flux $=$ as downwind as possible
$=$ if $u_{i+1 / 2}>0, z_{i+1 / 2}$ is the nearest value to z_{i+1} ensuring stability and consistency

Example: $\partial_{t} z+u \partial_{x} z=0$, with $u=1$

$$
\begin{gathered}
\text { flux at }(x=0.6) \\
=1 \\
\mathbf{t}=\mathbf{5 \Delta t}
\end{gathered}
$$

Anti-diffusive flux

Anti-diffusive flux $=$ as downwind as possible
$=$ if $u_{i+1 / 2}>0, z_{i+1 / 2}$ is the nearest value to z_{i+1} ensuring stability and consistency

Example: $\partial_{t} z+u \partial_{x} z=0$, with $u=1$

$$
\begin{gathered}
\text { flux at }(x=0.6) \\
=1 \\
\mathbf{t}=\mathbf{6 \Delta t}
\end{gathered}
$$

Upwind flux

Diffusion of the interface with the upwind flux:

$$
z_{i+1 / 2}= \begin{cases}z_{i} & \text { if } u_{i+1 / 2}>0 \\ z_{i+1} & \text { if } u_{i+1 / 2}<0\end{cases}
$$

Example: $\partial_{t} z+u \partial_{x} z=0$, with $u=1$

$t=0 \Delta t$

Upwind flux

Diffusion of the interface with the upwind flux:

$$
z_{i+1 / 2}= \begin{cases}z_{i} & \text { if } u_{i+1 / 2}>0 \\ z_{i+1} & \text { if } u_{i+1 / 2}<0\end{cases}
$$

Example: $\partial_{t} z+u \partial_{x} z=0$, with $u=1$

$t=1 \Delta t$

Upwind flux

Diffusion of the interface with the upwind flux:

$$
z_{i+1 / 2}= \begin{cases}z_{i} & \text { if } u_{i+1 / 2}>0 \\ z_{i+1} & \text { if } u_{i+1 / 2}<0\end{cases}
$$

Example: $\partial_{t} z+u \partial_{x} z=0$, with $u=1$

$t=2 \Delta t$

Upwind flux

Diffusion of the interface with the upwind flux:

$$
z_{i+1 / 2}= \begin{cases}z_{i} & \text { if } u_{i+1 / 2}>0 \\ z_{i+1} & \text { if } u_{i+1 / 2}<0\end{cases}
$$

Example: $\partial_{t} z+u \partial_{x} z=0$, with $u=1$

$t=3 \Delta t$

Upwind flux

Diffusion of the interface with the upwind flux:

$$
z_{i+1 / 2}= \begin{cases}z_{i} & \text { if } u_{i+1 / 2}>0 \\ z_{i+1} & \text { if } u_{i+1 / 2}<0\end{cases}
$$

Example: $\partial_{t} z+u \partial_{x} z=0$, with $u=1$

$t=4 \Delta t$

Upwind flux

Diffusion of the interface with the upwind flux:

$$
z_{i+1 / 2}= \begin{cases}z_{i} & \text { if } u_{i+1 / 2}>0 \\ z_{i+1} & \text { if } u_{i+1 / 2}<0\end{cases}
$$

Example: $\partial_{t} z+u \partial_{x} z=0$, with $u=1$

$t=5 \Delta t$

Upwind flux

Diffusion of the interface with the upwind flux:

$$
z_{i+1 / 2}= \begin{cases}z_{i} & \text { if } u_{i+1 / 2}>0 \\ z_{i+1} & \text { if } u_{i+1 / 2}<0\end{cases}
$$

Example: $\partial_{t} z+u \partial_{x} z=0$, with $u=1$

$t=\mathbf{6} \boldsymbol{t} t$

Numerical exemple

Sod test-case :

$$
\begin{array}{c:c}
\rho_{\ell}=1.0 & \rho_{r}=0.125 \\
u_{\ell}=0.0 & u_{r}=0.0 \\
p_{\ell}=1.0 & p_{r}=0.1 \\
z=y=1 & z=y=0
\end{array}
$$

Numerical exemple

Sod test-case :

$$
\begin{array}{c:c}
\rho_{\ell}=1.0 & \rho_{r}=0.125 \\
u_{\ell}=0.0 & u_{r}=0.0 \\
p_{\ell}=1.0 & p_{r}=0.1 \\
z=y=1 & z=y=0
\end{array}
$$

Outline

(1) The model
(2) The numerical scheme
(3) Second order in space

Muscl strategy

- linear reconstruction for the fluxes

$$
\begin{aligned}
& \widetilde{w}_{i}(x)=w_{i}+\sigma_{i}\left(x-x_{i}\right) \\
& \sigma_{i}=\operatorname{minmod}\left(\frac{w_{i}-w_{i-1}}{\Delta x}, \frac{w_{i+1}-w_{i}}{\Delta x}\right)
\end{aligned}
$$

first order

second order

- second order fluxes in the Lagrange step for the Roe fluxes in the projection step for the upwind fluxes
\rightarrow but keep the anti-diffusive flux for z : we can not do better !

Improvement

- maximum principle on y is not satisfied (Sod test case)

- in the projection step, keep the order 1 upwind flux (i.e. for $\left.\left(\widetilde{\rho}_{0}\right)_{i+1 / 2},\left(\widetilde{\rho}_{1}\right)_{i+1 / 2}\right)$ in the projection step at the interface [$0<z<1$]

Comparison with order 1

Sod test case

Comparison with order 1

Sod test case: zoom on the rarefaction

the rarefaction is improved

Comparison with order 1

Sod test case: zoom on the shock

the shock is improved

Comparison with order 1

Sod test case: zoom on the contact

the anti-diffusive contact is preserved

Numerical order

Orders for the Sod test-case:

	ρ	u	p
Order 1 upwind	0.63	0.82	0.77
Order 1 anti-diff	0.75	0.82	0.78
Lagrange order 2 anti-diff	0.86	0.88	0.85
Lagrange-projection order 2 upwind	0.83	1.03	1.08
Lagrange-projection order 2 anti-diff	1.08	1.04	1.10

Comments:

(1) upwind \rightarrow anti-diffusive : improve the order for ρ
(2) with the order 2 method, orders are improved

$$
\text { but numerical order } \lesssim 1 \text { (discontinuous solutions) }
$$

(3) Lagrange order $2+$ projection of order 2
better than Lagrange order 2

Numerical order

Orders for the Sod test-case:

	ρ	u	p
Order 1 upwind	0.63	0.82	0.77
Order 1 anti-diff	0.75	0.82	0.78
Lagrange order 2 anti-diff	0.86	0.88	0.85
Lagrange-projection order 2 upwind	0.83	1.03	1.08
Lagrange-projection order 2 anti-diff	1.08	1.04	1.10

Comments:

(1) upwind \rightarrow anti-diffusive : improve the order for ρ
(2) with the order 2 method, orders are improved
but numerical order $\lesssim 1$ (discontinuous solutions)
(3) Lagrange order $2+$ projection of order 2
better than Lagrange order 2

Numerical order

Orders for the Sod test-case:

	ρ	u	p
Order 1 upwind	0.63	0.82	0.77
Order 1 anti-diff	0.75	0.82	0.78
Lagrange order 2 anti-diff	0.86	0.88	0.85
Lagrange-projection order 2 upwind	0.83	1.03	1.08
Lagrange-projection order 2 anti-diff	1.08	1.04	1.10

Comments:

(1) upwind \rightarrow anti-diffusive : improve the order for ρ
(2) with the order 2 method, orders are improved

$$
\text { but numerical order } \lesssim 1 \text { (discontinuous solutions) }
$$

(3) Lagrange order $2+$ projection of order 2
better than Lagrange order 2

Numerical order

Comments:

(1) increasing order + decreasing absolute error
(2) no possible order 2 (discontinuous solution)

Conclusion

What has been done

- one-dimensional codes (C and Scilab)
- rewriting the Lagrange-projection scheme to integrate Muscl strategy
- desactivation of the Muscl procedure at the interface for preserving the anti-diffusive property

Results

- space order is improved
- no better order in a test case with continuous solution
- wall-heating disappears with mesh refinement

Work in progress

- order 2 in time: no major improvement
- 2D simulations by directionnal splitting
- reducing the wall-heating phenomenon

