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Abstract

In [Mum69], Mumford constructs families of abelian varieties which are parame-
trized by Shimura varieties but which are not of PEL type. In this paper we investigate
Mumford’s families. We notably determine, for each fibre of such a family over a num-
ber field, the possible isogeny types and the possible Newton polygons of its reductions.
In the process, a classification of the CM points on Mumford’s Shimura varieties is ob-
tained.

Introduction

Classically, Shimura varieties are constructed as quotients of bounded symmetric domains

by arithmetic groups. It was discovered in an early stage that these varieties have important

arithmetic properties. In some cases, a Shimura variety may parametrize a family of abelian

varieties and in such a case, this circumstance plays an important role in the study of

its properties, notably for the construction of canonical models. Mumford defined a class of

Shimura varieties all of which parametrize a family of abelian varieties. He calls such families

the ‘families of Hodge type’. Somewhat oversimplifying, one can say that these families are

characterized by the Hodge classes living on the powers of the abelian varieties. In [Mum69],

one can find a characterization of the families of Hodge type. In the same paper, Mumford

also gives an interesting and surprisingly simple example of a one dimensional family of

Hodge type which is not of PEL type (i. e. not characterized by the existence of algebraic

endomorphisms on the abelian varieties). In fact, the generic abelian variety belonging to

this family has endomorphism ring equal to Z. It is this example that will be studied in this

paper. The precise construction will be recalled in 1.1, but let us give the main idea.

Mumford begins by constructing an algebraic group G′ over Q which is isogenous to a Q-

simple form of the real algebraic group SU2×SU2×SL2,R and hence to a form of SL3
2,C. The

group G′ moreover possesses a faithful 8-dimensional Q-linear representation such that the

induced representation of SL3
2,Q

is isomorphic to the tensor product of the standard repre-

sentations of the factors SL2,Q. The bounded symmetric domain ∆ is a quotient of G′(R) by

a maximal compact subgroup and the corresponding Shimura curves M are quotients ∆/Γ,

for appropriate arithmetic subgroups Γ ⊂ G′(Q). In 1.1 we will use the language of [Del72],
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but the difference is unimportant for the purposes of this introduction. By means of the

above faithful 8-dimensional representation, such a Mumford–Shimura curve parametrizes a

family of four dimensional abelian varieties characterized by the presence of certain Hodge

classes on their powers.

This property can be rephrased by saying that these abelian varieties are character-

ized by the fact that their Mumford–Tate groups are ‘small’. In this case, this means the

following. Let X/C be a fibre in one of Mumford’s families, a 4-dimensional abelian vari-

ety. The Mumford–Tate group of X is then contained in a group G which is isogenous to

Gm ×G′. Equivalently, the Lie-algebra of the Mumford–Tate group is contained in Lie(G).

The group G satisfies Lie(G)Q
∼= c ⊕ (sl2)3 (with c the 1-dimensional centre) and the rep-

resentation of Lie(G) on H1
B(X(C),Q) becomes isomorphic over Q to the tensor product of

the standard representations. In what follows we will refer to this property by saying that

(G,H1
B(X(C),Q)) is a pair of Mumford’s type.

The generic fibre of a family of Mumford’s kind has Mumford–Tate group G. The above

construction therefore shows in particular that there exist abelian varieties over C with

Mumford–Tate group of this type. It follows from [Noo95] that such abelian varieties also

exist over number fields. Conversely, any abelian variety for which the representation of its

Mumford–Tate group on the first Betti cohomology is of Mumford’s type occurs as a fibre

in one of Mumford’s families. This well known fact is proved in 1.5. It follows from the

fact that an abelian variety over C corresponds to a point of the Shimura variety defined

by its Mumford–Tate group and an analysis showing that any of Mumford–Tate group of

Mumford’s type can be obtained by the construction of [Mum69, §4].

In this paper we study the reductions modulo prime ideals of fibres over number fields

in these families. Many results can be deduced from the paper [Noo99], where the reduc-

tion properties are investigated of abelian varieties with associated Galois representation of

Mumford’s type. To begin with, it is noted in remark 1.6 that the results of loc. cit. imply

that an abelian variety X over a number field F occurring as a fibre of one of Mumford’s

families has potentially good reduction at all finite places of the base field.

We next turn our attention to the possible Newton polygons of the reductions. As before,

let X be a fibre of one of Mumford’s families over a number field F and let v be a finite place

of F . Since X has been realized as a fibre of a family over a Mumford–Shimura curve, the

base field F is naturally an extension of the reflex field E associated to the Shimura curve

in question. A refinement of the results of [Noo99, §3] shows that there are two possibilities,

depending only on the restriction to E of v, for the Newton polygon of the reduction of X at

a finite place v of F . This result is given in proposition 2.2. Beside the Newton polygons, we

also determine the possible isogeny types of the reductions in question. This is accomplished

using the results of [Noo99, §4].

In the case where GQp (with p the residue characteristic) is quasi split, it is shown that

both possible Newton polygons and all possible isogeny types actually occur. To this end,

we analyze the special points of the Mumford–Shimura curves and use proposition 5.1 to
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pass from a special point to a non-special point where the corresponding abelian variety has

the same reduction. The analysis of the special points is carried out using CM theory and

is the object of section 3. As a by-product, we are able to give a description of all special

points on these Shimura curves, see proposition 3.9. In section 4 we compute the Newton

polygons of the reductions of the abelian varieties corresponding to the special points. The

existence results are summed up in proposition 5.3 and remark 5.4.

The Shimura varieties and the families considered here have been studied frequently, for

see for instance Shimura [Shi70], Morita [Mor81] and, more recently, Reimann [Rei97].

Acknowledgements. I thank Professor Oort for encouraging me to look into the question

studied in this paper and Professor Shimura for several remarks on a previous version of this

paper, especially for indicating a number of references on the subject.
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1 Mumford’s families.

We will recall the necessary facts about Shimura varieties as we go along, basically following

the approach of [Del72], to which we refer for a detailed treatment of the subject.

1.1 Define S = ResC/R(Gm) and let S1 be the kernel of the norm map S → Gm,R. Of

course, S1 is just the circle {eiθ | θ ∈ R} ⊂ C∗, viewed as an algebraic group over R. The

character group X(S) has a basis ([id], [c]), where c is the complex conjugation. It is thus

isomorphic to Z2, with the complex conjugation acting by exchanging the coordinates.

We recall the construction of Mumford’s Shimura curves from [Mum69, §4]. Let K be a

totally real number field with [K : Q] = 3 and let D be a quaternion division algebra over K

such that CorK/Q(D) ∼= M8(Q) and D⊗R ∼= H×H×M2(R). Here H denotes Hamilton’s

real quaternion algebra. There exists a natural ‘norm’ map

Nm: D∗ −→ CorK/Q(D)∗ ∼= GL8(Q),
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cf. [Mum69, §4]. In what follows we consider D∗ as an algebraic group over Q and Nm as

a morphism of algebraic groups. Let G ⊂ GL8,Q be the the image of D∗ by this map. By

construction G has a natural faithful representation on V = Q8. The center of G is reduced

to Gm,Q, acting on V by scalar multiplication. Let x 7→ x̄ be the standard involution on D

and G̃′ = {x ∈ D | xx̄ = 1}, viewed as algebraic group over Q. By construction, one has

G̃′R
∼= SU2 × SU2 × SL2,R. Put G̃ = Gm,Q × G̃′. The product of the morphisms Gm,Q → G

and Nm|G̃′ : G̃
′ → G is a central isogeny N : G̃ → G ⊂ GL8,Q. We define G′ ⊂ G as the

image of G̃′. The space of G′-invariants in V ∧ V is 1-dimensional, so there exists a unique

symplectic form 〈·, ·〉 on V which is fixed up to scalars by the action of G.

Let GSU2 be the real algebraic group generated by SU2 ⊂ GL2,C and Gm,R ⊂ GL2,C.

We define a map

h̃0 : S −→ GSU2 ×GSU2 ×GL2,R
∼= D∗R

a+ bi 7→

(
1, 1,

(
a −b
b a

))
.

The image of the composite NmR ◦ h̃0 lies in GR so we get a map h0 : S → GR. By

construction, h′0 = (h0)|S1 lifts to a map h̃′0 : S1 → G̃′R. It is rather easy to see (cf. [Mum69])

that these data permit to define one dimensional Shimura varieties

MC(C) = MC(G, Y )(C) = G(Q)\Y × (G(Af )/C),

where Y ⊂ Hom(S,GR) is the G(R)-conjugacy class of h0 and C ⊂ G(Af ) is any compact

open subgroup. Here, as in what follows, Af = Ẑ⊗Z Q is the ring of finite adeles of Q. The

reader is referred to [Del72, 1.5] for the properties that should be verified and to [Mum69] for

the verification of these properties. Mumford uses the groups G̃′ and S1 rather than G and

S, but for our purposes these two approaches are the same. The difference lies in the fact

that Mumford’s varieties are connected, whereas ours can have many connected components.

However, all these components can be obtained by Mumford’s construction and any variety

arising from Mumford’s construction is a connected component of one of the above Shimura

varieties. It is not difficult to show that any Shimura variety constructed in this fashion is

compact, but we will not make use of this fact.

Suppose that C is sufficiently small. Using the natural representation of G on V , a

point x ∈ MC(C) determines a 4-dimensional abelian variety Xx/C endowed with a level

structure (depending on C) and some other data. The other data determine a G(Q)-class of

symplectic isomorphisms V ∼= H1
B(Xx,Q) such that, for any isomorphism in this class, the

morphism h = hx : S → GR giving the Hodge structure on V ⊗R ∼= H1
B(Xx,R) is conjugate

to h0 by an element of G(R). This property implies that the Mumford–Tate group of Xx is

contained in G. We refer to [Del72, §4] for further details.

Let E(G, Y ) ⊂ C be the reflex field as in [Del72, 3.7] (denoted E(G, h0) in loc. cit.). The

theory of Shimura varieties shows that there exists a canonical model MC/E(G, Y ), which is
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a quasi-projective (and in this case even projective) E(G, Y )-scheme of which MC(C) is the

set of C-valued points. See [Del72, 5.9] for a proof in this case. By choosing C sufficiently

small, we can make sure that MC is smooth and that there exists a polarized abelian scheme

X → MC such that, for x ∈ M(C), the fibre Xx is isomorphic to the abelian variety Xx we

saw above. In what follows, we fix C such that these properties are fulfilled and we write M

instead of MC .

1.2 Lemma. The reflex field E(G, Y ) is the image of K in R ⊂ C under the embedding

corresponding to the real place of K where the algebra D is split.

Proof. By definition, E(G, Y ) ⊂ C is the field of definition of the conjugacy class of the

morphism µ0 = (h0)C ◦ r : Gm,C → GC, where r : Gm,C → SC is the cocharacter dual to

[id] ∈ X(S). The lemma follows since µ0 is conjugate to z 7→ (1, 1, diag(1, z)).

1.3 Definition Let K be a field of characteristic 0, let G be an algebraic group over K

and let V be a faithful K-linear representation of G. We will say that the pair (G, V ) is of

Mumford’s type if

• Lie(G) has one dimensional centre c,

• Lie(G)K̄ ∼= cK̄ ⊕ sl32,K̄ and

• Lie(G)K̄ acts on VK̄ by the tensor product of the standard representations.

We do not require G to be connected.

1.4 Lemma. Let X/C be a polarized abelian variety, V = H1
B(X(C),Q), let G be the

Mumford–Tate group of X and assume (G, V ) is of Mumford’s type. Then Gad is Q-simple

and the morphism h : S → GR defining the Hodge structure on H1
B(X(C),Q) has the property

that the composite

SC
hC−−−→ GC −−−→ Gad

C

∼=−−−→ PSL3
2,C

projects non-trivially to exactly one of the factors PSL2,C.

Proof. There is a central isogeny G̃ → G, with G̃ = Gm,Q × G̃′ and G̃′
Q
∼= SL3

2,Q
. There

exists an integer k such that hk lifts to a map h̃k : S → G̃R. One has h̃kC = (h̃0, h̃1, h̃2, h̃3),

where h̃0 : SC → Gm,C and hi : SC → SL2,C for i = 1, 2, 3. For the action of SC by hC, the

representation VC is the sum of the eigenspaces for the characters z and z̄ respectively. This

implies that it is the sum of the zk and the z̄k-eigenspaces for hkC and hence also for the

action of h̃kC, through the induced representation of G̃ on V .

Hence one and only one of the hi (for i = 1, 2, 3) is non-trivial, so the composite map

from the lemma projects non-trivially to exactly one of the factors of Gad
C . It also follows

that if Gad is not simple, then there exists a subgroup H ⊂ G such that h factors through

HR, which contradicts the fact that G is the Mumford–Tate group of X.
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1.5 Proposition. Let X/C be a polarized abelian variety, V = H1
B(X(C),Q), let G be

the Mumford–Tate group of X and assume (G, V ) is of Mumford’s type. Then there exist a

number field K and a division algebra D ⊃ K as in 1.1 such that G is isomorphic to the

group constructed in loc. cit. using these K and D. Moreover, X is isomorphic to a fibre of

the family X/M over a C-valued point of M = MC (for any sufficiently small C ⊂ G(Af )).

Proof. Let G̃ → G and G̃′ be as in the proof of lemma 1.4. Since Gad is Q-simple by the

lemma, it follows that GQ = Gal(Q/Q) acts transitively on the set of factors of the product

(SL2,Q)3. Let H ⊂ GQ be the subgroup fixing the first factor and let K = (Q)H. Then K is

cubic number field and G̃′ is the Weil restriction from K to Q of a K-form of SL2. It follows

that there exists a central K-algebra D of dimension 4 such that G̃′ = {x ∈ D | xx′ = 1}
(viewed as algebraic group over Q). The fact that G̃′ acts on an 8 dimensional Q-vector

space implies that CorK/Q(D) ∼= M8(Q).

Since X is polarized, V carries a symplectic form 〈·, ·〉 and if h : S → GR denotes the

morphism defining the Hodge structure on V ⊗R, the symmetric bilinear form 〈·, h(i)·〉 is

positive definite. This implies that if H is the real form of GC corresponding to the involution

ad(h(i)), then Hder is compact.

It follows from lemma 1.4 that the projection of h on one and only one of the factors

PSL2,C of Gad
C is non trivial and one concludes from this and from the compactness of Hder

that K is totally real and that at least two of the factors of G̃′R are isomorphic to SU2. The

fact that CorK/Q(D) ∼= M8(Q) implies that G̃′R
∼= SU2×SU2×SL2,R. Since Hder is compact,

it follows that h is conjugate to the map h0 : S → GR derived from

h̃0 : S −→ GSU2 ×GSU2 ×GL2,R
∼= D∗R

a+ bi 7→

(
1, 1,

(
a −b
b a

))
.

This terminates the proof of the proposition.

1.6 Remark. Let F be a discretely valued field and let X/F be a 4-dimensional abelian

variety with Mumford–Tate group as in 1.5. Then, using [Del82, 2.11 and 2.9], it follows

from [Noo99, cor. 2.1] that X has potentially good reduction. This implies in particular that

if F is a number field and X/F an abelian variety with such Mumford–Tate group, then X

has potentially good reduction at all finite places of F .

2 Possible reductions

For any field F , we write GF = Gal(F̄ /F ). If p is a prime number, we denote by Qp the

p-adic completion of Q, by Qnr
p the maximal unramified extension of Qp contained in Qp

and by Cp the completion of Qp.
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2.1 Lemma. Let G/Qp be an algebraic group and V a Qp-linear representation of G such

that (G, V ) is of Mumford’s type. Suppose that F is a finite extension of Qnr
p and that

ρ : GF → G(Qp) is a continuous, polarizable, crystalline representation with Hodge–Tate

weights 0 and 1. Let µHT : Gm,Cp → GCp be the Hodge–Tate cocharacter and let CHT ⊂ GCp

be its geometric conjugacy class. Assume moreover that G is connected and that Gad has

exactly two Q-simple factors. Then Gad has a unique simple factor Gad
1 such that the image

of ρ(GF ) in Gad(Qp) projects non trivially to Gad
1 (Qp) and

•
(
Gad

1

)
Qp

∼= PSL2,Qp
if and only if the field of definition in Cp of CHT is Qp and

•
(
Gad

1

)
Qp

∼= PSL2
2,Qp

if and only if the field of definition in Cp of CHT is of degree 2

over Qp.

Proof. Only the last two lines are new compared to [Noo99, 3.5]. Let Gad
1 ⊂ Gad be the

unique simple factor such that µHT projects non-trivially on Gad
1,Cp

, it is also the Qp-simple

factor such that ρ(GF ) projects non-trivially to Gad
1 (Qp). One has Gad

1,Qp

∼= PSLk
2,Qp

for k = 1

or 2, so there are an extension K/Qp with [K : Qp] = k and a subgroup G2 ⊂ GK with

G2,Cp
∼= GL2,Cp such that a conjugate of µHT factors through

Gm,Cp −→ G2,Cp
∼= GL2,Cp ⊂ GCp

z 7→ diag(1, z).

This proves that the degree of the field of definition of CHT is at most k. In the case where

k = 2, CHT can not be defined over Qp because its projection in PSL2
2,Cp

cannot be.

2.2 Proposition. Let K be a totally real cubic number field, let D be a quaternion algebra

over K as in 1.1 and let M/K be the Mumford–Shimura constructed in 1.1. Fix a prime

number p. Let F ⊃ K be a number field, pF a prime of F with residue field k of characteristic

p and p = pF ∩ OK.

Suppose that x ∈ M(F ) and that X/F is the abelian variety corresponding to x. Then

there is a finite extension F ′ of F such that XF ′ has good reduction at all places over pF

and, depending on [Kp : Qp], there are the following possibilities for the Newton polygon of

such a reduction.

• If [Kp : Qp] = 1, then the possible Newton polygons are 4× 0, 4× 1 and 8× 1/2.

• If [Kp : Qp] = 2, then the possible Newton polygons are 2×0, 4×1/2, 2×1 and 8×1/2.

• If [Kp : Qp] = 3, then the possible Newton polygons are 0, 3×1/3, 3×2/3, 1 and 8×1/2.

Proof. The existence of F ′ follows from remark 1.6. Replace F by F ′ and pF by a place of

F ′ lying over it. View K as a subfield of C via the embedding ϕ : K ↪→ R ⊂ C corresponding

to the real place of K where D is split and extend this embedding to F ↪→ C. Let Q be the
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algebraic closure of Q in C, so that K and F are subfields of Q. We also fix an embedding

Q ↪→ Cp such that the composite F ⊂ Q ↪→ Cp induces the place pF on F . Let IF ⊂ GF be

the inertia subgroup deduced from this embedding and let k be the residue field at pF .

Let G/Q be the algebraic group associated to D as in 1.1. The map S → GL(H1
B(XC,R))

defining the Hodge structure on H1
B(XC,Q) factors through GR, so the Mumford–Tate group

GX of XC is contained in G. Identifying H1
B(XC,Q)⊗Qp = H1

ét(XQ,Qp), the p-adic Galois

representation associated to X factors through a map ρ : GF → GX(Qp) ⊂ G(Qp). This

implies that if (p) splits completely in K or if K has only one prime ideal over (p), then the

proposition follows from [Noo99, 3.6].

We can therefore assume that K has two ideals pK,1 and pK,2 over (p) necessarily with

local degrees 1 and 2 respectively. In this case, GQp satisfies the condition of lemma 2.1, so

in order to apply [Noo99, 3.6], we have to show that the local degree [Kp : Qp] determines

the factor of G(Qp) containing the image of ρ. By the lemma and [Noo99, 3.6], the Newton

polygon of Xk is either 4 × 0, 4 × 1 or 2 × 0, 4 × 1/2, 2 × 1 or 8 × 1/2. In what follows, we

assume that the Newton polygon of Xk is not 8× 1/2.

The Hodge cocharacter

µHdR : Gm,C −→ (GX)C ⊂ GC

is conjugate to the morphism µ0 : Gm,C → GC from the proof of lemma 1.2, so the field of

definition in C of its conjugacy class CHdR in GC is equal to K.

On the other hand, one has ρ(IF ) ⊂ GX(Qp), so the Hodge–Tate decomposition associ-

ated to ρ|IF is determined by a cocharacter

µHT : Gm,Cp −→ (GX)Cp ⊂ GCp .

Let CHT be the conjugacy class of µHT in GCp . It follows from [Win88], proposition 7 and

the fact that conjecture 1 of loc. cit. has been proven by Blasius (see [Ogu90, 4.2]) that

CHT = CHdR ⊗K Cp, where the base change is via the inclusion K ⊂ Q ↪→ Cp fixed above.

One concludes that the field of definition of CHT is equal to K̂ ⊂ Qp, the closure of K in Qp

for the p-adic topology. It is clear that K̂ is isomorphic to Kp.

If the Newton polygon of Xk is 4× 0, 4× 1, then it follows from 2.1 that Kp = K̂ = Qp

and hence [Kp : Qp] = 1. If the Newton polygon is 2×0, 4×1/2, 2×1, then the same lemma

implies that K̂ is of degree 2 over Qp, so [Kp : Qp] = 2.

2.3 Corollary. Let notations and hypotheses be as in proposition 2.2. Then there is a

finite extension F ′ of F such that X has good reduction at all places of F ′ lying over pF . Let

p′F ′ be such a place, let k be the residue field at p′F ′ and let Xk be the reduction in question.

Then either Xk has Newton slopes 8× 1/2 or the Newton polygon of Xk is the one given in

table 2.3. . In the first case (where the Newton polygon is 8 × 1/2), Xk̄ ∼ (X(1))4, where

X(1)/k̄ is an elliptic curve. In the second case (where the Newton polygon is different from

8 × 1/2), either Xk̄ is simple or its simple factors X(1) and X(3) are of dimension 1 and 3

respectively and their Newton polygons are as given in table 2.3. .
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[Kp : Qp]
Newton polygon

of Xk

Newton polygon

of X(1)

Newton polygon

of X(3)

[Kp : Qp] = 1 4× 0, 4× 1 0, 1 3× 0, 3× 1

[Kp : Qp] = 2 2× 0, 4× 1/2, 2× 1

0, 1

or

2× 1/2

0, 4× 1/2, 1

or

2× 0, 2× 1/2, 2× 1

[Kp : Qp] = 3 0, 3× 1/3, 3× 2/3, 1 0, 1 3× 1/3, 3× 2/3

Table 2.3. : Possible Newton polygons and reduction types of X in corollary 2.3

Proof. We can assume that the Newton polygon of Xk is not 8 × 1/2. One can choose

a prime number ` which is inert in K. As the `-adic Galois representation associated to

X factors through the Mumford–Tate group of X, it follows from [Noo99, proposition 4.1]

that Xk̄ is either simple or isogenous to a product of an elliptic curve and a simple abelian

threefold. This proves the statements about the isogeny types of the reduction and leaves

only the statements about the Newton polygons to prove.

If [Kp : Qp] = 1, then proposition 2.2 implies that the Newton polygon of Xk has slopes

4 × 0, 4 × 1. If Xk̄ ∼ X(1) × X(3) then the slopes of X(1) and X(3) are necessarily 0, 1 and

3× 0, 3× 1 respectively.

If [Kp : Qp] = 2, then it follows from proposition 2.2 that the Newton polygon of Xk is

2×0, 4×1/2, 2×1. If Xk̄ ∼ X(1)×X(3) then this implies that either X(1) has slopes 0, 1 and

X(3) has slopes 0, 4×1/2, 1 or X(1) has slopes 2×1/2 and X(3) has slopes 2×0, 2×1/2, 2×1.

The proof in the case where [Kp : Qp] = 3 is completely analogous. If X(1) × X(3) has

Newton polygon 0, 3×1/3, 3×2/3, 1, then the Newton polygon of X(3) must be 3×1/3, 3×2/3

and that of X(1) must be 0, 1.

2.4 Remark. Let X be a polarized abelian variety over a number field F ⊂ C, with

Mumford–Tate group G such that (G,H1
B(X(C),Q)) is of Mumford’s type. Assume that

the conjugacy class in GC of the Hodge cocharacter is defined over F and let K ⊂ F be the

field of definition of this conjugacy class. Then a statement analogous to corollary 2.3 holds.

3 The special points

3.1 We return to the notations of 1.1 and consider a Mumford–Shimura curve M con-

structed using a totally real field K and a K-algebra D. A point x ∈ M(C) is called a

special point if the associated map h : S → GR factors through a (Q-rational) torus T ⊂ G.

Equivalently, this means that there exist a torus T ⊂ G, a map h : S → TR and a sufficiently

small compact open subgroup CT ⊂ T (Af ) such x belongs to the Hecke orbit of a point in

the image of the map MCT (T, {h})(C) ↪→ M(C) induced by the inclusion {h} ⊂ Y . For
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every torus T ⊂ G, we fix a sufficiently small subgroup CT ⊂ T (Af ) to have an immersion

MCT (T, {h}) ↪→ ME(T,{h}) and we write M(T, {h}) instead of MCT (T, {h}). If x is a special

point, then it lies in M(Q) and the corresponding abelian variety is of CM type. As the

images of all Hecke conjugates of the points of MCT (T, {h})(C) correspond to isogenous

abelian varieties, the CM type of a special point only depends on T and h.

We determine the special points on M , which naturally fall in two classes. In each case,

we compute the CM types of the simple factors. We use the following notation. If L is a CM

field and L0 ⊂ L the totally real subfield with [L : L0] = 2, then the map NL/L0 : z 7→ zz̄

defines a map L∗ = ResL/Q(Gm) → ResL0/Q(Gm). We define T ′L as the kernel of this map

and TL as the inverse image in L∗ of Gm,Q ⊂ ResL0/Q(Gm).

3.2 First case. Let L be a maximal subfield of D such that there exists a field E with

L = E ⊗Q K. We necessarily have [E : Q] = 2 and since D is not split over R, E is an

imaginary quadratic extension of Q. The field L is thus a CM field and the tori TL and

T ′L can be defined as in 3.1. The inclusion L∗ ⊂ D∗ induces morphisms of algebraic groups

ρ̃′ : T ′L ↪→ G̃′ and ρ′ = N ◦ ρ̃′ : T ′L → G′.

Let ϕ1, ϕ2, ϕ3 : L ↪→ C be such that the (ϕi)|K (for i = 1, 2, 3) are the complex (real)

embeddings of K and such that the (ϕi)|E (for i = 1, 2, 3) are all equal. Put ϕ = (ϕ1)|E. We

can assume that (ϕ3)|K : K ↪→ R is the embedding for which D is split. Write [ϕi] and [ϕ̄i]

(i = 1, 2, 3) for the induced characters of L∗, of TL and of T ′L, so ([ϕ1], [ϕ2], [ϕ3]) is a basis of

X(T ′L). We fix an isomorphism

L⊗Q R ∼=
∏
K↪→R

L⊗K R ∼=
∏
K↪→R

C (3.2.*)

such that the composite of E ⊂ L ↪→ L ⊗Q R with the projection to any factor C induces

the embedding ϕ : E ↪→ C. One deduces an isomorphism of R-algebraic groups L∗R
∼= S3.

Let h be the composite

S −−−→ L∗R ⊂ D∗R
Nm−−−→ GR,

where the map S → L∗R is the inclusion on the coordinate corresponding to ϕ3. By con-

struction h′ = h|S1 : S1 → G′R lifts to a map h̃′ : S1 → (T ′L)R ⊂ G̃′R (so h′ = ρ′ ◦ h̃′). If T ⊂ G

is the image of L∗, then T is a (Q-rational) torus of G and h factors through T . Since h

is a conjugate of the map h0 of 1.1 by an element of G(R), this determines a set of special

points of M(C). Let X be an abelian variety in the corresponding isogeny class.

3.3 Proposition. The abelian variety X is isogenous to a product X(1)×X(3), where X(1)

is an elliptic curve and X(3) is a simple abelian threefold. Both X(1) and X(3) are of CM

type and one can choose embeddings of E and L into their respective endomorphism algebras

such that the CM types are (E, {ϕ}) and (L, {ϕ1, ϕ2, ϕ̄3}) respectively.
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The reflex field of (E, {ϕ}) is ϕ(E) and the reflex norm is ϕ−1 : ϕ(E) → E. The reflex

field of (L, {ϕ1, ϕ2, ϕ̄3}) is ϕ3(L) and the reflex norm is the map N ′ : ϕ3(L)→ L given by

ϕ1(N ′(ϕ3(x))) = ϕ̄1(x)ϕ2(x)ϕ3(x).

Proof. Define ν : T ′L → T ′L by ν(x) = NL/E(x)x−2, where NL/E : T ′L → T ′E is the map

induced by the field norm NL/E. This gives rise to

π′ = (ν, NL/E) : T ′L −→ T ′L × T ′E.

The natural action of T ′L × T ′E on L ⊕ E ∼= Q6 ⊕Q2 ∼= Q8 makes π′ into an 8-dimensional

representation of T ′L.

The weights of the representation induced by NL/E are ±([ϕ1] + [ϕ2] + [ϕ3]) and those of

the representation induced by ν are ±(−[ϕ1] + [ϕ2] + [ϕ3]), ±([ϕ1] − [ϕ2] + [ϕ3]), ±([ϕ1] +

[ϕ2]− [ϕ3]). This implies that the weights of π′ are ±[ϕ1]± [ϕ2]± [ϕ3]. As the weights of the

representation ρ′ : T ′L → G′ ⊂ GL8,Q from 3.2 are also ±[ϕ1] ± [ϕ2] ± [ϕ3], we have shown

that the representations ρ′ and π′ of T ′L are isomorphic. It follows that X is isogenous to

a product X(1) ×X(3), with X(i) of dimension i and with E (resp. L) acting on X(1) (resp.

X(3)).

This also proves the statement about the CM type of X(1). To compute that of X(3),

let h′L = ν ◦ h̃′. Under the isomorphism 3.2.* (with the factors of the product indexed by

ϕ1, ϕ2, ϕ3), we have h′L(α) = (α, α, α−1), whence the assertion about the CM type of X(3).

For the simplicity of X(3), one shows that this CM type is simple, see [Lan83], Chapter I.

The computation of the reflexes is a easy application of [Lan83, I, §5].

3.4 Second case. Let L be a maximal subfield of D and assume that L is a totally

imaginary extension of K and that there does not exist a field E such that L = E ⊗ K.

Again, L is a CM field and as in 3.2, the inclusion L∗ ⊂ D∗ induces morphisms of algebraic

groups ρ̃′ : T ′L ↪→ G̃′ and ρ′ = N ◦ ρ̃′ : T ′L → G′.

Let ϕ1, ϕ2, ϕ3 : L ↪→ C be such that {(ϕi)|K}i=1,2,3 is the set of complex (real) embeddings

of K. As in the first case, we assume that (ϕ3)|K : K ↪→ R corresponds to the real place

where D is split. The complex embeddings of L are ϕi, ϕ̄i for i = 1, 2, 3. As above, we

write [ϕi] and [ϕ̄i] (i = 1, 2, 3) for the induced characters of L∗, of TL and of T ′L, so that

([ϕ1], [ϕ2], [ϕ3]) is a basis of X(T ′L). We fix an isomorphism L ⊗Q R ∼= C3 as in 3.2.* such

that the composite of L ↪→ L ⊗Q R with the projection on the ith factor C induces the

embedding ϕi : L ↪→ C. We deduce an isomorphism L∗R
∼= S3. As in 3.2, one defines h to be

the composite

S −−−→ L∗R ⊂ D∗R
Nm−−−→ GR,

where the map S → L∗R is the inclusion on the coordinate corresponding to ϕ3. Again, for

h′ = h|S1 : S1 → G′R, there is a map h̃′ : S1 → (T ′L)R ⊂ G̃′R such that h′ = ρ′ ◦ h̃′. Again, h is
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conjugate to the map h0 of 1.1 and factors through the torus T ⊂ G, image of L∗ ⊂ D∗, so

h defines a set of special points of M . Let X/C be an abelian variety in the corresponding

isogeny class. To compute its CM type, we need a construction.

Let K̃ ⊂ L̃ ⊂ C be normal closures of K and L respectively and let H = Gal(K̃/Q).

According to the case if K̃ = K or [K̃ : K] = 2, one has H ∼= A3 or H ∼= S3. We fix

such an isomorphism. In either case, H operates on the group {±1}3 by permutation of the

coordinates.

3.5 Lemma. There is an isomorphism of Gal(L̃/Q) with the semi-direct product {±1}3
o

H and thus with a subgroup of {±1}3
o S3, given as follows.

The action of Gal(L̃/Q) on {ϕi, ϕ̄i}i=1,2,3 factors through the ‘natural’ action of {±1}3
o

S3 on this set, i. e. the action by which {(1, 1, 1)} o S3 acts by permutation on the sets

{ϕ1, ϕ2, ϕ3} and {ϕ̄1, ϕ̄2, ϕ̄3} and ((ε1, ε2, ε3), id) fixes ϕi and ϕ̄i if εi = 1 and exchanges

them if εi = −1.

Proof. As K ⊂ L, Gal(L̃/Q) acts on {(ϕi)|K}i=1,2,3 and thus on{
{ϕi, ϕ̄i}

}
i=1,2,3

.

This action factors through the action of H ⊂ S3 on {(ϕi)|K}i=1,2,3. For each i = 1, 2, 3, we

let −1 act on {ϕi, ϕ̄i} as above, i. e. by exchanging ϕi and ϕ̄i. This gives an action of {±1}3

on {ϕi, ϕ̄i}i=1,2,3 inducing the action of {±1}3
oH on {ϕi, ϕ̄i}i=1,2,3 from the statement of

the lemma. By construction, the action of Gal(L̃/Q) on this set factors through a morphism

Gal(L̃/Q) −→ {±1}3
oH ⊂ {±1}3

o S3.

Since L̃ is generated by the ϕi(L) and the ϕ̄i(L), it is clear that this morphism is injective.

The group H = Gal(K̃/Q) contains an element of order 3, so there exists an element

σ ∈ Gal(L̃/Q) which cyclicly permutes the {ϕ1, ϕ̄1}, {ϕ2, ϕ̄2}, {ϕ3, ϕ̄3}. After replacing σ

by its square if needed, we can assume that σ is of order 3 and, maybe after exchanging ϕi

and ϕ̄i (for i = 2, 3) and/or replacing σ by σ−1, we can even assume that σ = (1, 2, 3) acting

on {ϕ1, ϕ2, ϕ3} (and on {ϕ̄1, ϕ̄2, ϕ̄3}) by cyclic permutation.

Consider the projection

pr : Gal(L̃/Q) ↪→ {±1}3
o S3 −→ S3.

The complex conjugation induces an element of Gal(L̃/Q) corresponding to (−1,−1,−1),

so {±(1, 1, 1)} ⊂ ker(pr). If ker(pr) 6= {±(1, 1, 1)} then the lemma is true, because in this

case Gal(L̃/Q) contains {±1}3. We can thus assume that ker(pr) = {±(1, 1, 1)}. Let

P = {(ε1, ε2, ε3) ∈ {±1}3 | ε1ε2ε3 = 1}

and H′ = Gal(L̃/Q) ∩ (P o S3). Then Gal(L̃/Q) ∼= {±1} × H′ and by our assumption on

ker(pr), the restriction pr|H′ : H′ → S3 is injective. The fact that A3 ⊂ H′ implies that one

actually has H′ = H ⊂ S3 and therefore Gal(L̃/Q) = {±1} × H. This is a contradiction

because L contains the field E = L̃H and we have L = EK = E ⊗K.
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3.6 Let E = L̃H and let ψA : E ↪→ C be the complex embedding induced by the inclusions

E ⊂ L̃ ⊂ C. One has [E : Q] = 8. We construct a bijection between the set of complex

embeddings of E and the set of vertices of the cube, denoted in the following way.

A = (1, 1, 1) B = (−1, 1, 1)

C = (−1,−1, 1) D = (1,−1, 1)

E = (1, 1,−1) F = (−1, 1,−1)

G = (−1,−1,−1) H = (1,−1,−1)
r
r
r
r
r
r
r
r

!!
!

!!
!

!!
!

!!
!

A

BC

D

E

FG

H

These are the vertices the ‘standard’ cube in Z3.

The action of Gal(L̃/Q) = {±1}3
o H on {(±1,±1,±1)} makes this group act on the

cube. The subgroup H is the stabilizer of A in {±1}3
oH and the action of the subgroup

{±1}3 on the set {A, . . . , H} is simply transitive. Define ψA, . . . , ψH by

ψ(ε1,ε2,ε3)A = σ(ε1,ε2,ε3) ◦ ψA : E −→ L̃ ⊂ C,

where σ(ε1,ε2,ε3) ∈ Gal(L̃/Q) corresponds to (ε1, ε2, ε3) ∈ {±1}3 under the isomorphism of

lemma 3.5. It is clear that Hom(E,C) = {ψA, . . . ψH} and that any complex conjugation

acts on {ψA, . . . ψH} as inversion with respect to the centre acts on the vertices of the cube.

This implies in particular that E is a CM field.

3.7 Proposition. Let h : S → TR ⊂ GR be the map constructed in 3.4 and let X/C be

an abelian variety in the corresponding isogeny class. Then X is a simple abelian variety of

CM type and one can choose an embedding of E into the endomorphism algebra of X such

that the CM type is (E, {ψA, ψB, ψC , ψD}).

The reflex field of this type is ϕ3(L) and the reflex norm N ′ : ϕ3(L)→ E is given by

ψA(N ′(ϕ3(x))) = ϕ1(x)ϕ2(x)ϕ3(x).

Proof. In analogy with 3.2, we write [ψA], . . . [ψH ] for the characters of E∗ induced by

ψA, . . . ψH . Since E is a CM field, the constructions of 3.1 define tori TE and T ′E. It is clear

that ([ψA], [ψB], [ψC ], [ψD]) is a basis of X(T ′E). Define

Tmt = ker([ψA]− [ψB] + [ψC ]− [ψD]) ⊂ TE

and T ′mt = Tmt ∩ T ′E. These are subtori of TE defined over Q.

Using the above, one verifies that for each x ∈ L, one has ϕ1(x)ϕ2(x)ϕ3(x) ∈ E, so

one defines a map ν : L∗ → E∗ by ν(x) = ϕ1(x)ϕ2(x)ϕ3(x). It is easily checked that ν

induces a map π′ : T ′L → T ′mt. The natural representation of T ′mt on E ∼= Q8 makes π′ into

an 8-dimensional representation of T ′L, with weights ±[ϕ1]± [ϕ2]± [ϕ3]. The representation

ρ′ constructed in 3.4 also has weights ±[ϕ1] ± [ϕ2] ± [ϕ3], so ρ′ and π′ are isomorphic (as

representations of T ′L). This implies in particular that E acts on X.
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To finish the proof of the proposition, we have to determine the CM type. Let h′E be the

composite

h′E : S1 h̃′−−−→ (T ′L)R

π′R−−−→ (T ′mt)R ⊂ (T ′E)R.

As ([ψA], [ψB], [ψC ], [ψD]) is a basis of X(T ′E), we get

(T ′E)R
∼=

D∏
i=A

S1 ⊂ E∗R
∼=

D∏
i=A

S

and under this morphism one has h′E(α) = (α, α, α, α). Hence the CM type of X is

(E, {ψA, ψB, ψC , ψD}). As this CM type is simple, X is simple. Using the lemma 3.5,

the computation of the reflex is a straightforward application of [Lan83, I, §5].

3.8 Remark. The abelian varieties with this CM type are studied by Pohlman in [Poh68].

3.9 Proposition. For T and h ranging over the tori and the maps constructed in 3.2

and 3.4, the union of the Hecke orbits of the images of the maps M(T, {h})(C)→M(C) is

equal to the set of special points of M(C).

Proof. Let x ∈ M(C) be a special point, let h : S → GR be the associated morphism and

let T ⊂ G be a torus such that h : S → TR ⊂ GR. As h is conjugate to the map h0 of 1.1 by

an element of G(R), the restriction h′ : S1 → G′ lifts to h̃′ : S1 → G̃′. Let T̃ ′ ⊂ G̃′ be a torus

such that h̃′ factors through T̃ ′. Considering

G̃′C
∼=
∏
K↪→C

SL2,C ⊂
∏
K↪→C

M2,C
∼= D ⊗Q C

and using the fact that h̃′ is conjugate to the map h̃′0 of 1.1 by an element of G̃′(R), one sees

that T̃ ′C contains a torus of the form {1}×{1}×T3 ⊂ SL3
2,C, where T3 is a maximal torus of

the factor SL2,C corresponding to the embedding K ↪→ R ⊂ C where D is split. Since the

above isomorphisms and inclusion are Aut(C) equivariant and since T̃ ′ is defined over Q, it

follows that it is a maximal torus.

We have T̃ ′(Q) ⊂ G̃′(Q) ⊂ D ⊗ Q. Let LQ be the Q-subalgebra of D ⊗ Q generated

by T̃ ′(Q) and the centre K∗ ⊂ D∗. Since T̃ ′ and K∗ generate a maximal torus of D∗, it

follows that LQ is a maximal commutative subalgebra. As T̃ ′ is defined over Q, there exists

an algebra L ⊂ D such that LQ = L ⊗Q. By construction, L is a maximal commutative

subalgebra and because D is a division algebra, it is a maximal subfield. This implies that

it splits D. It is therefore imaginary at the two real places of K where D is non-split. Since

T̃ ′(R) ⊂ (L⊗Q R)∗ ∼=
∏
K↪→R

(L⊗K R)∗

contains h(S1(R)) and as this image lies in the factor corresponding to the embedding K ↪→
R where D is split, it follows that L is imaginary at the third real place as well.
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4 Newton polygons at the special points

4.1 How to compute Newton polygons. Suppose that X is an abelian variety of CM

type over a number field F ⊂ C with all its C-endomorphisms defined over F and that X is

of CM type (E,Φ) for some CM field E of degree 2 dimX. Let (E ′,Φ′) be the reflex type.

Since all geometric endomorphisms of X are defined over F , one has E ′ ⊂ F . Assume that

p is a prime of F , of residue characteristic p, let k be the residue field and suppose that X

has good reduction Xk at p. Then the Newton slopes of Xk can be computed as follows.

Let N ′Φ : ResE′/Q(Gm)→ TE be the reflex norm. For a sufficiently large integer N , there

exists α ∈ OF such that pN = (α). By [Ser68, II, 3.4], see also the proposition in II, 2.3, the

eigenvalues of the Nth power of a geometric Frobenius element (acting on the `-adic étale

cohomology of X, for any prime number ` 6= p) at p are the σ(N ′Φ ◦NF/E′(α)), for σ running

through the set of complex embeddings of E. It follows that the Newton slopes of Xk are

the numbers

v(λ)

v((Np)N)
=

v(λ)

v(NF/Q(α))
,

for λ running through the Galois conjugates of N ′Φ ◦NF/E′(α) and v a fixed p-adic valuation

of a normal closure Ẽ of E. One finds the same slopes if one replaces F by E ′, p by p∩OE′
and takes α ∈ OE′ and N ∈ N such that (p ∩ OE′)N = (α). This means that the Newton

polygon only depends on the intersection of p with OE′ , so in the sequel we will speak of the

Newton slopes and the Newton polygon of X at a prime p of E ′. Since there exists a finite

extension F ′ of F such that XF ′ has good reduction at all non-archimedean places of F ′, we

may consider the Newton polygon (slopes) of X at any prime of E ′.

4.2 Proposition. Let E be an imaginary quadratic field and (E, {ϕ}) a CM type as in

3.3. Let X be an elliptic curve, over a number field containing the reflex field, with this

CM type. For any prime p of the reflex field E ′ = ϕ(E), the Newton slopes of X at p are

determined by E and the residue characteristic p of p as follows.

• If (p) splits in E then the slopes are 0, 1.

• If (p) is inert or ramified in E then the slopes are 2× 1/2.

Proof. Easy exercise.

4.3 Proposition. Let K be a totally real number field of degree 3 as in 1.1, E an imaginary

quadratic field, L = E ⊗ K and let X be a 3-dimensional abelian variety (over a number

field containing the reflex field) with the CM type (L,Φ) = (L, {ϕ1, ϕ2, ϕ̄3}) of 3.2. For

any prime p of the reflex field L′ = ϕ3(L), the Newton slopes of X at p are given by the

table 4.3. . In this table, p is the residue characteristic of p and pK is the intersection of p

with ϕ3(OK) ⊂ L′.

In the cases marked ‘See text’, there are two possibilities. If L′ has one prime over pK

then the slopes are 6×1/2, if L′ has two primes over pK then the slopes are 2×0, 2×1/2, 2×1.
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Nr. [KpK : Qp] (p) splits in E (p) is inert in E (p) is ramified in E

1. [KpK : Qp] = 1 3× 0, 3× 1 6× 1/2 6× 1/2

2. [KpK : Qp] = 2 0, 4× 1/2, 1 See text See text

3. [KpK : Qp] = 3 3× 1/3, 3× 2/3 6× 1/2 6× 1/2

Table 4.3. : The Newton polygon of X in proposition 4.3

Proof. We consider the reflex norm N ′Φ as a map from L′ to L̃ ⊂ C. It is then given by

N ′Φ(ϕ3(α)) = ϕ̄1(α)ϕ2(α)ϕ3(α) (for α ∈ L) and its image actually lies in ϕ1(L).

Let vp be the valuation on L′ associated to p, normalized by vp(p) = 1 and let v be a

p-adic valuation on L̃ extending vp. Let N ∈ N and α ∈ OL′ be such that pN = (α) and put

q = NL′/Q(α) = (Np)N . Then the Newton slopes are the numbers v(σ(N ′Φ(α)))/v(q) for σ

running through the set of complex embeddings of L. As the list of σ(N ′Φ(α)) is the list of

the

ϕi(α)ϕj(α)ϕ̄k(α) for {(i, j, k)} = {(1, 2, 3), (2, 3, 1), (3, 1, 2)}

and their complex conjugates, we have to compute the v(β)/v(q) for the β in this list.

For example, in case 1, (p) splits completely in K, in the first column, (p) splits in E,

one notes that since there are six valuations on L above p, one has v(ϕ3(α)) = N and for all

other complex embeddings ϕ one has v(ϕ(α)) = 0, whence the result in this case.

The verification of the other entries of the table is left to the reader.

4.4 Proposition. Let K be a totally real number field of degree 3 as in 1.1, L a totally

imaginary quadratic extension of K not containing any quadratic number field and let X be a

4-dimensional abelian variety with the CM type (E,Ψ) = (E, {ψA, ψB, ψC , ψD}) constructed

in 3.4 (over a number field containing the reflex field).

Let p be a prime of the reflex field L′ = ϕ3(L) and pK the intersection of p with ϕ3(OK) ⊂
L′. If pK is split in L′, then the Newton slopes of X at p are given by the table 4.4. . In

Nr. [KpK : Qp]
Newton polygon

if pK splits in L′

1. [KpK : Qp] = 1 4× 0, 4× 1

2. [KpK : Qp] = 2 2× 0, 4× 1/2, 2× 1

3. [KpK : Qp] = 3 0, 3× 1/3, 3× 2/3, 1

Table 4.4. : The Newton polygon of X in proposition 4.4

all other cases (pK inert in L′, pK ramified in L′), the Newton slopes are 8× 1/2.
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Proof. The proof closely resembles the proof of proposition 4.3. We use the same notations

as above and note that in this case, the list of σ(N ′Ψ(α)), for σ running through the set of

complex embeddings of E, is the list of ϕ(α)ϕ′(α)ϕ′′(α) where ϕ, ϕ′ and ϕ′′ are any three

embeddings of L into C such that ϕ|K , ϕ′|K and ϕ′′|K are distinct. The reader will have no

difficulty to convince herself that the proposition is true.

5 Existence results

5.1 Proposition. Let M/K be a Mumford–Shimura curve constructed as in 1.1, with

generic Mumford–Tate group G as in loc. cit., F ⊃ K a number field and pF a prime of

F with residue field k. Suppose that xF ∈ M(F ) is a special point and that XF/F is the

abelian variety corresponding to xF . Then there exist a finite extension F ′ of F , a prime

pF ′ of F ′ lying above pF , with residue field k′ ⊃ k, and a point yF ′ ∈ M(F ′) such that the

abelian variety YF ′/F
′ corresponding to yF ′ has Mumford–Tate group G and such that XF ′

and YF ′ have good reduction Xk′ and Yk′ at pF ′ satisfying Yk′ ∼= Xk′.

Proof. After replacing F by a finite extension, one may assume that XF has good reduction

at p. Let Op be the localization of OF at p = pF and let p be the characteristic of k. We

change the compact open subgroup C ⊂ G(Af ) so that it defines a level structure which is

prime to p and such that there exists a finite map M → (A4)F , where A4/Op denotes an

appropriate fine moduli scheme of 4-dimensional abelian schemes with level structure prime

to p. This amounts to replacing M by a quotient of a finite cover. After replacing F by a

finite extension, we can assume that the hypotheses of the proposition are still verified and it

suffices to give a proof in this case. Since K ⊂ F , we can base change to F and assume that

M is an F -scheme. We finally replace F by a finite extension and M by the geometrically

irreducible component containing xF .

Let M/Op be the Zariski closure in A4 of the image of M and let X be the pull back

to M of the universal abelian scheme on A4. By construction, the pull back of X to M is

Mumford’s family on M . The image in (A4)(F ) of xF ∈M(F ) extends to x ∈M(Op).

Replace M by an affine open subset containing x and let π : M → A1
O be a map such

that πk is non-constant on any component ofMk and such that πF : MF → A1
F is étale. For

any prime number `, it follows from [Noo95], proposition 1.3, theorem 1.7 and their proofs

that there is a thin subset Ω ⊂ A1(F ) with the following property. For each y′F ∈ A1(F ),

y′F 6∈ Ω, each finite extension F ′ of F and each yF ′ ∈ π−1(y′F )(F ′), the image of the `-adic

Galois representation associated to XyF ′ has a subgroup of finite index which is Zariski dense

in G(Qp). It follows from [Ser89, 9.6] that there exist infinitely many points y′ ∈ A1(Op)

with y′k = π(x)k and such that y′F 6∈ Ω. This implies the proposition.

5.2 Proposition. Let K and D be as in 1.1. Then there exist maximal subfields L of both

the kinds used in 3.2 and 3.4. Moreover, there is the following freedom left.
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In the first case, L = E ⊗K for an imaginary quadratic field E. Fix a finite set P ′ of

prime numbers. For each p ∈ P ′, fix a reduced Qp-algebra E(p) of degree 2 and assume that

Kp ⊗Qp E
(p) is a field for each prime p of K over (p) where D is not split. Then one can

choose E such that E ⊗Qp
∼= E(p) for each p ∈ P ′.

In the second case, fix a finite set P ′ of primes of K and for each p ∈ P ′, fix a reduced

Kp-algebra L(p) of degree 2. Assume that L(p) is a field for each p ∈ P ′ such that D is not

split at p. Then we can choose L such that L⊗K Kp
∼= L(p) for each p ∈ P ′.

Proof. We first show the existence of maximal subfields of the ‘first’ kind (3.2). Let P be

the set of prime numbers p ∈ Q such that D is non-split at at least one place of K lying

above p. Let P1 ⊂ P − P ′ be the set of the p ∈ P − P ′ that are unramified in K and let P2

be the complement of P1 in P − P ′. Let E be an imaginary quadratic extension of Q such

that E is ramified at each p ∈ P1, E has residue degree 2 at all p ∈ P2 and E ⊗Qp
∼= E(p)

for each p ∈ P ′. Since P ∪P ′ is finite, the existence of E follows from the Chinese remainder

theorem. By construction, L = E ⊗K ⊃ K has local degree 2 at each place of K where D

is non-split, so D ⊗K L is split.

For maximal subfields of the ‘second’ kind (3.4), the proof is similar. Let P be the set

of finite places of K where D is not split and let p ∈ Q be a prime number that splits

completely in K and such that none of the places p1, p2, p3 lying above p are in P ∪ P ′. By

the Chinese remainder theorem, there exist a polynomial Q ∈ OK [X] of degree 2 and an

ideal I ⊂ OK such that for each Q′ ∈ OK [X] which is congruent to Q modulo I, one has

• Q′ is irreducible modulo p for each p ∈ P ,

• Q′ is irreducible modulo p1,

• Q′ is reducible modulo p2 and

• Kp[X]/(Q′) ∼= L(p) for all primes p ∈ P ′.

Note that by hypothesis, the first and the last conditions are not in contradiction with each

other. For any such Q′, the field L = K[X]/(Q′) has local degree 2 at all places in P , and

L does not contain any subfield E of degree 2 over Q. Moreover, the local extension at each

p ∈ P ′ is what it should be. It suffices to show that we can choose Q′ to be irreducible at all

real places of K, and for this it suffices to pick a Q′ with constant term sufficiently large at

all real embeddings of K. This is possible because the image of I under the map K ↪→ R3

induced by the three real embeddings of K is a lattice.

5.3 Proposition. Let K be a totally real cubic number field, D a central K-algebra as

in 1.1 and let M/K be the corresponding Shimura curve. Let G as in 1.1 be the generic

Mumford–Tate group. Let p be a prime of K such that D is split at p.

Then, for each possibility listed in 2.3. , there exist an extension F of K, a prime pF

of F lying over p, with residue field k, and a point x ∈ M(F ) such that the corresponding
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abelian variety X has Mumford–Tate group G and such that X has good reduction Xk with

the given Newton polygon and of the given isogeny type.

Proof. It follows from (for example) propositions 3.7, 5.2 and 4.4 that there is a special

point in M(Q) such that the reduction of the corresponding abelian variety has Newton

polygon 8 × 1/2. Proposition 5.1 therefore implies the existence of an abelian variety X

with Mumford–Tate group G whose reduction has this Newton polygon. The existence of

the other reduction types is proven similarly, using 3.7, 5.2 and 4.4 for Xk̄ simple and 3.3,

5.2, 4.2 and 4.3 if Xk̄ ∼ X(1) ×X(3).

5.4 Remark. It is left to the reader to restate the above result in terms of Mumford–Tate

groups, in analogy with remark 2.4.
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