
The Discrete Fourier Transform

Rutger Noot

IRMA
Université de Strasbourg et CNRS

21 January 2017 — Strasbourg

Polynomials

The basics
A polynomial is an expression

P(X) =
d∑

i=0

aiX
i

for some integer d > 0.
The degree of P is ≤ d .

A word on the ai
The ai belong to a field K ,
for the time being we can think of K = R or K = C.

Evaluation

For P a polynomial and x ∈ K , we can evualuate P at x :

P(x) =
d∑

i=0

aix
i

(addition and multiplication in K).

Computing P(x)

Computational complexity
The number of operations needed to compute P(x):

• d − 1 multiplications to compute the x i and
• another d multiplications and d additions to obtain P(x).

A total of 2d − 1 multiplications and d additions.

In practice, a multiplication is much more ‘expensive’ than an
addition.

Another way of computing P(x)

We can do better!
In fact,

P(x) = a0 + x(a1 + x(a2 + · · ·+ x(ad−1 + xad))),

so starting from the innermost parenthesis we only need

d multiplications and d additions.

An improvement by a factor 2!

Addition . . .

For two polynomials

P(X) =
d∑

i=0

aiX
i and Q(X) =

d∑
i=0

biX
i ,

the sum is

(P + Q)(X) =
d∑

i=0

(ai + bi)X
i .

It can be computed in just d additions.

The evaluation function associated to P + Q is the sum of the
functions defined by P and Q.

. . . and multiplication

The product PQ is

PQ(X) =
2d∑
i=0

ciX
i ,

where

ci =

min(i ,d)∑
j=max(0,i−d)

ajbi−j .

• This is a convolution product.
• The function associated to PQ is the product of the functions
defined by P and Q.

• The degree of PQ may be > d , but is ≤ 2d .

Computing PQ

Using the formula, ci can be computed in i + 1 multiplications and
i additions (for i ≤ d) so the computation of PQ takes

(d + 1)2 multiplcations and d2 additions.

NB. To compute (PQ)(x) for x ∈ K , take P(x) and Q(x) and then
multiply instead of first computing the polynomial PQ and then
taking (PQ)(x).

A silly idea?

Why not define a product

P ∗ Q(X) =
d∑

i=0

(aibi)X
i?

• Much easier to compute: d + 1 multiplications,
• but has no meaning in terms of functions.

Roots of unity

Assume that d + 1 6= 0 (in K) and let ζ ∈ K be a primitive
(d + 1)th root of unity:
• ζd+1 = 1 but
• ζ i 6= 1 for 1 ≤ i ≤ d .

We have:
• For i = 0, · · · d , the ζ i are the distinct x ∈ K with xd+1 = 1.
• For i = 1, . . . , d :

d∑
j=0

ζ ij = 0

The Discrete Fourier Transform

Definition
The Discrete Fourier Transform (DFT) of P (of degree ≤ d) is

FDd(P) =
d∑

j=0

yjX
d−j

where yj = P(ζ j).

The inverse of the DFT

Theorem

FDd(P)(ζk) = (d + 1)akζ
−k

so

FDd(FDd(P)) = (d + 1)X dP

(
1
ζX

)
.

(Which is indeed a polynomial!)

More properties of the DFT

• FDd ◦ FDd is bijective.
• Hence FDd is bijective (on polynomials of degree ≤ d).
• (PQ)(ζ i) = P(ζ i)Q(ζ i) so FDd(PQ) = FDd(P) ∗ FDd(Q).
• If P = FDd(P̃) and Q = FDd(Q̃) for P̃, Q̃ of degree ≤ d/2
then

FDd(P ∗ Q) = FDd(FDd(P̃) ∗ FDd(Q̃)) = FDd(FDd(P̃Q̃)) =

(d + 1)X d
(
P̃Q̃
)(1

ζX

)
=

1
(d + 1)X d

FDd(P)FDd(Q)

Conclusion

A formula for PQ
For polynomials P,Q of degree ≤ d/2

(PQ)(X) =
X d

ζ(d + 1)
FDd(FDd(P) ∗ FDd(Q))

(
1
ζX

)
.

A useful algorithm?

• It takes d multiplications to compute FDd(P) ∗ FDd(Q),
• so everything depends on the complexity of FDd ,
• but the obvious algorithm evaluates P for d + 1 values so it
takes 3

2(d2 + d) multiplications. . .

A special case

From now on: d + 1 = 2e is a power of 2.

Write d ′ = (d − 1)/2 and

P(even)(X) =
d ′∑
i=0

a2iX
i and P(odd)(X) =

d ′∑
i=0

a2i+1X
i

so
P(X) = P(even)(X 2) + XP(odd)(X 2).

Fast Fourier Transform

Theorem

FDd(P)(X) =

X d ′+1
(
FDd ′(P

(even))(X)− ζ−1FDd ′(P
(odd))(ζ−1X)

)
+(

FDd ′(P
(even))(X) + ζ−1FDd ′(P

(odd))(ζ−1X)
)
.

So FDd can be computed by induction!

Computing the FFT

• M(d) = number of multiplications to compute FDd(P)

(for P of degree d).
• By the theorem M(d) = 2M(d ′) + d + 1.
• Hence

M(d) = Cd log d + lower order terms

for some constant C > 0.
• Notation: M(d) = Θ(d log d).

A useful algorithm!

Theorem
Using the Fast Fourier Transform, the formula

(PQ)(X) =
X d

ζ(d + 1)
FDd(FDd(P) ∗ FDd(Q))

(
1
ζX

)
.

computes the product PQ in

Θ(d log d) multiplications.

But in practice?

• For K = C we need floating point arithmetic, that’s not good.
• For p a prime number, Fp = Z/pZ is a field.
• Fp contains a primitive (p − 1)th root of unity.
• Choose p such that p − 1 is divisible by a large power of 2.
• For example

12289 = 3·212+1, 40961 = 5·213+1, 61441 = 15·212+1.

FFT with coefficients in Fp

• Take p prime with p − 1 divisible by 2e .
• The multiplication algorithm applies to polynomials of degree
< 2e−1 with coefficients in Fp.

Applications

• Error correcting codes
• Cryptography
• Integer arithmetic

Multiplication of integers

• Write integers in base R ,

for example R = 264 on a 64 bit processor.
• N > 0 is expressed as

N = a0 + a1R + · · ·+ adR
d = PN(R)

with ai ∈ {0, . . . ,R − 1}.
• Multiplying integers amounts to multiplying polynomials.
• Want to take p > R and work with coefficients in Fp.

Avoid pitfalls

• The coefficients of PNPM may be ≥ R so:
• Take p � R such that the coefficients stay < p.
• The coefficients are determined by their reduction modulo p.
• Treat carries to obtain a valid representation in base R.

(Computationally easy.)

• Choose R close to the word-size of the computer.
• Best to have p within the word-size as well.
• But that is too small to get the necessary precision.

A final trick

• Use several primes p1, p2, . . . , pk and start by computing PQ
modulo p1, modulo p2,. . .

• By the Chinese Remainder Theorem this determines PQ
modulo the product p1p2 · · · pk .

• For p1p2 · · · pk large enough this determines the coefficients in
Z.

• Can treat integers up to R2e−1−1,

think of R = 264 and e = 12!

This is Pollard’s method for integer multiplication.

References

I T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to algorithms.
MIT Press, Cambridge, MA, third edition, 2009.

I M. Demazure.
Cours d’algèbre, Nouvelle Bibliothèque Mathématique 1.
Cassini, Paris, 1997.

