Exercices de Géometrie Différentielle.

Exemples de variétés

Exercice 1 : Coordonnées locales. Soit M une variété de dimension n.

- 1. Soit (U, φ) une carte de M. Montrer qu'il existe des fonctions $f_1, \ldots, f_n : U \to \mathbb{R}$ qui vérifient les propriétés suivantes :
 - (i) Tout point de U est exactement repéré par une équation $f_1 = c_1, ..., f_n = c_n$ (où $(c_1, ..., c_n)$ sont des réels).
 - (ii) En tout point p de U, les formes linéaires $(f'_1(p), \ldots, f'_n(p))$ sur T_pM sont indépendantes.
- 2. Réciproquement, soit U un ouvert de M sur lequel il existe des fonctions f_1, \ldots, f_n : $U \to \mathbb{R}$ qui vérifient les propriétés (i), (ii) ci-dessus. Montrer que U est un ouvert de carte (au sens de l'exo 4).

Des fonctions $f_1, \ldots, f_n : U \to \mathbb{R}$ seront appelées des coordonnées locales, et notées x_1, \ldots, x_n dans la suite.

- 3. Montrer que si (x_i) , (y_i) sont deux jeux de coordonnées locales sur un ouvert U, il existe un difféomorphisme $\varphi: U \to U$ tel que $x_i = y_i \circ \varphi_i$.
- 4. On considère des coordonnées locales x_1, \ldots, x_n sur un ouvert $U \subset M$ et $\varphi : U \to V \subset \mathbb{R}^n$ la carte induite par ces coordonnées (voir question 2) du même exercice). Soient $\frac{\partial}{\partial x_i} := (\varphi^{-1})_* e_i$. Montrer que pour tout $p \in U$, $dx_i(p)$ est la base de $T_p^*M := (T_pM)^*$ duale de la base $(\frac{\partial}{\partial x_i}(p))$.
- 5. Montrer que les fonctions $x_i, dx_i : TU \to \mathbb{R}$, définies par $x_i(p, \vec{v}) := x_i(p), dx_i(p, \vec{v}) := dx_i(p)\vec{v}$ fournissent des coordonnées locales sur TU.

Exercice 2 : Les sphères. On définit $S^n := \{\sum_{i=0}^n x_i^2 = 1\} \subset \mathbb{R}^{n+1}, N := (1,0,\ldots,0), S := (-1,0,\ldots,0)$ les pôles nord et sud de la sphère S^n .

- 1. Montrer que S^n est une sous-variété de \mathbb{R}^{n+1} , donc une variété.
- 2. Pour $p \in S^n \setminus \{N\}$, on définit $\varphi_N(p) := (Np) \cap \{x_0 = 0\}$ (l'intersection de la droite (Np) avec l'hyperplan $\{x_0 = 0\}$). On définit $\varphi_S : S^n \setminus \{S\} \to \mathbb{R}^n$ de façon analogue. Calculer φ_N , φ_S et vérifier que ce sont des difféomorphismes.
- 3. Montrer que

$$\varphi_{NS} := \varphi_S \circ \varphi_N^{-1} : \mathbb{R}^n \longrightarrow \mathbb{R}^n$$

$$x \longmapsto \frac{x}{\|x\|^2}.$$

On considère dans la suite le cas n=2, c'est-à-dire S^2 .

- 4. Montrer que φ_{NS} renverse l'orientation.
- 5. On note $\sigma: \mathbb{R}^2 \to \mathbb{R}^2$ la réflexion par rapport à l'axe des abscisses. Montrer que si on considère $\varphi_N, \sigma \circ \varphi_S$, on a un atlas de S^2 , dont les changements de cartes préservent l'orientation. Autrement dit, S^2 est orientable.
- 6. Montrer que ces changements de cartes sont holomorphes. S^2 muni de cet atlas est donc une variété holomorphe, appelée la sphère de Riemann, notée $\overline{\mathbb{C}}$.
- 7. Montrer qu'un polynôme complexe à une variable $P:\mathbb{C}\to\mathbb{C}$ définit une fonction holomorphe $P:S^2\to S^2$ qui fixe le pôle nord.

Exercice 3 : Variétés quotients. Soit M une variété, G un groupe. Une action différentiable de G sur M est un morphisme de groupe $\rho: G \longrightarrow \text{Diffeo}(M)$. Pour $g \in G$, on note alors $g(x) := \rho(g)(x)$.

- On définit $M_{/G} := M_{/\sim}$ où $p \sim p'$ si et seulement si $\exists g \in G, g(p) = p'$, et $\pi : M \to M_{/G}$ la projection : $\pi(p) = [p]$. On rappelle que $M_{/G}$ est muni d'une topologie quotient définie par $O \subset M_{/G}$ est ouvert si et seulement si $\pi^{-1}(O) \subset M$ est ouvert.
- On dit que l'action est *libre* si $\forall g \in G \setminus \{e\}, \rho(g)$ n'a pas de point fixe.
- On dit que l'action est proprement discontinue si $\forall K \subset M$ compact, $\#\{g \mid g(K) \cap K \neq \emptyset\} < +\infty$.

On supposera dans cet exercice que ρ est une action différentiable, libre, et proprement discontinue de G sur M.

- 1. Montrer que $G \cdot x := \{g(x), g \in G\}$ est un ensemble discret, et que $M_{/G}$ est séparé.
- 2. Montrer que M/G est séparable et paracompact.
- 3. Montrer que $M_{/G}$ admet une structure de variété différentiable, pour laquelle $\pi:M\to M_{/G}$ est un difféomorphisme local.
- 4. Montrer que $f: M_{/G} \to \mathbb{R}$ est lisse si et seulement si il existe $F: M \to \mathbb{R}$ lisse, telle que $F = f \circ \pi$.

Exercice 4 : Le cercle. On définit $S^1 := \mathbb{R}_{/\mathbb{Z}}$.

- 1. Montrer que S^1 est une variété de dimension 1, et que $e^{2i\pi\theta}: \mathbb{R}_{/\mathbb{Z}} \to S^1 \subset \mathbb{C}$ définit bien un difféomorphisme. Indication : Utiliser l'exercice précédent est possible, mais on peut aussi donner directement un atlas.
- 2. Soit f une fonction différentiable de S^1 dans \mathbb{R} . Montrer qu'il existe $\tilde{f}: \mathbb{R} \to \mathbb{R}$ différentiable, 1-périodique, telle que $f([x]) = \tilde{f}(x)$.
- 3. Soit $f: S^1 \to S^1$ une application lisse. On fixe $y_0 \in \mathbb{R}$, avec $[y_0] = f(0)$. Montrer qu'il existe une unique application $F: \mathbb{R} \to \mathbb{R}$ telle que f([x]) = [F(x)] et $F(0) = y_0$. Indication: lemme de relèvement \mathcal{C}^1 en analyse complexe.
- 4. Montrer qu'il existe un entier k tel que $\forall x \in \mathbb{R}$, F(x+1) = F(x) + k. On appelle k le degré de f. Pour tout $k \in \mathbb{Z}$, donner un exemple d'application de S^1 dans S^1 de degré k.
- 5. Montrer que $f \mapsto k(f)$ est continue en topologie \mathcal{C}^1 .
- 6. Montrer que si f est un difféomorphisme, k = 1. La réciproque est-elle vraie?
- 7. Montrer que pour $y \in S^1$, $\#f^{-1}(y) \ge \deg f$.

Exercice 5 : Les tores. Soit maintenant $\mathbb{T}^n = \mathbb{R}^n_{/\mathbb{Z}^n}$.

- 1. Montrer que \mathbb{T}^n est une variété, pour laquelle $\pi: \mathbb{R}^n \to \mathbb{T}^n$ est un difféomorphisme local. Montrer que \mathbb{T}^n est difféomorphe à $(S^1)^n$.
- 2. soient $(\alpha_1, \ldots, \alpha_n)$ des nombres réels, indépendants sur \mathbb{Q} . Soit

$$\varphi : \mathbb{R} \longrightarrow \mathbb{T}^n$$

$$t \longmapsto t \cdot (\alpha_1, \dots, \alpha_n).$$

Montrer que φ est une immersion injective, et que ce n'est pas un plongement.

3. Montrer qu'une immersion injective $f:V\to M$ est toujours un plongement si V est compact.

Exercice 6 : Espaces projectifs réels. On définit $\mathbb{RP}^n := \mathbb{R}^{n+1}_{/\sim}$, $x \sim tx$, $\forall t \in \mathbb{R}^*$. C'est l'ensemble des droites vectorielles de \mathbb{R}^{n+1} . La classe d'équivalence de $x = (x_0, \ldots, x_n)$ est notée $[x_0 : \ldots : x_n] \in \mathbb{RP}^n$. Soient $e_0, \ldots e_n$ les vecteurs de la base canonique de \mathbb{R}^{n+1} , et $(U_i)_{i \in \{1,\ldots,n\}}$ les sous-ensembles de \mathbb{RP}^n constitués des droites qui ne sont pas orthogonales à e_i .

- 1. Montrer que $\mathbb{RP}^n = S^n_{/\mathbb{Z}_2}$ où \mathbb{Z}_2 agit par antipodie. En déduire que \mathbb{RP}^n est une variété différentiable. On note dans la suite $\pi: S^n \to \mathbb{RP}^n$ la projection évidente.
- 2. Pour $p \in U_i$, donc $p = [x_0 : \ldots : x_n]$, $x_i \neq 0$, on définit $\varphi_i(p) := \left(\frac{x_0}{x_i}, \ldots, \frac{x_n}{x_i}\right) \in \mathbb{R}^n$. Montrer que $\varphi_i \circ \varphi_j^{-1} : \{x_i \neq 0\} \subset \mathbb{R}^n \to \{x_j \neq 0\} \subset \mathbb{R}^n$ est un difféomorphisme. Les (U_i, φ_i) forment donc un atlas de \mathbb{RP}^n .
- 3. Montrer que la structure différentielle de quotient, et celle induite par l'atlas (U_i, φ_i) coincident. Indication : On montrera que $\varphi_i \circ \pi : \pi^{-1}(U_i) \to \mathbb{R}^n$ est un difféomorphisme.
- 4. Montrer que l'application $f([x_0:\ldots:x_i:\ldots:x_j:\ldots:x_n])=[x_0:\ldots:x_j:\ldots:x_i:\ldots:x_n]$ est un difféomorphisme de \mathbb{RP}^n dans lui-même. (On donnera l'expression de f dans les différentes cartes de \mathbb{RP}^n).
- 5. Montrer que $\{[x_0:\ldots:x_n],x_i=0\}$ est une sous variété de \mathbb{RP}^n , difféomorphe à \mathbb{RP}^{n-1} .

Exercice 7 : Espaces projectifs complexes. On définit maintenant $\mathbb{CP}^n := \mathbb{C}^{n+1}_{/\sim}$, $x \sim tx$, $t \in \mathbb{C}^*$.

- 1. Définir un atlas (U_i, φ_i) comme pour \mathbb{RP}^n .
- 2. Montrer que les changements de cartes sont holomorphes. Note : Par définition, une fonction de $\mathbb{C}^n \to \mathbb{C}$ est holomorphe si ses différentielles sont \mathbb{C} -linéaires.
- 3. Montrer que \mathbb{CP}^1 est difféomorphe à $\overline{\mathbb{C}}$. Indication : On pourra comparer les changements de cartes avec ceux de la sphère pour la projection stéréographique.

Exercice 8 : Le ruban de Moebius. Soit $\mathcal{M} := \mathbb{R} \times (-1,1)_{/\sim}$, où $(x,y) \sim (x+1,-y)$.

- 1. Montrer que \mathcal{M} est une variété et que pr(x,y)=x descend en une application lisse pr $:\mathcal{M}\to S^1=\mathbb{R}_{/\mathbb{Z}}$.
- 2. Montrer que

$$\begin{array}{ccc} f &:& \mathcal{M} & \longrightarrow & \mathbb{R}^3 \\ & (\theta, y) & \longmapsto & ((1 + \frac{y}{4} \cos \pi \theta) \cos 2\pi \theta, (1 + \frac{y}{4} \cos \pi \theta) \sin 2\pi \theta, \frac{y}{4} \sin \pi x) \end{array}$$

est un plongement. Dessinez-le (ou mimez-le).

- 3. Donner un champ de vecteur sur \mathcal{M} partout non nul.
- 4. Soit $\gamma(t) = \pi(t,0) \in \mathcal{M}$, $V(t) \in T_{\gamma(t)}\mathcal{M}$, tel que dpr(V(0)) = 0. Montrer qu'il existe $\tilde{V}(t) \in T_{(t,0)}(\mathbb{R} \times (-1,1))$ tel que $d\pi(\tilde{V}(t)) = V(t)$ et $\tilde{V}(1) = -\tilde{V}(0)$. En déduire que $(\dot{\gamma}(t), V(t))$ ne peut pas être une base de $T_{\gamma(t)}\mathcal{M} \ \forall t$.
- 5. Montrer qu'il n'existe pas deux champs de vecteurs (V_1, V_2) sur \mathcal{M} qui sont partout indépendants. En déduire que $T\mathcal{M}$ n'est pas trivial.
- 6. Montrer qu'il n'existe pas d'atlas de \mathcal{M} dont les changements de cartes sont de Jacobiens positifs. Autrement dit, \mathcal{M} n'est pas orientable.
- 7. Montrer que $\partial M := \mathbb{R} \times \{-1,1\}_{/\sim}$ est un cercle. Quel est le degré de pr : $\partial \mathcal{M} \to S^1 = \pi(\mathbb{R} \times \{0\}) = \gamma$?

Exercice 9 : Un ruban de Möbius dans \mathbb{RP}^2 Montrer que \mathcal{M} se plonge dans \mathbb{RP}^2 . En conclure que \mathbb{RP}^2 n'est pas orientable.

Exercice 10 : Mapping torus (aussi appelé suspension). Soit M une variété différentielle, et $f: M \to M$ un difféomorphisme. La suspension de f est l'espace

$$M_f := M \times [0,1]_{/\sim}$$
, où $(x,0) \sim (f(x),1)$.

- 1. Décrire un atlas de M_f qui en fait une variété différentielle. En déduire que si M est orientable, et f préserve l'orientation, alors M_f est orientable.
- 2. Décrire M_f comme un quotient de $M \times \mathbb{R}$ par une action de groupe.
- 3. On suppose que f est homotope à l'identité parmi les difféomorphismes. Montrer que M_f est difféomorphe à $M \times S^1$.
- 4. On suppose que f, g sont des difféomorphismes de M homotopes parmi les difféomorphismes de M. Montrer que M_f et M_q sont difféomorphes.

Exercice 11 : \mathbb{RP}^2 ne se plonge pas dans \mathbb{R}^3 (cet exercice est pris dans le poly de géométrie différentielle de David Renard, disponible en ligne). Soit $\Sigma \subset \mathbb{R}^{n+1}$ une hypersurface compacte connexe. On admet pour cet exercice :

- Le théorème de Jordan : toute courbe fermée simple de \mathbb{R}^2 partage \mathbb{R}^2 en deux composantes connexes.
- Transversalité $1: \forall p \in \mathbb{R}^{n+1} \setminus \Sigma, \ \exists \vec{v} \in \mathbb{R}^{n+1}$ tel que la demi-droite issue de p dans la direction \vec{v} (notée ci-dessous $d^+(p, \vec{v})$) intersecte Σ transversalement.
- Transversalité 2: L'ensemble des 2-plans affines qui intersectent Σ transversalement est dense dans l'ensemble des 2-plans affines.
- 1. Montrer que $\mathbb{R}^{n+1} \setminus \Sigma$ a au plus deux composantes connexes.
- 2. Montrer que si $d^+(p, \vec{v}) \pitchfork \Sigma$, Card $(d^+(p, \vec{v}) \cap \Sigma) < +\infty$. Montrer aussi que si (p', \vec{v}') est suffisamment près de (p, \vec{v}) , $d^+(p', \vec{v}') \pitchfork \Sigma$ et Card $(d^+(p', \vec{v}') \cap \Sigma) = \text{Card } (d^+(p, \vec{v}) \cap \Sigma)$.
- 3. Montrer que si P est un 2-plan de \mathbb{R}^{n+1} qui intersecte Σ transversalement, alors $P \cap \Sigma$ est une union finie disjointe de courbes fermées simples de P.

On va montrer dans un premier temps que $\mathbb{R}^{n+1}\backslash\Sigma$ a exactement deux composantes connexes. Soit Ω_0 (resp. Ω_1)l'ensemble des points $p\in\mathbb{R}^{n+1}\backslash\Sigma$ tels qu'il existe une demidroite issue de p qui intersecte Σ transversalement en un nombre pair (resp. impair) de points.

- 4. Montrer que Ω_0 , Ω_1 sont ouverts, et non-vides.
- 5. Soit $p \in \mathbb{R}^{n+1} \setminus \Sigma$ et v_1, v_2 des vecteurs de \mathbb{R}^{n+1} tels que $d^+(p, \vec{v_i}) \pitchfork \Sigma$. Montrer que Card $(d^+(p, v_1) \cap \Sigma) + \text{Card}(d^+(p, v_1) \cap \Sigma)$ est pair. Indication : on pourra commencer par le cas où le plan $(p, \vec{v_1}, \vec{v_2})$ est transverse à Σ .
- 6. Conclure que $\Omega_0 \cap \Omega_1 = \emptyset$, et que $\mathbb{R}^{n+1} \setminus \Sigma$ a deux composantes connexes.
- 7. En déduire que toute hypersurface de \mathbb{R}^{n+1} est orientable. Il faut trouver un moyen de décider si une base de $T_p\Sigma$ est positive ou négative.
- 8. Montrer que \mathbb{RP}^2 ne se plonge pas dans \mathbb{R}^3 .

Espaces tangents.

Exercice 12 : TS^2 n'est pas trivial. Soit \vec{X} un champ de vecteurs lisse sur $D(2) \subset \mathbb{C}$, qui ne s'annule pas sur $S^1 = \partial D(1)$. On définit $\tilde{X}(t) := X(e^{it})$. On rappelle (exercice 4) qu'il existe des fonctions C^1 $\rho, \theta: S^1 \to \mathbb{R}$ $(\rho > 0)$, telles que $\tilde{X}(t) = \rho(t)e^{i\theta(t)}$, que $\theta(2\pi) = \theta(0) + 2\pi k$ et que $k \in \mathbb{Z}$ dépend continûment de \tilde{X} en topologie C^1 . L'entier k est appelé l'enroulement de \tilde{X} .

- 1. Donner un exemple de champ qui ne s'annule pas sur D(1) et calculer son enroulement.
- 2. Montrer que si $k \neq 0$, X a un zéro dans D(1).

On considère à présent un champ de vecteurs \vec{X} sur S^2 qui ne s'annule pas sur l'hémisphère nord. On note φ_N, φ_S les cartes de S^2 obtenues par projection stéréographiques, telles que définies dans l'exercice .

- 3. Montrer que $\varphi_{S_*}X$ est un champ de vecteur sur \mathbb{R}^2 , qui ne s'annule pas sur D(1), d'enroulement nul sur $S^1 = \partial D(1)$.
- 4. Soit $\varphi := \varphi_N \circ \varphi_S^{-1}$. Calculer φ_{S^1} , puis $T\varphi_{|S^1}$.
- 5. On pose $\varphi_{S*}X_{|S^1} = \rho(t)e^{i\theta(t)}$. Montrer que $\varphi_{N*}X_{|S^1} = \rho(t)e^{i(2t-\theta(t))}$.
- 6. En déduire que tout champ de vecteurs sur S^2 a un zéro.
- 7. En déduire que TS^2 n'est pas trivial, c'est-à-dire pas difféomorphe à $S^2 \times \mathbb{R}^2$.

Exercice 13: $T(S^2 \times S^1)$ est trivial

- 1. Montrer que $T(S^n \times \mathbb{R})$ est trivial. Indication : $S^n \times \mathbb{R}$ est difféomorphe à un espace bien connu.
- 2. Soit M^n une variété orientable, et g une métrique riemannienne sur M, c'est-à-dire une collection de formes bilinéaires définies positives $g_p: T_pM \times T_pM \to \mathbb{R}$ qui varient différentiablement avec p. On suppose qu'on a n-1 champs de vecteurs sur M partout indépendants. Montrer que M est parallélisable.
- 3. Sur S^2 , on considère les pôles nord, sud, est et ouest N, S, E, O, ainsi que les champs de vecteurs X_1, X_2 qui définissent les latitudes (N, S) et (E, O). Décrire l'ensemble

$$\{p \in S^2, \mid X_1(p) = aX_2(p), \ a \in \mathbb{R} \cup \{\infty\}\}.$$

- 4. Construire deux champs de vecteurs sur $S^1 \times S^2$ partout indépendants. Indication : ces champs se décomposent selon $\frac{\partial}{\partial \theta}$, X_1 et X_2 .
- 5. En déduire que $S^1 \times S^2$ est parallélisable.

Champs de vecteurs

Exercice 14 : Particularité des $\frac{\partial}{\partial x_i}$. On suppose qu'une variété compacte M^n a n champs de vecteurs X_1, \dots, X_n vérifiant :

- i) $\forall p \in M, (X_1(p), \dots, X_n(p))$ est une base de T_pM ,
- ii) $[X_i, X_j] \equiv 0.$
- 1. Montrer que $(t_1, \ldots, t_n) \longrightarrow \Phi^{t_1}_{X_1} \circ \cdots \circ \Phi^{t_n}_{X_n}$ définit une action transitive de \mathbb{R}^n sur M.
- 2. Montrer que le stabilisateur d'un point de M sous cette action est un sous-groupe discret de \mathbb{R}^n .
- 3. Montrer que M est difféomorphe à \mathbb{T}^n .

Exercice 15: Extension des isotopies

- 1. Soit $f: B^l \to \mathbb{R}$ une fonction lisse à support compact. Montrer que f se prolonge en une fonction lisse $\tilde{f}: [-1,1]^k \times B^n \to \mathbb{R}$ à support compact.
- 2. On considère $N = B^l \times 0_k \subset \mathbb{R}^{l+k} = \mathbb{R}^n$ et X un champ de vecteur de \mathbb{R}^n le long de N nul sur un voisinage du bord $S^{l-1} \times 0_k$. Montrer que X se prolonge en un champ de vecteurs lisse sur B^n , à support compact.
- 3. Soit N une sous-variété d'une variété M, et X un champ de vecteurs le long de N. Montrer que X se prolonge en un champ de vecteurs sur M (on utilisera des partitions de l'unité et les questions précédentes).

Soient N, M des variétés fermées (compactes, sans bord). Soit $f: [0,1] \times N \to M$ une application lisse telle que $f_t := f(t,\cdot)$ est un plongement pour tout t. Pour $p = f_t(x) \in f_t(N)$, on définit $X_t(p) := \frac{\partial f}{\partial t}(t,x)$.

- 4. Montrer que X_t se prolonge en un champ de vecteurs \tilde{X}_t sur M, tel que $t \mapsto \tilde{X}_t$ est lisse.
- 5. En déduire le théorème d'extension par isotopie : il existe une application $F:[0,1]\times M\to M$ lisse, telle que $F_t:=F(t,\cdot):M\to M$ est un difféomorphisme pout tout t, tel que $F_t\circ f_0=f_t$.

Exercice 16: Théorème de Fröbenius. Soient X_1, \ldots, X_k des champs de vecteurs sur \mathbb{R}^n (ou au voisinage de 0), $\mathcal{D}(p) := \text{Vect}(X_1, \ldots, X_k)$ le sous-espace qu'ils engendrent. On suppose que les vecteurs $(X_i(p))$ sont indépendants $\forall p \in \mathbb{R}^n$.

1. Montrer qu'on peut trouver un système de coordonnées $(x_1, \ldots, x_k, x_{k+1}, x_n)$ sur un voisinage U de 0, et des champs de vecteurs $X'_1(p), \ldots, X'_k(p)$ qui engendrent $\mathcal{D}(p)$ et qui vérifient :

$$X_i' = \frac{\partial}{\partial x_i} + Y_i,$$

où les $Y_i \in \text{Vect}(\partial/\partial x_{i+1}, \dots, \partial/\partial x_n)$. Indication : le théorème de redressement du flot permet de supposer que $X_1 = \partial/\partial x_1$.

2. Montrer qu'on peut trouver des champs de vecteurs X_i'' sur U, qui engendrent encore $\mathcal{D}(p)$ en tous points, et tels que

$$X_i'' = \frac{\partial}{\partial x_i} + Y_i,$$

où les $Y_i \in \text{Vect}\left(\frac{\partial}{\partial x_{k+1}}, \dots, \frac{\partial}{\partial x_n}\right)$. Indication : procédé de Gauss

On suppose à présent que les X_i vérifient en plus $[X_i, X_j](p) \in \mathcal{D}(p) \ \forall p \in \mathbb{R}^n$.

3. Montrer que les champs de vecteurs X_i'' construits précédéments vérifient encore $[X_i'', X_j''](p) \in \mathcal{D}(p) \ \forall p \in U.$

6

4. En déduire que $[X_i'',X_j'']=0 \ \forall i,j.$

Soit $p \in U$, et

$$\Phi : (-\varepsilon, \varepsilon)^k \longrightarrow U (t_1, \dots, t_k) \longmapsto \varphi^{t_1}_{X_1''} \circ \dots \circ \varphi^{t_k}_{X_k''}(p).$$

- 5. Montrer que Φ est un plongement sur un voisinage de 0, qui passe par p, et dont l'image est tangente à \mathcal{D} . Indication : calculer $\frac{\partial \Phi}{\partial t_1}$, et utiliser la commutativité du flot pour calculer les autres dérivées partielles.
- 6. En déduire le théorème de Fröbenius : si X_1, \ldots, X_k sont des champs de vecteurs sur une variété M, partout indépendants, il existe une sous-variété de dimension k tangent à $\mathcal{D} := \mathrm{Vect}\,(X_1, \ldots, X_k) \subset TM$ passant par tout point $p \in M$ si et seulement si $[X_i, X_j](p) \in \mathcal{D}(p) \ \forall p \in M$.