Exercices de Géometrie Différentielle.

- **Exercice 1 :** Montrer qu'une sous-variété de \mathbb{R}^N de dimension n est une variété de dimension n. En déduire que S^n , \mathbb{T}^n , O(n), $SL_n(\mathbb{R})$ sont des variétés.
- Exercice 2 : Montrer que le produit de deux variétés est une variété.
- **Exercice 3 :** On rappelle que deux sous-variétés de \mathbb{R}^N s'intersectent transversalement si leurs plans tangents sont transverses en tout point d'intersection. Montrer que si deux sous-variétés de codimension k, p dans \mathbb{R}^N s'intersectent transversalement, leur intersection est encore une sous-variété de \mathbb{R}^N , de codimension k + p.
- Exercice 4: On rappelle que notre définition de variétés fait intervenir des cartes $\varphi: U \subset M \to B(1)$. Soit M un espace topologique muni d'un recouvrement U_i , et d'homéomorphismes $\varphi_i: U_i \to V_i \subset \mathbb{R}^n$ (où les V_i sont des ouverts de \mathbb{R}^n quelconques), pour lesquels les changements de cartes $\varphi_i \circ \varphi_j^{-1}$ sont des difféomorphismes \mathcal{C}^{∞} . Montrer que M est une variété.
- Exercice 5 : Montrer que si N est homéomorphe à une variété M, alors N possède une structure de variété différentielle (c'est-à-dire un atlas qui en fasse une variété différentielle). Montrer que le graphe de |x| possède une structure de variété différentiable. Montrer qu'un tripode (3 demi-droites s'intersectant en un point exactement) n'est pas une variété.
- **Exercice 6 : Variétés quotients.** Soit M une variété, G un groupe. Une action différentiable de G sur M est un morphisme de groupe $\rho: G \longrightarrow \text{Diffeo}(M)$. Pour $g \in G$, on note alors $g(x) := \rho(g)(x)$.
 - On définit $M_{/G} := M_{/\sim}$ où $p \sim p'$ si et seulement si $\exists g \in G, \ g(p) = p',$ et $\pi : M \to M_{/G}$ la projection : $\pi(p) = [p]$. On rappelle que $M_{/G}$ est muni d'une topologie quotient définie par $O \subset M_{/G}$ est ouvert si et seulement si $\pi^{-1}(O) \subset M$ est ouvert.
 - On dit que l'action est *libre* si $\forall g \in G \setminus \{e\}, \rho(g)$ n'a pas de point fixe.
 - On dit que l'action est proprement discontinue si $\forall K \subset M$ compact, $\#\{g \mid g(K) \cap K \neq \emptyset\} < +\infty$.

On supposera dans cet exercice que ρ est une action différentiable, libre, et proprement discontinue de G sur M.

- 1. Montrer que $G \cdot x := \{g(x), g \in G\}$ est un ensemble discret, et que $M_{/G}$ est séparé.
- 2. Montrer que M/G est séparable et paracompact.
- 3. Montrer que $M_{/G}$ admet une structure de variété différentiable, pour laquelle $\pi:M\to M_{/G}$ est un difféomorphisme local.
- 4. Montrer que $f: M_{/G} \to \mathbb{R}$ est lisse si et seulement si il existe $F: M \to \mathbb{R}$ lisse, telle que $F = f \circ \pi$.
- 5. En déduire que la bouteille de Klein ou $\mathbb{RP}^2 := S^2_{/\{\mathrm{Id},-\mathrm{Id}\}}$ sont des variétés.

Exercice 7 : Les sphères. On définit $S^n := \{\sum_{i=0}^n x_i^2 = 1\} \subset \mathbb{R}^{n+1}, N := (1,0,\ldots,0), S := (-1,0,\ldots,0)$ les pôles nord et sud de la sphère S^n .

1. Montrer que S^n est une sous-variété de \mathbb{R}^{n+1} . Donner une paramétrisation de la sphère (on pourra commencer par $S^2 \subset \mathbb{R}^3$).

Pour $p \in S^n \setminus \{N\}$, on définit $\varphi_N(p) := (Np) \cap \{x_0 = 0\}$ (l'intersection de la droite (Np) avec l'hyperplan $\{x_0 = 0\}$). On définit $\varphi_S : S^n \setminus \{S\} \to \mathbb{R}^n$ de façon analogue.

- 2. Calculer $\varphi'_N(S)$, puis montrer que $\varphi'_N(p):T_pS^n\to\mathbb{R}^n$ est un isomorphisme. En déduire que φ_N et φ_S sont des difféomorphismes.
- 3. Montrer que

$$\varphi_{NS} := \varphi_S \circ \varphi_N^{-1} : \mathbb{R}^n \longrightarrow \mathbb{R}^n$$

$$x \longmapsto \frac{x}{\|x\|^2}.$$

4. En déduire que $\{(S^n \setminus \{N\}, \varphi_N), (S^n \setminus \{S\}, \varphi_S)\}$ définit un atlas de S^n , compatible avec la structure de sous-variété de \mathbb{R}^n .

Exercice 8 : Soit M une variété. Montrer que Diffeo (M) agit transitivement sur les k-uplets de points pour tout k. On commence par k = 1, et $M = B^n$.

Exercice 9 : Coordonnées locales. Soit M une variété de dimension n.

- 1. Soit (U, φ) une carte de M. Montrer qu'il existe des fonctions $f_1, \ldots, f_n : U \to \mathbb{R}$ qui vérifient les propriétés suivantes :
 - (i) Tout point de U est exactement repéré par une équation $f_1 = c_1, \ldots, f_n = c_n$ (où (c_1, \ldots, c_n) sont des réels).
 - (ii) En tout point p de U, les formes linéaires $(f'_1(p), \ldots, f'_n(p))$ sur T_pM sont indépendantes.
- 2. Réciproquement, soit U un ouvert de M sur lequel il existe des fonctions f_1, \ldots, f_n : $U \to \mathbb{R}$ qui vérifient les propriétés (i), (ii) ci-dessus. Montrer que U est un ouvert de carte (au sens de l'exo 4).

Des fonctions $f_1, \ldots, f_n: U \to \mathbb{R}$ seront appelées des coordonnées locales, et notées x_1, \ldots, x_n dans la suite.

- 3. Montrer que si (x_i) , (y_i) sont deux jeux de coordonnées locales sur un ouvert U, il existe un difféomorphisme $\varphi: U \to U$ tel que $x_i = y_i \circ \varphi_i$.
- 4. On considère des coordonnées locales x_1, \ldots, x_n sur un ouvert $U \subset M$ et $\varphi : U \to V \subset \mathbb{R}^n$ la carte induite par ces coordonnées (voir question 2) du même exercice). Soient $\frac{\partial}{\partial x_i} := (\varphi^{-1})_* e_i$. Montrer que pour tout $p \in U$, $dx_i(p)$ est la base de $T_p^*M := (T_pM)^*$ duale de la base $(\frac{\partial}{\partial x_i}(p))$.
- 5. Montrer que les fonctions $x_i, dx_i : TU \to \mathbb{R}$, définies par $x_i(p, \vec{v}) := x_i(p), dx_i(p, \vec{v}) := dx_i(p)\vec{v}$ fournissent des coordonnées locales sur TU.

Exercice 10 : Soit M une variété, $K \subset M$ un fermé.

- 1. Soit K' un autre fermé de M, disjoint de K. Montrer qu'il existe une fonction \mathcal{C}^{∞} sur M, à valeurs dans [0,1], qui vaut 0 sur K et 1 sur K'.
- 2. Montrer qu'il existe une fonction $f: M \to [0,1]$ de classe \mathcal{C}^{∞} telle que $K = \{f = 0\}$.

Indication : on pourra se contenter du cas où K est compact.

Exercice 11: Montrer que $T\mathbb{R}^n \approx \mathbb{R}^n \times \mathbb{R}^n$.

Exercice 12 : Théorème de la boite à flot. Soit M une variété de dimension n, X un champ de vecteurs sur M de classe \mathcal{C}^k . On suppose que $X(p_0) \neq 0$.

- 1. Montrer qu'il existe un plongement $\tilde{\varphi}: B^{n-1}(1) \to M$ tel que $\tilde{\varphi}(0) = p_0$ et $\tilde{\varphi}$ est transverse à X, c'est-à-dire que $\forall x \in B^{n-1}$, $\operatorname{Im} \tilde{\varphi}'(x) \oplus X(\varphi(x)) = T_{\varphi(x)}M$. Indication : se ramener à \mathbb{R}^n , ou travailler dans des coordonnées locales, c'est le TFI.
- 2. Soit $\varphi(x_0, x_1, \dots, x_{n-1}) := \Phi_X^{x_0}(\tilde{\varphi}(x_1, \dots, x_{n-1}))$. Montrer que φ définit un difféomorphisme sur un voisinage de $B^{n-1}(1) \times \{N\}$ dans \mathbb{R}^n , qui vérifie $\varphi_* e_0 = X$.

Exercice 13 : On dit que TM est trivial si il existe un difféomorphisme $\Phi: TM \xrightarrow{\sim} M \times \mathbb{R}^n$, de la forme $\Phi(x,v) = (\varphi(x),g(x)v)$ où $\varphi: M \to M$ est un difféomorphisme et $g(x): T_xM \to \mathbb{R}^n$ est un isomorphisme linéaire, qui dépend de façon \mathcal{C}^{∞} en x.

- 1. Montrer que prendre $\varphi = \operatorname{Id}$ donne une définition équivalente.
- 2. Montrer que TM est trivial si et seulement si il existe des champs de vecteurs (X_1, \ldots, X_n) sur M partout linéairement indépendants.
- 3. Montrer que si TM est trivial, M est orientable.