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Abstract

We prove a quantitative h-principle statement for subcritical isotropic embeddings.
As an application, we construct a symplectic homeomorphism that takes a symplectic
disc into an isotropic one in dimension at least 6.

1 Introduction

Gromov’s h-principle lies at the core of symplectic topology, by reducing many questions on
the existence of embeddings or immersions to verifying their compatibility with algebraic
topology. Symplectic topology focuses mainly on the other problems, that do not abide by
an h-principle : Lagrangian embeddings, existence of symplectic hypersurfaces in specific
homology classes etc. In [BO16], we have proved a refined version of h-principle, which in
turn yielded applications to C’-symplectic geometry. For instance, we proved in [BO16] that
in dimension at least 6, C%-close symplectic 2-discs of the same area are isotopic by a small
symplectic isotopy, while in dimension 4, this does no longer hold. A similar quantitative h-
principle was also used in [BHS18] in order to show that the symplectic rigidity manifested
in the Arnold conjecture for the the number of fixed points of a Hamiltonian diffeomorphism
completely disappears for Hamiltonian homeomorphisms in dimension at least 4.

The goal of this note is to prove a quantitative h-principle for isotropic embeddings and
to derive some flexibility statements on symplectic homeomorphisms.

Theorem 1 (Quantitative h-principle for subcritical isotropic embeddings). Let V' be an
open subset of C*, k < n, ug,u; : D* < V be isotropic embeddings of closed discs. We
assume that there exists a homotopy F : D* x[0,1] — V between ug and uy (so F(-,0) = ug,
F(-,1) = u1) of size less than € (Diam F({z} x [0,1]) < ¢ for all z € D*).

Then there exists a Hamiltonian isotopy (‘I’t)te[o,l] such that U o ug = uy, of size 2¢.
The proof shows that the theorem holds in the relative case, provided wug,u; are sym-

plectically isotopic, relative to the boundary. The method of the proof of theorem 1 follows
a very similar track as the quantitative h-principle for symplectic discs that we established



in [BO16]. Paralleling the construction of a symplectic homeomorphism whose restriction
to a symplectic disc is a contraction in dimension 6, we can deduce from theorem 1 the
following statement:

Theorem 2. There exists a symplectic homeomorphism with compact support in C3 which
takes a symplectic disc to an isotropic one.

Of course, by considering products, we infer that there exists symplectic homeomor-
phisms that take some codimension 4 symplectic submanifolds to submanifolds which are
nowhere symplectic.

The note is organized as follows. We prove theorem 1 in the next section. The con-
struction of a symplectic homeomorphism that takes a symplectic disc to an isotropic one
is explained in section 3, where we also explain a relation to relative Eliashberg-Gromov
type questions, as posed in [BO16].
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Conventions and Notations We convene the following in the course of this paper:

e All our homotopies and isotopies have parameter space [0, 1]. For instance (g;) denotes
an isotopy (g¢)iefo,1]-

e Similarly, by concatenation of homotopies we always mean reparametrized concatena-
tion.

o If ' : [0,1] x X — Y is a homotopy with value in a metric space, Size(F') :=
max{Diam (F([0,1] x {z})), = € X}.

e For A C B, Op (A4, B) stands for an arbitrarily small neighbourhood of A in B. To
keep light notation, we omit B whenever there is no possible ambiguity.

e A homotopy F':[0,1] x N — M is said relative to A C N if it is constant on A.

e A homotopy G : [0,1]> x N — M between Fy, Fy : [0,1] x N — M (that is a
continuous map such that G(i,t,z) = F;(t,z) for i = 0,1) is said relative to A and
{0,1} if G(s,t,2) = Fy(t,z) = Fi(t,z) for all z € A and if G(s,i,2) = Fy(i, 2) for all
s €10,1].



2 Quantitative h-principle for isotropic discs

The aim of this section is to prove theorem 1.

2.1 Standard h-principle for subcritical isotropic embeddings

We recall in this section the main properties of the action of the Hamiltonian group on
isotropic embeddings, as described in [Gro86, EM02]. To this purpose, we first fix some
notations. In the current note, a disk DF is always assumed to be closed, unless explicitly
stated (hence an embedding of D inside an open set is always compactly embedded). Since
we only deal with isotropic embeddings, it is enough to prove theorem 1 for subcritical
isotropic embeddings of [—1,1]¥ rather than of a closed disc. By abuse of notation, in this
section we denote D* = [—~1,1]*. The set of isotropic framings G'*°(k,n) is the space of
(k, 2n)-matrices of rank k& whose columns span an isotropic vector space in (R?", wg).

The following statement is a specialization to C™ of the h-principle for subcritical
isotropic embeddings: Recall that the h-principle for subcritical isotropic embeddings pro-
vides existence of isotropic embeddings or homotopies whose derivatives realize homotopy
classes of maps to G*°(k,n). In the following, if A C D¥, a homotopy of f : DF — G*°(k,n)
rel Op (A) is a continuous map F : [0,1] x D¥ — G°(k,n) such that F(t,z) = f(z) for
all z € Op(A). A homotopy G : [0,1]? x D¥ — G°(k,n) between Fy, F; : [0,1] x D¥ —
G*°(k,n) (that is a continuous map such that G(i,t,2) = F(t,z) for i = 0,1) is said
relative to Op (4) and {0, 1} if G(s,t,2z) = Fy(t,z) = Fi(t,z) for all z € Op (A4) and if
G(s,i,2) = Fo(i,2) for all s € [0,1] and ¢ € {0,1}.

Theorem 2.1 (Parametric C%-dense relative h-principle for isotropic embeddings [EM02]).
Let k < n:

a) Let p : D¥ — C" be a continuous map whose restriction to a neighbourhood of a
closed subset A C D is an isotropic embedding. Assume that dp is homotopic to a
map G : D¥ — G®°(k,n) relative to Op (A). Then, for any € > 0, there exists an
isotropic embedding u : D¥ — C™ which coincides with p on Op (A), deo(p,u) < €
and such that du : D¥ — G°(k,n) is homotopic to G rel Op (A).

b) Let ug,u; : DF < C™ be isotropic embeddings, which coincide on a neighbourhood
of a closed subset A C D*. Let G : [0,1] x D¥ — G™°(k,n) be a homotopy between
dug, duy rel Op (A) and p; : D¥ — C™ a homotopy between ug,u1 rel Op (A). For any
e > 0, there exists an isotropic isotopy uy : D¥ < C" (t € [0,1]) relative to Op (A)
such that deo(pe,ur) < e and {dut} is homotopic to G rel Op (A) and {0,1}.

We now state a related statement in a proper situation, when the disc D* is open,
hence not necessarily compactly embedded into V. The proof is a rather straightforward
application of theorem 2.1, and goes exactly along the lines of the proof of lemma A.3 b)
in [BO16]. We leave the details to the reader.



Proposition 2.2. Let V. C R?" be a bounded open set, ug,u; : lo?k — V be subcritical
isotropic embeddings which coincide on Op (0D*), are homotopic relative to Op (ODF) in
V', and whose differentials are homotopic in G*°(k,n) relative to Op (0D¥). We fir such a
relative homotopy G : [0,1] x D¥ — G°(k,n) between dug and duy. If k = 1, we further
assume that for a 1-form X\ which is a primitive of w in 'V,

/ UGA = / uyA.
D'x{0} D'x{0}

Then there exists a Hamiltonian isotopy (1) with compact support in V' such that 11 oug =
uy and for the induced isotropic isotopy u; = Vs oug, {dus} is homotopic to G rel Op (0DF)
and {0,1}.

The next lemma will be also used in the proof of theorem 1.

Lemma 2.3. Let A, B be two closed subsets of D*. Let ug,u; : D*¥ < C™ be subcritical
isotropic embeddings that coincide on Op (A). Assume that we are given a homotopy Gy :
DF — G®°(k,n) between dug and duj rel Op (A). Let v, : D¥ < C" be an isotropic
isotopy between ug and vy rel Op (A), such that viop By = u1, and such that{dvyo, ()} is
homotopic to {Gyop g} relative to Op (A) and {0,1}'. Then dvy and duy are homotopic
rel Op (AU B) among maps D¥ — G°(k,n).

Remark 2.4. In the setting of lemma 2.3, since v1 and ui are homotopic rel Op (AU B)
(just consider the linear homotopy between them), the lemma and theorem 2.1 immediately
imply that vy is in fact isotropic isotopic to uy rel Op (AU B).

Proof of lemma 2.3: Consider the homotopy K; := dv; : D — G*°(k,n) between dug
and dv; relative to Op (A), and the homotopy G; : DF — G®°(k,n) between dug and
duy rel Op (A), provided by the assumption. Letting K; := Kj_;, we now consider the
concatenation H; := K; x G;. Since {dvyop (B)} is homotopic to {Gyop(p)} relative to
Op(A) and {0,1} (as assumed by the lemma), there exists a homotopy Hs; (s € [0,1])
between Hy o, (py and I relative to Op (A) and {0,1}, where I; = du;jop By = dvijop (B) 18
a constant homotopy. Let x : D* — [0,1] be a continuous function such that y(z) = 0 on
a complement of a sufficiently small neighborhood of B in D¥, and x(x) = 1 on a (smaller)
neighborhood of B. Now define a homotopy Gy : DF — G®°(k,n) (t € [0,1]) by

~ H (z) when z € Op(B),
— x(2):t
Gilz) - { Gi(2) otherwise.

Then G, is a desired homotopy between du; and dv; rel Op (AU B). O

We will also need the following lemma, which allows to achieve general positions by
Hamiltonian perturbations.

'Recall that this means there exists a continuous map G : [0,1]> x Op(B) — G™°(k,n) such that
G(0,t,2) = Gi(2) and G(1,t,2) = dvi(2) V(t,2) € [0,1] x Op (B), G(s,t,2) = duo(z) ¥Y(s,t,2) € [0,1]* x
s,z) €

Op (AN B), G(s,0,2) = Go(z) = duo(z) and G(s,1,2) = G1(z) = dvi(z) V(s,2) € [0,1] x Op (B)).



Lemma 2.5. Let V C C™ be an open set, X1, 29 be two smooth submanifolds of V', which
are transverse in a neighbourhood of OV . Then there exists an arbitrarily small Hamiltonian
flow (©")e10.1) with compact support in V', such that 0 (31) M s,

2.2 Proof of theorem 1

Let k < n, DF := [-1,1)% D¥(u) := [-1 — p, 1 + p)¥, ug,uq : D¥ < V C C" be smooth
isotropic embeddings, and F : D x [0,1] — V a homotopy between ug, u; with Size F' < e.
We need to prove that there exists a Hamiltonian isotopy of size 2e, which takes ug to uy
on DF.

Before passing to the proof, we need to modify slightly the framework. First, extend
the isotropic embeddings and the homotopy to slightly larger isotropic embeddings: ug, u; :
D¥(p) < V, F: D*(u) x [0,1] — V, where D*(u) = [—u, 1+ p)*. By lemma 2.5, we do not
lose generality if we assume that the images of ug and u; are disjoint (since k < n), which
we do henceforth. Next, the homotopy F' can be turned into a more convenient object:

Lemma 2.6 (see [BO16, lemma A.1]). There exists a smooth embedding F : D¥(p) x
[0,1] < V, with F(z,0) = ug(x), F(x,1) = ui(x), with Diam (F({z} x [0,1])) < 2 for all
x € D*(u). In other words, F has size 2¢ when considered as a homotopy between ug, u;.

Now F' can be further extended to an embedding, still denoted F,

F D) x [ Lo ] % [=p, "1 = W

Consider now a regular grid 'y := vZ*¥ND* in D* € D*(p), of step v < 1 (to be specified
later), where v~! € N. This grid generates a cellular decomposition of D¥, whose [-skeleton
I'; is the union of the [-faces. The set of k-faces has a natural integer-valued distance, where
the distance between k-faces z and 2’ is the minimal m such that there exists a sequence
T = X0, %1,...,T,m = & of k-faces and z; Nx;41 # 0 for each j € [0,m — 1] (note that
those intersections are not required to be along full k& — 1-faces). Fix some n < v/2, and
for each = € T, let U, be the n-neighbourhood of {x} x [0, 1] x {0}2"~*~1 in C", and then
denote W, := F (Ug). Similarly, for each k-face zy, denote by Uy, the n-neighbourhood of
zp % [0,1] x {0}2»7%=1 in C", and then put W,, := F(Uy,,). For a k-face z and m > 0 we
denote W) := UW,/, where the union is over all the k-faces ' which are at distance at
most m from z. Note that W2 = W,, and that W/ is a topological ball. Finally, we put
W := U,W, C V, where the union is over all the k-faces. Hence, W = F(U) where U is
the n-neighborhood of D* x [0,1] x {0}?"~*~1 in C".

We will prove theorem 1 by successively isotopying the [-skeleton with a control on each
isotopy. Precisely, arguing by induction on [, we prove the following:

Proposition 2.7. There exist Hamiltonian isotopies (U}), 1 € [0,k] with support in W,
and modified embeddings vy := \Il(l) oug, v = \Ifl1 owv;_1, such that

(Z1) vy = uy on a neighbourhood of the l-skeleton Ty, for everyl € [0, k].



(12) v(z) € W31 for each k-face z and every | € [0,k — 1].

(I3) Vi (W,) C W23 for each k-face z and 1 € [1,k — 1],
3k(k+1)

and Ui (W,) C W, UL (W,) C W3 , for every k-face x.
(T4) v(Z11) N u1(§:;+1) =0 for every pair of distinct (I + 1)-faces, VI € [0,k — 1].

(I5) dv; and duy are homotopic rel Op (I'}) among maps D*(u) — G#°(k,n), for each
le0,k—1].

Proposition 2.7 readily implies theorem 1. Indeed, denoting by (¥*)c[o,1) the (reparamet-

rized) concatenation {W!} x -+ x {W!} of the flows, from (Z3) we conclude that for each
k-face x and each t we have W!(W,) C WE’QQMH since (Zf;ll 2. 3j) + 3h(k+1) < g2 HhtL
The flow (¥?) is supported in W = Uzer, Wz C V, and if the step v of the grid is chosen
to be sufficiently small, then for each k-face x, the diameter of W§k2+k+1 is less than 2e.
Consequently, the size of the flow (U'),c(o 1) is less than 2e. Moreover, by (Z1) we have

Ul o yy = vy = uy on DF. O

Proof of proposition 2.7: As already explained, the proof goes by induction over the dimen-
sion of the skeleton I';. Since D¥(yu) is contractible, there exists a homotopy Gy : D¥ —
G°(k,n) between dug and du;.

The 0-skeleton: Let x € I'g be a 0-face, p < 7, and D,(z) the p-neighbourhood of x
in D¥(p). Then ug(D,(x)), ui(D,(x)) both lie in W,, and F provides an isotopy between
Uo|p,(z) and Uy|p,(z) in Wy. By theorem 2.1.b), there exists a Hamiltonian isotopy (YL)
with support in Wy, such that 1. o ug = u1 on D,(x) and dipt o dug is homotopic to Gy rel
{0,1}. Since W, NW,» = () for different O-faces x, 2, the isotopies 1, have pairwise disjoint
supports.

The isotopy 1§ := o, where the composition runs over all 0-faces = of I, verifies (Z1)
by construction. Moreover, the isotopy satisfies (Z3) because it is supported inside the
disjoint union Uzer, Wy, and for every x € I'y and a k-face 2’ we have either W, C W,/ or
WoNW, = 0. However, ¥} oug might not verify (Z4). Still, since ¥} ouq coincides with u; on
a neighbourhood of Ty, there exist closed balls B, = B(u1(zg),r) C Wy, for each O-face zg
of I', such that (Z4) is verified inside these balls. Therefore the traces of the submanifolds
g o up(wy) and wy(z)) inside xogl“o (Wao\Ba,) verify the hypothesis of lemma 2.5, for

every pair of distinct 1-faces x1, 2. Thus an arbitrarily C'-small Hamiltonian perturbation
(y*) with support in Y. (Wao\Bazy) C UL W, achieves ¢! o ¥} o ug(w1) M ui(z)),
zo€lo

xo€lo
for every pair x1, 2] of different 1-faces of I (hence these intersections are empty). Now

Ul = (') % (f) verifies (Z4), and still verifies (Z1) and (Z3). (Z2) follows immediately
from (Z3), and vy = W} o ug satisfies (Z5) by direct application of lemma 2.3.

The I-skeleton (1 <1 < n—1): We now assume that ¥y,...,¥;_; have been constructed,
and we proceed with the induction step. Recall that v;_1 = \I’ll,l 0---0 \If(l) o ug coincides

with uy on Op (I';_1) and that v;_q(x) C Wg’:l_l for every k-face xj. Recall also that we



have a homotopy G} : D¥ — G'°(k,n) between dv;_; and duj rel Op (I;_1). Our aim is
now to find a Hamiltonian flow (¥}) which in particular isotopes V—1|0p (z1) tO U1|Op ()5 fOT
each [-face ;.

Step I: Adjusting the actions of the edges (case [ = 1). When [ = 1, beside the formal ob-
structions, relative isotopies can be performed wvia localized Hamiltonians only when the

actions of the edges coincide (see proposition 2.2). In [BO16], we show that there exists a
Hamiltonian isotopy (¢%4), supported in an arbitrarily small neighborhood vo(To) = u1(Ty),
whose flow is the identity on a (smaller) neighbourhood of the Iy, such that

A(i/}}ét o vo(ajl)) = /

YL ovg

= / A= A(ul(xl)) for every 1-face x1 of I,
(z1) u1(w1)

and Y ovg(1) Ny (zh) = O for each pair of distinct 1-faces 21, of I'. Since Y'Yy =1d near
Lo, Ut = Y o Uh and vf) := W o ug still verify (Z1 —5). In other terms, replacing (¥}) by
(T4) and vy by v}, we can freely assume that A(vo(z1)) = A(ui(z1)) for each 1-face z1.

Step II: Isotopying the [-skeleton. Fix an I-face z; of I'. By (Z1), there exists a closed box

[e]
#, C 2; such that v;_; and u; coincide on Op (x;\%;). Choose a k-face xj which contains x;.
Since uq(#;) and v;_1(Z;) both lie in the topological ball Wg’:l_l and coincide near their
boundary, there exists a homotopy

oz, 1 2 % [0,1] = ngi_l_l

such that o,,(-,0) = v_1, 04,(-,1) = w1, and o4,(2,t) = wi(2) Vz € Op (01y),t € [0,1].
Since #; € z; and | < n, (Z4) allows to use a general position argument to ensure that
moreover Im o, admits a regular neighbourhood V,, C W;’:l_l (a topological ball), such
that all these neighbourhoods V,, are pairwise disjoint when z; runs over the [-faces (this
is the only point in the proof where we need that | < n — 1).

By assumption, there exists a homotopy G/ : [0, 1] x D* — G™®°(k,n) between dv;_; and
duy, with Gf‘op T ) = duy = dv;_1. Also, vj_y)3, is clearly homotopic to uy;, rel Op (91;)
in V;,, and when [ = 1, A(v_; o z;) = A(u; o ;). Hence by proposition 2.2, there exist

t

Hamiltonian diffeomorphisms v;, , where ; runs over the I-faces, which have support in V,,,

and are such that w;l °v_1)3 = u1, and d(wél o v;—1) are homotopic relative to Op (01;)
and {0,1} to G}?Ifﬂz' Let now ¢ := owil and 0 := 1)} o vy;_1. Since the (wil) have pairwise
disjoint supports, we have 0y, = uy|,, for each l-face z; of I'. Hence 9; and u; coincide on
a neighbourhood of the I-skeleton of I', so ¥; verifies (Z1). By lemma 2.3, 0; verifies (Z5) as

well.

The flow (@bf) is supported in the disjoint union Uy, er,Ve,. Let x be any k-face, and
assume that we have an [-face z; such that V,, "W, # (). Let x; D x; be a k-face as above,
so that V,, C Wf‘;_l_l. Then the distance between x and xj is not larger than 3=1 and
we conclude V,, C Wg;lfl C W§'3l_1*1. To summarise, for any k-face z, if x; is an [-face
with V,, N W, # 0, then V,, C W:f’?’lil_l. As a result, we get

PHW,) c W23 (2.2.1)



The embedding ©; may fail to satisfy (Z4): there might be two different | + 1-faces
Ty41, ), such that

By(@141) N Ul(;gﬂ) # 0.

Notice however that since ¥; and u; coincide on a neighbourhood of I';, the set 0;(x;11) N
u1(z),,) is compactly contained in W\u;(I';). By lemma 2.5, there exists an arbitrarily
small Hamiltonian flow (})¢ejo,1), With compact support in W\I'; such that v := ol oty
verifies (Z4). By the smallness of the flow (¢!) and by (2.2.1), the flow (¥}) := (¢}) * (¢})
satisfies UH(W,) C W:?'Blil for any k-face . Hence (Z3) holds for (¥}). Since the support of
(¢}) is compactly contained in W\I';, (Z1) and (Z5) still holds for v;. Finally, (Z2) follows
as well: if z is any k-face, then by assumption, v;_1(z) C Wg’l_lfl, hence by (2.2.1) and
(Z3) we get

u@) = Vouax)cwwWd = |J wWw)c
d(z,y)<3t-1-1
_ _ a 2.2.2
C U Wy23l 1 _ ng 1_1+2.3l 1 _ ng—l ( )

d(z,y)<3t-1-1

The k-skeleton: When k < n—1, the procedure described above works perfectly. However,
when k = n — 1, the last step of the induction requires some adjustment. As before, for
every k-face xy, vp—1(zx) and wu;(xy) both lie in the topological ball Wg:_l_l and coincide
near the boundary, hence there exist homotopies

. k—1_
Oz, * T % [0,1] — Wg’k 1

such that 04, (-,0) = Vp_1jzys 02, (1) = uypy, and oy, (2,t) = ui(z) for all t € [0,1],
z € Op(0xy) (as before, &) C 7% is a closed box such that u; and vgy_; coincide on

[}
Op (2 \Zk)). The difference with the previous steps of the induction is that general position
does not make the sets Imo,, pairwise disjoint. Instead we proceed as follows.

By (Z4), vi—1(Zx) Nui(x},) = w1 (@) Nui(x)) = O for every pair of different k-faces
xi, ). By a standard general position argument, since k < n, we can therefore assume that
Imo,, Nui(x)) =0, and that we have a regular neighbourhood V,, C W§:71_1 of Imoy,,,
such that

Ve, Nuy(zy,) =0 Vay # . (2.2.3)

By (Z5), and since vg_; (&), u1(Zx) are homotopic relative to 0y in V,,, there exists a
Hamiltonian isotopy ( ;k) with support in V,, such that w;k O Vg1 gy, = U1-

Consider now a partition of the set of the k-faces into (2 - 3¥~ 1)k = 2k . 3k(k—1) gubsets
F, (i=1,...,2~. Bk(k_l)), such that any two faces zy,z) € F; are at distance at least
2.3k~ from each other. Then for any i and any pair xy, x) € F; of distinct k-faces, we have
Wg:ﬂ_l N Wj:‘lfl = (). Define (%tw) = kaEJFi@Z)fEk, which is a composition of Hamiltonian
isotopies, compactly supported in the disjoint union Uy, e, W:f: et
we have some x; € F; such that W, N W§:71_1 # (), then the distance between x and xy, is
at most 37!, and hence W;’: Tl W£'3k71_1. We conclude that for any k-face x we have

Vh(We) € WS,

For any k-face z, if



Now, letting (U}) := (lei ok gh(ko1)) K 7 (w,’fml) and arguing as in (2.2.2), we get for any
k-face x
W (W,) ¢ W c w3t

where Ny, = 2F . 38(:=1) . (2. 3k=1 1) < 3k(*k+1) Therefore, (Z3) holds for (¥%).

Finally, 1/1,%71» O Vp_1|0p () = U1|0p (z}) fOr all zx € F;, and by (2.2.3), wﬂlﬁk O Uy |Op (2),) =
U1|0p (2,) fOr any pair of k-faces x) # xp. Thus,

\11,1C O Vg_1|0p () = W1 for every k-face xy, of T,

which just means that ¥} o Vk_10p(D*) = Uijop(pk)- We have verified (Z1) for vy =
\If]i O Vk—1- ]

3 Action of symplectic homeomorphisms on symplectic sub-
manifolds

3.1 Taking a symplectic disc to an isotropic one

We aim now at proving theorem 2. Although it is completely similar to the proof of the
flexibility of the disc area provided in [BO16] once theorem 1 is established, we rewrite
below the argument in our situation for the convenience of the reader. Recall that theorem
1 holds for symplectic embeddings of discs in C3 [BO16, Theorem 2].

Theorem 3.1. Theorem 2 holds when the isotropic embeddings ug, w1 are replaced by sym-
plectic embeddings ug,u1 : D — W such that vjw = ugw = ws.

Proof of theorem 2: Let

ivc : D — CxCxC=0aC?3 w : D — CxCxC
(z,y) — (2,y,0) z — (2,0,0)

be the standard isotropic and symplectic embeddings of D into C3. Let also f; : D(2) —
D, be an area-preserving immersion and

up - D — CxCxC

Then, uy is a symplectic embedding of D into C® with dgo(uy, i) < 2% Let finally consider
an isotropic embedding i} of D into C3 with deo (i}, ux) < % Although less explicit than
the previous embedding in dimension 6, it certainly exists because one can approximate the
standard symplectic embedding ug by isotropic ones of the form z (z,m, 0). We also
define
Wi(8) :={z € C? | d(z,Imuy) < 8}
and WO(e) := {z € C3 | d(2,Imip) < €}.



It is enough to construct a sequence g, 1, . . . of compactly supported in C? symplectic
diffeomorphisms, such that for an increasing sequence of indices kg = 0 < k1 < ko < ...

we have @; o up, = uy, and such that moreover, the sequence ®; = p; 0 ;1 0---0 g
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uniformly converges to a homeomorphism ® of C3. We construct such a sequence ¢; by
induction. Let C* = Uy D Uy D Uy D --- D up(D) be a decreasing sequence of open sets

such that NU; = up(D). In the step 0 of the induction, we let k1 = 1, and choose ¢g to be
any symplectic diffeomorphism with compact support in C? such that g o ug = ug, .

Now we describe a step ¢ > 1. From the previous steps we get k1 < --- < k;, and
symplectic diffeomorphisms g, ..., p;—1. Denote ®;_1 = p;_10---0¢y. By the step ¢ — 1,
we have uy, = ®;_10ug and ®;_1(U;—1) D W'(g;), where g; = 2% The choice for g; implies
that WO(e;) D ug, (D), and moreover by ug, = ®;_1 o ug we get ®;_1(U;) D uy, (D), so we
conclude ®;_1(U;) "1W0(g;) D ug, (D). Hence we can choose a sufficiently large I; > k; such
that ®;_1(U;) "1 WO(e;) D Wy, (6;) D z%l (D), where 6; = 2%1 < ¢;. Note that

1
ol + < 25i7

deo iy o) < deo iy, un,) + deo (ug, o) < 5

o

and moreover ig(D), zggz (D) € W9e;). Hence by the convexity of W9(g;) and by theorem

1, there exists a Hamiltonian diffeomorphism ¢} supported in W9(e;) such that ip = ¢ o zﬁg@

and deo(p),1d) < 4e;. Note that in particular, ¢}(Wy,(5;)) D io(D).

We claim that there exists a homotopy of a small size between the (symplectic) disc ¢} o
uy, and the (isotropic) disc ig, inside @;(W,(d;)). Indeed, the open set W, (d;) contains the
discs uy, (D), Zf’% (D). Also we have dgo(uy,, z%ﬁ) < 0;. Hence the linear homotopy p;(z,t) :=
(1 —t)ug,(2) + tz;’:(z), (2 € D, t € [0,1]), satisfies deo(ug,(2), pi(2,t)) < §; for all z € D,
t € [0,1], and so by definition of the neighbouhood Wi, (é;), this homotopy p; lies inside
Wi, (0;). We moreover conclude that the size of p; is less than ¢;, and therefore the homotopy
@, o p; between ¢} o uy, and ¢ o zf,; = 1p, lies inside ¢}(Wy,(d;)), and has size less than
d; + 8gi < 9¢; (recall that deo (¢}, Id ) < 4e;).

We therefore have ¢;(Wy,(0;)) D io(D), and moreover the homotopy ¢} o p; between
@l o uy, and g, lies inside ¢}(Wk,(d;)), and is of size less than 9¢;,. Hence by choosing a

sufficiently large k;y+1 > k; and denoting ;11 = we get

_1
21“7;4-1 ’

SOQ(W/Q (51)) 2 W0(5i+1) D Ukt (D)>

and moreover the homotopy between ¢} o uy, and uy,,,, given by the concatenation of

@j o p; and of the linear homotopy between g and uy,,, lies in ¢}(Wy, (0;)) and still has size

less than 9¢;. Applying the quantitative h-principle for symplectic discs [BO16], we get a
!

Hamiltonian diffeomorphism ¢!’ supported in ¢}(Wy,(d;)), such that ¢/ o @} o up, = ug
and deo (¢}, 1d) < 18¢;.

41

As a result, the composition ¢; := ¢! o/ is supported in WO(e;) € ®;_1(U;_1), we have

Pi O Uk, = Uk,

@i 0 ®i_1(Us) = @ o g0 ®i_1(U;) D @ 0 (Wi, (6:)) = i (Wi, (6:)) D WO(eit),
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and
deo(Id, ;) < deo (Id,go;) + deo(Id,, Lp;') < 22¢;.

This finishes the step ¢ of the inductive construction.

To summarize, we have inductively constructed a sequence of Hamiltonian diffeomor-
phisms g, @1, . .. with uniformly bounded compact supports in C3, such that:

(i) ¢; has support in WO(g;) € ®;_1(U;_1) where ®; = ¢; 1 0---0 g,
(i) deo(Id, @;) < 22¢; = 22,
(iii) wp,., = @i o ug,.

It follows by (ii) that ®; is a Cauchy sequence in the C° topology, hence uniformly
converges to some continuous map ® : C3> — C3. Next, since uy,,, = ¢; o up, for ev-
ery ¢ > 0, we have ig = ® o ug. Finally, we claim that ® is an injective map, hence a
homeomorphism. To see this, consider two points z # y € Uy = C3. If z,y € uo(D),
then by (iii), ®(z) = ip o ug () # do o ug'(y) = ®(y). If x,y ¢ ug(D), then z,y € °U;
for i large enough, so by (i), ®;(z) = Pj11(x) = Pipa(z) = ... = ®(x), and similarly
®;(y) = ®(y) (because for each j > i, the support of ¢; lies in ®;_1(U;—1) C ®;-1(U;)), so
d(x) = ®;(x) # ®;(y) = ®(y). Finally, if z € ug(D) and y ¢ uo(D), then y € U; for i large
enough, and so ®(y) = ®;(y) € ®;(°U;) C “WO(g;41) by (i). Since ®(x) € Imipg C WO (gi41),
we conclude that also in this case we have ®(z) # ®(y). O

3.2 Relative Eliashberg-Gromov C’-rigidity

Here we address the following question which appeared in our earlier work [BO16]:

Question 1. Assume that a symplectic homeomorphism h sends a smooth submanifold N
to a submanifold N', and that hn is smooth. Under which conditions h*w|n = wy ¢

Of course, that question is non-trivial only when dim N is at least 2, which we assume
henceforth. The question is particularly interesting in the setting of pre-symplectic sub-
manifolds. Recall that a submanifold N C (M, w) is called pre-symplectic if w has constant
rank on M. The symplectic dimension dim“ N of a pre-symplectic submanifold N is the
minimal dimension of a symplectic submanifold that contains IN. One checks immediately
that dim” N = dim IV + Corank w)y.

In [BO16], we answered question 1 in various cases of the pre-symplectic setting. Theo-
rem 2 allows to address almost all the remaining cases. Our next result incorporates these
remaining cases, together with those verified in [BO16]:

Theorem 3. Let N C (M?",w) be a pre-symplectic disc. Then the answer to question 1 is
o Negative if dim*“ N < 2n — 4, or if dim” N = 2n — 2 and Corankw|y > 2.
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e Positive if dim” N = 2n, or if dim“ N = 2n — 2 and Corank w)y = 0.

The only case that remains open is when dim* N = 2n — 2 and Corankwjy = 1 (i.e.
dim N = 2n — 3, Corankwy = 1).

Proof of theorem 3: When dim* N < 2n — 4 and N is not isotropic, the answer is negative
because we can find a symplectic homeomorphism that fixes N and contracts the symplectic
form (by [BO16]). When dim* N < 2n — 2 and r := corankwy > 2, there is a local
symplectomorphism that takes N to [0,1]" x D* x {0} Cl,y % (C’(“Z,) x Cf,y, where m > 1
and 7 > 2. By theorem 2, we can find a symplectic homeomorphism f(z1, 20, w;) of C2 x C
which takes [0, 1]? x {0} to a symplectic disc. The induced map

f C? X Cyy) X C72 x CF x Cm? — "

(21,22)
/ /
(21,22, W1, 23, -y Zpy 215 - o5 2y W2, oy Win) > f(21,20,w1) x Id

is obviously a symplectic homeomorphism which takes N to a submanifold on which the
co-rank of the symplectic form is reduced by 2. Note that this argument also works when
dim“ N < 2n—4 and N is isotropic. The second item of the theorem was proved in [BO16].0J
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