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Abstract

We prove a quantitative h-principle statement for subcritical isotropic embeddings.

As an application, we construct a symplectic homeomorphism that takes a symplectic

disc into an isotropic one in dimension at least 6.

1 Introduction

Gromov’s h-principle lies at the core of symplectic topology, by reducing many questions on

the existence of embeddings or immersions to verifying their compatibility with algebraic

topology. Symplectic topology focuses mainly on the other problems, that do not abide by

an h-principle : Lagrangian embeddings, existence of symplectic hypersurfaces in specific

homology classes etc. In [BO16], we have proved a refined version of h-principle, which in

turn yielded applications to C0-symplectic geometry. For instance, we proved in [BO16] that

in dimension at least 6, C0-close symplectic 2-discs of the same area are isotopic by a small

symplectic isotopy, while in dimension 4, this does no longer hold. A similar quantitative h-

principle was also used in [BHS18] in order to show that the symplectic rigidity manifested

in the Arnold conjecture for the the number of fixed points of a Hamiltonian diffeomorphism

completely disappears for Hamiltonian homeomorphisms in dimension at least 4.

The goal of this note is to prove a quantitative h-principle for isotropic embeddings and

to derive some flexibility statements on symplectic homeomorphisms.

Theorem 1 (Quantitative h-principle for subcritical isotropic embeddings). Let V be an

open subset of Cn, k < n, u0, u1 : Dk ↪→ V be isotropic embeddings of closed discs. We

assume that there exists a homotopy F : Dk× [0, 1]→ V between u0 and u1 (so F (·, 0) = u0,

F (·, 1) = u1) of size less than ε (DiamF ({z} × [0, 1]) < ε for all z ∈ Dk).

Then there exists a Hamiltonian isotopy (Ψt)t∈[0,1] such that Ψ1 ◦ u0 = u1, of size 2ε.

The proof shows that the theorem holds in the relative case, provided u0, u1 are sym-

plectically isotopic, relative to the boundary. The method of the proof of theorem 1 follows

a very similar track as the quantitative h-principle for symplectic discs that we established
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in [BO16]. Paralleling the construction of a symplectic homeomorphism whose restriction

to a symplectic disc is a contraction in dimension 6, we can deduce from theorem 1 the

following statement:

Theorem 2. There exists a symplectic homeomorphism with compact support in C3 which

takes a symplectic disc to an isotropic one.

Of course, by considering products, we infer that there exists symplectic homeomor-

phisms that take some codimension 4 symplectic submanifolds to submanifolds which are

nowhere symplectic.

The note is organized as follows. We prove theorem 1 in the next section. The con-

struction of a symplectic homeomorphism that takes a symplectic disc to an isotropic one

is explained in section 3, where we also explain a relation to relative Eliashberg-Gromov

type questions, as posed in [BO16].
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Conventions and Notations We convene the following in the course of this paper:

• All our homotopies and isotopies have parameter space [0, 1]. For instance (gt) denotes

an isotopy (gt)t∈[0,1].

• Similarly, by concatenation of homotopies we always mean reparametrized concatena-

tion.

• If F : [0, 1] × X → Y is a homotopy with value in a metric space, Size (F ) :=

max{Diam
(
F ([0, 1]× {x})

)
, x ∈ X}.

• For A ⊂ B, Op (A,B) stands for an arbitrarily small neighbourhood of A in B. To

keep light notation, we omit B whenever there is no possible ambiguity.

• A homotopy F : [0, 1]×N →M is said relative to A ⊂ N if it is constant on A.

• A homotopy G : [0, 1]2 × N → M between F0, F1 : [0, 1] × N → M (that is a

continuous map such that G(i, t, z) = Fi(t, z) for i = 0, 1) is said relative to A and

{0, 1} if G(s, t, z) = F0(t, z) = F1(t, z) for all z ∈ A and if G(s, i, z) = F0(i, z) for all

s ∈ [0, 1].
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2 Quantitative h-principle for isotropic discs

The aim of this section is to prove theorem 1.

2.1 Standard h-principle for subcritical isotropic embeddings

We recall in this section the main properties of the action of the Hamiltonian group on

isotropic embeddings, as described in [Gro86, EM02]. To this purpose, we first fix some

notations. In the current note, a disk Dk is always assumed to be closed, unless explicitly

stated (hence an embedding of D inside an open set is always compactly embedded). Since

we only deal with isotropic embeddings, it is enough to prove theorem 1 for subcritical

isotropic embeddings of [−1, 1]k rather than of a closed disc. By abuse of notation, in this

section we denote Dk = [−1, 1]k. The set of isotropic framings Giso(k, n) is the space of

(k, 2n)-matrices of rank k whose columns span an isotropic vector space in (R2n, ωst).

The following statement is a specialization to Cn of the h-principle for subcritical

isotropic embeddings: Recall that the h-principle for subcritical isotropic embeddings pro-

vides existence of isotropic embeddings or homotopies whose derivatives realize homotopy

classes of maps to Giso(k, n). In the following, if A ⊂ Dk, a homotopy of f : Dk → Giso(k, n)

rel Op (A) is a continuous map F : [0, 1] × Dk → Giso(k, n) such that F (t, z) = f(z) for

all z ∈ Op (A). A homotopy G : [0, 1]2 × Dk → Giso(k, n) between F0, F1 : [0, 1] × Dk →
Giso(k, n) (that is a continuous map such that G(i, t, z) = Fi(t, z) for i = 0, 1) is said

relative to Op (A) and {0, 1} if G(s, t, z) = F0(t, z) = F1(t, z) for all z ∈ Op (A) and if

G(s, i, z) = F0(i, z) for all s ∈ [0, 1] and i ∈ {0, 1}.

Theorem 2.1 (Parametric C0-dense relative h-principle for isotropic embeddings [EM02]).

Let k < n:

a) Let ρ : Dk → Cn be a continuous map whose restriction to a neighbourhood of a

closed subset A ⊂ Dk is an isotropic embedding. Assume that dρ is homotopic to a

map G : Dk → Giso(k, n) relative to Op (A). Then, for any ε > 0, there exists an

isotropic embedding u : Dk ↪→ Cn which coincides with ρ on Op (A), dC0(ρ, u) < ε

and such that du : Dk → Giso(k, n) is homotopic to G rel Op (A).

b) Let u0, u1 : Dk ↪→ Cn be isotropic embeddings, which coincide on a neighbourhood

of a closed subset A ⊂ Dk. Let G : [0, 1] × Dk → Giso(k, n) be a homotopy between

du0, du1 rel Op (A) and ρt : Dk → Cn a homotopy between u0, u1 rel Op (A). For any

ε > 0, there exists an isotropic isotopy ut : Dk ↪→ Cn (t ∈ [0, 1]) relative to Op (A)

such that dC0(ρt, ut) < ε and {dut} is homotopic to G rel Op (A) and {0, 1}.

We now state a related statement in a proper situation, when the disc Dk is open,

hence not necessarily compactly embedded into V . The proof is a rather straightforward

application of theorem 2.1, and goes exactly along the lines of the proof of lemma A.3 b)

in [BO16]. We leave the details to the reader.
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Proposition 2.2. Let V ⊂ R2n be a bounded open set, u0, u1 :
◦
Dk ↪→ V be subcritical

isotropic embeddings which coincide on Op (∂Dk), are homotopic relative to Op (∂Dk) in

V , and whose differentials are homotopic in Giso(k, n) relative to Op (∂Dk). We fix such a

relative homotopy G : [0, 1] × Dk → Giso(k, n) between du0 and du1. If k = 1, we further

assume that for a 1-form λ which is a primitive of ω in V ,∫
D1×{0}

u∗0λ =

∫
D1×{0}

u∗1λ.

Then there exists a Hamiltonian isotopy (ψt) with compact support in V such that ψ1 ◦u0 =

u1 and for the induced isotropic isotopy ut = ψt ◦u0, {dut} is homotopic to G rel Op (∂Dk)

and {0, 1}.

The next lemma will be also used in the proof of theorem 1.

Lemma 2.3. Let A,B be two closed subsets of Dk. Let u0, u1 : Dk ↪→ Cn be subcritical

isotropic embeddings that coincide on Op (A). Assume that we are given a homotopy Gt :

Dk → Giso(k, n) between du0 and du1 rel Op (A). Let vt : Dk ↪→ Cn be an isotropic

isotopy between u0 and v1 rel Op (A), such that v1|Op (B) = u1, and such that{dvt|Op (B)} is

homotopic to {Gt|Op (B)} relative to Op (A) and {0, 1}1. Then dv1 and du1 are homotopic

rel Op (A ∪B) among maps Dk → Giso(k, n).

Remark 2.4. In the setting of lemma 2.3, since v1 and u1 are homotopic rel Op (A ∪ B)

(just consider the linear homotopy between them), the lemma and theorem 2.1 immediately

imply that v1 is in fact isotropic isotopic to u1 rel Op (A ∪B).

Proof of lemma 2.3: Consider the homotopy Kt := dvt : Dk → Giso(k, n) between du0

and dv1 relative to Op (A), and the homotopy Gt : Dk → Giso(k, n) between du0 and

du1 rel Op (A), provided by the assumption. Letting Kt := K1−t, we now consider the

concatenation Ht := Kt ? Gt. Since {dvt|Op (B)} is homotopic to {Gt|Op (B)} relative to

Op (A) and {0, 1} (as assumed by the lemma), there exists a homotopy Hs,t (s ∈ [0, 1])

between Ht|Op (B) and It relative to Op (A) and {0, 1}, where It ≡ du1|Op (B) = dv1|Op (B) is

a constant homotopy. Let χ : Dk → [0, 1] be a continuous function such that χ(x) = 0 on

a complement of a sufficiently small neighborhood of B in Dk, and χ(x) = 1 on a (smaller)

neighborhood of B. Now define a homotopy G̃t : Dk → Giso(k, n) (t ∈ [0, 1]) by

G̃t(z) :=

{
Hχ(z),t(z) when z ∈ Op(B),

Gt(z) otherwise.

Then G̃t is a desired homotopy between du1 and dv1 rel Op (A ∪B). �

We will also need the following lemma, which allows to achieve general positions by

Hamiltonian perturbations.

1Recall that this means there exists a continuous map G : [0, 1]2 × Op (B) → Giso(k, n) such that

G(0, t, z) = Gt(z) and G(1, t, z) = dvt(z) ∀(t, z) ∈ [0, 1] × Op (B), G(s, t, z) = du0(z) ∀(s, t, z) ∈ [0, 1]2 ×
Op (A ∩B), G(s, 0, z) = G0(z) = du0(z) and G(s, 1, z) = G1(z) = dv1(z) ∀(s, z) ∈ [0, 1]×Op (B)).
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Lemma 2.5. Let V ⊂ Cn be an open set, Σ1,Σ2 be two smooth submanifolds of V , which

are transverse in a neighbourhood of ∂V . Then there exists an arbitrarily small Hamiltonian

flow (ϕt)t∈[0,1] with compact support in V , such that ϕ1(Σ1) t Σ2.

2.2 Proof of theorem 1

Let k < n, Dk := [−1, 1]k, Dk(µ) := [−1 − µ, 1 + µ]k, u0, u1 : Dk ↪→ V ⊂ Cn be smooth

isotropic embeddings, and F : Dk × [0, 1]→ V a homotopy between u0, u1 with SizeF < ε.

We need to prove that there exists a Hamiltonian isotopy of size 2ε, which takes u0 to u1

on Dk.

Before passing to the proof, we need to modify slightly the framework. First, extend

the isotropic embeddings and the homotopy to slightly larger isotropic embeddings: u0, u1 :

Dk(µ) ↪→ V , F : Dk(µ)× [0, 1]→ V , where Dk(µ) = [−µ, 1 +µ]k. By lemma 2.5, we do not

lose generality if we assume that the images of u0 and u1 are disjoint (since k < n), which

we do henceforth. Next, the homotopy F can be turned into a more convenient object:

Lemma 2.6 (see [BO16, lemma A.1]). There exists a smooth embedding F̃ : Dk(µ) ×
[0, 1] ↪→ V , with F̃ (x, 0) = u0(x), F̃ (x, 1) = u1(x), with Diam (F̃ ({x} × [0, 1])) < 2ε for all

x ∈ Dk(µ). In other words, F̃ has size 2ε when considered as a homotopy between u0, u1.

Now F̃ can be further extended to an embedding, still denoted F̃ ,

F̃ : Dk(µ)× [−µ, 1 + µ]× [−µ, µ]2n−k−1 ↪→ V.

Consider now a regular grid Γ0 := νZk∩Dk in Dk ⊂ Dk(µ), of step ν � 1 (to be specified

later), where ν−1 ∈ N. This grid generates a cellular decomposition of Dk, whose l-skeleton

Γl is the union of the l-faces. The set of k-faces has a natural integer-valued distance, where

the distance between k-faces x and x′ is the minimal m such that there exists a sequence

x = x0, x1, . . . , xm = x′ of k-faces and xj ∩ xj+1 6= ∅ for each j ∈ [0,m − 1] (note that

those intersections are not required to be along full k − 1-faces). Fix some η < ν/2, and

for each x ∈ Γ0, let Ux be the η-neighbourhood of {x} × [0, 1]× {0}2n−k−1 in Cn, and then

denote Wx := F̃ (Ux). Similarly, for each k-face xk, denote by Uxk the η-neighbourhood of

xk × [0, 1]× {0}2n−k−1 in Cn, and then put Wxk := F̃ (Uxk). For a k-face x and m > 0 we

denote Wm
x := ∪Wx′ , where the union is over all the k-faces x′ which are at distance at

most m from x. Note that W 0
x = Wx, and that Wm

x is a topological ball. Finally, we put

W := ∪xWx ⊂ V , where the union is over all the k-faces. Hence, W = F̃ (U) where U is

the η-neighborhood of Dk × [0, 1]× {0}2n−k−1 in Cn.

We will prove theorem 1 by successively isotopying the l-skeleton with a control on each

isotopy. Precisely, arguing by induction on l, we prove the following:

Proposition 2.7. There exist Hamiltonian isotopies (Ψt
l), l ∈ [0, k] with support in W ,

and modified embeddings v0 := Ψ1
0 ◦ u0, vl := Ψ1

l ◦ vl−1, such that

(I1) vl ≡ u1 on a neighbourhood of the l-skeleton Γl, for every l ∈ [0, k].
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(I2) vl(x) ⊂W 3l−1
x for each k-face x and every l ∈ [0, k − 1].

(I3) Ψt
l(Wx) ⊂W 2·3l−1

x for each k-face x and l ∈ [1, k − 1],

and Ψt
0(Wx) ⊂Wx, Ψt

k(Wx) ⊂W 3k(k+1)

x , for every k-face x.

(I4) vl(
◦
xl+1) ∩ u1(

◦
x′l+1) = ∅ for every pair of distinct (l + 1)-faces, ∀l ∈ [0, k − 1].

(I5) dvl and du1 are homotopic rel Op (Γl) among maps Dk(µ) → Giso(k, n), for each

l ∈ [0, k − 1].

Proposition 2.7 readily implies theorem 1. Indeed, denoting by (Ψt)t∈[0,1] the (reparamet-

rized) concatenation {Ψt
k} ? · · · ? {Ψt

1} of the flows, from (I3) we conclude that for each

k-face x and each t we have Ψt(Wx) ⊂ W 3k
2+k+1

x since
(∑k−1

j=1 2 · 3j
)

+ 3k(k+1) < 3k
2+k+1.

The flow (Ψt) is supported in W = ∪x∈ΓkWx ⊂ V , and if the step ν of the grid is chosen

to be sufficiently small, then for each k-face x, the diameter of W 3k
2+k+1

x is less than 2ε.

Consequently, the size of the flow (Ψt)t∈[0,1] is less than 2ε. Moreover, by (I1) we have

Ψ1 ◦ u0 = vk = u1 on Dk. �

Proof of proposition 2.7: As already explained, the proof goes by induction over the dimen-

sion of the skeleton Γl. Since Dk(µ) is contractible, there exists a homotopy Gt : Dk →
Giso(k, n) between du0 and du1.

The 0-skeleton: Let x ∈ Γ0 be a 0-face, ρ < η, and Dρ(x) the ρ-neighbourhood of x

in Dk(µ). Then u0(Dρ(x)), u1(Dρ(x)) both lie in Wx, and F̃ provides an isotopy between

u0|Dρ(x) and u1|Dρ(x) in Wx. By theorem 2.1.b), there exists a Hamiltonian isotopy (ψtx)

with support in Wx, such that ψ1
x ◦ u0 = u1 on Dρ(x) and dψtx ◦ du0 is homotopic to Gt rel

{0, 1}. Since Wx ∩Wx′ = ∅ for different 0-faces x, x′, the isotopies ψx have pairwise disjoint

supports.

The isotopy ψt0 := ◦ψtx, where the composition runs over all 0-faces x of Γ, verifies (I1)

by construction. Moreover, the isotopy satisfies (I3) because it is supported inside the

disjoint union ∪x∈Γ0Wx, and for every x ∈ Γ0 and a k-face x′ we have either Wx ⊂ Wx′ or

Wx∩Wx′ = ∅. However, ψ1
0◦u0 might not verify (I4). Still, since ψ1

0◦u0 coincides with u1 on

a neighbourhood of Γ0, there exist closed balls Bx0 = B(u1(x0), r) ⊂Wx0 for each 0-face x0

of Γ, such that (I4) is verified inside these balls. Therefore the traces of the submanifolds

ψ1
0 ◦ u0(x1) and u1(x′1) inside ∪

x0∈Γ0

(
Wx0\Bx0

)
verify the hypothesis of lemma 2.5, for

every pair of distinct 1-faces x1, x
′
1. Thus an arbitrarily C1-small Hamiltonian perturbation

(ψ̃t) with support in ∪
x0∈Γ0

(
Wx0\Bx0

)
⊂ ∪

x0∈Γ0

Wx0 achieves ψ̃1 ◦ ψ1
0 ◦ u0(x1) t u1(x′1),

for every pair x1, x
′
1 of different 1-faces of Γ (hence these intersections are empty). Now

Ψt
0 := (ψ̃t) ∗ (ψt0) verifies (I4), and still verifies (I1) and (I3). (I2) follows immediately

from (I3), and v0 = Ψ1
0 ◦ u0 satisfies (I5) by direct application of lemma 2.3.

The l-skeleton (1 6 l < n−1): We now assume that Ψ1, . . . ,Ψl−1 have been constructed,

and we proceed with the induction step. Recall that vl−1 = Ψ1
l−1 ◦ · · · ◦ Ψ1

0 ◦ u0 coincides

with u1 on Op (Γl−1) and that vl−1(xk) ⊂W 3l−1−1
xk

for every k-face xk. Recall also that we
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have a homotopy Glt : Dk → Giso(k, n) between dvl−1 and du1 rel Op (Γl−1). Our aim is

now to find a Hamiltonian flow (Ψt
l) which in particular isotopes vl−1|Op (xl) to u1|Op (xl), for

each l-face xl.

Step I: Adjusting the actions of the edges (case l = 1). When l = 1, beside the formal ob-

structions, relative isotopies can be performed via localized Hamiltonians only when the

actions of the edges coincide (see proposition 2.2). In [BO16], we show that there exists a

Hamiltonian isotopy (ψtA), supported in an arbitrarily small neighborhood v0(Γ0) = u1(Γ0),

whose flow is the identity on a (smaller) neighbourhood of the Γ0, such that

A
(
ψ1
A ◦ v0(x1)

)
:=

∫
ψ1
A◦v0(x1)

λ =

∫
u1(x1)

λ = A
(
u1(x1)

)
for every 1-face x1 of Γ,

and ψ1
A ◦v0(

◦
x1)∩u1(

◦
x′1) = ∅ for each pair of distinct 1-faces x1, x

′
1 of Γ. Since ψtA ≡ Id near

Γ0, Ψ̃t
0 := ψtA ◦Ψt

0 and v′0 := Ψ̃1
0 ◦ u0 still verify (I1− 5). In other terms, replacing (Ψt

0) by

(Ψ̃t
0) and v0 by v′0, we can freely assume that A

(
v0(x1)

)
= A

(
u1(x1)

)
for each 1-face x1.

Step II: Isotopying the l-skeleton. Fix an l-face xl of Γ. By (I1), there exists a closed box

x̂l ⊂
◦
xl such that vl−1 and u1 coincide on Op (xl\

◦
x̂l). Choose a k-face xk which contains xl.

Since u1(x̂l) and vl−1(x̂l) both lie in the topological ball W 3l−1−1
xk

and coincide near their

boundary, there exists a homotopy

σxl : x̂l × [0, 1]→W 3l−1−1
xk

such that σxl(·, 0) = vl−1, σxl(·, 1) = u1, and σxl(z, t) = u1(z) ∀z ∈ Op (∂x̂l), t ∈ [0, 1].

Since x̂l b xl and l < n, (I4) allows to use a general position argument to ensure that

moreover Imσxl admits a regular neighbourhood Vxl ⊂ W 3l−1−1
xk

(a topological ball), such

that all these neighbourhoods Vxl are pairwise disjoint when xl runs over the l-faces (this

is the only point in the proof where we need that l < n− 1).

By assumption, there exists a homotopy Gtl : [0, 1]×Dk → Giso(k, n) between dvl−1 and

du1, with Gtl|Op (Γl−1) = du1 = dvl−1. Also, vl−1|x̂l is clearly homotopic to u1|x̂l rel Op (∂x̂l)

in Vxl , and when l = 1, A(vl−1 ◦ xl) = A(u1 ◦ xl). Hence by proposition 2.2, there exist

Hamiltonian diffeomorphisms ψtxl , where xl runs over the l-faces, which have support in Vxl ,
and are such that ψ1

xl
◦ vl−1|x̂l = u1, and d(ψtxl ◦ vl−1) are homotopic relative to Op (∂x̂l)

and {0, 1} to Gtl|x̂l . Let now ψtl := ◦ψtxl and v̂l := ψ1
l ◦ vl−1. Since the (ψtxl) have pairwise

disjoint supports, we have v̂l|xl = u1|xl for each l-face xl of Γ. Hence v̂l and u1 coincide on

a neighbourhood of the l-skeleton of Γ, so v̂l verifies (I1). By lemma 2.3, v̂l verifies (I5) as

well.

The flow (ψtl ) is supported in the disjoint union ∪xl∈ΓlVxl . Let x be any k-face, and

assume that we have an l-face xl such that Vxl ∩Wx 6= ∅. Let xk ⊃ xl be a k-face as above,

so that Vxl ⊂ W 3l−1−1
xk

. Then the distance between x and xk is not larger than 3l−1, and

we conclude Vxl ⊂ W 3l−1−1
xk

⊂ W 2·3l−1−1
x . To summarise, for any k-face x, if xl is an l-face

with Vxl ∩Wx 6= ∅, then Vxl ⊂W 2·3l−1−1
x . As a result, we get

ψtl (Wx) ⊂W 2·3l−1−1
x . (2.2.1)
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The embedding v̂l may fail to satisfy (I4): there might be two different l + 1-faces

xl+1, x
′
l+1 such that

v̂l(
◦
xl+1) ∩ u1(

◦
x′l+1) 6= ∅.

Notice however that since v̂l and u1 coincide on a neighbourhood of Γl, the set v̂l(xl+1) ∩
u1(x′l+1) is compactly contained in W\u1(Γl). By lemma 2.5, there exists an arbitrarily

small Hamiltonian flow (ϕtl)t∈[0,1], with compact support in W\Γl such that vl := ϕ1
l ◦ v̂l

verifies (I4). By the smallness of the flow (ϕtl) and by (2.2.1), the flow (Ψt
l) := (ϕtl) ∗ (ψtl )

satisfies Ψt
l(Wx) ⊂W 2·3l−1

x for any k-face x. Hence (I3) holds for (Ψt
l). Since the support of

(ϕtl) is compactly contained in W\Γl, (I1) and (I5) still holds for vl. Finally, (I2) follows

as well: if x is any k-face, then by assumption, vl−1(x) ⊂ W 3l−1−1
x , hence by (2.2.1) and

(I3) we get

vl(x) = Ψ1
l ◦ vl−1(x) ⊂ Ψ1

l (W
3l−1−1
x ) =

⋃
d(x,y)63l−1−1

Ψ1
l (Wy) ⊂

⊂
⋃

d(x,y)63l−1−1

W 2·3l−1

y = W 3l−1−1+2·3l−1

x = W 3l−1
x .

(2.2.2)

The k-skeleton: When k < n−1, the procedure described above works perfectly. However,

when k = n − 1, the last step of the induction requires some adjustment. As before, for

every k-face xk, vk−1(xk) and u1(xk) both lie in the topological ball W 3k−1−1
xk

and coincide

near the boundary, hence there exist homotopies

σxk : x̂k × [0, 1]→W 3k−1−1
xk

such that σxk(·, 0) = vk−1|xk , σxk(·, 1) = u1|xk and σxk(z, t) = u1(z) for all t ∈ [0, 1],

z ∈ Op (∂xk) (as before, x̂k ⊂
◦
xk is a closed box such that u1 and vk−1 coincide on

Op (xk\
◦
x̂k)). The difference with the previous steps of the induction is that general position

does not make the sets Imσxk pairwise disjoint. Instead we proceed as follows.

By (I4), vk−1(x̂k) ∩ u1(x′k) = u1(x̂k) ∩ u1(x′k) = ∅ for every pair of different k-faces

xk, x
′
k. By a standard general position argument, since k < n, we can therefore assume that

Imσxk ∩ u1(x′k) = ∅, and that we have a regular neighbourhood Vxk ⊂ W 3k−1−1
xk

of Imσxk ,

such that

Vxk ∩ u1(x′k) = ∅ ∀xk 6= x′k. (2.2.3)

By (I5), and since vk−1(x̂k), u1(x̂k) are homotopic relative to ∂x̂k in Vxk , there exists a

Hamiltonian isotopy (ψtxk) with support in Vxk such that ψ1
xk
◦ vk−1|xk = u1.

Consider now a partition of the set of the k-faces into (2 · 3k−1)k = 2k · 3k(k−1) subsets

Fi (i = 1, . . . , 2k · 3k(k−1)), such that any two faces xk, x
′
k ∈ Fi are at distance at least

2 ·3k−1 from each other. Then for any i and any pair xk, x
′
k ∈ Fi of distinct k-faces, we have

W 3k−1−1
xk

∩W 3k−1−1
x′k

= ∅. Define (ψtk,i) := ◦
xk∈Fi

ψtxk , which is a composition of Hamiltonian

isotopies, compactly supported in the disjoint union ∪xk∈FiW 3k−1−1
xk

. For any k-face x, if

we have some xk ∈ Fi such that Wx ∩W 3k−1−1
xk

6= ∅, then the distance between x and xk is

at most 3k−1, and hence W 3k−1−1
xk

⊂W 2·3k−1−1
x . We conclude that for any k-face x we have

ψtk,i(Wx) ⊂W 2·3k−1−1
x .
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Now, letting (Ψt
k) := (ψt

k,2k·3k(k−1)) ∗ · · · ∗ (ψtk,1) and arguing as in (2.2.2), we get for any

k-face x

Ψt
k(Wx) ⊂WNk

x ⊂W 3k(k+1)

x ,

where Nk = 2k · 3k(k−1) · (2 · 3k−1 − 1) < 3k(k+1). Therefore, (I3) holds for (Ψt
k).

Finally, ψ1
k,i ◦ vk−1|Op (xk) = u1|Op (xk) for all xk ∈ Fi, and by (2.2.3), ψ1

x′k
◦ u1|Op (xk) =

u1|Op (xk) for any pair of k-faces x′k 6= xk. Thus,

Ψ1
k ◦ vk−1|Op (xk) = u1 for every k-face xk of Γ,

which just means that Ψ1
k ◦ vk−1|Op (Dk) ≡ u1|Op (Dk). We have verified (I1) for vk :=

Ψ1
k ◦ vk−1. �

3 Action of symplectic homeomorphisms on symplectic sub-

manifolds

3.1 Taking a symplectic disc to an isotropic one

We aim now at proving theorem 2. Although it is completely similar to the proof of the

flexibility of the disc area provided in [BO16] once theorem 1 is established, we rewrite

below the argument in our situation for the convenience of the reader. Recall that theorem

1 holds for symplectic embeddings of discs in C3 [BO16, Theorem 2].

Theorem 3.1. Theorem 2 holds when the isotropic embeddings u0, u1 are replaced by sym-

plectic embeddings u0, u1 : D ↪→W such that u∗1ω = u∗0ω = ωst.

Proof of theorem 2: Let

i0 : D −→ C× C× C = C3,

(x, y) 7−→ (x, y, 0)

u0 : D −→ C× C× C
z 7−→ (z, 0, 0)

be the standard isotropic and symplectic embeddings of D into C3. Let also fk : D(2) →
D1/2k be an area-preserving immersion and

uk : D −→ C× C× C
(x, y) 7−→ (x, y, fk(x+ iy)).

Then, uk is a symplectic embedding of D into C3 with dC0(uk, i0) < 1
2k

. Let finally consider

an isotropic embedding ilk of D into C3 with dC0(ilk, uk) <
1
2l

. Although less explicit than

the previous embedding in dimension 6, it certainly exists because one can approximate the

standard symplectic embedding u0 by isotropic ones of the form z 7→ (z, fl(z), 0). We also

define
Wk(δ) := {z ∈ C3 | d(z, Imuk) < δ}

and W 0(ε) := {z ∈ C3 | d(z, Im i0) < ε}.
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It is enough to construct a sequence ϕ0, ϕ1, . . . of compactly supported in C3 symplectic

diffeomorphisms, such that for an increasing sequence of indices k0 = 0 < k1 < k2 < . . .

we have ϕi ◦ uki = uki+1
, and such that moreover, the sequence Φi = ϕi ◦ ϕi−1 ◦ · · · ◦ ϕ0

uniformly converges to a homeomorphism Φ of C3. We construct such a sequence ϕi by

induction. Let C3 = U0 ⊃ U1 ⊃ U2 ⊃ · · · ⊃ u0(D) be a decreasing sequence of open sets

such that ∩Ui = u0(D). In the step 0 of the induction, we let k1 = 1, and choose ϕ0 to be

any symplectic diffeomorphism with compact support in C3 such that ϕ0 ◦ u0 = uk1 .

Now we describe a step i > 1. From the previous steps we get k1 < · · · < ki, and

symplectic diffeomorphisms ϕ0, . . . , ϕi−1. Denote Φi−1 = ϕi−1 ◦ · · · ◦ ϕ0. By the step i− 1,

we have uki = Φi−1 ◦u0 and Φi−1(Ui−1) ⊃W 0(εi), where εi = 1
2ki

. The choice for εi implies

that W 0(εi) ⊃ uki(D), and moreover by uki = Φi−1 ◦ u0 we get Φi−1(Ui) ⊃ uki(D), so we

conclude Φi−1(Ui)∩W 0(εi) ⊃ uki(D). Hence we can choose a sufficiently large li > ki such

that Φi−1(Ui) ∩W 0(εi) ⊃Wki(δi) ⊃ i
li
ki

(D), where δi = 1
2li
6 εi. Note that

dC0(iliki , i0) 6 dC0(iliki , uki) + dC0(uki , i0) <
1

2li
+

1

2ki
6 2εi,

and moreover i0(D), iliki(D) ⊂ W 0(εi). Hence by the convexity of W 0(εi) and by theorem

1, there exists a Hamiltonian diffeomorphism ϕ′i supported in W 0(εi) such that i0 = ϕ′i ◦ i
li
ki

and dC0(ϕ′i, Id ) < 4εi. Note that in particular, ϕ′i(Wki(δi)) ⊃ i0(D).

We claim that there exists a homotopy of a small size between the (symplectic) disc ϕ′i ◦
uki and the (isotropic) disc i0, inside ϕ′i(Wki(δi)). Indeed, the open set Wki(δi) contains the

discs uki(D), iliki(D). Also we have dC0(uki , i
li
ki

) < δi. Hence the linear homotopy ρi(z, t) :=

(1 − t)uki(z) + tiliki(z), (z ∈ D, t ∈ [0, 1]), satisfies dC0(uki(z), ρi(z, t)) < δi for all z ∈ D,

t ∈ [0, 1], and so by definition of the neighbouhood Wki(δi), this homotopy ρi lies inside

Wki(δi). We moreover conclude that the size of ρi is less than δi, and therefore the homotopy

ϕ′i ◦ ρi between ϕ′i ◦ uki and ϕ′i ◦ i
li
ki

= i0, lies inside ϕ′i(Wki(δi)), and has size less than

δi + 8εi 6 9εi (recall that dC0(ϕ′i, Id ) < 4εi).

We therefore have ϕ′i(Wki(δi)) ⊃ i0(D), and moreover the homotopy ϕ′i ◦ ρi between

ϕ′i ◦ uki and i0, lies inside ϕ′i(Wki(δi)), and is of size less than 9εi. Hence by choosing a

sufficiently large ki+1 > ki and denoting εi+1 = 1

2ki+1
, we get

ϕ′i(Wki(δi)) ⊃W
0(εi+1) ⊃ uki+1

(D),

and moreover the homotopy between ϕ′i ◦ uki and uki+1
, given by the concatenation of

ϕ′i ◦ρi and of the linear homotopy between i0 and uki+1
, lies in ϕ′i(Wki(δi)) and still has size

less than 9εi. Applying the quantitative h-principle for symplectic discs [BO16], we get a

Hamiltonian diffeomorphism ϕ′′i supported in ϕ′i(Wki(δi)), such that ϕ′′i ◦ ϕ′i ◦ uki = uki+1

and dC0(ϕ′′i , Id ) < 18εi.

As a result, the composition ϕi := ϕ′′i ◦ϕ′i is supported in W 0(εi) ⊂ Φi−1(Ui−1), we have

ϕi ◦ uki = uki+1
,

ϕi ◦ Φi−1(Ui) = ϕ′′i ◦ ϕ′i ◦ Φi−1(Ui) ⊃ ϕ′′i ◦ ϕ′i(Wki(δi)) = ϕ′i(Wki(δi)) ⊃W
0(εi+1),
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and

dC0(Id , ϕi) 6 dC0(Id , ϕ′i) + dC0(Id , ϕ′′i ) < 22εi.

This finishes the step i of the inductive construction.

To summarize, we have inductively constructed a sequence of Hamiltonian diffeomor-

phisms ϕ0, ϕ1, . . . with uniformly bounded compact supports in C3, such that:

(i) ϕi has support in W 0(εi) ⊂ Φi−1(Ui−1) where Φi = ϕi−1 ◦ · · · ◦ ϕ0,

(ii) dC0(Id , ϕi) < 22εi = 22
2ki

,

(iii) uki+1
= ϕi ◦ uki .

It follows by (ii) that Φi is a Cauchy sequence in the C0 topology, hence uniformly

converges to some continuous map Φ : C3 → C3. Next, since uki+1
= ϕi ◦ uki for ev-

ery i > 0, we have i0 = Φ ◦ u0. Finally, we claim that Φ is an injective map, hence a

homeomorphism. To see this, consider two points x 6= y ∈ U0 = C3. If x, y ∈ u0(D),

then by (iii), Φ(x) = i0 ◦ u−1
0 (x) 6= i0 ◦ u−1

0 (y) = Φ(y). If x, y /∈ u0(D), then x, y ∈ cUi
for i large enough, so by (i), Φi(x) = Φi+1(x) = Φi+2(x) = ... = Φ(x), and similarly

Φi(y) = Φ(y) (because for each j > i, the support of ϕj lies in Φj−1(Uj−1) ⊂ Φj−1(Ui)), so

Φ(x) = Φi(x) 6= Φi(y) = Φ(y). Finally, if x ∈ u0(D) and y /∈ u0(D), then y ∈ cUi for i large

enough, and so Φ(y) = Φi(y) ∈ Φi(
cUi) ⊂ cW 0(εi+1) by (i). Since Φ(x) ∈ Im i0 ⊂W 0(εi+1),

we conclude that also in this case we have Φ(x) 6= Φ(y). �

3.2 Relative Eliashberg-Gromov C0-rigidity

Here we address the following question which appeared in our earlier work [BO16]:

Question 1. Assume that a symplectic homeomorphism h sends a smooth submanifold N

to a submanifold N ′, and that h|N is smooth. Under which conditions h∗ω|N ′ = ω|N ?

Of course, that question is non-trivial only when dimN is at least 2, which we assume

henceforth. The question is particularly interesting in the setting of pre-symplectic sub-

manifolds. Recall that a submanifold N ⊂ (M,ω) is called pre-symplectic if ω has constant

rank on M . The symplectic dimension dimωN of a pre-symplectic submanifold N is the

minimal dimension of a symplectic submanifold that contains N . One checks immediately

that dimωN = dimN + Corankω|N .

In [BO16], we answered question 1 in various cases of the pre-symplectic setting. Theo-

rem 2 allows to address almost all the remaining cases. Our next result incorporates these

remaining cases, together with those verified in [BO16]:

Theorem 3. Let N ⊂ (M2n, ω) be a pre-symplectic disc. Then the answer to question 1 is

• Negative if dimωN 6 2n− 4, or if dimωN = 2n− 2 and Corankω|N > 2.
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• Positive if dimωN = 2n, or if dimωN = 2n− 2 and Corankω|N = 0.

The only case that remains open is when dimωN = 2n − 2 and Corankω|N = 1 (i.e.

dimN = 2n− 3, Corankω|N = 1).

Proof of theorem 3: When dimωN 6 2n− 4 and N is not isotropic, the answer is negative

because we can find a symplectic homeomorphism that fixes N and contracts the symplectic

form (by [BO16]). When dimωN 6 2n − 2 and r := corankω|N > 2, there is a local

symplectomorphism that takes N to [0, 1]r ×Dk × {0} ⊂ Cr(z) × Ck(z′) × Cm(w), where m ≥ 1

and r ≥ 2. By theorem 2, we can find a symplectic homeomorphism f(z1, z2, w1) of C2×C
which takes [0, 1]2 × {0} to a symplectic disc. The induced map

f̃ : C2
(z1,z2) × C(w1) × Cr−2 × Ck × Cm−1 −→ Cn

(z1, z2, w1, z3, . . . , zr, z
′
1, . . . , z

′
k, w2, . . . , wm) 7−→ f(z1, z2, w1)× Id

is obviously a symplectic homeomorphism which takes N to a submanifold on which the

co-rank of the symplectic form is reduced by 2. Note that this argument also works when

dimωN 6 2n−4 andN is isotropic. The second item of the theorem was proved in [BO16].�
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