
SOME REMARKS ON A TIIEOREM OF M.J.GREENBERG.

Norbert SCHAPPACHER.

BY

Institut des Hautes E tudes
35, route de Chartres

91440 Bures-sur-Yvette

IHES/Sept 79h4/3O3

Scienrifiques



wit

-1-

SOME REMARKS ON A THEOREM OF

M. J. GREENBERG .

By Norbert SCITAPPACHER (c'6ttingen )

The theorem rt'e are alluding Eo ls the main result in fcl], to

(0. ) l,et f = (ft,...,fr) € (n 11 ,..., x"1)r, where R is an

excellent henselian dLscrete valuatlon ripg. Then rhere exist 0 S ",
d € E., 0 a UOa 1, clepending on f, such that for all x 6 Rs ancl all
real 0<o51 : if ltxl <oc.d, then there i" y€Rs satisfying
fy= 0, and l*-yl.o.

Here I t denotes the (nul tip l lcatlve ) valuation R+ R as well. as

the max-norm on Rs.

Usually, of course, the result ls stated in terms of an additive
valuation, or even congrueDce mod. powers of the maximal ideal of R.

And it is ln thls form that Greenbergts theorem is to be regarded as the

first example of an |tApproximation Theoremrr (in M. Artlnts sense) for a

class of excellent noetherian local hensel rings; see I A ] . But the
particularly simple formula of (0. ) , telling us how much betler we

have to approximate 0 by fx ln order to find an actual root of f
in a prescrlbed neighborhood of x, is not retained in the more general

situatlons. (It should be noted, however, rhat G. Pflster and D.popescu,

following ideas of M. Artin, showed that the lifting of approximaEe

zeros is always controlled by some rrapproximation functiont', once

approximation of formal roots is at all possible. See [PPl and [Kp],
Kap. II. ) Thus it seems interestlngg6 stlck !o Ehc one-dimensional
case, and Lry to elucidaLc a bit the nature of Che c()nstants c and

d rrf (o. ).
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As for both c and d (i.e., their best posslble choices), they are

trivially invariants of rhe ideal f.Rfxl ; * = (\,...., X"). But since
(0. ) clearly holds for f€ KIX]r (rhere K is rhe quorient fielrl of R)

it seems clumsy not to invoke the geometry over K . In so doing,we
deliberately sacrifice a1l invariance properties of d

(e.g., multlply f by a non-unit in R) and will frorn now on restrict
attention Co the constant c which does renain an invariant
of the ideal f. K[Xl. But since an automorphism of K[X'l may swirch points
of Rs to points with non-integral components, c is certainly noE an

lnvarlant of the algebraic geometry over K. The pecuLiar role which R c K

plays in (0. ) is not germane to algebraic geometry.

l{hen lnvestigatlng c we may as well suppose K to be complete
with repect t'o | | , b"car-t". by (0. ) we can a fortiorl approxirnate
zeros in the completion arbitrarily wel1, by K-rational points.

K being conplete, power series suggest themselves (see, e.g., the use
of Puiseux Expansion ln (3.6)be1ow).If ne want to 1et f consist of
power serles rather than polynomials, we have to insist, for (0. ) to
make sense, that they be convergent on all of Rs. That is to say , we

are naturally led to replace K[Xl wlth the Banach algebra * G>tt 
'rstrictlv

convergenlrr power series, and use non-archimedean analysis as initiatcd by'.latefT].

At thls polnt there is no reason to exclude non-archimedean fields
which are not dlscretely (but still. real-) valued -e.g , the case K

algebraically closed will be interesting.

I! Eurns out (see 51 below) that (0. ) generalizes to the situation

f e x(x) r , and c can easily be seen to be invarianE under auto-

norphi.sms of l(-) . whether invariance holds for isomorphisms

K (t/(f ) g*(t / (g) as well, is one of the interesting problems to

which we do not know the general anstter yet.

Substituting Rs , ln the statement of (0. ) , by smaller and

smaller neighborhoods of a fixed z € Rs produces in rhc limi.t a constant

c(frz) which can be shonrn to be an invarlant of the local ring KlxJ/(f-.)
of f at z. The quesEion arises whether the old (t'global") c ls not

greater than sup | .(frz) : z 6 ns]. We can l)rove thl:j (and thcrcby sotvt'

the invariance problem for the global c) in sotttc special situaLions; ()n Lhc

other hand, we do not know any counlerexanPle'
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$1 THE TIIEOREM

If not specified otherwise, K w111 denote a field which is
complete with respect to the non-trlvlal non-archimedean (multlpllcative)
valuation | | ' r ---t E. R is lLs valuation ring. r() r."p. KIX],
denote the ring of strictly convergent (i.e., the coefflcients converge

to 0 in K), resD. convergent (in some nelghborhood eg the origin)
power series ln X = q, .,., Xs). The Banach norm on XllN ls again 

s
denoted by ll,lv?$"ru. *u l=max l.ul; so is rhe max-norm on K.

Let f = (fr, ..., fr) € K(x), oJ the ideal of x(x)senerated br
f ; and e = K (Xt/or, the rraf finold rr algebra of f.

(1 .1) Theorern : There exist real constants c 
= 

0 and d, 0< d < I,
dependlng on f, such that for aLl x € Rsrand all real s,0<q < Lrtt 1f*1ao".A

then there Ls y €Rs, fy = 0, such lhat l"-yl .o.
Proof : Folloh'lng creenberg [G1-]rwe ler f € R (X) for simpliciry; assume

without loss of generallty that d., ls prime, and induct on dim A, ihe
case dim A = -1 being trivial. There are then two cases to consider.

Case 1. A analytlcally separable over K

This means A 1s absolutely reduced or, equivalently,
is reduced, if p = char (K) > 0. (See [BKl 4.2, 4.4)
For a rnulri-index 1= (1r,...,1rr), lS11 ....<i
ler Dl denore rhe ldeal generated ln R (x\ bf the n

the jacobian (a fi / a X.), and F. the conducror
V

n Q rr/n

< r 1 < n < s-n-
; n minors of
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Then for a system

generating XDi.ui. *(t, the

irreducible components of the locus of (frg) have smaller dimension
than A since we are in the separable case. Thus there are constants
ct, dt, for (f ,g) r say c?2 I and dt < I , and we may take a shortcut
through Greenbergrs original argument in this case by invoking R. Elkikts
version of Henselrs lemma (see I E l, p. 555-558, noting her remarks p.560
and 587 f. ). This tells us that for all 0 < o S 1, x ( Rs such that

t
lf"l .a< lexl', thereis y€Rs, fy=0, sarisfyine l"-Vl <a/lg*1.
So we may choose c = 2ct and d = d'2 for t..

Cgse 2. A analytically inseparable over K.

rhere is I € nl/p (r) *ni"h is nor in ouxl/P (x)ru"t
gp € t.n(). Pick a complere field x.P c rr c K conraining all rhe

coefficients of gp , such that Kt is a KP-Banach space of countable
type. Let lbrr] be a topological KP-base of Kt.
(In this situation even topological p-bases always exist : lKl11.4.)
Then { U-'( is t-orthogonal for some 0 < t S I by rhe closed graphunJ
theorem ( tn] , 3.7), i.e for any {".r1 c KP which make X rr,. b'

convergent one has I X rrrb, | > t. max l.rrbr, l.

Therefore we can write :

cn € K (x).
Then not all gn €dl because

So by induction we get ct , d t

and clearly c = p.ct and d

ideals in

for Lhe

=t.mi.n

DDor=\roroLbn

*1t/r)gx) are

system (frgr, ),
o

(1, lbr, !). d'P
o

' br, ' where

closed, [cRf] IS4.

for some oo ,

will do for t.

REMARKS.

1) From G. Pfister I learned the particularly nice i<lea to write gp

in a KP -base; see [Kp I, p. L25.

2) tn a oberwolfach talk, recorded in [0], I,I.D. Geyer gave a Proof of
the inscl>arable case of (0. ) which, ln esscncc amounts to a di[-
fcrcntiatc:tl vr'rslon rrf Ehe'arllunlent givcn in casc 2 abovc. Sufflcr. lt
to say Ehat Gcycrrs proof can also be carricd ovcr to the analytic sct-
ting of (1.1) using rhc (absolute ) module of continuous diffcrentials

0(li/rip) , which is constructed by an appropriate
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generallzatlon of [BKl S 2. (One has to be a llttle careful about working

with the general Banach tensor products, in case [X: fp1 ls -.)
3) M. Kneser [Kn] gives an elementary proof of (0. ) tn characteristic 0,

covering also the rrglobalrr version of the theorem as in [C2]. xe

lnducts on a partlal orderlng of the systems of polynomlals. Uslng

weierstrag preparation for K (x)([c\1, rlZ), thereby maklng it sllghrly
less elementary, thls proof can be rnodifled to yield (1 .1) in charac-

teristic 0.

4)The following lnformations I ove to R. Transier:

a) writing congruences rnod.fx 6 R : v(x) 3 oJ, ana lettlng d

be in the value group I of the (additive) valuatLon v, Greenbergrs

argument should yleld (the addltive form of ) (0. ) ln characterlstlc
0, at least if 1.4t Rn , i.e. v has f1nig" 

""n1,
b) A model -theoretlc approach to (0. ) and various strong ap-

proxlmatLon theorems ls glven ln [BDl.

(l .2) Corollary : Any f ldthout zeros in Rs has the set {1f*1 , * € R"]

bounded away frm zero.

write c(frns) for the mlnfinal c > 0 such that there is d verlfylng the

clairn of (1 .1) . so c(f,ns; = I ln (1 .2).

(1 .3) Corollary : If f has only simple zeros in Rs, rhen c(f,Rs) < 1.

Proof : Apply Elkikrs lemna to f, using g is bounded away from 0.

Slmilarly one gets :

(f .4) If the slngular set of f on Rs ls srnooth, and (f,g)(where g

ls as in Elkik's lenrna ) glves lt the reduced structure, then c(frRs) < 2.

In the lniroductLon we anticlpated :

(1 .5) Proposition : c(f, Rs) ls an invariant of ov, and does not change

under automorphlsms of K (X).
Proof: The flrst clairn is clear since each series ln K (X) has bounded

denominators. For the second note Ehat every automorphism is an isometry.

[CRl] , Ig1.3, and thus induces an sutomorphlsm of Rs. In fact, even d

is invariant under automorphisurs.

(1 .5) Questlon : Is "(f, n") invariant under dlfferent represenrations
of A?
At presenE we do not see how to attack thls problem directly.
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S2 THE POINTWISE CONSTANT

I,te add to the notation introduced so far : c(f,U) , for any

U c Rs , ls the mlnlmal c > 0 such that the claim of (1 .1) holds for
some 0<d<l r with Rs replaced by U everywhere. Note that c(f,U)
may be o. On lbe other hand, the pointwise constant

c(f,z) = inf{c(f,U) i z QU cRs open]

is certsinly finite for any z 6 Rs by (l .1). Moreover from the ultrametric
property of | 1 it fottows Ehat ln the definltion of c(f,z) it suffices
to inf over all sma1l potydisks around z. TrivlaLly one has

c(frz) = c(f", o) for the Taylor expansion f. of f aE z.

Note that c(f,z) is defined whenever f is convergent near z.

(2.1) Proposition : c(f,z) is an invariant of the local ring
Kl x l/f . K {xl.z)

Proof : That c(f,z) is an invariant of f.Klxl, follows from (1 .5) and

the fact that f(ax) € K (x) t for suitable a € K* . Similarly, the

coordlnale series of a substitutlon automorphlsm cp of K { Xl may Ue

, supposed to lie in RIXJ, which gives c(cPt,u) = c(f ,gU) for srnall U,and

hence invarlance under g ,because q 1s locally invertible, Finally,
the general case can be reduced to lhaE of an automorphism by lcRll,
II 5 3.5, using (2.3) below.

(2.2) Corollary : If z is a simple point of f , then e(frz) = l.
Proof : Implicit functlons !

For any g € K (X) write m(g) for the lowest degree of a monomlal

occuring in g; and rn(f ) = minl m(fr) : 1=l i S rl. we already used:

(2.3) Proposttion : c(f,0) > m(f).
This fol lows easily from
(2.4) Lermna : There ls a constant y € R, dependlng on f, such that for
all sufficlently small g,att 0<c,<By=y, there is x€Rs
satisfying l"l . o/V and lx-yl ?q for all- y€Rs, fy=0, lyl .S.

Proof : Define the analytic tangent cone to f at 0: C , to be the set of al1

* € Ks such that there exi.st sequences lVrl c n"rall fy. = 0 , and

lar] c r satlsfying lim y. = I "n6 lim a..y, = x.
This ls a closed proper (f f 0) subset of Ks which approximares rhe

locus of f near 0. Ilence we find the xrs of the lemnn in the conc

over a smal1 (ttytt) open set not neeting C.
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(2.5) Gorollary : For z6Rs:

f.z*o (+ c(f,z) = 0 € O=c(f,z)<1
z slmple pr. of f € c(f,z) =1 € lgc(f,z) <2

Here the proof of the last equivalence requires plcki.ng suitable co-

ordLnates, and a reflnement of (2.4)r which says that c(f,0) 2 m(g) for
a subsystem g of f such that the tangent cone of the co'mplemenE of
g in f is strictly blgger thaD that of f.

Note : we do not knol, any s^ngularity with 2 < c(trz) < 3.

No conjecture ls made that the folLowing statement is valid ln general :

(2.5) Proposition : c(f,Rs) = sup lc(f,z) : z 6 ns] , ln each of the fol:
lowing cases :

(i) K ls locally compact

(ii) f has only finitely many singular points in Rs

Proof : Only "3" requlres proof, and (i) is s traight forward.

Lettlng g be as in Elkikrs lemllra, (frg) is bounded away from 0, by (1 .1),
outslde slnal1 disks around the flnitely many singularitie s.( ii ) now follows easlly.

Uslng (2.5) we see tha! (2.5) holds also in the special situatLon of (1 .4).
From (2.I) we get :

(2.7) CorolLary : Under any of the assumptions in (2.6) ,question (1 .6)
has a positive answer.

s 3 ExAurr^ns AlrD A FoRMUIA

(3.1) If K is algebraically closed and f € K (X) a hypersurface, then

c(f,0) = m(f ).

Proof : Choose X- transversal to f at 0 , and apply wei.erstrap
s

Preparalion in xlx] ro find "S'. "J' follows from (2.3).

(3.2) In rhe sLruatLon of (3.1), c(f,Rs) <fi (f) , where T (f1 ls rhe

highest degree of a monomial. ln f having the same K (X) -norm as f.

Proof : By [GRllr p. 407 , we can choose coordlnates such that ileierstraF
Preparation in K (X), applled to f , giv.s a polynomial of degree 'iii\f ).

Note that, usually, ft(f) * suplm(f") : z € R"J , so that (3.2) ren,ls ro
be far from best possible. Also note that (3.2) irnplies c(f,ns) < deg f,-
lf f ls a polynomlal.

(3.3) Question : Is c(f,Rs) < deg f, for f € K[X'] , over any field K
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(at least, if f ts honogeneous) ?

(3.1) generalizes to systems of equatlons (giving the maximal m(fr) as

c), providecl that the tangent cones of the slngle equations are lwide

enough aparEt' from each other. Unfortunately we do not have any smooth

theorem to offer on this; but there should be equality between c(f,0)
and the maximal finite component of Hironakars invariant v*{1tt1 ,p.15S),

for a class of rrnLce transversalrr complete intersections over algebraically

closed flelds. On Ehe other hand, no general result can be expected :

(3.4) Exarnple : Over any comPlete K ; for all integefs \.L ,mrn > 1

such that k<4,, m(nr kSm ' nk >en, lettlng
r(\,x2) = (*' - 4, * - 4, .r[x12, we eet "(t,n2; = c(r,o) =n.Llk.

In particular, c takes on non-integral values in Q r > 4 , regardless

of the ground field.The computatlon 6f (3.4) is straight forl'ard.
In general, of courser non algebralcally closed flelds present a serlous

lack of rational Doints :

(3.5) Exampre : Let mrn;, l. As sume a # 0 is not an m-th power ln K.
Then for t = xT - a.)f't one finds

lzr
c(t,nz) = c(frO) > m.n over K, whlle over r{av *, !r*)

"(t,n2) = c(f,o) =n.

For plane curves, this examp Le is typical ln that, after a finite field
extension, one gets some kind of a deflnite constant. More precisely,
for f € K(\,X2), one finds a flnite exrension LjK such rhat, in
L l\, X2] , f decomposes inro a producr of (locally) convergenr power

series f., each of which ls imeducible in E{1,xr} ; for some algcbralcally

closed complete field K I L. The f. are the absolutely analytically irreducible

componenLs of f, or lhe ttbranchesrt of f near the orlgln. Thus the prc.rblem

of determining c(fr0) for a plane curve f''naturally spllts up lnto t!'o fairly
dLjlerent parts :

Case 1

f € K{\, x2] is absolutely analytically lrreduclble . Changing co-

ordinates so that \ is a tangential Parameterr and therefore X,

transversal, and applylng l.leierstrap PreParation in KlXl, we get the

Puiseux Expansion of f , provided that p = char (K) does not divide

the multipllclty m = m(f) . (See, e.C.' [P] ,[A]'1](3.5))

r(\,x2)= 
fI , 

(xr-P(l(a.\)1/*)),some a€Kx,
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We let

Here i

P(r) =

be deleted by invariance of c(f,0).
min I t t ki , pt * 0 and rn. = gcd {ko,...,kil+k J

m = 1.
E

These constants ki, rl are closely related to (but not the same as) the
ficharacteristic pairst' of f at 0.They are easily computed from the Newton

Polygon of f. The use of theBe particular consEants is nofivated by the
proof of the followlng lntrigulng

(3,6) Formula : If I I ls dtscrete , then
g-1 pk

c(f,O) = X (*i_l - m.) ]i + mq_t.---g =:M

i_l m ' m

This forrnula produces non-integral values of c , if g>2. And for
t?.x; -*i, e.g, we flnd c=3 ( lnstead of 2 over algebralcalLy

closed fields).

Proof : First, we do tt>tt. Choose a uniformizing parameter q for R

and a fixed m-th root ql/t. ,h"., set x = (1 , xr) = (qn, I ouont/*)
' m<k<k *

c

.x br. rke r{rl,
k>rn

The factor a may

k^ = n . k-U ' 1+ I

= 1, ..., g, where

gca I t : bn fo 1 = 1.

*, - r{ll"/t) 1 = (lqlt)M.a, for some d' as one

m

z = { ( : ( = 1l :

m..m.
(' (t-t=1,(tfll (i=1,..., c-r),

then#Z, =ri_l -m. (1 <i<g-1 ), ana #z"=rg_t,

where n >> 0.

rhen l*l = 
il

by par titloning

v z. , z. = |1t1=l
6_

{(,rs-'=rl.

SCEF

z=
c

and ordr(r(( rl -,p(T)) = ki, if e ezL, l+ t.
Furtherrnore assume n ls divisible O" m/mr_l , but not by m.

(There are infinitely many such n.) Choose E e Z, t > 0, such that
every unit in R whlch is congruent to I rod. qt+l ls an rn-th
power in R. (m is not dlvlsible by the characterl a tic ) . Thcn lct
y = (yl , Y2) be a zero of f close !o thc orlgln, so thlr 12 = p(v)

for sone v, vm = yl . It suffices ro shol' rhat , lf l\ - trl-. l9ln' 
t,

one has vQv) / K, for all ( . so lct Yl =,r.qt , u 6l r qt'1. R.
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rhen X bt((.,)k 6 K((), while t- bk(f v)k/K.
m<k<kn -- k= k*

Therefore, if P((v) € i, ttren the latter sum is in K((), which ls lmpos-

sible since lr(lv) - rtB'., l1> O tot ltl' (wehad n>>0.)
for the converse inequality, | | need not be discrele :

M
Suppose I f" I . c". d(d to be determined later ; o << 1), where

x = (xr, xr) is close to the orlgin. Write u for a fixed *rt/t.
Then partitioning Z as before we find 1 < i < g such that

k'lm
-P(f ou)l <at . u where (o62. niLh

-r ((o u) l< l"z - p(lu)l for alt 9 ezi.

now It Ia6, lake the origln as the zero y we

suppose I t I = s. Then we wiLl shorr that, ln fact

f*, - etSo u )f < lx2 - r(fu)1 , for all 9 e" ,

!"2

l*z

If
So

(+)

This will allow us to apply Krasnerrs lemma to p(F u) with respect to
*Z over K, so that rre get e((O u ) ( K(xr) = f , .r,A ti.,a (x'P((Ou))

as the zero sought for.

To verify (+), no.te that for E 6 Z. with J # i, you even ger

lxz - p(fo,., )1 . ok4l' di S lr (fr,r) - r(fou)I, wirh 4= min(i,J).

In.perfect analogy, we can do away wlth the E € Zt such that
tn'. f a Z.."So suppose there ls a counterexamPl. lr € z, to (+),

such rhat fi. (, € zi+J, J mlnlmal.

Then l*z- p(!u) > l*r,nt* 
'/rn. 

d i. using all bounds on lx2 -P(fu)l
for various ( , which follow from the above relations' one ultlmately Sets

1t* | > oM.tl -contradictlon.

Case?: t= T t,, where the fl €Kl\, X2j are absolutely analytically
I

irreducible. While ln Case 1 , we were able to produce a fairly satisfactory
formul-a for c , here it seems not at all easy, in generaf to predict how

rhe c(fr, 0) I'piece togetherrr to yield c(f,0).

Assuming I I ao be discrete and analyzlng

part of the proof of (3.5) aPProximates the

rapidly than the origin one can show that

c(f,o) = c(fl ,0) + I. m(f.) , if c(fr,0 )
' if I

seek.

E l9o

the fact thai x in the first
tangent cone ( = X1 - axi .': ) rnore

-rn (fr) is
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maximaL, provideq that the tangent cones of the f. are all different from

each other. This last condition can trLvially be dropped, if the number

of fi'" is just m(f) (use (2.2) and (2.3>). gut beyond that case,

many weird things can happen, as ls docunented by the following examples

which are easily checked (p = char K 1*; n 2m 21, (mrn) = 1):

(3.7) c( (x| - \1 . X2 r o) = m + 1.

(Recall rhar c(xi - {, Ol = n.)

(3.8) c( (x| -{t. (*z 41, o ) = nlL+ r ; ir L>L, and

n >L . m. (Note tll'ax L does not appear in the c of either branch ! )

In (3.8) as well as in the next example, I t is assuned to be discrete.
m 

Lo ) . (xk - tfl,o) = t, + n,(3.9) c( (x, - :, 2 L

tf &>k>1; (k,.L)=1.
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