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SOME REMARKS ON A THEOREM OF
M.J.GREENBERG.

By Norbert SCHAPPACHER(G6ttingen)

The theorem we are alluding to is the main result in [G1 7, to
wit

(0. ) Let f = (fl""’fr) € R [Xl,..., Xs]f, where R 1is an
excellent henselian discrete valuation ring. Then there exist 0 < c,
dée R, 0<dgl, depending on £, such that for all «x € R® and all
real 0 < aé\i ¢ if |fx| < g,c.d , then there is vy € R° satisfying

fy = 0, and l Xy | <a .

Here | | denotes the (multiplicative) valuation R——> R as well as

S
the max-norm on R,

Usually, of course, the result is stated in terms of an additive
valuation, or even congruence mod, powers of the maximal ideal of R,
And it is in this form that Greenberg's theorem is to be regarded as the
first example of an "Approximation Theorem" (in M, Artin's sense) for a
class of excellent noetherian local hensel rings; see [ A ] . But the
particularly simple formula of (0. ) , telling us how much better we
have to approximate 0 by fx 1in order to find an actual root of f
in a prescribed neighborhood of x, is not retained in the more general
situations. (It should be noted, however, that G. Pfister and D,Popescu,
following ideas of M, Artin, showed that the lifting of approximate
zeros is always controlled by some "approximation function'", once
approximation of formal roots is at all possible., See [PP] and [KP],
Kap, II. ) Thus it seems interestingto stick to the one-dimensional
case, and Lry to elucidate a bit the naturc of the constants ¢ and

d of (0. ).



As for both ¢ and d (i.e.,, their best possible choices), they are
trivially invariants of the ideal £.R[X] ; X = (Xl""" XS). But since
(0. ) clearly holds for f € K [ X ]r ( where K is the quotient field of R)
it seems clumsy not to invoke the geometry over K . In so doing,we
deliberately sacrifice all invariance properties of d
(e.g., multiply £ by a non-unit in R) and will from now on restrict
attention to the constant ¢ which does remain an invariant
of the ideal f. K[X7. But since an automorphism of K[X] may switch points
of R® to points with non-integral components, ¢ 1is certainly not an
invariant of the algebraic geometry over K. The peculiar role which R € K

plays in (0. ) is not germane to algebraic geometry,

When investigating c¢ we may as well suppose K to be complete
with repect to | | , because by (0. ) we can a fortiori approximate

zeros in the completion arbitrarily well by K-rational points,

K being complete, power series suggest themselves (see, e.g., the use
of Puiseux Expansion in (3.6)below).If we want to let f consist of
power series rather than polynomials, we have to insist, for (0. ) to

make sense, that they be convergent on all of RS. That is to say , we

are naturally led to replace K[X] with the Banach algebra K<€K>>°f “Btrictly

convergent'" power series, and use non-archimedean analysis as initiated by “atelT].

At this point there is no reason to exclude non-archimedean fields
which are not discretely (but still real-) valued -e.g , the case K

algebraically closed will be interesting.

It turns out (see 51 below) that (0. ) generalizes to the situation
f e K<X> * , and c can easily be seen to be invariant under auto-
morphisms of §{<K> . Whether invariance holds for isomorphisms
K<X>/(f) 4 K<Y>/ (g) as well, is one of the interesting problems to

which we do not know the general answer yet.

Substituting R® , in the statement of (0, ) , by smaller and
smaller neighborhoods of a fixed 2z € R produces in the limit a constant
c(f,z) which can be shown to be an invariant of the local ring K| X} (£ )
of f at z. The question arises whether the old ("global") c¢ 1is not
greater than sup | c(f,z) : z € RS] . We can prove this (and thereby solve
the invariance problem for the global ¢) in somc special situations; on the

other hand, we do not know any counterexample.



In the last section of this paper we present a collection of
examples (mostly plane curves) which contains some quite unexpected phe-
nomena, but generally confirms the power series approach as very much

appropriate,
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§1 THE THEOREM

If not specified otherwise, K will denote a field which is
complete with respect to the non-trivial non-archimedean (multiplicative)
valuation ‘ | : K— R, R is its valuation ring. K<X> resp. K{X},
denote the ring of strictly convergent (i.e,, the coefficients converge
to 0 in K), resp. convergent (in some neighborhood of the origin)

power series in X = (Xl’ S— Xs). The Banach norm on K(:f\ is again

v ]

denoted by | |: | T a . X' | =max |a | ; so is the max-norm on K.
v

vens Vv
r I3
Let f = (fl, §93 3 fr) € K<X>; ov  the ideal of K<X> generated by
f 3 and A = K{X) o the "affinoid " algebra of f.

(1.1) Theorem : There exist real constants c > 0 and d, O<d <1,

' S
depending on f such that for all x € R ,and all real o, O< g <:],if]fx|<:ac.d
then there is y € R® , fy = 0 , such that ‘x—y‘ < Q.

Proof : Following Greenberg [Gl]Jwe let £ ¢ R (X> for simplicity; assume

without loss cf generality thatou is prime, and induct on dim A, the
case dim A = -1 being trivial, There are then two cases to consider,

Case 1. A analytically separable over K

; ; A
This means A 1is absolutely reduced or, equivalently, A @k Kl/P

is reduced, if p = char (K) > 0.(See [BK) 4.2, 4.4)

For @ multi-index i = (i,,...,i ), 1 <i <...<i <r,l<n<s
1 3 n 1 n 3 — = 3

let Di denote the ideal generated in R /X\ by the n X n minors of

the jacobian (3 fi /3 Xj)’ and Fi the cohductor
\) .



((fi s = al fi ) (fl,.., fr) ) in R<X> Then for a system

1 n
. 9
g = (gl, .oy gk), gj (<D Di.Fi , generating ¥ Di'Fi' K <3€> , the

irreducible components of the locus of (f,g) have smaller dimension

than A since we are in the separable case, Thus there are constants

c', d', for (f,g) , say c'=21 and d'< 1, and we may take a shortcut
through Greenberg's original argument in this case by invoking R. Elkik's
version of Hensel's lemma (see [ E ], p. 555-558, noting her remarks p.560
and 587 f, ). This tells us that for all 0 < asl, x€ R® such that
‘fxl <q < |gx|2 , there is y € R® , fy = 0, satisfying |x-y‘ < q /‘gx|.

So we may choose ¢ = 2¢' and d = d'2 for f.

Case 2, A analytically inseparable over K.

1/p

There is g € R <X> which is not in a-vKl/P <X>)but

P e f.R4<¥> . Pick a complete field K® ¢ K' ¢ K containing all the
P

coefficients of g , such that K' 1is a KP-Banach space of countable

type. Let {bn} be a topological KP-base of K'.

(In this situation even topological p-bases always exist : [K],1.4.)
Then {bng is t-orthogonal for some 0 < t <1 by the closed graph
theorem ( [R], 3.7), i.e for any iun} c KP which make % u . bn

convergent one has | unbn| 2 t. max |unbnl'
Therefore we can write : ‘ gp =7y gi . bn , Where
g € K\X>.

Then not all g, €au because ideals in K(l/P)<X) are closed, [GR1l] I§4.

So by induction we get c¢', d' for the system (f,gn ), for some n_o
o
and clearly c¢ = p.,c' and d =t , min (1, ‘bn s d'? will do for f£.
o
REMARKS,

1) From G, Pfister I learned the particularly nice idea to write gp

in a KP -base; see [ KP ], p. 125,

2) In a Oberwolfach talk, recorded in [07, W.D. Geyer gave a proof of
the inseparable case of (0. ) which, in esscnce amounts to a dif-

ferentiated version of the argument given in case 2 above. Suffice it
to say that Geyer's proof can also be carried over to the analytic sct-

ting of (1.,1) wusing the (absolute ) module of continuous differentials

Q(K/Kp) , which is constructed by an appropriate



generalization of [BK] § 2. (One has to be a little careful about working

with the general Banach tensor products, in case [K : Kp] is w.)

3) M. Kneser [Kn] gives an elementary proof of (0, ) in characteristic O,
covering also the "global" version of the theorem as in [G2]., He

inducts on a partial ordering of the systems of polynomials. Using
Weierstra@B Preparation for K (X)([GRI], I;2), thereby making it slightly
less elementary, this proof can be modified to yield (1.1) in charac-

teristic O,
4)The following informations I owe to R, Transier:

a) Writing congruences mod.{x € R : v(x) = o}, and letting d
be in the value group T of the (additive) valuation v, Greenberg's
argument should yield (the additive form of ) (0. ) in characteristic

0, at least if T&—3 R , i.e. v has finite rank.

b) A model -theoretic approach to (0. ) and various strong ap-

proximation theorems is given in [BD],
(1,2) Corollary : Any f without zeros in R° has the set i‘fxl : X € RS}

bounded away from zero.

Write c(f,Rs) for the minimal c¢ > 0 such that there is d verifying the
claim of (1.1) . So c(£f,R°) = 0 in (1.2).

(1.3) Corollary : If f has only simple zeros in Rs, then c(f,Rs) <1,
Proof : Apply Elkik's lemma to f, using g is bounded away from O,

.

Similarly one gets :
(1.4) If the singular set of £ on R° is smooth, and (f,g) (where g

is as in Elkik's lemma) gives it the reduced structure, then c(f,RS) < 2,

In the introduction we anticipated :

(1.5) Proposition : c(f, RS) is an invariant of ou, and does not change
under automorphisms of K (X).

Proof: The first claim is clear since each series in K (X) has bounded
denominators., For the second note that every automorphism is an isometry.
[GR1] , I§1.3, and thus induces an automorphism of R®, In fact, even d

is invariant under automorphisms,

(1.6) Question : Is c(f, R®) invariant under different representations
of A?

At present we do nmot see how to attack this problem directly,



52 THE POINTWISE CONSTANT

We add to the notation introduced so far : c(£,U) , for any

i = ®® , is the minimal ¢ = 0 such that the claim of (1.1) holds for

some 0 <d<1 , with R® replaced by U everywhere. Note that c(£f,U)
may be . On the other hand, the pointwise constant

c(f,z) = inf{c(f,Uu) : z €U c R® open}

is certainly finite for any =z € R by (1.1). Moreover from the ultrametric
property of | | it follows that in the definition of c(f,z) it suffices
to inf over ali small polydisks around =z, Trivially one has

c(f,z) = c(fz, 0) for the Taylor expansion fz of f at =z,

Note that c(f,z) is defined whenever £ 1is convergent near z.

(2,1) Proposition : c(f,z) is an invariant of the local ring

K{ X }/£_. K {X].

Proof : That c(f,z) is an invariant of £, K {X}, follows from (1.5) and
the fact that £(aX) € K (X) ¥ for suitable a € K* . Similarly, the
coordinate series of a substitution automorphism ¢ of K| X1 may be
supposed to lie in RiX], which gives c(®P£,U) = c(f£,pU0) for small U,and
hence invariance under p ,because ¢ 1s locally invertible. Finally,

the general case can be reduced to that of an automorphism by [GR17,

II5 3.5, using (2,3) below.

(2,2) Corollary : If =z 1is a simple point of f , then c(f,z) =1,

Proof : Implicit functions !

For any g € K {X} write m(g) for the lowest degree of a monomial
occuring in g; and m(f) = minf m(fi) : 1 <1< r}. We already used:
(2.3) Proposition : ¢(£f,0) 2 m(f).
This follows easily from
(2.4) Lemma : There is a constant vy € B, depending on f, such that for
all sufficiently small g , all 0 <qg < By =Y i there is x € RS
satisfying ]x] < a/y and |%-y| za for all y ¢ RS, fy = 0, ‘y‘ < B.

Proof : Define the analytic tangent come to £ at 0: ¢ , to be the set of all
X € K® such that there exist sequences {yi} c Ré)all fyi =0 , and

{ai} c K satisfying 1lim ¥; ™ 0 and lim ai;yi = X,

This is a closed proper (f # 0) subset of K  which approximates the

locus of £ mnear 0. Hence we find the x's of the lemma in the conc

over a small ("y") open set not meeting ¢.



(2.5) Corollary : For z € R®:

|
o

c(f,z) <1
cilE,z) © 2

fz # 0 & cl(f,z) = & 0
z simple pt. of £ & clf,z) =1 o 1

WA A

Here the proof of the last equivalence requires picking suitable co-
ordinates, and a refinement of (2.4), which says that c(f,0) » m(g) for
a subsystem g of f such that the tangent cone of the complement of

g in £ is strictly bigger than that of £,

Note : We do not know any s.ngularity with 2 < c(f,z) < 3.
No conjecture is made that the following statement is valid in general
(2.6) Proposition : c(f,RS) = sup {c(f,2) : z € RS} , in each of the fol-

lowing cases :

(i) K is locally compact

(ii) £ has only finitely many singular points in R®

Proof : Only "<" requires proof, and (i) is straightforward.
Letting g be as in Elkik's lemma, (f,g) is bounded away from 0, by (1.1),

outside small disks around the finitely many singularities,(ii) now follows easily.
Using (2.5) we see that (2.6) holds also in the special situation of (1.4).

From (2.1) we get :

(2,7) Corollary : Under any of the assumptions in (2,6) ,question (1.6)

has a positive answer,

§ 3 EXAMPLES AND A FORMULA
(3.1) If K 1is algebraically closed and f € K (X) a hypersurface, then
c(£,0) = m(£).

Proof : Choose XS transversal to f at 0 , and apply Weierstrag

Preparation in K{X} to find "<", "z" follows from (2.3).

(3.2) In the situation of (3.1), c(f,Rs) g;ﬁ (£y , where m (£) 1is the

highest degree of a monomial in f having the same K (X) -norm as f,

Proof : By [GR17], p. 407 , we can choose coordinates such that Weierstrag
Preparation in K (X), applied to £ , gives a polynomial of degree m(f).
Note that, usually, m(f) # Supim(fz) : z € RS} , so that (3,2) tends to

be far from best possible, Also note that (3,2) implies c(f,RS) < deg f,

if f is a polynomial,

(3.3) Question : Is c(f,RS)-g deg £ , for f € K[X1, over any field K



(at least, if f 1is homogeneous) ?

(3.1) generalizes to systems of equations (giving the maximal m(fi) as

c), provided that the tangent cones of the single equations are 'wide
enough apart" from each other. Unfortunately we do not have any smooth
theorem to offer on this; but there should be equality between e(£,0)

and the maximal finite component of Hironaka's invariant v%([H],p.155),
for a class of'"nice transversal" complete intersections over algebraically

closed fields., On the other hand, no general result can be expected.:

(3.4) Example : Over any complete K ; for all integers ki ,myn 21
such that k <f ,m<n, k<m, nk >{m, letting
k m n 2 2
£(X X)) = (5 - £, %0 - X e kXY, ve get c(£,R) = c(£,0) =m,z/k.

In particular, c¢ takes on non-integral values in @ , > 4 , regardless
of the ground field.The computation 6f (3.4) is straightforward.

In general, of course, non algebraically closed fields present a serious

lack of rational points

(3.5) Exampie : Let myn > 1, Assume a # 0 is not an m-th power in K,
Then for £ = Xg - a.XT'n one finds

c(f,Rz) = ¢(£,0) 2 m.n over K, while over K(aU]n, M)

c(f,Rz) = ¢(£,0) = m. "

For plane curves, this example is typical in that, after a finite field
extension, one gets some kind of a definite constant, More precisely,
for f €K (Xl,X27 » one finds a finite extension L - K such that, in

L {Xl, Xz} » £ decomposes into a product of (locally) convergent power

series fi’ each of which is irreducible in E}Xl, Xz} ; for some algebraically

closed complete field K> L, The fi are the absolutely analytically irreducible

components of £, or the "branches" of £ near the origin. Thus the problem

of determining c¢(£,0) for a plane curve £, -naturally splits up into two fairly
different parts

Case 1
fe K{ Xl’ XZ] is absolutely analytically irreducible . Changing co-

ordinates so that Xl is a tangential parameter, and therefore X2
transversal, and applying Weierstrag Preparation in K{X}, we get the
Puiseux Expansion of £ , provided that p = char (K) does not divide

the multiplicity m = m(f) . (See, e.g., [P] ,[AM](3.5))

f(xl, XZ) - (XZ - P(€(a. Xl)llm) ) , some a € Kx,

=1



P(T) = ¢ by Tke K{T}, ged | k : bk #£0}1=1.
k>m
The factor a may be deleted by invariance of c(f,0).

We let kO =m , ki 41 " min i k > ki : pk # 0 and m, = ged | ko,...,ki}+k 1

Here i =1, ..., g, where mg= 1.z

These constants ki’ mi are closely related to (but not the same as) the
"characteristic pairs" of f at 0.They are easily computed from the Newton
Polygon of £, The use of these particular constants is motivated by the

proof of the following intriguing

(3.6) Formula : If | ‘ is discrete , then
g-1 Kk k

c(£,0) = T (m_, - m,) i+ myy—2 =M
i-1 " "

This formula produces non-integral values of ¢ , if g=2, And for

X% = Xf , e.g, we find ¢ = 3 ( instead of 2 over algebraically

closed fields).

Proof : First, we do "2". Choose a uniformizing parameter q for R
and a fixed m-th root qllm. Then set x = (xl, X,) = (qn, ¥ b qkn/m)
2 k
m<k<kg

where n >0,

n/m)

Then |fx| = m|x- P(lq | < (Iqln)M,d, for some d, as one

m.
sees by partitioning 2 = { £ : =1l
= T
Z=U 4 ity = {€: ¢ =1,07F1] (1=1, ..., g-1),
i=1
g1
Zg=[c:§g' =1].Then#Zi=m —mi(lgigg-l),and #Zg=m R

i-1 g-1

and ord (P(LT) - P(M) =k; , if Lez ,L#1,

Furthermore assume n 1is divisible by m/m but not by m,

1
(There are infinitely many such n.) Choose gtle Z, t 20, such that
every unit in R which is congruent to 1 mod. qt+1 is an m-~th

power in R, (m is not divisible by the characteristic). Then let

y = (yl, yz) be a zero of f close to the origin, so that ¥, = P(v)
for some v, v = y,» 1t suffices to show that , if ‘xl - yll < |q‘nht,

E

one has P(¢v) £ K, for all . So let y = uq' ,ugl o g R.



-10-

Then 5 bk (€v )k € K(¢), while T bk(Cv )k ﬂ’K.
m<k<kg kzl%

Therefore, if p€v) e K, then the latter sum is in K(¢), which is impos-
i
sible since |P(:V) - P(?v)|> 0 for yf ' ( we had n>>0.)

For the converse inequality, | l need not be discrete :

Suppose | fx | <o .d(d to be determined later ; g << 1), where
. 2 2 j 1

x = (xl, xz) is close to the origin, Write u for a fixed Xy /m.

Then partitioning Z as before we find 1 < i < g such that

ki/m
|x2 -P (t()u N<a s di’ where :o € Zi with

|x, - P (L u) | < | =, - P(Cu)| for all e Z;.

If now l X | <a , take the origin as the zero y we seek,

So suppose [ X l = . Then we will show that, in fact

) [xy - P& ux<|x, - P@udy , for all ez, §AK.

This will allow us to apply Krasner's lemma to P(ggtx) with respect to

X, over K, so that we get P((.u ) € K(x2) = K, and find (Xl’P(cou))
0

as the zero sought for.

To verify (+), note that for f €2Z, with j # i, you even get

1
|, - P(f§11)|< a o .4, < [P (Lu) - ?(touﬂ, with 4 = min(i,j).

In perfect analogy, we can do away with the { € Zi such that
0 % € Zif So suppose there is a counterexample Cl € Zi to (+),

-1 .
such that € 0 Cl [ Zi%—j’ j minimal,

k
i%—'/m .
Then |x,=- P (tlll) ERE We. 4 ;+ Using all bounds on |x2-P(Cﬁ)‘

for various & , which follow from the above relations, one ultimately gets

‘fx‘ > qﬁ.d -contradiction,

Case 2 : f = q fi , where the fi € K{Xl, Xz} are absolutely analytically
i

irreducible, While in Case 1 , we were able to produce a fairly satisfactory
formula for c¢ , here it seems not at all easy, in general) to predict how

the c(fi,O) "piece together" to yield c(£,0).

Assuming ‘ | to be discrete and analyzing the fact that x in the first

part of the proof of (3,6) approximates the tangent cone ( = X]-axin) more

rapidly than the origin one can show that

c(£,0) = c(fl,O) + 5 m(fi) y if ef(f

ifg 1

1 0) -rn(fl) is



=11=

maximal, provided that the tangent cones of the f

i are all different from

each other, This last condition can trivially be dropped, if the number
of fi's is just m(f) (use (2.2) and (2.3)). But beyond that case,
many weird things can happen, as is documented by the following examples

which are easily checked (p = char K 4m; n>m>1, (mn) =1):
m n _
(3.7) «<( (X2 - Xl) . X, ,0) =m+ 1,

(Recall that c(X? - Xf, 0) = n.)

m n
(3.8) (X, -X). X, -

&
~
o
~

1]

n/£+1 ; if 4 >1, and

n >4 .m. (Note that # does not appear in the ¢ of either branch !)

In (3.8) as well as in the next example, \ | is assumed to be discrete.

n

(3.9) (K -x") . G -X)0) =4 +m,

if g>sks>1; (kb)) =1,
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