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Fo11ow1n9 Faltings anal us1n9 older argunenta due to Tate
and Zarhln, we shal1 deduce, fron the dlophantlne result
lr2l ,II 4.3 Tate's conjectural description of the endo-

norphlams of abellan varietles over nunber fieLds, 1n

terms of X-adlc representatlons.
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S t stateoentg

Let K be a nunber field (of flnlte alegree over (D ) ' and let

A be an abellan variety aleflned over ( . Put g e dln A .

For a prlme nuaber ! , and n> l . alenote by Altnl the

kernel of nultlplicatlon by 9n on A . and nrlte' aa usual'

rn (A) = +1o AtCnl 1R1 ; v, {l) = r, (A) oo, Q,

where F ls a fixeal algebralc closure of K .

T! and Vl actually alefine covali-ant functora ln an obvious

way. The abaolute Galol6 grouP r= Gal(E/K) acta on Tt(A) ,

resp. vf (A) , by zi-llnear, reap- (lr-llnear ' contlnuous

transfornatlona.

The object of thts artlcle 1E to prove the fol1ow1ng theoren'

known as Taters conjecture on the enalomorphisng EnalXA of

A aleflneil over ( .

1.1 Theoren. (1)

(li)

Tlo ot-Li-on od r on vr (A) ri a.rl/rL-6itpae..

The nLtuial nu,p

EdKA@, 4!, + E %xtnl(T!(A) )

i-t an i.tonnaphi.tn.

Rerrark: The followlng facts can be f,ound' e.9.. ln [uu1 ]!
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(1) slnce I( has characterlstlc 0 , T!(A) l-s a f,ree

ll-nodule of rank 29.

(11) If B is another abellan varlety over K . the hono-

morphisma llo\ (A.B) always fono a free t-module of fl"nlte
typ€. and the funct or Tq inaluces an irjeel,ian

Ho\ (A,B) @ nrt+ Hornzl (Tt(A],Tr(B] )

whoae 1ma9e haa to be ln lhe subnodule

sonrr (Tr(A),rr{r))n = Ho,lzrtnl (rr(A),TX(B) )-

f lxeal by ?T , because u(x)9 = u(x9) , for aLL g € r ,

.x € A[r,-], l-f u €End A 1s deflned over K . so, the

essentlal clain of 1.1(11) ts L Liz.cl.ivi.t4,

J.:z_gplfgry. Fo,t A.B u abovz, thz natual nwp

Hcro K(A,B) %,n1, * Ho* Zrtnl (TX(A) ,T!(B) )

ia all iaorotrpuan,

Proofr Apply 1.1 to the abelLan varlety Ax.B. - see [lP1 ].
leu.Ba 3 .

rtre followlng corollary used to be known as the .Ltogety

conieLtula- for abellan varietlea over K,
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1.3 corollarv. ThL $ounoing 6tat2itQtia oie e4utvolQfi.

(1) A Lnd B ane i'togetwut ove)L R .

(11) vr fA) : vr(B) . aJ r-$odu.Lea,

llLLl FotL otrto,t alt P^ine6 v od K , \(A's) = It(B,8) .

(1v) Fon a,l'L v , r,v(A,sl = r,v(B,E).

(v) Fo,L s.lnoLt4{4 v, tr(Fvlv4(A}rv)
(vi) Fo,L aI2 v , tr (Fv lv! (A) 

rv) 
= tr

Here. Lv(A,s) ls the Euler factor at v of the Has€e-We11

L-function of A over K !

L(A/R,s) = II Lv(A,s) (for Re(s]

Le! Iv c tr be an Lnertla subgroup at v , and F., € n/I, 
,

a Frobenlua elenent at v.Itlen the actlon of Fv on T!(A) v

is well-defined, anal se put

= tr {Fv lv[ (B) 
rv)

r__(Fvlvr(B) "l .

'* r.

Lv (A. s) =

det( 1-INv-8 .Fv I rr{A)It)

Nv be1n9 the cardtnallty of the lealdue class field at v . -
This aleflnltlon of Lv does not tlepend on the cholce of the

prine nunber , f rNv. and Iv acts trivlally on T!(A) for

altnost all v. cf.[ST].

corollary 1.3 asserts l-n partlcular that the rF(utrc.titn L(A/K,9)

i.t a conplete i.togery iavani.o,nl o{ art .
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Proof of 1 ,3: (i) <:1 (1t) . f € Hom(A,B) is an isogeny if
and only if Tf(f) has ful1 rank, i,e.. det Tr(f):0. This

already inplies (11 :> (ii) , On the other hand, suppose

(p: Vl(A)+ Vt(B) ls an isomorphism of r-modules. Choose n

such that nn. a € Horn(Tn(A), Tf(B)). Thls hononorphism cones

fron H;\(A,B| @ZU L t and can therefore be approximated by

elements of Hon(A,B) . Since det(.0n(p) + O , the sane will be

true for grood approximations. Ihls lray one finals the required
isogeny,

Renark: Note that, for an isogeny f:e * B , Tn(f) is an

isonorphism Tn(A) + T{(B) lf and only if t,fdeS(f)

(v)--)(il) : A semi-si-mp1e repregentation of a Ol- algebra

ln a flnite-dimen sional Ql-vector space is deternined by its
character; [gou], S 12, D.o1. rn our case, the character is

. eontlnuous and therefore deterrnj-ned by its values on a alense

subset of n ey debotarevrs theorem (cf . [Se]. chap, I, ,

such a subset is provicled by the Flobenius elenents of a set

of places of density 1 ,

The rest of the proof of '1 .3 j-s logic. Note in particular that

any quantifier may be used wlth l, in (il) .

1,4 Renark Since all higher 6eale cohonology groups

Hlt (A xR K-lot )

of the abellan variety A are given by exterj-or powers of
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H: t (A ,KK- , 04) {vr (A) ,Qs'

the semi-Einp1lc1ty asserteal in 1.1 trnplies that:

Fon ajl nzo . the acLion o( rt on 
"!a 

(AxXR,Or) i,6

tanL-Aiwle.

In fact, gince the representatlons of n in questlon are Ln

finlte diEenslonal vector spaces over a fleld of characterls-
ti.c 0 , this follows by passlng to Lle-aLgebras; see [Hun],
13.2r [BoL], chap. I, $ 5 no5; cf. tBoLL ehap. Irr, 59 no8.

1.5 Taters general conjecture

Let k be a fleld whtch 1s of flnite type over lts prime

field, F a flxed algebralc closure of k. r = Autk(E)

and .{, a prlme nunber dlfferen! from the characteristlc of
k . Let X be a smooth projective geometrically connected

varlety over k, and wrlte 1= x **F.. Every closed

lrreduci.ble subvariely 7 of i, of codlmension r defLnes

an ,-adlc cohomology class

e{(u) € H2r(r,est (r) = ,+ "fi (i,,/orn".tr%rr, 
,

namely the 1na9e of 1 € 0n ond"t the natural nap f,ron

relatlve cohonology

. EoDel
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,, = 4t 
(r,or) (rl 

--+ 
n2t1r,qr1 1r1

cf. luill, chap. vI.

Call 
V= txt the free abelian group on subvarleties Z of X

of codlmenslon r de(ined, oven k , and

6f txt = f,txt /kernel (z t-> cIElt.

Tlren the general form of Taters conjecture related to our

theorem is:

conjecture: df rxt szee,5 
"zt(f, 0s) (r)r.

cf . I131.

We shall now indlcate how theorem 1.1(iI) can be deen to be a

special case of thls conjecture. rn fact, ttr5-ngs beeone more

transparent when we deduqe corollary 1.2 instead. So, suppose

A and B are abelLan varletles over k " and conelder the.

dlagram

I

I

I

Eom (A'B) (1)> Pico(Ax3*;

, lrrrl*
lrel H2(a" B*,or) (1)

L J,:,
| "' {a'o'}o'r'tt1'(B*'o') (t )

v (5) J 
tal

Homgt (vXlA) ,vt (BD €-- vt (A) *-ovt (B)
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(1 ,1) -

= vt(A)*
lnduceE

le the dual of B , and the naps are given as

(1) FoT Q € Hon(A,B) ,

B xB* vla e x 1al3

Flrst Chern cLaes.

Projection onto the

alecoBpositlon.

1
Use that H' (A,0r)

pairlng on V4 (B)

pullback of the Polltcarg bundle

Ax B* -)B xBi .

(4)

(21

(3)

(s)

(6)

conponent ln the Kunneth-

(duall , and that the WeiI-

a duality

Hl (B,er) ,. nl (g.,er) """'* 0r (-t ) ,

and tlrua an isomorphisn

n1 {s*,or) (tl 3 n1 (B,ot)* = vl(B) .

). @ b r) (a l+ rfa).b) .

Our natural nap, lnduced by the functor Vt.

It is easy to 3ee that this diagran connutes. A]-l naps are

?r-equivariant, and fron the deflnltlon of the Polncar6

bundle, lt ls clear that the jrage of Ho\(A,B) under

(3)'. (2) . (1) ls precisely 6d"1 (o ' s*1 c [Hl (e]er1 (e) (t ) ln,
the tll6 H1-projectlon of Od(etr*). So. assumtng Taters con-

jecture, the surjectlvity of (6) follows frorn the fact that (4)

and (5) are :sonorphisns.
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1.5 A glance at the history

Elliptic curves over fj-nite fields have lots of endomorphlsms.

This phenomenon was systemtically perused by Deuring in [Deu],

and, as Tate points out in [T1], Deuringrs results allow one

to deduce the analogue of Corollary 1.2 for A,B elliptic

curves over a (Lni.te field K (of chardcteristic =[). In

[f1 ], tate generalized this to abelian varietles over finite

fields. In this case. the semi-simplicity of the n-actlon can

be shown directly, but the pattern of proof developed by Tate

turned out to be adequate even for the number field case. In

a sequence of pai?ers - lzll through [25] - Zarhj_n proved the

analogue of 1 .1 for most function fields of finite transcen-

dence degree over a finite field. For thi_s, he had to refj-ne

Taters way of reducing 1.1 to a diophantine statement, and

some of our reduction steps are j-nsplred by Zarhin's re-

finements.

There have been partial results in the number field case be-

fore Faltings' general proof of 1 .1 , of whi-ctr we mention

Serre's results on elliptic curves (see [Se]), the case of

complex multiplication (see IShimJ, cf. lzzJl, and the Jacobian
of modular curves ( tRil ) .
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52 Reductlons

In this 6ect1on, theoren 1,1 \dill be seen to be a consequence

of a tllophantlne result on abelian varietles over N . Uslng

the finit.nees theorem [F2], rr 4.3, this dlophantlne

statenent la seen to result fron the behaviour of the noalular

helght under certaln iaogenles. These height calculatlons will
be perforneal ln S 3,

The notallons are those of the beginntnq of S 1.

(2.1I fo Wvc 1 .1 (LII, it 6l,{6i.ce tt Ah{Io dat the na.tlrat

;itLi c.c-tlon

EndxA %0t - 
*uQ, tnl 

(uu to) )

fu o.tt i.tonot4hi.tn,

In fact, thls nap is stltl J.njective slnee (D! is flat over

U l. Furtherrnore, the cokernel of the Z!-ltnear nap is
torsion-free ! an endonorphism of A vanlshing on A[t] ls
dlvlsbLe by .{,.

Q.2l Le.t Kt ) R be. d 6i .te ex.tetul-on, 16 I .l ia t^LQ. 6o,t A x_Kr

oveh Kt , tlen U l&Ua eAo. ovelL K .

Lgt r'= eal(f/K'), r" = cal(K-l(" ), where K,, is a fintte
Calols extenslon of, I( contalnLng R' . Slnce ir'r ls nornal

in rr, the sehi-slmpllcity of Vl(A xKKr ) = V!(A) as a
r'-nodule lrnplLes that of the r'r-module Vt(A) . r act.s on
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the decompositj-on of this r I I -module into sinple factorsg and

adding up these ]T-orblts decomposes V[(A) as a fi-module.

Any A € End(Tl(A) ) f ixed by r is also f ixed by 'nt i

therefore comes from an f € End*, (A x*K') %nL. But f is

again fixed under n , and thus lies in EndK A %|,n,,.

(2.31 'ln pnoving 1.1 , u)e maq a*sune that A ha,s te:nL-ttable nz-

duction ovett thz nLng o[ intzgetr's d o6 K

This is a consequence of 2.2 and Grothendieckrs semi-stable

reductj.on theorem-[Groth'], thm.3.6 - which asserts that

ther:e is a finite (separable) extension Kr of K such

that A *KK' acquires semj--stable reduction over OK,

We sha1l recal1 the definition and various properties of

abelian varieties with semi-stable reductlon in S 3.

(2.41

,.,{

To pnove 1.1, ,U tuddlcet to ,sLLow the (o%owLng:

LV?ILA r -,{nvani-an* ,subtpaee w c vl(A) , thene- .Lt

RdK A @zQt ,sucLt that. u. VU(A) = W.

Fon

u€

A reduction step of this kind is already essential in Tate

[T1]. cf. also [24], lenna 3.1. First note that the right

ideal

{v € nnd^ A @z Qt I v. vU(A) c w} ,

Iike any right ideal in a seml-simple algebra, is generated
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by sone projector uo,l.e., oo2= ,ro . rf u exlsts aE ln

(*), it foltows that uo'vX(A) = W. So every tr-lnvariant sub-

space of Vr(A) ls a dtrect factor' $ttLch lnpll-ea the senl-

silnpllclty of the r-actl-on.

Let c be the coErlutant of EndxA o 0t ln Snitet(vf(A)). fhe

conmutant co of c equals Endx A' Ot , bY the theoren of
bi-contrutatlon - [Bou], 5 5.n'4 -, agaln because rndASQt

is a 6eml-sldple algebra.

Asaune we know (*) for all abellan varletleE over K , ln

partlcular for AxA . Then the graPh

2.5 s|lb&rr(4c/ a^d 9'- d,Lviiible. g,ttup6.

civen a 0r-11near subspace wcv!(A), put U = W n TtjA).

Then. for n)1'

w = {(x.o(x)} | x € v, (A) } c v, (A) 2 
= vr(AxA)

of any l' € frdoftrl(vt(A)) ls a r-lnvariant subsPace, Eo

there ls u € ErEAz € Ot such that u. vt(Ax A) = w .

It wll1 be enough to show that a € Co . So take o € C. Ihen

uq0r.,
(o ,) a End(vr(A)') connutea wrth EnttKA'€ o, ' in partlcF

lar lrlth u. consequently (3 3) wctl, whLch neans tha!

a1p = eo , ,1.e., e € Co.

t-\ ulv c-+ [-n rr(A)/Tr(A) = A trn](f)
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defines the levels of an 9-divislble subgroup c of A(t) /R

with heiqht(c) = di.m^ W. (Cf . lcrun].] If W is r-invarlant,
9l.^

q is defined over K .

Over K , we qan divlde A by cn (for n> 1), obtatning
abelian varieties A/cn over K , together r,\'ith isogenies

p-
a :--5 e/G -

trt

of degree ln'dim w , such that

-1Tt(prl) -' (r! (A/cn) ) = r-n u * T[ (A) ,

rr(fn) (rr(A/Gn) ) = u + lnrg{a) =:rn

12.61 Given a. rL1v0,1"i4nt 
^ub^Wce 

w cv L(Al , cond'i,tion (*l 06 e.4lia

^q.ti,sdizd,, 
Ld Lndiii-tL(.q ary o{ thz eba-Liax va,LLeS,ae A/cn(n > o)

Me i,,omorphic ao each otheh ova K.

The proof of 2.6 ls the essentiat step uhich enabled Tate to
prove the analogue of '1 .l for abelian varietLes over finite
flelds, see IT1 ], proposition 1.

To prove 2.6, l-eL I be an infinite subset of N , with
snallest elenent io , such that, for aI1 i € I , there are

isonorphisns defined over K ,

t' , A/Gi. ---1------+ e/e,

In EndK O O Q n, , eonsider the elenent u. composed of
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-1fr v.
A 'o > e'/c, --L--->

o

f.
a/c, --l----->

Viewed in End VU(A), ui maps tro onto Ti - Tio , in the

notations of 2.5. But End Tro t= compact. So, selectinq a

smaller I if necessaryr we may assume that the sequence

(ri) i g I converges to a limit u whi-ch sti11 comes from

End* A € Qn sj"nce this set j-s closed 1n End Vt(A) .

Consider U = f\ r. . Slnce ti(Tio) = Ti, every x € U

i€r l-

is a limit lim ur(Yi) , for certaln Yi € Tio. Passing to an
i€r

accumulation point y of the yi"= we see that U = u(Ti") .

Thus, u. vu(A) = w r as required.

Taking into account (2.3)' it is now obvious that we will be

done with the proof of Theorem 1.1, once we have obtained the

following trso results.

2.7 Prop-osition: In thz notation o( (2-SlrattumLng A , and tltene-

[one all, the a/Gn , to have tuwL-ttnbLe nzduc.tion, the modu-Lan huLght

h (A/cn) i.t independent. od n , (on n ':u([Lc.t-zntLq Lange,

2.8. Theorem: Given g and c, thene exiaL, up to isomottph,Um, onlq

{Lwi,te.Lq nwnq abel'i,an vanle-tiet a uai-th ,senrL-ttabX-z neduction ovzn K

tuelrr th.o,t dimA=g and h(A) 5 c

The proof of (2.71 and the reduction of (2.8) to the analogous

statement for prj-ncipa11y polarized abelian varieties which

was proved in [F2] will be the subject of the next section.
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S 3 Heiqhts

Before turnj-ng to the proofs proper of (2.7) and (2.8), let us

recall some basic facts about abelian varieties with serni--

stable reduction. The reference for this is [croth].

Given an abelian variety AK over the number fleld K , recall
that there exists the N?.tton-mod,el A of AK rdhlch Is a smooth

group scheme over the ring of integers R of K , and j-s

uniquely charactelized by the fact that

HomR (s,A) : Ho\ (SK,AK) .

for every smooth group schene S over R with generic flbre
sK . f)Lon nou) on, we wil,l, dludtl^ d,enote bq A the co,lnec,ted, conponznt 06

A , with fibres the connected components of 0 of the fibres
ofA

AK is said to have AenL-tlabLe ted,uclion ovul K , if for every
s € Spec R , the fibre A, sits ln an exact sequences

1- T".------.> As* B. -------> O ,

uith an abelian variety Bs and a torus Ts over k(s) .

Equivalently, lcroth], 3.2, \ has semi-stable reduction, if
there exists sone smooth 6eparated qrroup scheme G of finite
type over Spec R whose fibres ale all extenslons of an

abelian variety by a torus as above, and qrhose generlc fibre
is A( .
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Agsune now that \ and BK are abell-an varietieE rtith sehi-

stable reductlon over K. Suppoae an lsogeny

Q 3 AR+ BK

over K Ls 91ven. By the unLversal property of the (connected)

Naron nodel, tp certaLnly extends to a norphisn over spec R!

({l3A 
---.--' B.

sent-stablltty lrlpl les furthernore that thlE norphlsn ts [d-th-

6ulu 62at, and that the kernel
(p

G=ker ( A -------+ B)

1s a quasi-flnlte, f,lat group scheme over spec R. ( cf.lcroth].
2.2.1. or [uu2], lettma 6.12 : the typlcal bad caae ruled out

by seni-stabllj"ty ls nultlpllcation by p : G 
" 
----) G" ,

over a fleld of characteristic p.) Note that c i.t not

nLcutoriA a $ .tz gtnup tchete ovelt Spec R (unless A and B

have good reductlon everyehere) 3 lts fl-bres vlll have varylng

oralers ln general.

At any rate, one obtalns the exact sequence

.o*
o -------+ sr(01 1 -I--- s*1n17*l -----* s*tnl7*t -__--> o.

B/a

Here, E denotes the zero-gectlons of the group schenes Ln

questlon. llhe exactnesa at the centre foll,ows fron that of the

well-known sequence of relatlve dl.fferentials,
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1 - 1 -19* ( a ;/R) ---------> CI e/n -----:-+ o e/e 0

Now, the order of the finite group s* tO [r") equals

1# (s* n Jz*) = # coker( Ag p* , deln ---------) ,e/n),

where oX/n denotes the maximal exterior power of s* tn]r") .

This is shown by localizing and applying a well-known corollary
of the theorem of elementary divisors.

Recall the def inition of the noduLan h?.i-Sht o[ a. lrcnl-)a"be,l)an

vanLe.tq:

1h (A) = 6.mT des (rol*) ,

wi-th:

deg (ro/") = 1o9 # ( rr-r or*/t. R) -rrl_ rr. tog I I p llr, ,

p being a non-zero element of , a/n , and eu= 'l or 2,

accordj.ng as v 1s real or complex.

As A changes the volume by '6eg A at every infinite place

of K , we see that we have the

( 3 . 1 ) Isogeny Formula: Unden the a,bove a.'stumpLLona ,

h(B) - h(A) = 1t* ,u*r, - 
":il 

los #(s*o lz*) .

(3.21 For the applj-cation of this isogeny formula in the proof

of (2.71 we shall need the theory of the dixed and tostu,t pa&t

of T{(AK), for an abelian variety AK with semi-stable
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this theory j"n the sltuation rre 6hal1 etlcounter.
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be a place of K alividlng I , and Rv the completion

at v . A9 over the gpectrun of any Hensellan Local

Let

of R

rlng, every quasl*fdnite schenre X over Spec Rv decQtnposes as

x = i.rY,
where X ts d'Lni,tz over \ , ana Y has no special fibre,

cf. IBGAIIj5.2,6. Given AK wlth seDl-stable reductlon as be-

fore, we can apply this to the quasl-flnl.te group sehene

A[tv]. the kernel of tnultlplicatlon by gv on the connecced

Neron model of AK ' consl-dered over the conpletion Rv , thus

obtalning Lts 6i Je pdr.t iisu t over Rv . These finl-te parts

make up a strlct' (1.e.,f,3A + A ls surjective) projective

syeten which then deflnes what ls called the 6ird Wt of L}]'e

Tate-module of A 3

fTt(A)- c rt(A) .

we shall nake use of thls subnodule b the genenb libtte (i.e..

the only Tate-nodule lre ever considered in SS 1 and 2) whLch

nay be wrltlen all expllcltely

t_r r(\) - (Kv) c rs (\) (q)

Ilenceforth, rde shal1 slrply wrtte

Tu(a* )fe Tr(\ ) ,vv



esen lf we thlnk only of
qi.ven bv the F-rationalv

Let A over Spf (Rrr) be

along its special fibre

.' -,'Alrvl = iiiul

we have

-y
ff rsut = itl,ul

because C has nov

rs (i) = ru (R) f
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the l-adic Galois-representation

points.

the formal completlon of a/Rv

Ao . Now, ln the decomposition above

(v)0)

special fibre. Therefore,

if we agree to didentify finlte schemes over Spec R., with

finlte formal schemes over Spf (Rrr). (Cf. IEGA III],4.8.)

Furthermore, by seml-stabllity, the special fibre Ao sits in
an exact sequence

1'+ To+ Ao-Bo 
--+0 

,

for some abelian variety Bo and torus To over kv = Rv/W.

For every n i 1 , there is a unique torus Tn over

Bv/.tflv(tl+1) with special fibre To ([Gro], 3.5 bis]. Being

unique, the Tn ftt together to define a formal torus $/n,
whlch injects lnto i fnf" torus gives us a submodule

rg(A)t , = TLtfit . rr(i) = rr(A)r
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Here too, rre can consider the generlc flbre. So we have a

tvro-step flltration

r[(AK )t . Tr(\ )f c Tr(A* )
vvv

of the Tate-module of the semi-stable abelian variety AX

over K .

Likewj-se, for the dual abelian variety \* over K , we get

submodules

rfTl,(\ *)- cTr(\ *)-c Tt('k *) .
vvv

The Well patring provldes an alternating duality

T[ (AK) x TX (AK* ] -+ z r(11

Tlne lnthogona.U.t4 Tleonen - lGroth] ' 5.2 - asserts that, with

respect to this paring,

tr(e*rr)t = (Tr(\v*)f)f '

and, of course, the other way around:

As a first consequence of thls, let us note right away the
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3.3 Lemma: Cl"IL Dv = cal(H/x.,r) c n the d.eeompoai.f,,Lon gnoup and

Ir - D' the .iiertia ubgnoup o{ v . Then I' ac,tt tttivia.(lg on

Tg(\)/Tt(\ )f , tnd D' ac,tt vin a (ini.te cluotient.

Proof: By the orthogonality theorem,

rA
*g (o*rr) /T, (AKv)' ! Ho* (Tt (T) , Tt (cn) )

So, the lemma follows from the fact that 4 is split by a

flnlte unramified extension of K., (ln fact, To is split
by the algebraic closure of the resj-due field krr)

(3.4) We can now return to the situation envisaged in (2.5),

with a view to proving (2.71. Rewriting (2.5) in our present

notation, we are qiven an abelian variety \ with seni-

stable reductj-on over K , an .Q,-divisible group (GnX)n:O ,
and the quotients

PnAx* (A*/cnK) =AnK

Passing to connected N6ron models, call G' now the kernel

of the isogeny of connected N6ron models

Pn: A 

-) 

A. over R

Flxlng a place vll , decompose, as h (3.2) above,

G =G lt H over R .nnnv
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with q flnlte over Spec R, r and Hn wlthout special

fibre. - Thus,

% = Atst] n cr, .

Now, our problem is that ,r!O {. necd not bz an 9;-diviaiblB

gt.f,tLp 0ueh \ .

In fact, conslder first the Galois representation in the

generic f lbre , ,r9O d'n (q) . Being an intersectlon of two

l-dtvisible groups over K' r this is of the form:

r C-rational points of an \ / finite abelianl(-v - \ @ I 
)\ x-divislble group over *u/ \ group

The f inlte group is contained in sone q" (q) , so for
rr- {,*nl{. (nl0), we find that ,r9o rr,({r) is
.{,-dlvisible oveh I! .

hrt ,r9O In need not be an l,-divisible gxoup oveh Rv .

In fact, the sequences

o 
-* 

r' frr*. 4 , . -----+ o

may not be exact overL Rv This problem is discussed on the

last page of l!21 , and we are going to apply Taters trick to
get around it: Look at the maps induced by multiplication by .0

(*)rr: t,,*2/ln*1 I , rrr*1/rr, (n)o)
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L€t En be the affine algebra ot trr*., /rr] since nyo fn
is an 4-divisible group ovut Rr, F:=En 6\ Kv is a finite-
dirnensional Kv-algebra whj-ch does not depend on n . So. the
En form an increasing sequence of orders in F. Such a sequence

has to become stationary. In other word6, the rnaps (*)r., are

isomorphisms for, say, n > n1 . We clalrn that the

n1+n n1 no+n1+n no+n1

conatitute an g-divis-ible group over Rv .- V{e have to show

that the long rows of the followinq cororutative dj.agram are
exact, for all n .

(*) t1*n
c .+ fn,, *lr*2/lr.,*n*1 3 In.l *nr1/rrr., *r,

o >F. tl " -:-=- I ---------.+ o

ll 
, n+z -n+l

ilJu3
0 --------+ fl., ----------+ X*, i., ----> o

This follo',rs frorn this very diagran by induction.

lLll We can now begin to 
^hou) 

thtl.

h(A ) =h(a )- n"+n1 no +nl+n'

lo,L a,l.L n>O . which gives (2.7)

To sinplify notations, let us pretend that n.=nj=o , so that

(n >0 )
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Ir, = Grr. Recall that An = A/Gn (connected aenl-abellan
schene over R). Fron 3.1. we get:

h(\) - h(A) = + tog (deg prr) - f*.hf ros #("*nlrr/n).

Recall (3.2) that, for all placeE v of N dtvlding l, ,

cr, = { .J. Hn over \ ,

where lln La concentrated 1n the generlc flbre, anil { is
flnlte over \ . Conpletlng along the apeclal ftbre, one

finds drr=d,o.r.r \. - Taktng dlfferentlals cotrmutes

yrith compLetion, Eo we get succegalvely:

rts*nl,,un) =lf #(s*nl,,7qr) =-l[ #{s*n{7n,} + rlr.*n} r*.,r1 .

By [crun], 3.4 , we have

.d
# {s*nfrlzq) = /, (\/rn\) v 

,

where q ia x}j^e d)aenLion of the t-dtvlslble group ngo dn

over \ (we have aasuned for sit[pllclty that thls ,a

l, -dlvt6lble) .

carl h = di-rnor (w) = rankrr (u) (see 2.5) the hc-tghi of the
l-divlslble gtoop ,,!O cnx ovelr K ,

we f l-nd:
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h(An) - h(A) = n.loe(u).{} -,}u*+&i u"}

lle hsve to dhow that the expnettion in euill1 bnaclze.tt it zeno!

(3.6) Put i = Gal(d/O)' and consider the induced Galois-re-

presentatlons (recall that U = T.c(l{GnK), see 2.5)

1T 1I

U = Indn U c Indn TU(A*) = Tr(Br) ,

where B, = Res*rO(AK) ls the abelian variety over O ob-

tained froro A* by Weil-restriction from K to O . we are

going to more or less evaluate the character

det0 zi+%o*

in two different ways!

First, it is well- known (cf ,,e.9., [t'lar] ' 3.2' which is easlly

generalized to our situation) that

aetU=rh.(deru"v".]l ,

whefe e: i-_-> ttt) is the slgnature of the permutations

lnduced by i on the homogeneous space i/n r and u..l
1T

is the transfer map : iub '---* nub . To comPute dei u at a

place v of K dividlng I , uP to an unramified character of

finite order, \re may replace H Grrx by H drrX - this
vv

follows fron (3.3) since

I
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rl (HG'x\r) /rr (l{;nKv) ? >

Now. by lGrun] t 5.2 , we have

nE 
'rtu{xrr) 

t"r"u ! crr{arr) ,

where F is the lrl.rghf of the t-divisible group 96r, over

R, , and Cv(dv) ls the completlon of -; with Galois-

action glven by the restrlctlon to Gal (CrrlKrr) c--+ n. ? of
the character Xrdv , rith X* , i' ._' zi the cyclotonic
character glving the action of ?' on Tg(Gm). Composlng with

u"4 , and adding up the results for all vlL , we see that

-[txrr:Orla'
;'- vll(detUoVern) Xl-,--

is unramifled at X . (The transfer map does not lntroduce any

new ranlflcatlon because it corresponds to the natural rnap of
ldeles %* .-..+ 

\^* , via class field theory.) On the other

hand, at each finite place w of K not dividing t , the in-
ertia I, acts unipotently on U since AX has semi-stable

reduction: lGroth], 3.8. As unipotent matrices have determin:

ant 1, we conclude that the character

-ll**,:otldv
p=detff .-h' *rtlt ti--+zu*

iA uruunniied" at evuq 
^ntipnoL 

pnine.

But 0 has no (abelian) extenslons that are unramifled at atl
flnite places (use Mlnkowskl or class fleld theory). So, by
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class f ield theory, rp has to be the tnLvi-a,.L chanac'ten.

Thus for any rational prime p + [ where BO has good re-

duction, if Fp € ? tb i" a Frobenius element at p , then,

on the one hand, we certainly have A(p) = 1 On the other

hand, by the part of the "weil-conjectures" proved by weil

himself, the eigenvalues of tp on U are algebraic numbers

purely of absolute value p1/z , slnce UcTg(Br) . So,

det Utnn) is an algebraic number purely of absol-ute value

nhlK:Qil2 (recall that h = ranko (u) !). As x0 (P-) = p€%9.*
LOP

we conclude that

= I IKv:ot] dv
vlJc

TluU pttovet (3t.5l ,and thene[one (2.71 .

We sti11 have to deduce the diophantj-ne result 2.8 from the

corresponding assertion, proved in [F2] , about pn*nc-LpalLq

polanizzd abellan varieties. We claim it will be enough to

establish the followj-ng two results:

3.7 Proposition: fon anq abe-Unn vanLe-tq Ax ovel K wi-'t|t,semL-

ttabLz nzdue-tion, calling AK* i,Ls dua,L a.bel-Lan vanie'tq, we. lrave

5{Ax*) = h(A*)

3.8 Lemma [zarhin ] : Fot anq abeL,inn vatuLe.tq \ ov21 K , calling

\.t' i,tA &n(-, o*n 'o**n cannie,s a pn'Lncipal prtInnLza,LLon.

h IK:Q]
2
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In fact, given 3.7 and 3.8. we find

h lA'
K

,4.,\) = 8 h(AK)

and of course,

aim taf, xe**41 = 8 dim (AK)

so, the nunber of K-isomorphism classes ot el'a**a (even

equipped '^'ith a principal polarization) is finite. But the

ring E = nnd"la*4'A**4) j-s finitety generated over n ,

and 6 o O is a seni-sinple algebra. Therefore there are, up

to conjugation ly €* , only finitely many idempotents in E.

(rn fact: e and e'are conjugate if and only if !e ! f,e' and

ttr-et:E (1-e'). But the number of subspaces (E€Q) . e and

(6€O) (1-e) i,s finite, and the theorem of Jordan and zassen-

haus impl.ies there are only finitely many choices of a lattice

in each of these spaces.) Thus, 2.8 follons from 3.7 and 3.8-

Proof of 3.? 3 In computing h. vte are free to make finite

extensions of the base field. Also. the proposition is trivial

if AK is principally polarizable, because then A I A* . Now,

over a suitable extension field' A is isogenous to a princi-

pal1y polarized abelian variety. so, it is enough to show that

h(A*) - h(A) is an isogeny invariant. since every isogeny can

be factored (over an extension field) into steps of plj-ne

alegree, vre are reduced to showj-ng that

h(A*) -h(B*) + h{B) - h(A) = 0
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Frovided there is an isogeny e: A -+ B of degree g, .

By our lsogeny formula 3.1, applled to p and to the dual

isogeny

tp* : B* 
---+ A* (also of degree 9l '

ltLth respectlve kernels G c-f. a and G* q B* , we have

to prove that

tK:(DI . los (r) = loe (# (s*o[r*t # (s*0:*/R) )

Uslng the locallsation and completion process as in (3.5), it
suf.fices to show that, for every place v of K dtviding L ,

(3.9) *(s*01 I #(s*n1^ ) = #(R--/tR--)
€/n, d)/n, v' v'

To prove 3.9, we shall break up A and gtr accordlng to the

tflo-step filtrations of Tl dri.scussed In 3.2. - Tg(p) and its
dual T! (p*) induce three palrs of dual maps (the dualtty
followlng from the orthogonality theorem quoted in 3.2) :

Tt (A) t 

-+ 
Tg (B) t

T, (A* ) /T LliAt,l 
f €-- Tz (B* ) /r gly* 1f

(r)
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Ts (A) /rs (A) f ) rt (B) /T L@lf
(III)

+Tt(A*)t 4- Tt(B*)t

considering the decompositlons of the formal completions of

our semi-stable abelian varieties over R--:

1+

1 ---+

t tar ---1 A -+ fu tol

l^.1^l^
ft 
tot 16 feu 

tor

ttgt -+ i -- f,itat

--0

+0

the maps between the torus parts of the Tate-modules in (I)

and (III) are induced by the ."p 6t,O) between the completed

^tori (resp. by i(,0*)), and the maps in (II) are derived from

the pair of duar mappings fut,pt, S{t*) between formal

abelian schemes over SPf (\)

6 and G+ have order 1 or f,, so pneoilelq one of the three

pairs of dual rnaps will have non-trivial kernels. More

precisely: Suppose a kernel sits in (r) - Then 6 t dtot , and

forcibly & = 0 as A is of multiplicative tyPe'

#ts*nfr*.rt = fr (Rv/t,Rv)

- just as for/og r se€ [erutt] , 2.5 . Next' supPose
A  A,\
c + T(A) , and G* + 0 . Then T(a) and T((p*) are isomor-

phisms, whereas St,ll and iut,p*t are dual isogenies of
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degree I , with kernets C .rra & , respectlvel-y, Apptyj-ng
the functo! nont., d'^) to the short exact sequence

-^,^
0 ----) c -----, Ab(A) ----+ Ab(B) -___) 0

we obtain the exact sequence (of fppf-sheaves)

^ 
1,^/1 r.1  0 ---) Horn(c,cn) ---+ Exr'(Ab(B),cnt) -J Exrr(Ab(A),cn)

il|
f,u1"*y ol to*l

this shows that d and C* are dual to each other, and

consequently (see lcrun],2.4 I ,

# (s*03/Rv) #(s*ob*/Rv) = #(Rv/gRv)

as requ ired.

Finally. if the naps in (I) and (II) are all bj-jectlve, then
vte must h..re A = O and d- if e.l . This case is exactly dual
to the first one we treated.

q.e.d.

To conplete this section, we still have to do the

Proof of lemna 3.8:

There is al\^rays some polarization on AK over X , so let /,
be an ample line bundle on AK defined over K, giving rise
to the symplectic forn
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for any prlne ,,. choose an lnteger N> 0 such that,for all
!, 1

rr(\)ic$ rs(\) crr(\) %ror

where Tg(\)r ls the dual lattlce of TI(AK) wlth respect

to <,> . (E.9., tt = deg(t). ) There are a,b,c,d En vlth

2 -2 2 -2a- + b- + c- + d- r -1 (mod N).

(In fact. 22 + 12 + 12 + 12 - -1 (nod 8) , and if -1 f (Fp4) ,

lhen 1 e-Fn*)2u 1t Fp*)2 , so that -Fo*)2n 1*Fn*)2+ y' .

Fron there, one goes wlth Nelrton. ) Put

a

b

c

d

-b

a

-d

c

-c -d

d-c
ab

-ba

€ M4@)

so that to . o = -1 (ood N) . For each I , consider the

lattice

(,' ;.)
(rn (AKl 4 o rr (\) *4 )c vr (\) 8
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It is easily checked that, by its very construction, this

lattice is selfdual and lntegral-valued with respect to the

form . , ,8 on V[(AK)B . (*oa" that, as o has rational-

integral entries, the Rosati involution of .,r4 on o is

sinply the transpose. ) As the lattice is clearly Galois-

j-nvariant, there is a quotient BX of \ over K , such

that T,(BK) is the above lattice- BK is obviously

isomorphic to ol t oftn , and from the propertles of Tt (BK)

we see that it admits a principal polarlzation.

q.e. d.

This completes the proof of the Tate conjecture.
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In tlta sectlon, rre collect same variantg

and indlcate a poaslble variatlon of its
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less trivlal and rnore

to d = tltn (Z/n ll =

n€lN

of Theoretn 1.1

proof .

teresting way to pass from

z. :
t'

There ls a

one Br.

Let ua start wtth the follorting obvlous consequence of Theorem

1.1 anal Corollary 1.2. The notations are those of the be-

91nnin9 of S 1.

4 .1 varl-ant Le.t. a be a 6i.ni,te ae.t ol ,tLianal pahn't. Tlent

gl ThL orLion oi It on ,f,, v, tat ia .\ma-EhpLL.

(LLl The natu^ql nap

rbnx (A,B) LtT n; .* J, Honr(rt(A),rr(B)l

i.t an itoaoaplui.tn.

in
-TI
a1l

4.2 Theorem (see la€t renark oflFllrcf.lDel ,2.7l LeJ

r(l) = Ti rr(A) , and
al l.l,

p , kbl ""* End a (r (A) )

be the honananphi.tn given bq the acLian o( t on 'r lAl . Thzn the

uba&gzbtu. o t itnll o( erd a(r(A) I b oi $nitzitrdzx it thz

eormtiort ol
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Ed K(A) 
4 End a 

(r(A) )

in End 4 
(r (A) )

Note that 4.2 implies 1.'l . In fact.4.2 ihplies that, for all
prirnes 4 , the image of

Pt@01 : Qt ['r ] -------* Endru (vu (A) )

is the conunutant of the seni-sinple og-algebra EndK AOZ Ql.
so, this image is itself a seni-sl-nple o!-algebra. whence (.i)

of 1.'l . Furthermore, by ttle theorem of b icorNnutatj.on. EndK AO Qt

is the corunutant of pt(0![r]]in End Vn(A], which implies (ii)
of 1.1 - cf.2.4 above.

But 4.2 is nuch nore precise: It says that, for alnost atl 1,,

?Ll zLlTl) is exactly the conmutant of DndK{A) in

End,- (r. (A) ) !

^t

Proof of 4.2r All we have to show is the last-nentioned

equality of p Ll %Llnll and EndK(A) " , for alnost all .q,.

We proceed by a reductj,on very much ceniniscent of 2.4.

lStJLlt ^ul6ite^ 
to altow thd, 6orL o.Lrc^t a.I2 pn Lne nunbe,ra 9,, ;"6 w

i.6 d r-.UvqtLir-nt aub.tpaee od the t fveetaL apo,ce Attl (fr'), ahen thefue ,ia

u € EndKA 6uch tha,t w = AlSl (R-)n ker(u)

In fact, assumlng the condltion of 4.3, one irnmediately gets

the semi-simplicity of the rT -action on the lFl- vector space

Atgl(i) . So. the algebra Fl generated by the elements of
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n in End - (Alc1(R-) ) is a serni-simple lFg-algebra. Thus,
',[

l etti ng

E4 = EndK A @zzAT, c End 
"U(A[.tl 

(K)]

and denoting conmutants by o / the theorern of bicornnutation

tells us that Fl = E.[' if and 6n1y if Fl' = Et . But

the condition of 4.3 for Ax A implies Flo = Et , by exactly

the same argunent as in 2.4. so, I^re have Fg = Et" , for aI-

most all prines 1,. Finally, calling End( Ao the commutant

of End. A in End,D (To{A)), we have naPpings,. *,[ -

p^@7,/9.2
F!. L Endx A'lr.Endx A" t Ec'

so, by Nakayamars lenna, Fl = El"

This proves 4 .3.
In oraler to prove 4.2, lve have to use a result which will only

be established iD the followlng articlel

implies o ^@,"l"ll = End,,A3

4.4 Theoren (see [WUst], 3.5 ]. Fo,L A wiJtL 6emL-.ttable Le-

d!.cl,Lon ove R , thue ia d lin'Lte a2't od prLanz'6 'r 6ucll that, lo,L orLti

i,\ogQlLq A-->B ovzli K 06 deyLee pnlne to s"l,t- L'€ T , onz ha6

h(A) = h(B)

Llke in 2.2 ,2.3 . we have to prove 4.2 only for seni-stable

A . Suppose then that the condition of 4.3 fails to be true.

Then there ls an infinite set M of prine numbers such that

for all t € M there is a r-invariant subspace wl c Ata.l(R)

which does not cone fron an endomorphisn u as required in
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4-3. Then 4.4 and 2.8 inpi.y that there is an infinite subset

Moc M such that for all ,,,t'-- l"lo, A/WL: A/W9.t

Taking L+ Lt in Mo , call f the composite map

A --------+ A/W" ---------> A/W ", ------> A

Since the degree of the last map is a power of tr . the endo-

morDhisn f € End-- A satisfies indeed

ws = AtSl(K) n ker (f),

contradicting our initial assumptj-on on M . This proves 4.2.

(4.5) To conclude, 1et us recall (cf . [T1 ] and [Fl]) that we

could have used the weaker diophantine resuft on pn iycLpallq

pola.t-Lzti.d abelian varieties,[F2]'II 4.3, instead of 2.8, in the

proof of Theorem 1.1, at the expense of i{orking a little harder

on the reduction steps of S 2. Refining 2.4, we would have

had to reduce to showing that any nwLilr'ol- i,,otiopic subspace

W c.V"(A) - with respect to the g-adic Ri.emann fcrm of sone fixed

priocipal polarization on A - is the image of some global

endonorphism. Ihis is done by an argument quite slmilar to the

one we had to use here in the proof of 3.8 in order to get 2.8,

See [24] , 2.6, for this reduction. Incidentally, in this

approach. it .is 1e9a1 to assune A principally polarized be-

cause, over a field extensl-on lsee 2.21 A is isoqenous to

some principally polarized abelian variety B i and 1.1 is in-

variant under isogeny, thanks to 2.'l , because isoqenous

varj-eties have isomorphic r-repre sentations v[ .
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