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morphisms of abelian varieties over number fields, in
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§ 1 Statements

Let K be a number field (of finite degree over @ ), and let
A be an abelian variety defined over K . Put g=dim A
For a prime number & , and nz 1 , denote by A[2"] the

kernel of multiplication by :™ on A , and write, as usual,

= 1 n K - —]
Ty =L ALTIR) V() =T R ey 0

where K is a fixed algebraic closure of K .

TR and VE actually define covariant functors in an obvious
way. The absolute Galois group 7= Gal(K/K) acts on T (a) ,
resp. Vg(A) ; by :El-linear, resp. Qg-linear, continuous

transformations.

The object of this article is to prove the following theorem,
known as Tate's conjecture on the endomorphisms EndKA of

A defined over K .

1.1 Theorem. (i) The action of m on Vh(A) 45 semi-sdimple.

(ii)  The natunal map

Bﬁ%ﬁ@§z Z

) —— Endzn['ﬂ](T,Q,(A) )

48 an Lsomorphism.

Remark: The following facts can be found, e.g., in [Mu1]:
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(i) Since K has characteristic 0 , TR(A) is a free

Zz—module of rank 2g.

(ii) If B is another abelian variety over K , the homo-
morphisms HomK (A,B) always form a free Z-module of finite
type, and the functor T induces an Jdnjection

L

(A,B) @

Hom z, c— Homiz (TzfA) /T, (B))

K %

L

whose image has to be in the submodule

Homy (T, (R),T,(B))" = Hom, [ 4 (T (A),T,(B))
% L

fixed by 1w , because u(x)g‘I = u(xg) , for all g € 7 ,
X € A[iw], if u €End A is defined over K . So, the

essential claim of 1.1(ii) is sarfectivity.
1.2 Corollary. Fex A,B  as above, the natural map

Hch(A,B) ® Z, —— Hom

7w 2y ZZR[TF](TE,(A) /Ty (B))

L4 an Lsomorphism,

Proof: Apply 1.1 to the abelian variety Ax'B. - See [®1],
lemma 3.

The following corollary used to be known as the  J{sogeny

confecture for abelian varieties over K.



- 117 -

1.3 Corollary. The following statements are equivalent.

(i) A and B anre disogenows over K

(11) Vg (a) = v (B) , as wmodules.
(iii) Fon almost alf primes v of K, L (A,s) =L (B,s).

(iv) Forn all v , LV(A,S) = LV(B,s).

Ly, Iy
(v) For almost atl v, tr(Fv]Vg(A) ) = tr(FleR(B) )

Iy

M =
) = tr (FVIVE(B) Y

I
(vi) For all v, tr(Fvlvg(A)

Here, LV(A,S) is the Euler factor at v of the Hasse-Weil

L-function of A over K :

rojw

L(A/K,s) =1 LV(A,S) (for Rel(s) >
v

Let I < 1 be an inertia subgroup at v , and F_€ n/I
v v L.

a Frobenius element at v. Then the action of F, on TQ(A} v

is well-defined, and we put

LV(ArS) = . '

det(1-WNvy ° « Fy | Ti(A)IV)

INv being the cardinality of the residue class field at v. -

This definition of L, does not depend on the choice of the
prime number & tINv , and I, acts trivially on TQ(A) for

almost all v . Cf.[ST].

Corollary 1.3 asserts in particular that #the L-function L(A/K,s)

L5 a complete isogeny invardant of A/K .
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Proof of 1.3: (i) <==> (ii). f € Hom(A,B) 1is an isogeny if

and only if Tﬂ(f) has full rank, i.e., det Tg(f)x 0. This
already implies (i) =>(ii). On the other hand, suppose

Q: VR(A)+ VQ(B) is an isomorphism of m-modules. Choose n
such that &%+ ¢ € Hom(TR(A), TE(B))' This homomorphism comes
from Hme(A,E) Ezzz ; and can therefore be approximated by
elements of Hom(A,B) . Since det(ﬂnw) # 0 , the same will be

true for good approximations. This way one finds the required

isogeny.

Remark: Note that, for an isogeny £f:A - B , Tz(f) is an

isomorphism TE(A) e TK(B) if and only if 21deg(f)

(v)=—=(ii) : A semi-simple representation of a ®,- algebra
in a finite-dimensional QR-VECtOI space is determined by its
character; [Bou], § 12, n®°1. In our case, the character is
eontinuous and therefore determined by its values on a dense
subset of w . By Cebotarev's theorem (cf. [Sel, chap. I),
such a subset is provided by the Frobenius elements of a set

of places of density 1.

The rest of the proof of 1.3 is logic. Note in particular that

any quantifier may be used with £ in (ii).

1.4 Remark Since all higher #&tale cohomology groups

n —_—
Hge (B XgX,0,)

of the abelian variety A are given by exterior powers of
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1 — ~ ,
Hgyp (A K, @) = Hom%(v2 (2),0,)
the semi-simplicity asserted in 1.1 implies that:
> . n = 2
Fon af€ n 20 , zhe action ¢f w on Hét (AXKK'QEJ i

semdi-sdmple.,

In fact, since the representations of 7 in question are in
finite dimensional vector spaces over a field of characteris-
tic 0 , this follows by passing to Lie-algebras: see [Hum],

13.2; [BoL], chap. I, § 6 n°5; cf. [BoL], chap. III, §9 n°8.

1.5 Tate's general conjecture

Let k Dbe a field which is of finite type over its prime
field, k a fixed algebraic closure of k , 7 = Autk(F)

and & a prime number different from the characteristic of
k . Let X be a smooth projective geometrically connected
variety over k , and write X = X XkE:' Every closed

irreducible subvariety Z of X of codimension r defines

an f-adic cohomology class

= 2r = . 2r = @r
ef(Z2) € H"" (X,Q,) (r) = {lim H (X, (e ) )1 0]
3 =0 Hee /.n %%

namely the image of 1 € QR under the natural map from

relative cohomology
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~

2r = 2r =
2 = H X0y (1) —— HT(E,Q) (1) .

Cf. [Mil], chap. VI.

Call af(x) the free abelian group on subvarieties Z of X

of codimension «r defdined over k , and
o (x) = }r(x)/kernel (Z > L(Z)).

Then the general form of Tate's conjecture related to our

theorem is:

Conjecture: (U (X) ®, 0, —> 1%t (X, Q) ()",

ctf. [T3].

We shall now indicate how theorem 1.1(ii) can be seen to be a
special case of this conjecture. In fact, *hings become more
transparent when we deduce corollary 1.2 instead. So, suppose

A and B are abelian varieties over k , and consider the.

diagram
Hom (A,B) IR Pic® (A x B*)
l(2)
2
) H™ (A% B*,0,) (1)

1 l(3)
1
H(a,0))@g BT (B*,0,) (1)

Homg, (Vg1a) ,V, (B)) ———V (a)*ev, (B)
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where B*/k 1is the dual of B , and the maps are given as

follows.

(1) For ¢ € Hom(A,B) , pullback of the Poincaré& bundle

BxB* wvia @ x id: Ax B* »B xB* |
(2) First Chern class.

(3) Projection onto the (1,1) - component in the Kilinneth-

decomposition.

(4) Use that H1(A,QR) = VE(A)* (dual), and that the Weil-

pairing on VQ(B) induces a duality
' (8,0, x H (B*,0,) — @, (-1) ,
and thus an isomorphism

u' (B*,0,) (1) = H1(B,Q2)* = V,(B) .

% L

(5) A ®Db +» (aw Ata).b) .

(6) oOur natural map, induced by the functor v, .
It is easy to see that this diagram commutes. All maps are
m—equivariant, and from the definition of the Poincaré

bundle, it is clear that the image of Homk(A,B) under

(3)< (2) » (1) is precisely Glj®1(A x B*) c [H1(A)®H1(B)(1)]W,
the H1® H1-projection of Uﬂ(AXB*). So, assuming Tate's con-
jecture, the surjectivity of (6) follows from the fact that (4)

and (5) are isomorphisms.
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1.6 A glance at the history

Elliptic curves over finite fields have lots of endomorphisms.
This phenomenon was systemtically perused by Deuring in [Deul,
and, as Tate points out in [T1], Deuring's results allow one
to deduce the analogue of Corollary 1.2 for A,B elliptic
curves over a #inite field K (of characteristic #%2). In
[T1], Tate generalized this to abelian varieties over finite
fields. In this case, the semi-simplicity of the m-action can
be shown directly, but the pattern of proof developed by Tate
turned out to be adequate even for the number field case. In
a sequence of papers - [Z1] through [Z5] - Zarhin proved the
analogue of 1.1 for most function fields of finite transcen-
dence degree over a finite field. For this, he had to refine
Tate's way of reducing 1.1 to a diophantine statement, and
some of our reduction steps are inspired by Zarhin's re-

finements.

There have been partial results in the number field case be-
fore Faltings' general proof of 1.1, of which we mention
Serre's results on elliptic curves (see [Se]), the case of

complex multiplication (see [Shim], cf. [2zZz]), and the Jacobian

of modular curves ([Ri]).
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§2 Reductions

In this section, theorem 1.1 will be seen to be a consequence
of a diophantine result on abelian varieties over K . Using
the finiteness theorem [F2], II 4.3, this diophantine
statement is seen to result from the behaviour of the modular
height under certain isogenies. These height calculations will

be performed in § 3.

The notations are those of the beginning of § 1.

(2.1) To prove 1.1(ii), L% suffices Lo show that the natural
infection

EndKA %EQZ —— End (VR{A))

Ql[ﬂ]

45 an Lsomeaphism,

In fact, this map is still injective since QR is flat over

7 Furthermore, the cokernel of the Z_ -linear map is

L %
torsion-free: an endomorphism of A wvanishing on A[L] is

divisble by &.

(2.2) Let K' oK be a finite extension, 1§ 1.1 is true fon A% K"

over K', then Lt hofds also over K .

Let 7'= Gal(K/K'), 7' = Gal(K/K'" ), where K" is a finite
Galois extension of K containing K' . Since ©" is normal
in n', the semi-simplicity of VQ(A ﬁ<K' ) = VR(A) as a

m'-module implies that of the m"-module VQ(A) . T acts on
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the decomposition of this 7''-module into simple factorss and

adding up these T-orbits decomposes VQ(A) as a m-module.

Any ¢ € End(Tz(A)) fixed by m 1is also fixed by =';
Al .
therefore comes from an f € EndK,(A XKK ) @%Zg. But f is

again fixed under 1w , and thus lies in EndK A.@h%l.

(2.3) In proving 1.1, we may assume that A has semi-stable re-

duction overn the ning of integerns ¢ of K .

This is a consequence of 2.2 and Grothendieck's semi-stable
reduction theorem - [Groth], thm. 3.6 - which asserts that
there is a finite (separable) extension K' of K such
that A XKK' acquires semi-stable reduction over ok'

We shall recall the definition and various properties of

abelian varieties with semi-stable reduction in § 3.
(2.4) To prove 1.1, it suffices to show the §ollowing:

For every m -Anvardant subspace W < Vz (a) , there 4s
(*){

u € EndK A QZQSL such that u. VQ(A) = W.

A reduction step of this kind is already essential in Tate
[T1]. Cf. also [Z24], lemma 3.1. First note that the right

ideal

{v € Endy A @, @ | v VQ(A) c W,

like any right ideal in a semi-simple algebra, is generated
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" : 2 A
by some projector wug,i.e., u, = u, . If u exists as in

o
(*), it follows that uo-VE(A) = W. So every Tm-invariant sub-
space of VR(A) is a direct factor, which implies the semi-

simplicity of the m-action.

Let C be the commutant of EndKA ® QR in EndQ (VE{A))' The
U

commutant C° of C equals EndK A& QE , by the theorem of

bicommutation - [Boul, § 5,n°4 -, again because End 2 @@,

is a semi-simple algebra.

Assume we know (*) for all abelian varieties over K , in

particular for A xA . Then the graph
W= ((x,00x) | x € V(@)}V (M? = v, (axa)

of any ¢ € End ](VE(A)) is a m-invariant subspace, soO

QE[w
there is u € EndKA2 ® QZ such that u. VR(AXA)

W .

It will be enough to show that ¢ € C° . So take o € C. Then

o 0
(0 a) € End(VEfA}z] commutes with EndKA2<3 QR , in particu-
lar with u. Consequently (g g) WcW, which means that

op = wa , i.e., ¢ € C°.

2.5 Subspaces and L- divisible groups.

Given a Qﬂ-linear subspace W c VR(A)’ put U =W N TR(A)'

Then, for nz21,

n

Ly e— "

_— n b
TQ(A)/TQ(A) = A [2£7]1(K)
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defines the levels of an f-divisible subgroup G of A(%)/K

with height(G) = dimQ W. (cf. [Grun].) If W is w-invariant ,
i

G 1is defined over K .

Over K , we can divide A by Gl_1 (for nz 1), obtaining

abelian varieties A/Gn over K , together with isogenies

P

n
A -——f—) A/Gn
n
of degree f,n'dlm W , such that

1

= -n
Tl(pn) L U+ TR(A) '

T£)  (T,(B/G)))

(T, (A/G_))

n
U+ & TR(A} —:Tn
(2.6) Given a m-Lnvariant subspace Wev, (A) ,condition (*) of (2.4)4s
satisfied, Lf Anfinitely many of the abelian varieties A/G,(n 20)

are Lsomorphic £o each other over K.,

The proof of 2.6 is the essential step which enabled Tate to
prove the analogue of 1.1 for abelian varieties over finite

fields; see [T1], Proposition 1.

To prove 2.6, let I be an infinite subset of N , with
smallest element i, , such that, for all i € I , there are

isomorphisms defined over K ,

~
vy ot A/Gin = A/Gi .

In EndK A®Q [ consider the element uy composed of
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-1

i, Vi £y
_— ., —> , .
A A/Glo A/Gy > A
Viewed in End VQ(A), u; maps Ti° onto Ti c Ti° W in the
notations of 2.5. But End Ti is compact. So, selecting a

o

smaller I if necessary, we may assume that the sequence

(u converges to a limit u which still comes from

idier
EndK A® Ql since this set is closed in End VE(A)'

Consider U = (j T, . Since u.(T. ) = T., every Xx €U
h i i'7i, )
eI
is a limit 1lim u.(y.) , for certain y, € T. . Passing to an
jer 1 i i i,

accumulation point y of the yi‘s we see that U = u(T.l ) =
o

Thus, u. VK(A) = W , as required.

Taking into account (2.3), it is now obvious that we will be
done with the proof of Theorem 1.1, once we have obtained the

following two results.

2.7 Proposition: In the notation of (2.5), assuming A , and there-

gore all the a/G o have semi-stable reduction, the modular height

h(A/Gn) is Andependent of n, for n sufficiently Large.

2.8. Theorem: Given g and c, there exist, up to isomornphism, only

finitely many abelian varieties A with semi-stable reduction over K

such that dimA=g and h(A) £c

The proof of (2.7) and the reduction of (2.8) to the analogous
statement for principally polarized abelian varieties which

was proved in [F2] will be the subject of the next section.
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§ 3 Heights

Before turning to the proofs proper of (2.7) and (2.8), let us
recall some basic facts about abelian varieties with semi-

stable reduction. The reference for this is [Groth].

Given an abelian variety AK over the number field K , recall
that there exists the Néron-modef A of Ay which is a smooth
group scheme over the ring of integers R of K , and is

uniquely characterized by the fact that

Hom (s,A) = Hom, (SK,AK) '
for every smooth group scheme S over R with generic fibre
SK . From now on, we will always denote by A the connected component of
A, with fibres the connected components of 0 of the fibres

of A

AK is said to have semi-stabfe neduction cver K , if for every

s € Spec R , the fibre AS sits in an exact sequence

with an abelian variety B, and a torus TS over k(s)
Equivalently, [Groth], 3.2, AK has semi-stable reduction, if
there exists some smooth separated group scheme G of finite
type over Spec R whose fibres are all extensions of an
abelian variety by a torus as above, and whose generic fibre

is AK
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Assume now that AK and BK are abelian varieties with semi-

stable reduction over K. Suppose an isogeny

(D:AK-——-} BK

over K is given. By the universal property of the (connected)

Néron model, ¢ certainly extends to a morphism over Spec R:
¢ : A — B .

Semi-stability implies furthermore that this morphism is {aith-
futly g€at , and that the kernel

®
G = ker ( A —— B)

is a quasi-finite, flat group scheme over Spec R. ( Cf.[Groth],
2.2.1, or [Mu2], lemma 6.12 : the typical bad case ruled out
by semi-stability is multiplication by p : & j—— Ga ;

over a field of characteristic p.) Note that G {5 not
necessarily a finite ghoup scheme over Spec R (unless A and B
have good reduction everywhere) : its fibres will have varying

orders in general.

At any rate, one obtains the exact sequence

(p*
0 —> s*(Q ! ) —> s*(Q
B/R

1

pfgl — SA

1
c/r 0.
Here, s denotes the zero-sections of the group schemes in

question. The exactness at the centre follows from that of the

well-known sequence of relative differentials,
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1 o
A/R & > 0

]
®
©*(Q A/B

B/R) >~ 8

Now, the order of the finite group s*(Q .

G/R) equals

1

= g )
G/R) = # coker( A e* : w

# (s*Q —_

B/R “a/R)

1
Y“x/R X/R

This is shown by localizing and applying a well-known corollary

where ) s

denotes the maximal exterior power of s*(Q

of the theorem of elementary divisors.

Recall the definition of the modwlan height of a (semi-)abelian

variety:
_ 1
b () = tregr 989 (vy/p) o
with:

deg (wA ) = log #(w

/R A/R/p-R) - ) e_. log Hell, »

v
V|0

p being a non-zero element of w and A 1 or 2,

A/R '

according as v 1is real or complex.

As ¢ changes the volume by Vdeg ¢ at every infinite place

of K , we see that we have the

(3.1) Isogeny Formula: Under the above assumptions,

1

h(B) - h(@) = 3 log (deg ©) - —
K:Q

log #(s*Q é/R) .

(3.2) For the application of this isogeny formula in the proof

of (2.7) we shall need the theory of the {dixed and torus parts

of TZ(AK)’ for an abelian variety AK with semi-stable
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reduction. See [Groth], esp. § 5. Let us recall the basics of

this theory in the situation we shall encounter.

Let v be a place of X dividing £ , and Rv the completion
of R at v . As over the spectrum of any Henselian local

ring, every guasi—finite scheme X over Spec Rv decomposes as

where X is {finite over R, and Y has no special fibre,
cf. [EGAIIL]6.2.6. Given AK with semi-stable reduction as be-
fore, we can apply this to the guasi-finite group scheme
A[lv], the kernel of multiplication by %Y on the connected
Néron model of Ag considered over the completion Rv , thus
obtaining its {#dinite part ﬂTiv] over R . These finite parts
make up a strict (i.e.,%:A - A 1is surjective ) projective

system which then defines what is called the fixed part of the

Tate-module of A
I
TQ(A) [= TQ(A)

We shall make use of this submodule «n the generdic fibre (i.e.,
the only Tate-mcdule we ever considered in §§ 1 and 2) which

may be written all explicitely
T (a0t (X)) 1 (8 (K
2K v LK vt
Henceforth, we shall simply write

£
c T (Ag ) .

Ty (Ag )
v v



- 132 -

even if we think only of the f-adic Galois-representation

given by the K;-rational points.

Let A over Spf(Rv) be the formal completion of A/RV

along its special fibre A, . Now, in the decomposition above

ale’l = Al2"1 4 c (v 2 0)
we have
P

ARV = AlLY]

because Cv has no special fibre. Therefore,

f

if we agree to identify finite schemes over Spec R, with

finite formal schemes over Spf (Rv). (CE. [EGA 111],4.8.)

Furthermore, by semi-stability, the special fibre A, sits in

an exact sequence

for some abelian variety B, and torus T, over kv = Rvéﬂv'
For every n21 , there is a unique torus Tn over
Rv/mv(n+1) with special fibre T, ([Grol, 3.6 bis). Being

A
unique, the Tn fit together to define a formal torus T/RV

A
which injects into A . This torus gives us a submodule

t A N £
TQ(A) : = T,(T) = T,(R) = T, (A)
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Here too, we can consider the generic fibre. So we have a

two-step filtration

t £
To(Bg )7 = To(BAyp )7 = Ty (Ay )
v v v

of the Tate-module of the semi-stable abelian variety AK

over K

Likewise, for the dual abelian variety AK* over K , we get

submodules

t f
TJL(AK *) ST, (Ag *¥)" e TSL(AK *) .
v v v

The Weil pairing provides an alternating duality

*
TK(AK)X TR(AK ) —— Z£(1) é
The Onthogonality Theorem - [Groth], 5.2 - asserts that, with

respect to this paring,

T (A, ) = (T,(A, *)7) '
LK, LK,

and, of course, the other way around:

Nt = a0 Ht

T, (A
2 Ry v

As a first consequence of this, let us note right away the
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3.3 Lemma: Catl D, = Gal (K_V/KV) o the decomposition group and
I,<D, the inentia subgroup of v . Then I, acts tuivially on
TR’(AKV)/TSL(AKV)f , and D, acts via a gfinite quotient.

Proof: By the orthogonality theorem,

£ o~ A
X )= = Hom(TZ(T), TZ(Gm))

TK(AK )/TQ(A
v v

A
So, the lemma follows from the fact that T 1is split by a
finite unramified extension of KV (in fact, T, is split

by the algebraic closure of the residue field kv)

(3.4) We can now return to the situation envisaged in (2.5),
with a view to proving (2.7). Rewriting (2.5) in our present
notation, we are given an abelian variety AK with semi-
stable reduction over K , an &-divisible group (GnK)nZO )

and the quotients

Pn
A, —> (AK/GnK) = A

K nK

Passing tO connected Néron models, call Gn now the kernel

of the isogeny of connected Néron models

p,: A _ Al over R
Fixing a place vI|& , decompose, as in (3.2) above,
~
G =G_ 4 H over R
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with é; finite over Spec RV , and Hn without special
fibre. - Thus,

~ _’\ln]
Gn—A[ ﬂGn

.

Now, our problem is that U, é; need not be an L-divisible

greup over R .
In fact, consider first the Galois representation in the
generic fibre : ngo é;(Kv). Being an intersection of two
2-divisible groups over K, this is of the form:
( f;—rational points of an > finite abelian
| )
g-divisible group over K

group

The finite group is contained in some é; (f;), so for
o

Fnz Gn°+n/Gn° (n20) , we find that ngo Fn(Kv) is

f2-divisible oven KV.

But ngo Fn need not be an ¢-divisible group over RV "

In fact, the sequences

n
2
0 —» Fn _— Fn+m — T @ 0
may not be exact ovex R_ . This problem is discussed on the

v

last page of [T2] , and we are going to apply Tate's trick to

get around it: Look at the maps induced by multiplication by £

(*)_+ T /T — I’

n n+2’ ‘n+1 (n20) .
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Let En be the affine algebra of T /Fn . Since

U
n+1 nz0 "n

is an f-divisible group ovex Kv’ F:=F & is a finite-
n

K
R, v
dimensional Kv—-algebra which does not depend on n . So, the
E form an increasing sequence of orders in F. Such a sequence

has to become stationary. In other words, the maps (*)n are

isomorphisms for, say, nz n, - We claim that the
Ti=T /T 2E Je (nz0)
constitute an f-divisible group over Rv .- We have to show

that the long rows of the following commutative diagram are

exact, for all n .

i -
B Tn1+n+2/Fn1+n+1 = F1—11+n+1/rn1+n
i g 1
0 Ii.l > T"n+2 —_ T(n+1 —s 0
AN
’ J P}
. 2
4 ?'1 ? Ther T T —

This follows from this very diagram by induction.

(3.5) We can now begin to show that

fon all nz0 , which gives (2.7)

To simplify notations, let us pretend that n°=n1=0 , so that
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~

Fn = Gn' Recall that An = A/Gn (connected semi-abelian

scheme over R ). From 3.1, we get:

1 - :
gl = WL =g 0T 1950 By - gy B0e #MRy gl -

Recall (3.2) that, for all places v of K dividing & ,
G =G_u H over Rv P

where H_  is concentrated in the generic fibre, and é‘;} is
finite over Rv . Completing along the special fibre, one

A )
finds Gn = é:_l ; over Rv . - Taking differentials commutes

with completion, so we get successively:

1 1 1 1
#(s*Q ) =] #(s*Q ) =T #(s*qa ) =T #(s*Qx )i
Gn/R vig Gn/Rv vIL Gn/RV v Gn/Rv

By [Grun]l, 3.4 , we have

d
1 _ n v
#(S*Qg’ /R ) = #(R,/L7R) .
n’ v

where d  is the dimension of the %-divisible group Y% an

over R, (we have assumed for simplicity that this (s

L-divisible).
Call h = dim_ (W) = rank, (U) (see 2.5) the height of the
2, 5

t-divisible group G over K

ngo nkK "

We find:
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h(a)) - h(a) = n.log(z).{% -
We have to show that the expression in cwily brackets is zero!

(3.6) Put T = Gal(Q®/@), and consider the induced Galois-re-

presentations (recall that U = TI(HGnK)’ see 2.5)

% 7
U = IndTT U c Ind1T TQ(AK) = T,6 (B

o (Bg)

Q

where BQ = Res is the abelian variety over @ ob-

K/Q(AK)

tained from AK by Weil-restriction from K to @ . We are

going to more or less evaluate the character

in two different ways!

First, it is well=— known (cf,,e.g.,[Mar], 3.2, which is easily

generalized to our situation) that

det U = Eh. (det U e Verz )

where e:T———> {+1} is the signature of the permutations

~

induced by T on the homogeneous space T/m , and Verg

is the transfer map : ?ab -— Wab . To compute det U at a
place v of K dividing & , up to an unramified character of

finite order, we may replace Han Y by g GnKv - this

K

follows from (3.3) since
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£
TQ(anK

)/TQ(HGnK ) 6—— T, (Ae ) /T (A, )
v v v

v

Now, by [Grun], 5.2 , we have

/\H T (UG

2 nKv) G; Cv = Cv(dv) £

/2
where B is the height of the %-divisible group Han over

R, . and Cv(dv) is the completion of K with Galois-

~

action given by the restriction to Gal(Cv/Kv) &> gcrm of

*
> ZK the cyclotomic

character giving the action of T on TQ(Gm)' Composing with

the character dev , with Xy * T

~

Verg , and adding up the results for all v|f& , we see that

_X[KV:QQ]dv

T viL
(det U<>Verﬂ) T Xy,

is unramified at & .(The transfer map does not introduce any
new ramification because it corresponds to the natural map of
ideles gﬁ* _— Sh* , via class field theory.) On the other
hand, at each finite place w of K not dividing & , the in-
ertia Iw acts unipotently on U since AK has semi-stable

reduction: [Groth], 3.8. As unipotent matrices have determin-

ant 1, we conclude that the character

_Z[Kv:Ql]dv
“ -h vi|L ~
¢ = det U - ¢ "Xy, : T —> %, %

W wmamdfied at every rational prime.

But @ has no (abelian) extensions that are unramified at all

finite places (use Minkowski or class field theory). So, by
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class field theory, ¢ has to be the tnivial character.

Thus for any rational prime p# & where By has good re-
duction, if Fp €T ab is a Frobenius element at p , then,
on the one hand, we certainly have ®(p) = 1 . On the other
hand, by the part of the "Weil-conjectures" proved by Weil
himself, the eigenvalues of Fp on U are algebraic numbers

1/2

purely of absolute value P , Since 'ﬁch(B ) « So,

o

det 'ﬁ(Fp) is an algebraic number purely of absolute value
h[K:Q}/2 _ = *
p (recall that h = rankZZ(U)!) . As XQ(FP) = pEZJL

we conclude that

h[K:@] _ )

[K :0,] d
2 vl v e v

This proves (3.5),and therefore (2.7) .

We still have to deduce the diophantine result 2.8 from the
corresponding assertion, proved in [F2] , about paineipally
polarized abelian varieties. We claim it will be enough to

establish the following two results:

3.7 Proposition: For any abelian variety Ay over K with semdi-

stable reduction, cakling AL * Lt dual abelian variety, we have

h(AK*) = h(AK) .

3.8 Lemma [Zarhin ] : For any abelian variety Ay over K, calling

AK* Aits dual, AK4 ><AK*4 caries a princdpal polarization.
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In fact, given 3.7 and 3.8, we find

4 4
h(AKxAK) =8 . h(AK) ’

and of course,
aim (a2 xa_*%) = 8 ain (A, .
K K K

So, the number of K-isomorphism classes of A;x AK*

equipped with a principal polarization) is finite. But the

ring & = EndK(AK4 XAK*4) is finitely generated over Z ,

4
(even

and £ @ Q is a semi-simple algebra. Therefore there are, up
to conjugation by E* , only finitely many idempotents in E.
(In fact: e and e' are conjugate if and only if £e = Ee' and
E(1-e)TE (1-¢'). But the number of subspaces (E®Q) . e and
(€£@p) (1-e) is finite, and the theorem of Jordan and Zassen-
haus implies there are only finitely many choices of a lattice

in each of these spaces.) Thus, 2.8 follows from 3.7 and 3.8.

Proof of 3.7 : In computing h, we are free to make finite

extensions of the base field. Also, the proposition is trivial
if Ay is principally polarizable, because then A = A* . Now,
over a suitable extension field, A 1is isogenous to a princi-

pally polarized abelian variety. So, it is enough to show that
h(A*) - h(A) 1is an isogeny invariant. Since every isogeny can

be factored (over an extension field) into steps of prime

degree, we are reduced to showing that

h(A*) - h(B*) + h(B) - h(a) =0 ,
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Provided there is an isogeny ¢: A —> B of degree &
By our isogeny formula 3.1, applied to ¢ and to the dual

isogeny
@©* : B* — > A% (also of degree &) ,

with respective kernels G “> A and G* &— B* , we have

to prove that

1

[K:0] . log (2) = log (#(s*Q G

o/r) - Hls*@

)) .
Using the localisation and completion process as in (3.5), it
suffices to show that, for every place v of K dividing & ,
1
* =
) #(s*Q ) #(Rv/le)

]
&/r é*/R
v v

(3.9) #(s*Q

To prove 3.9, we shall break up ¢ and ¢* according to the
two-step filtrations of Tl discussed in 3.2. - Tz(@) and its
dual Tl(m*) induce three pairs of dual maps (the duality

following from the orthogonality theorem quoted in 3.2)

t ok
TQ(A) _— TR(B)
(1)
T, (a%) /7, (a0 T 1, (8%) /T, (0
£ & f t
T, (2) f/1, (2) > 1, 3)5/7, (8
(11)

TR(A*)f/TQ(A*)t — TQ(B*)f/TQ(B*)t
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£ £
TJL(A) /TQ(A) e — TQ(B)/TQ(B)
(IIT)
t t
T,Q,(A*) — TQ(B*)
Considering the decompositions of the formal completions of
our semi-stable abelian varieties over R

v©

A A N
1 — T(A) — A —> Ab(A) — O
A A a
T () © Ab (v)

A A A
1 —» T(B) —> B —> Ab(B) —> 0 ’

the maps between the torus parts of the Tate-modules in (I)
and (III) are induced by the map ‘f‘((p) between the completed
tori (resp. by ’i‘\(w*)) , and the maps in (II) are derived from
the pair of dual mappings fb(w) ’ }fb((p*) between formal

abelian schemes over Spf(RV)

N
G and é* have order 1 or &, so precisely one of the three
pairs of dual maps will have non-trivial kernels. More

A A
precisely: Suppose a kernel sits in (I). Then G < T(A), and

A A
forcibly G* = 0 . As G is of multiplicative type,
1
* —
#ls*0g,p ) = # (RG/IR,)
- Jjust as for/.l.pv , see [Grunl , 2.5 . Next, suppose

A Al A A A
G ¢ T(A) , and G*# 0 . Then T(¢) and T(e*) are isomor-

N N
phisms, whereas Ab(p) and Ab(v*) are dual isogenies of
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A A
degree L , with kernels G and G* , respectively. Applying

A
the functor Hom(., Gm) to the short exact sequence

A A A
0 — G — BAb(A) — Ab(B) — 0 ,

we obtain the exact sequence (of fppf-sheaves)

A 1A A G A
0 — Hom(G,6 ) —> Ext (Ab(B) ,G_) —> Ext (Ab(A) , € )

I ||

A A
Ab(B*) Ab(A%*)

A A
This shows that G and G* are dual to each other, and

consequently (see [Grun], 2.4 ) :
1 1 _
# (s*ﬂ@/Rv) #(S*Qé§/RV) = #(RV/ERV) ’

as required.

Finally, if the maps in (I) and (II) are all bijective, then
A A A
we must have G = 0 and G*c T(B*). This case is exactly dual

to the first one we treated.

gl

To complete this section, we still have to do the

Procof of lemma 3.8:

There is always some polarization on AK over K , so let JZ

be an ample line bundle on AK defined over K, giving rise

to the symplectic form
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<> TQ(AK)X TZ(AK) et ZR(1) '

for any prime L. Choose an integer N> 0 such that,for all

Lo,

:
Tylag) ¥y Ty (Bg) =Ty (Ag) %zzma ,

where TR(AK)* is the dual lattice of TR(AK) with respect

to <,> . (E.g., N = deg(f). ) There are a,b,c,d € Z with
a2 + b2 + c2 + d2 = -1 (mod N).
(In fact, 2% + 1% + 12 + 1% = -1 (mod 8), and if -1¢ B5)
2 2 2 2
th - * + (F * , t = * * N
en ‘la(Fp) Ui (I'pl so that CFp)n1+(Fp) +

From there, one goes with Newton.) Put

a -b -c =d
b a d -C
G, - € M,(Z) ;
G -d a b
d c -b a
so that ta .00 = -1 (mod N) . For each £ , consider the

lattice

I o
4
( ) (T a0 @ T, (A e v, (a8
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It is easily checked that, by its very construction, this

lattice is selfdual and integral-valued with respect to the

form < ,>8 on VQ(AK)8 . (Note that, as o has rational-

integral entries, the Rosati involution of <,>4 on o 1is

simply the transpose.) As the lattice is clearly Galois-

invariant, there is a quotient BK of AK over K , such
that TQ(BK) is the above lattice. BK is obviously
isomorphic to A; X A§4 , and from the properties of TQ(BK)

we see that it admits a principal polarization.

g.e.d.

This completes the proof of the Tate conjecture.



- 147 -

§ 4 Variants

In this section, we collect some variants of Theorem 1.1 ,

and indicate a possible variation of its proof.

Let us start with the following obvious consequence of Theorem
1.1 and Coreollary 1.2. The notations are those of the be-

ginning of § 1.

4.1 Variant Let T be a finite set of rational primes. Then:

(1) The action of ™ on P v, (B) L8 semi-simple.

LeT
(i1) The natural map
Hom (2,8) @ (T z,) — T Hom (T (a),T,(B))
LET LET

A5 an Lsomorphism,

There is a less trivial and more interesting way to pass from

A _
one %, to Z = lim (Z/n Z) = || Z H
£ — i
all &
nelN

4.2 Theorem (See last remark of[F1l;cf .[De),2.7) Llet

T(a) = 7 T,(8) , and
alll

oi Zln] — End (T(a))

be the homomorphism given by the action of m on T(A) . Then the
subakgebra o ( Elnl) of End g (T(A)) s of finite index in the

commutant of
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de(A)f—» End A (T(a))
in End/R\(T(A)) ’
Note that 4.2 implies 1.1. In fact, 4.2 implies that, for all
primes & , the image of

pgwmi: Qﬁ[n} — Bod, (Y, (&))

e,

is the commutant of the semi-simple Qp“—algebra EndK AQZ?, QR'
So, this image is itself a semi-simple Ql-algehra, whence (i)

of 1.1. Furthermore, by the theorem of bicommutation,EndKAe QR
is the commutant of pﬂ(Ql[n])in End V (A), which implies (ii)

of 1.1 — cf.2.4 above.

But 4.2 is much more precise: It says that, for almost all &,

QQ( Zl[ﬂ]] is exactly the commutant of EndK(A) in

Enc',.E (TE(A)) !
L

Proof of 4.2: All we have to show is the last-mentioned
equality of @ { mg[w]I and Endy(A)° , for almost all 2.

We proceed by a reduction very much ¥eminiscent of 2.4.

(4.3) 1z suffdces Lo show that, for abmost all prime numbers &, if W

i a m-dnvariant subspace of the F -vector space A[2](R), then there is

u € End.A such that W = A[L1(X)N ker(u)

In fact, assuming the condition of 4.3, one immediately gets

the semi-simplicity of the m -action on the F - vector space

L

A[21(XK) . So, the algebra FR generated by the elements of
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m in End T (A[2]1(K)) is a semi-simple T ,—algebra. Thus,

2 2
letting
Ei = EndK A 3& Z/%Z < End FI(A[R](K)) i
and denoting commutants by ° , the theorem of bicommutation
tells us that FR = E2° if and only if F£° = E2 . But
the condition of 4.3 for Ax A implies F£° = El , by exactly
the same argument as in 2.4. So, we have FR = El° , for al-

most all primes £&. Finally, calling EndK A° the commutant
of End, A in End (T, (A)), we have mappings
K ml L

Dﬂg /-
F

o =} -]
EndK A /R.EndK Ac e — E,
So, by Nakayama's lemma, Fy = Eg° implies pn(zg[w]) = EndKAE
This proves 4.3.
In order to prove 4.2, we have to use a result which will only

be established in the following article:

4.4 Theorem (see [Wiist], 3.5). For A with sem(-stable re-

duction over K , there is a finite set of primes T such that, for any

isogeny A —B over K of degree pnime to aff fLre T , one has
h(a) = h(B) .

Like in 2.2 , 2.3 , we have to prove 4.2-only for semi-stable
A . Suppose then that the condition of 4.3 fails to be true.
Then there is an infinite set M of prime numbers such that
for all & € M there is a rm-invariant subspace W, < A[%](K)

2
which does not come from an endomorphism u as required in
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4.3, Then 4.4 and 2.8 imply that there is an infinite subset
Mo,= M such that for all L,8'e Mg, A/W2 < A/WR'

Taking &% &' in M, , call £f the composite map
A —> A/WE—:>- A/Wy, —> A .

Since the degree of the last map is a power of &' , the endo-

morphism £ EEndK A satisfies indeed

Wy = A[2]1(RK) n ker (f),

contradicting our initial assumption on M . This proves 4.2.

(4.5) To conclude, let us recall (cf. [T1] and [F1]) that we
could have used the weaker diophantine result on principally
pofarizéd abelian varieties,[F2],II 4.3, instead of 2.8, in the
proof of Theorem 1.1, at the expense of working a little harder
on the reduction steps of § 2. Refining 2.4, we would have

had to reduce to showing that any maximal {sothopic subspace
5VCHQ(A!- with respect to the f&-adic Riemann form of some fixed
principal polarization on A - is the image of some global
endomorphism. This is done by an argument guite similar to the
one we had to use here in the proof of 3.8 in order to get 2.8.
See [Z4], 2.6, for this reduction. Incidentally, in this
approach, it is legal to assume A principally polarized be-
cause, over a field extension (see 2.2) A is iscgenous to
some principally polarized abelian variety B ; and 1.1 is in-
variant under isogeny, thanks to 2.1, because isogenous

varieties have isomorphic m-representations Vg



- 151 =

References

[Boul N. Bourbaki, Algébre, chap. 8; Paris 1958.

[BoL ] N. Bourbaki, Groupes et algébres de Lie, chap. 1
and chap. 2 et 3 ; Paris 1971/72.

[Deu] M. Deuring, Die Typen der Multiplikatorenringe
elliptischer Funktionenk&rper; Abh. Math. Sem. Han-
sische Univ. 14 (1941), 197-272.

[F1] G. Faltings, Endlichkeitssdtze filir abelsche Varie-
titen {liber Zahlkdrpern;Inventiones Math. 73 (1983),
349-366.

[F2] G. Faltings, contribution to this volume (chap. I,II,VI).

[De ] P. Deligne, Preuves des conjectures de Tate et de

Shafarevitch; Sém. Bourbaki n°616 (1983/84).

[EGA II] A. Grothendieck, Elements de Géometrie Algébrique,
II; Publ. Math. I.H.E.S. 8 (1961).

[EGAIII] A. Grothendieck, Eléments de Géometrie Algébrique,
III; Publ. Math. I.H.E.S. 11 (1961) .

[Gro] A. Grothendieck, Groupes de type multiplicatif:
Homomorphismes dans un schéma en groupes; in:
SGA 3/Schémas en groupes II, Springer Lect. Notes
Math. 152 (1970).

[Groth] A. Grothendieck, Modéles de Néron et Monodromie;
exp. IX in: SGA 7 I, Springer Lect. Notes Math.

288 (1972).
[Grun] F. Grunewald, contribution to this volume (chap. III).
[Hum] J.E. Humphreys, Linear algebraic groups; Springer

GTM 21, 1975.



[Mar]

[Mil ]
[Mu1]

[Mu2]

[Ri]

[sel

[Shim]

[5T]

[T1]

[T2]

[T3]

[wiist]

[211]

=152 =

J. Martinet, Character Theory and Artin L-functions;
in: Algebraic Number fields (A. Frdhlich, ed.),
Proc. LMS Symp. Durham; Acad. Press 1977.

J.S. Milne, Etale Cohomology; Princeton U Press,1980.
D. Mumford, Abelian Varieties; Oxford U Press, 1974.

D. Mumford and J. Fogarty, Geometric Invariant
Theory (2nd enlarged edition); Springer Ergebnisse
34 (1982).

K.A. Ribet, Twists of Modular Forms and Endo-
morphisms of Abelian Varieties; Math. Ann. 253
(1980), 43-62,

J.P. Serre, Abelian %-adic representations and

elliptic curves ; Benjamin 1968.

G. Shimura, On the zeta-function of an abelian
variety with complex multiplication; Ann. Math. 94
(1971), 504-533.

J.P. Serre and J. Tate, Good reduction of abelian
varieties; Ann. Math. 88 (1968), 492-517.

J. Tate, Endomorphisms of abelian varieties over
finite fields; Inventtones Math. 2 (1966), 134-144,

J. Tate, p-divisible groups; in : Proc. of a con-

ference on lLocal Fields (Driebergen), Springer 1967.

J. Tate, Algebraic cycles and poles of zeta func-
tions; in: Arithmetical algebraic gecmetry, New

York (Harper & Row) 1966.
G. Wistholz, contribution to this wvolume (chap. V).

Ju.G. Zarhin, Isogenies of abelian varieties over
fields of finite characteristic, Mat. Sb. 95(137)
(1974) , 461-470 = Math. USSR Sb. Zi (1974), 451-461.



[z2]

[z3]

[24]

[z5]

[zz]

=153 =

Ju.G. Zarhin, A finiteness theorem for isogenies
of abelian varieties over function fields of finite
characteristic; Funct. Anal. i ego Prilozh. 8
(1974), 31-34.

Ju.G. Zarhin, A remark onendomorphisms of abelian
varieties over function fields of finite character-
istic; Izv. Akad. Nauk SSR, Ser. Mat. 38 (1974) =
Math. USSR Izvest. 8§ (1974), n®°3, 477-480.

Ju.G. Zarhin, Endomorphisms of abelian varieties
over fields of finite characteristic; Izv. Akad.
Nauk SSR, Ser. Mat. 39 (1975) = Math. USSR Izvest.
9 (1975), n°®2, 255-260.

Ju.G. Zarhin, Abelian varieties in characteristic

p ; Mat. Zametki 19, 3 (1976),393-400 = Math. Notes
19 (1976) , 240-244.

H. Pohlmann, Algebraic cycles on abelian varieties
of complex multiplication type; Annals of Math.
88(1968), 161-180.



