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In this article we attempt to explain the formalism of Deligne's ratio- 

nality conjecture for special values of motivic L-functions (see [DI]) 

in the particular case of L-functions attached to algebraic Hecke charac- 

ters ("Gr~Bencharaktere of type A0"). In this case the conjecture is 

now a theorem by virtue of two complementary results, due to D. Blasius 

and G. Harder, respectively: see §5 below. 

For any "motive" over an algebraic number field, Deligne's conjecture 

relates certain special values of its L-function to certain periods of 

the motive. Most of the time when motives come up in a geometric situa- 

tion, we tend to know very little about their L-functions. In the special 

case envisaged here, however, the situation is quite different: The L- 

functions of algebraic Hecke characters are among those for which Hecke 

proved analytic continuation to the whole complex plane and functional 

equation. But the "geometry" of the corresponding motives has emerged 

only fairly recently - see §3 below. 

The relatively good command we now have of the motives attached to alge- 

braic Hecke characters reveals that many non-trivial period relations 

are in fact but reflections of character-identities. This point of view 

is systematically perused in [Seh], and we shall illustrate it here by 

the so-called formula of Chowla and Selberg: see § 6. 

This formula, in fact, goes back to the year 1897, as does the instance 

of Deligne's conjecture with which we start in § I. Tying up these two 

relations in the motivic formalism, we hope to make it apparent that 

both results really should be viewed "comme les deux volets d'un m~me 

diptyque '~, as A. Weil has pointed but in [WIII], p. 463. 
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§ 1o A formula of Hurwitz 

In 1897, Hurwitz [Hu] proved that 

1 4v 
(I) E' 4v ~ × (rational number), 

a,b6~ (a+bi) 

for all ~ = 1,2,3,... , where 

£ (  r l  d x  
( 2 )  ~ = 2 1 _  - 2 . 6 2 2 0 5 7 5 5 , . .  = 

u 

Notice the analogy of these identities with the well-known formula for 

the Riemann zeta-function at positive even integers: 

1 2 v  
(3) E' 2~ - (2~i) x (rational number). 

a£ ~ a 

Both formulas are special cases of Deligne's conjecture. To understand 

this in Hurwitz' case, we look at the elliptic curve A given by the 

equation 

A : y2 = 4x 3 _ 4x . 

A is defined over ~ , but we often prefer to look at it as defined over 

the field k = ~(i)c ~ . Over this field of definition, we can see that 

A admits complex multiplication by the same field k : 
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k > End (A) ® 

- - X  

i I > 

I---> i y  

Deligne's account of Hurwitz' formula would start from the observation 

that both sides of (I) express information about the homology 

H I (A) ®49 c H4~ (A 4~) 

The left hand side of (I) carries data collected at the finite places of 

k , as does the right hand side for the infinite places. 

In fact, look at the different cohomology theories: 

- Etale cohomology: Fix a rational prime number ~ , and denote, for 
n 

n~ 1 , by A[£ n] the group of ~ -torslon points in A(~), ~ being the 

algebraic closure of ~ in ~ . Then 

V£(A) = I<lim A[£n])®ZZ£ ~£ 
n 

is the dual of the first £-adic cohomology of A×k~ 

in ~£ 

with coefficients 

By functoriality, the isomorphism k ~ ~ ®~ End A makes Vi(A) into 

a k ® ~£-module, free of rank I. The natural continuous action 

of Gal (W/k) on V£(A) is k ® ~ -linear, and therefore given by a 

continuous character 

~£: Gal (~/k)ab - - >  GL k®~£(V Z(A)) = (k®~z)* . 

This character was essentially determined - if from a rather different 

point of view - on July 6, 1814 by Gauss, [Ga] . The explicit analysis of 

the Galois-action on torsion-points of A was carried out (in a stunning- 

ly "modern" fashion) in 1850 by Eisenstein, [El]. - In any case, if 

is a prime element of ~ [i] not dividing 2Z , normalized so that 

~ I (mod (I+i) 3) , and if F 6 Gal (~/k)ab is a geometric Frobenius 
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element at (~) (i.e., F-1(x)~ ~ x ~ ~ (mod P ) for any prime P of kab 

dividing (~), any algebraic integer x 6 kab), then one finds 

~ (F) = -I 6 k* c > (k® Q£)* 

The characters ~£ all fit together to give an "algebraic Hecke charac- 

ter" ~ defined on the group 12 of ideals of k that are prime to 2: 

I ~ > k* 
2 

F ~ 
I2~ > Gal  (~ /k )ab  > ( k ® ~ g ) *  

Then for all ~ Z I, the character ~4~ can be defined on all ideals of 

k by (~) ~__> -4v . Remember that k is embedded into ~ , so that it 

makes sense to consider the L-functions 

L(~ 4~ ,s) = ~ I 
~ (~) 4~ 

p I s 

(Re(s) > I-2~) , 

where p ranges over all prime ideals of ~ [i] . Then the left hand side 

of Hurwitz formula (I) is simply 4 L(~ 4~ ' . ,0). We have shown how this is 

a special value, of the L-function afforded by the l-adic cohomologies 

V~(A)®k®~ 4~ 

- Betti and de Rham cohomology. Here we shall use the fact that the 

curve A (if not its complex multiplication) is already defined over ~. 
B Denote by HI(A) = HI(A(~),~) the first rational singular homology of the 

Riemann surface A(~) , with the Hodge decomposition 

B 
H I (A) ®~ • = 

Complex conjugation on A×~ 

F : HI(A) ~ 

H -I'0 @ H 0'-I 

induces an endomorphism 

(the "Frobenius at ~"). 
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B 
Call HB the fixed part of HI(A) under F 

this onedimensional G-vector space. 

, and let be a basis of 

1 (A)V be the dual of the first algebraic de Rham cohomo- Let H R(A) = HDR 

logy of A over ~ , given with the Hodge filtration 

DR + 
H I (A) ~F D {0} 

where F + ®~ ~ H 0'-1 under the GAGA isomorphism over ¢: 

I : H~(A) ®~ (1 > HIR (A) ®(~(E 

I induces an isomorphism of onedimensional ~-vector spaces 

i + + : HB(A) ®~ .... > (HIR(A)/F +) ®~ 

Then, ~I . i +(n) 6 HIR(A)/F + , for ~ defined by (2) . In fact, 

= f 1 ~  dx is a real fundamental period of our curve, and so, up to 

~* , Q is the determinant of the integration-pairing 

(HB(A) ®(~(~) x (H0(A,~ I) ®(~(Z) S > (~ 

calculated in terms of R-rational bases of both spaces. This determinant 

equals that of the map I + since H0(A,~ I) cH I (A) is the dual of 
DR 

H~R (A) /F + 

Passing to tenser powers of the onedimensional vector spaces above we find 

the periods ~4~ occuring in (I). 

In a sense, we have cheated a little in deriving the period ~ from the 

cohomological setup: In the ~tale case we have used the action of k via 

complex multiplication to obtain a onedimensional situation (i.e., the 

k-valued character ~ ). In the calculation of the period, too, we should 

have considered H~R(A/k). = H~R(A)j ®~ k , endowed with the further action 
B 

of k via complex multiplication, and two copies of HI(A), indexed by 

the two possible embeddings of the base field k into • .... But in the 
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presence of an elliptic curve over ~ , this would have seemed too arti- 

ficial, and the general procedure will be treated in § 4. 

As a final remark about formula (I), it should be noted that it is proved 

fairly easily. Any lattice F = I . (ZZ +~i) gives a WeierstraB ~func- 

tion such that 

3 
~' (z,F) = 4~(z,r) - g2lF) ~(z,F), 

and for I = ~ we get g2(F) = 4. The rational numbers left unspecified in 

(1) are then essentially the coefficients of the z-expansion of ~(z,F) . 

It is these numbers that Hurwitz studied in his papers. 

§ 2. Algebraic Hecke Characters 

Let k and E be totally imaginary number fields (of finite degree over 

~) , and write 

Z = Hom (k,~) and T = Hom (E,~) 

the sets of complex embeddings of k and E. The group Gal(~/~) acts 

on Z×T , transitively on each individual factor. An algebraic homomor- 

phism 

8 : k* > E* 

is a homomorphism induced by a rational character 

: Rk/~ (~m) > RE/~ (~m)- 

This means that, for all • 6T, the composite 

is given by 

• oS : k* > ~* 

(4) ~oB (x) = ~E-~ O(x) n(~,~) , 
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for certain integers 

p6 Gal (~/~) . 

n(o,T) , such that n(~o,~) = n(a,T) for all 

Let k~ ,f ~,, > k~ be the topological group of finite id~les of k - 

i.e., those id~les whose components at the infinite places are I. For 

x 6k*, let x also denote the corresponding principal idele in k~ ,and 

xf the finite id~le obtained by changing the infinite components of x 

to 1. 

An algebraic Hecke character ~ of k with values in E , of (infinity-) 

type ~ , is a continuous homomorphism 

: k* > E* ~,f 

such that, for all x £ k*, 

(xf) = B (x) 

If ~ is the infinity-type of an algebraic Hecke character Y , then, by 

continuity, 8 has to kill a subgroup of finite index of the units of k. 

It follows that the integer 

(5) w = n(o,T) + n(co,T) = n(o,T) + n(o,cT) 

(where c : complex conjugation on ~) is independent of ~,T. It is 

called the weight of 

For any T6 T , we get a complex valued Gr~Sencharakter Toy which extends 

to a quasicharacter of the id~le-class-group: 

* ToY ~. 
k]A,f .......... > 

klA 

* ToY ~. 
klA/k. > 

Consider the array of L-functions, indexed by T: 
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L (~,s) = (L(To~,S))~6 T , 

W 
where, for Re(s)> ~ + I , 

I 

# 

the product being over all prime ideals p of k for which the 

value ~(~p) does not depend on the choice of uniformizing parameter 

wp of kp 

The point s = 0 is called critical for ~ , if for any T , no F- 

factor on either side of the functional equation of L(To~,s) has a 

pole at s = 0 . This is really a property of the infinity-type B of 

, for it turns out that s = 0 is critical for ~ if and only if 

there is a disjoint decomposition 

Z ×T : { (o,T) n(o,T) <0} 0 { (d,T) I n(co,7) < 0} 

In other words, for every TET , there is a "CM-type" ~(TOB)C Z such 

that 

(6) 

• (~ToB) = ~(ToB) ~ , for ~6 Gal(~/~) 

• O6~(~8) ¢¢ n(d,T) <0 ~ n(co,<) ->0 

For ~ such that s =0 is critical Deligne defined an array of periods 

~(~) : (Q(~}''T))T6T 6 ({*)T = (E®~{)* , and conjectured that 

(7) L(~,0) 6 E c > E®{ 
~(~) 

In other words, he conjectured that there is x 6 E such that for all 

Y : E r~ >{ , 

L(To~,0) = T(X) . ~(~,T) 
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The definition of ~(~) is discussed in § 4. It requires attaching a 

motive to an algebraic Hecke character. 

§ 3. Motives 

3.1 In the example of § 1, we constructed a "motive" for our Hecke 

characters ~4m by taking tensor powers of HI (A) , i.e., a certain di- 

rect factor of H4~(A4m), in the various cohomology theories. This 

illustrates fairly well the general idea of what a motive should be: 

Starting from an algebraic variety over a number field, we have the 

right to consistently choose certain parts of its cohomology. Just 

what "consistenly" means constitutes the difference between various 

notions of motive. Here we shall be concerned with a fairly weak and 

therefore half way manageable version: motives defined using "absolute 

Hodge cycles" - see [DMOS], I and II. In this theory motives 

can often be shown to be isomorphic when their L - func- 

tions and periods coincide. A little more precisely, giving a homo- 

morphism between two such motives M and N amounts to giving a fa- 

mily of homomorphisms 

H O (M) --> H ° (N) 

HDR(M) --> HDR(N) 

H£ (M)--> H£ (N) 

(Betti cohomology depends on the choice of 
o : k--> ~ yielding M}--> Mxo~ ) 

(for all £ ) 

compatible with all the natural structures on these cohomology groups: 

Hodge decomposition, Hodge filtration, Gal(k/k)-action, as well as 

with the comparison isomorphisms between H B and HDR , H B and the 

His • 

3.2 Let us state more precisely what a motive attached to an alge- 

braic Hecke character ~ should be[ - In the example of § I, the curve 

A/~ defines the motive HI (A) over ~ whose L-function is L(~,s). 

(This is really what Gauss observed in 1814; nowadays this follows from 

a result of Deuring, which has been further generalized by Shimura 

[Sh I]...) But this is not what we are looking for. The complex multi- 

plication of A and therefore the Hecke character ~ are not visible 
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over ~ . That is why we considered A over k in our treatment of 

the @tale cohomology, and used the field of values of ~ (which again 

happened to be k ) to obtain onedimensional Galois-representations, 

and thus 

Given a general algebraic Hecke character ~ like in § 2, a motive M 

for ~ has to be a motive defined over the base field k such that 

the field E acts on all the realizations of M in the various eoho- 

mology theories, and such that for all Z, Hz(M) is an E®~i-module 

of rank I with Gal (T/k) acting via ~ . The action of E on the 

various realizations of M should of course be compatible with their 

extra structures and with the various comparison isomorphisms. In other 

words (see 3.1), E should embed into End M . Thus the rank-condition 

on HI(M ) can also be stated by saying that Betti cohomology H (M) 

should form a onedimensional E-vector space. 

3.3 The typical example is HI (A) , for an abelian variety A/k with 

E ~ ~®~ End/kA and 2 dim A = [E : Q]. The fact that these motives 

always give rise to an algebraic Hecke character was one of the main 

results of the theory of complex multiplication by Shimura and Taniyama. 

The Hecke characters occuring with abelian varieties of CM-type are 

precisely those of weight -I such that n(o,7) 6 {-1,0} , for all 

(o,T) 6 Z×T . 

In fact, given such an algebraic Hecke character ~ of k with 

values in E , we can assume without loss of generality that E 

is the field generated by the values of ~ on the finite id~les of 

k . Then E is a CM-field (i.e., quadratic over a totally real subfield), 

and a theorem of Casselman, [Sh 1], can be applied to get an abelian 

variety A defined over k such that: . 2 dim A = [E : ~] 

• there is an isomorphism 
N 

E > ~®~ End/kA 

• HI (A) is a motive for ~ . 
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3.4. When ~ has arbitray weight (%0) the homogeneity condition (5) 

above still forces the infinity-type 8 to be of the form 6 = lilB i , 

with lweight (Bi) I : I , ni(d,7) 6 {±1,0} . Since twisting with finite 

order characters is easy to control motivically one would naively expect 

to be able to assemble a motive for any given algebraic Hecke character 

essentially as tensor product of constituents of the form HI(A) or 

HI(A) like in 3.3. 

There is however the nasty problem of controlling the fields of values 

E . For example, if k is imaginary quadratic with class number h > I , 

then a Hecke character of k with {n(d,7) } = {-1,0} or 

{n(J,T) } = {1,0} can never take all values in E = k , but its h-th 

power may. 

Constructing a motive for the h-th power as an E-linear tensor power 

of a motive for the character of weight ±I , one still has to show that 

the field of coefficients E can be "descended" to k in weight ±h . 

3.5 This "descent" of the field of coefficients can be dealt with 

directly. But we gain much more insight if we use a very elegant 

formalism due to Langlands, [La] § 5, and Deligne, [DMOS] IV. Langlands 

defined a group scheme over ~ , the "Taniyama group" T , of which 

Deligne was subsequently able to show that the category of its ~-rational 

representations is equivalent to the category of those motives as can 

be obtained (eventually after twisting by a character of finite order) 

from abelian varieties over ~ which admit complex multiplication over 

. Since the Taniyama group - along with many other beautiful proper- 

ties - has, for every k , a certain subquotient S k (isomorphic to a 

group scheme constructed by Serre in [S£]) whose irreducible represen- 

tations are given precisely by the algebraic Hecke characters ~ of k, 

we "find" the motive attached to a given ~ by lifting the correspon- 

ding representation of S k back to the subgroup of T whose repre- 

sentations give the motives defined over k . 

3.6 SO, for every algebraic Hecke character ~ of k with values in 

E , a motive over k equipped with an E-action can be constructed from 

CM-abelian varieties over k, whose £-adic Galois representations are 

onedimensional E ®Q£-modules given by ~ . Furthermore, the Tate-conjec- 

ture would imply that the £-adic realizations determine a motive up to 
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isomorphism - even in the strictest sense of "motives" (algebraic cycles). 

As we are dealing with motives for absolute Hodge cycles, it is perhaps 

not too surprising that one can actually prove: in the category of mo- 

tives that can be obtained from all abelian varieties over k (not 

necessarily CM) , any two motives attached to the same Hecke character 

are actually isomorphic - see [Sch], I. Still, this does not seem to be 

known in any larger category of motives. In fact, it hinges on Deligne's 

theorem that "every Hodge cycle on an abelian variety over an algebra- 

ically closed field is absolutely Hodge" - see [DMOS], I. Anyway, 

whenever we find two motives constructed from the cohomology of abelian 

varieties that belong to the same Hecke character they will have the 

same periods... 

§ 4. Periods 

As in the example of § I, periods are going to arise from a comparison 

of the Betti and de Rham cohomology groups of our motive. So, let us 

first look at these cohomologies more closely in the case of a motive 

for an algebraic Hecke character. We are going to use some facts which 

are well-known for the cohomology of algebraic varieties, and which 

carry over to motives. 

4.] As in § 2, let k and E be totally imaginary number fields, 

and ~ an algebraic Hecke character of k with values in E . Let 

M be a motive over k attached to ~ (in the sense of 3.2 above) . 

Then for any embedding o6Z , the singular rational cohomology H (M) 

is an E-vector space of dimension 1. The E-action respects the Hodge- 

decomposition 

HP,q Ho(M) ® ~ : 
P,q 

H (M) ® ~{ is an E ®~{ = {T -module of rank I. ( ~ and T were de- 

fined at the beginning of § 2.) 

Starting from the special case where M = HI (A) with an abelian variety 

A/k of CM-type, and using the uniqueness of the motive attached to a 

Hecke character (see 3.6) , one finds that, for any embedding T 6 T , 



29 

the direct factor of Ho(M) ®~ on which E acts via T lies in 

Hn(o,x) , w-n(c,T) 

(The n(o,T) are given by the infinity-type of ~ : see § 2, formula 

(5) .) 

4.2 Let us note in passing that, if M(~) and M(~') are motives 

for Hecke characters ~ and T' of k with values in E , then the 

following are equivalent: 

• M(~) ~ M(~') over ~ . 

• For some 06~ , H@(M(~)) ~ H (M(T')) , as rational Hodge-structures. 

• ~ and ~' have the same infinity-type B . 

4.3 Coming back to our motive M for ~ , suppose now that s = 0 

is critical for ~ (see § 2, formula (6)), and consider the comparison 

isomorphism 

I : @ H u(M) ®~{ > HDR(M) ®~ 

Note that HDR(M) is by definition a k-vector space, and that 

k®~ ~ {Z . So, I is an isomorphism of k ® E ®{ - modules of rank 1. 

For ~EZ , let e be an E-basis of H (M) , and put e : (~® I)~6 ~ 

On the right hand side, choose a basis ~ of HDR(M) over k ®~E , 

and decompose 

L0 : ~ £0 r 
(@,T)6ZxT 0,7 

with ~o,T 6 T-eigenspace of HDR(M ) ®kl { . Writing I(e ) = Z 
T6T 

for the corresponding decomposition of I(e) , we find for all 

(0,T)EZxT that 

I(e~) T 
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~ ,~ = p(O,T) . I(eo) T 
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, for some p(O,7) 6 {* 

C(~*) ZxT = (k®E®~)* 
(p(~,T))(~,T)E E×T 

gives the "matrix" of I and, up to multiplication by 

pends only on ~ . 

(k®E)* , de- 

4.4 Modulo such a factor one has the relation 

(8) p(o,T) • p(co,T) N (2 zi) w 

This amounts essentially to Legend~e's period relation, and can be 

proved in our context (using uniqueness of motives for Hecke characters) 

from the identity ~ = ~w . _ The motive ~(-I) attached to the 

norm character is discussed in more detail, e.g., in [DI], § 3. For (8), 

it is enough to know that ~(-1) is a motive defined over ~ , with 

coefficients in ~ such that 

I 
HB(~(-I)) = ~ ~ and HDR(~(-I)) = ~ , 

with trivial comparison isomorphism. Incidentally, ~(-I) has no cri- 

tical s , if considered over a totally imaginary field k . 

With (8) and 3.4, calculating the p(o,T) 's (or their inverses) usually 

reduces to integrating holomorphic differentials on which E acts via 

7 or cT . 

4.5 In terms of these p(O,T) , Deligne's period ~(%~)C(E®~)*/E* 

(see (7) above) can be defined componentwise by 

(9) ~(~{,T) = D(~') T - o6~(~ToB) p(o,'~) 
-I 

For the definition of the "CM-types" ¢('~oB) , see § 2, formula (6). 
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Note that the product in (9) is, in fact, well-defined up to a factor 

in (E ® 1)* - One definition of the "discriminant factor" 

D(~) = (D(~)T)T 6 T can be found in [DI], 8.15. This factor arises when 

one computes the cohomology of Rk/Q M by the K~nneth formula: among 

other things, one has to choose an ordering of Z . A definition of 

D(~) which was born out by these cohomological computations - cf. [Ha], 

esp. 2.4.1 and Cor. 5.7.2B - is as follows. Start with one TET , and 

let K cE ~ be the fixed field of 

{p 6Gal(~/~) I P @ (T°O) : ~(~o~) } 

mK GaI(~/K T) permutes the set @('loB) . Let L T 

of the kernel of the character 

be the fixed field 

GaI(~/K T) > ~(~(ToB)) s@n> {-+I} 

Then [L : K ] < 2 , and L = K[(D(~) ) for some D(~) T with 
2 ~ ~[ T 

D (~) 6 K* 
T T 

NOW, any p 6 Gal(~/~) induces a permutation of the set of infinite 

places of k : both ~(To~) and O(pTo6) are in bijection with this 

set. Call 8(p) the sign of this permutation. Then we set 

D(~) = a(p) (D(~))P 
pT T 

The array (D(T) T)< 6T is independent, up to a factor in 

the choices made in defining its components. 

(EOI)* ,9f 

Let us list some properties of D(%') - ef. also [Sch]. 

4.6 a) D(~) depends only on k,E , and the collection of "CM-types" 

{¢(~o~) I • CT} 
2 

b) m(~) 6(E® I)* c (E~)* 

c) If k is a CM-field, with maximal totally real subfield ko, 

then D(~) N6discr(koT , up to a factor in (E® I)* 

d) Let F/k be a finite extension of degree n . Then 
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c ('[o 8) TIT 

up to a factor in (E ® I)* . Here, the right hand side means the 

following: 

Let d(k*) 2 6 k*/(k*) 2 be the relative discriminant of F/k . For any 

infinite place v of k , choose a square root 6 = /d-6k* . For 
V V 

6Z , let Icl be the infinite place of k determined by ~ and c~ , 
w 

and denote by o(6toi) £ 6" the well-defined image of 61~16 klo I under 

the continuous isomorphism kjo I --~--~ > { given by ~ . - Note that 

changing the representative of d or the signs of 6 , at some places 
V 

v , multiplies the right hand side of our formula only bya factor in 

(E ® I)* 

Assume the situation of 4.6,d) . From the very definition of the p(c,~) , 

and the properties 4.6,a) and d), one finds the following formula for 

the behaviour of the periods under extension of the base field: 

(10) 

A(F/k,B) • - 
(~ ONF/k) D (~ONF/k) 

(~n) D (~n) 

D(~°NF/k) D(~) n 
= 77 ~(6 • D(~) 

D(p) n D(~ n) Ic IT6T 

n-1 

The array A(F/k,B) 6 (E~6)* will reappear in the second theorem of 

§ 5 below. Note that, if k is a CM-field, the second factor of 

A(F/k,B) can be evaluated by 4.6,c). Both factors of A are already 

present in [Ha], in the case n = 2 , although the formalism there is 

still somewhat clumsier than the one employed here. 

4.7 Let us close this section with a few words on the behaviour of 

our periods under twisting. For the Tate twist, one finds 

(11) 2(~.~ m) ~ (2 ~i) m ~(~) 
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If ~ is a character of finite order on K* /k* with values in E* 
~,f 

one passes from ~(T) to Q(~T) by leaving D(T) unchanged, and 

multiplying the p(0,T) by certain algebraic numbers with eigen- 

properties under ~ . The details can be found in [Sch]. All we need 

to know is the following invariance lemma: 

If F is a finite extension of k, X a character of finite order on 

F~,f* /F* with values in E* , and ~ the restriction of X to 

k~,f* (in other words, considering X and ~ on Gal(k/F) , Gal(k/k) , 

resp., via class field theory, ~ : Xo Ver , where 

Vet : Gal(kab/k) --> Gal(Fab/F) is the transfer map), then 

(12) 
~(X" (To NF/k) ) ~q(TONF/k) 

2(~-~ n) ~q(T n) 
: £ (F/k,B) 

Let us mention in passing that the proof of (12) also shows that the 

quotients 

~(T) 

may always be expressed by Gauss sums. 

§ 5. The rationality conjecture for Hecke L-functions 

The proof of Deligne's conjecture (see end of § 2) for the critical 

values of L-functions of algebraic Hecke characters falls into two parts: 

The case where the base field k is a CM-field is treated first. From 

there one passes to the general case by a theorem about the behaviour 

of special values under extension of the base field. 

(I) Let us briefly describe the CM-case: 

Historically, the main idea for the CM-case goes back to Eisenstein. 

But it was Damerell who, in his thesis [Da], published the first 
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comprehensive account of algebraicity results for critical values of 

Hecke L-functions of imaginary ~uadratic fields. He also announced 

finer rationality theorems in that case, but never published them. 

(The case of imaginary quadratic k was later settled completely in 

[GS] and [GS'].) In the Fall of 1974, Andr@ Well gave an exposition of 

work of Eisenstein and Kronecker including, among other things, 

Damerell's theorem as an application. This course at the IAS - which was 

later on developed into the book [WEK] - inspired G. Shimura to gene- 

ralize Damerell's algebraicity results to critical values of Hecke L- 

functions of arbitrary CM-fields: [Sh 3] (At that point, he still 

needed a technical assumption on the infinity-type of the Hecke cha- 

racter.) 

To explain the starting point of this method of proof, recall our 
I 

example in § I: the L-value there appeared (up to a factor of ~ ) as 

an Eisenstein series : 

v 

a,b6Z (a+bi) 
4~ 

relative to the lattice Z + Zi . Now, sometimes the relation between 

L-value and Eisenstein series is not quite as straightforward - e.g., 

if, in § I, we were to study the values L(~a,0) for integers a # 0 

such that s = 0 is critical for ~a , then we would have to trans- 

form the Eisenstein series by certain (non holomorphic) differential 

operators. But except for such operators it remains true that, in any 

pair of critical values of an Hecke L-function of a CM-field k which 

are symmetric with respect to the functional equation, there is a value 

which can be written as a linear combination of Eisenstein series (viz., 

Hilbert modular forms with respect to the maximal totally real subfield 

of k ), relative to lattices in k . 

When k is imaginary quadratic, the algebraicity properties of the 

Eisenstein series can be derived directly from explicit polynomial re- 

lations among them (see, e.g., Well's treatment of Damerell's theorem 

in [WEK]). But in general the proof of their algebraicity depends on a 

theory of canonical models for the Hilbert modular group (as in [Sh 3]) 

or, equivalently, on an algebraic theory of Hilbert modular forms. 
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This latter approach was used by Katz in [KI], [K2]. Just like Shimura, 

Katz did not stop to look at more precise rationality theorems about 

the special values he had determined up to an algebraic number. In fact, 

Katz' main concern was with integrality properties and p-adic inter- 

polation. 

When Deligne formulated his conjecture in 1977 he felt the need to check 

that, up to a factor in ~* , it predicted Shimura's theorem. This 

turned out to be a confusing problem, for the following reason. Shimura 

expresses the L-values in terms of periods of abelian varieties con- 

structed from lattices in k , which therefore have complex multiplica- 

tion by k , and are defined over some number field E' . On the other 

hand, the L-function in question is that of a Hecke character of the 

field k , with values in some number field E . The motive of such a 

character arises from abelian varieties defined over k , with complex 

multiplication b_~ E (or some field closely related to E ). This 

double role of k as field of definition and of coefficients was dealt 

with by Deligne - up to factors in ~* - by an ad hoc dualization, 

see [DI], 8.19. (Its refinement for more precise rationality state- 

ments remained the most serious obstacle in the attempt to prove 

Deligne's conjecture made in [Sch I].) 

Don Blasius managed to solve this problem by writing down an analogue 

of Deligne's dualization on the level of motives over k , resp. E : 

his "reflex motive". Thus he was able to prove 

Theorem I: Let k be a CM-field, and ~ a Hecke character of k , 

with values in some CM-field E . If s = 0 is critical 

for ~ , then 

L('~,o) 6E ~ > E®¢ . 
~(~) 

(Note that any algebraic Hecke character of any number field takes 

values in a CM-field.) 

As Blasius' paper [B] is about to be available we shall not enter into 
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describing the technique of his proof in detail. Suffice it to say 

that, apart from the "reflex motive" mentioned above, he needs, of 

course, a very careful analysis of the behaviour of the Eisenstein 

series under Gal(~/~) (i.e., Shimura's reciprocity law in CM-points), 

and also the explicit description - due to Tate and Deligne - of the 

action of Gal(~/~) on abelian varieties of CM-type: see [LCM], 

chapter 7. 

(II) We shall now describe a little bit more in detail the second 

part of the proof of Deligne's conjecture for Hecke L-functions. It 

relies on a generalization of [Ha], § 3, from GL 2 to GL n , and 

might not be published completely before some time. 

Consider the following situation: Let k be a totally imaginary num- 

ber field, and F/k a finite extension of degree n ~ 2 . Let ~ be an 

algebraic Hecke character with values in a number field E , of in- 

finity-type 8 . Assume s = 0 is critical for Y . Let 

X : F~* /F* > E* be a character of finite order, and put ~ =Xlk~* ' 

like in § 4.7 above. Recall the array 

A(F/k,8) : (A(F/k, Yo8))76T 

defined in § 4.6, formula (10). 

Theorem 2: 

A (F/k, B) 
L F(X- (~ONF/k) ,0) 

Lk(~-~n,0) 
6E m > E®~ 

Remarks: (i) As the Euler product for L(T,s) converges for 
w 

Re(s) >~ + I , and s = 0 is critical for Y , it is well-known that 

the denominator in the theorem is not zero. 

(ii) Here is how theorems I and 2 imply Deligne's conjecture for all 

critical values of all Hecke L-functions: Given any totally imaginary 
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number field F , and any Hecke character ~ of F , with values in 

a number field E o , of infinity-type 8 o , the homogeneity condition 

(5) of § 2 forces Bo to factor through the maximal CM-field k 

contained in F : 

8o = ~o NF/k , 

for some algebraic homomorphism 

8 : k* > E'o* 

Choose a Hecke character ~{ of k with infinity-type B , write 

= X -( ~ o NF/k ) , for some finite order character X of F , and 

choose E mE big enough to contain the values of T as well as those 
o 

of X - Define e : Xlk* . Put n = [F : k] . By theorem I, 

L(~0"T n,0) 6 E 

~(w.y n) 

But we know the behaviour of the periods Q under twisting and base 

extension: see end of § 4. Theorem 2 therefore implies that 

L(~,0) L(X-( ~ o NF/k),0) 

[2(X- ( T o NF/k)) 

6E > E@{ • 

Finally, E may now be replaced by E o because Deligne's conjecture 

is invariant under finite extension of the field of coefficients: 

[D1] ,  2 . t 0 .  

This gives Deligne's conjecture for Hecke L-functions of totally ima- 

ginary number fields. These are the only fields with honest regard 

Hecke L-functions. But it should be said, for the sake of completeness, 

that Deligne's conjecture for Hecke (=Dirichlet) L-functions of totally 

real fields follows from results of Siegel's (cf. [DI], 6.7) and, in 

the case of number fields which are neither totally real nor totally 
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imaginary, no Hecke (=Dirichlet) L-function has any critical value. 

The remainder of this section is devoted to sketching the proof of 

theorem 2. Let us set up some notation. 

We consider the following algebraic groups over k : 

Go/k : GLn/k - 

To/k = standard maximal torus 

Bo/k = standard Borel subgroup of upper triangular matrices, 

and the two maximal parabolic subgroups 

.~ 
<>ik : (Op) p 6GLn_ I , t 6 GL I } 

q 6 GLn_ 1 , t 6 GL I } 

Dropping the subscript zero will mean taking the restriction of scalars 

to ~ . So, 

G/(~ : Rk/, ~ (G O/k) 

and so on. 

We introduce the two characters 

and 

<0 tn 
7P : g = } > det(g) 

t n 
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which we view as characters on the torus extending to Po (resp. Qo ) • 

The representations of Go/k with highest weight ~Tp (resp. ~TQ ) 

are the ~-th (resp. b-th) symmetric power of the standard repre- 

sentation of Go/k on k n (resp. its dual (kn) ~ ) 

Coming back to the situation of theorem 2, define a homomorphism 

by 

: P(~ih,f) = Po(klA,f) > E* 

> ~I (tf) ~ (det(gf)) 

We require that the central character of ~ be our ~ . This means 

that ~I is determined by 

"" "t = w(tf)_ = ~I (tf)_ ~ (tf) n_ 

We may view • as an "algebraic Hecke character" on P/~ , and it 

has an infinity-type 

type (~) = 7 6 Hom(P/~ , RE/~({m)) 

Hence we get an array of types, indexed by T 6 T , with components 

Recall that 

type(To~) = 'to T 6 HOrn(P,{ m) 

Hom(P,G m} = @ Hom(Po ,~m } , 
gCZ 

and that the type 8 of is given by the integers n(a,<) - see § 2. 
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It is then easy to check that 

TOy : (n(o,T) .yp)o6E , 

for every • 6T . 

Given T , define an array of dominant weights 

by the rule 

i(~) = (l(o,<))oE Z 

{ (-n(@,~)-1)yQ 
n(o,~)yp 

if n(o,T) < 0 

if n(o,T) > 0 

This affords a representation 

p : Gx~ = ~ (GLn/k) > GL(M(A(T))) , 
oGZ 

where M(A (T)) = ® M(I(O,T)) , M(I(O,T)) being the representation 
o6Z 

with highest weight k(O,T) . The system {M(A(T))~6 T is a ~-ratio- 

nal system of representations in the sense of [Ha], 2.4 - i.e., the 

representations are conjugate under Gal(~/~) 

As in [Ha], we study the cohomology of congruence subgroups of GLn(0) 

with coefficients in these modules: Form the quotients 

S K = G (~) ~ G ((~IA) / K o'Kf 

where K ~ u(n)Z~ is a standard maximal compact subgroup, times 

the centre o~bG(~) = G , and where Kf is open compact in G(~ ,f) • 

The modules M(i(7)) provide coefficient systems M(I(T)) on S K , 

and we consider the ~ - G(~,f)- module 

H ' ( ~ , M ( A ( T ) ) )  : = l i r a  H ' ( S K ,  M(A(T) ) )  

Kf 
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The embedding of S K into its Borel-Serre compactification S K is a 

homotopy equivalence. The boundary ~S K of this compactification has 

a stratification, with strata corresponding to the conjugacy classes 

of parabolic subgroups of G/~ . The stratum of lowest dimension, 

SB SK , corresponds to the conjugacy class of Borel-subgroups. The 

coefficient system can be extended to the boundary, and the limit 

H" (~B~ , M(A(T))) : lim H" (~BSK , M(A(T))) 
- - >  

Kf 

is again a G(~,f) -module. The diagram 

SK ~ i > SK < ~B SK 

induces a G(~lh,f)-module homomorphism 

r B : H" (~, M(A(T))) > H" ($B~ , M(A(~))) 

Just as in [Ha] ,II, the right hand side turns out to be a direct sum 

of modules, induced from an algebraic Hecke character 

n : B(QIA,f) > ~* 

T(~IA, f) 

on B(~,f) , up to G(~,f } . The types of these characters are de- 

termined by Kostant's theorem, [Ko] ; cf. [Ha], II, for n = 2 . In 

particular, it is easily checked that the following induced module 

(for • as above, and T 6 T ) is contained in the cohomology of ~B ~ : 
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V 
G (QIA, f) 

= Ind 

B (QIA, f) 

=lh:G(~,f) --> 

\ 
h is C , and ) 

h(bf_gf) = (TOO) (bf). h(if) , 

for all bf 6 B(~ih,f) and 

_gf £ G(~IA, f) 

(Here, "C " means right invariance under a suitably small open com- 

pact subgroup in G(~,f) .) 

More precisely, we have 

VTo 0 
T > H(n-3}do (~B ~ , M(A(T))) 

1 
where d o : ~ [k : ~] , and the system of maps {iT]<6 T is Q-rational 

with respect to the two obvious Q-structures on the systems on both 

sides. 

Consider the non-trivial submodule 

J~o~ IndG(Q~'f) = T o ~  c V o o  

P(~,f) 

Obviously, {JToO}T£T is a Q-rational system of G(Q~,f) -submodules 

of H(n-1)d°($ B~ , M(A(7))) . The first essential step of the proof is 

to construct a Q-rational "section" of r B , 

Eis7 : JTo~ > H(n-1)d° (S, ~{A(T))} , 

for all TCT . Thus, rB o Eis = Id on J . This section is con- 
7 T ° O  

structed first over ~ by means of residual Eisenstein series or, in 

other words, non cuspidal Eisenstein series attached to P/Q . To prove 

that {EisT}TC T is defined over ~ one has to use a multiplicity one 

argument, like in [Ha], III. But here this is more complicated. One 
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has to use the spectral sequence which computes the cohomology of the 

boundary in terms of the cohomology of the strata. Then the cohomology 

has to be related to automorphic forms, and one has to appeal to re- 

sults of Jacquet-Shalika on multiplicity one, and of Jacquet on the 

discrete non cuspidal spectrum. 

Once we have the modules 

H(n-1)do Eis z (J o~) c (S, M(A(T) ) 

we can proceed more or less in the same way as in [Ha], V: We construct 

an embedding 

i H : F* > GLn(k) 

H being the torus with H(Q) = ill(F*) Using this torus we can con- 

struct homology classes (compact modular symbols) 

ZIi H, 7 o X, g) C H 

depending on a point _g6 G(~]A) 

* /F* > E* X : F]A 

(n-1)d o 
(~, M(A(~))) 

and on a finite order character 

* should be ~ . whose restriction to k~ 

As in [Ha], V, we get an intertwining operator 

Int(Z(iH,X)) : JTo ~ 
G(~m, f) 

> Ind 

H(~m, f ) 

by evaluating EisT(JTo Q) on 

ning operator 

int l°c : J 
To~ 

Z(iH,X,~) . There is another intertwi- 

G ((~]A, f) 
> Ind T o X , 

H (~IA, f) 
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constructed as a product of local intertwining operators. Both opera- 

tors are U-rational, and for some x C E* we find that, for all ~6T , 

Int(Z(iH,TOX)) = T(X) A (F/k,ToS) 
LF(TO (X" (~ONF/k) ) ,0) intlOc 

Lk(T ° (~.~n) ,0) 

This implies theorem 2. - The factor x 6 E* can actually be given more 

explicitly. 

§ 6. A formula of Lerch 

The fact that a Hecke character determines its motive up to isomorphism 

produces a period relation whenever two different geometric construc- 

tions of a motive for the same character can be given. We have seen a 

first example of this principle in formula (8) of § 4. The periods 

p(u,T) occuring in this formula comprise those for which Shimura [Sh2] 

has proved various monomial period relations (up to an algebraic number). 

These monomial relations were reproven, by means of motives over ~ , 

by Deligne, [D2]. They can be refined using the above principle. But 

we leave aside here this application,as well as some others, referring 

the reader to [Sch]. Instead, let us concentrate on a typical case in- 

volving G . Anderson's motives for Jacobi-sum Hecke characters. 

Let K = ~(/i-~-) be an imaginary quadratic field of discriminant -D 

Assume for simplicity that D > 4 . Recall the construction of the 

simplest Jacobi-sum Hecke character of K , in the sense of [WIII], 

[1974 d]: K is contained in ~(~D ) , the field of D-th roots of ] . 

Write n : [~(~D ) : K] - ~(D)2 " For a prime ideal P of ~(~D ) not 

dividing D , put 

G(P) : -- [ XD, P (x) "A~ (x) , 
x 6Z [~D]/P 

(I~P-I)/D D th- power residue symbol with "ZD, ~ (x) --- x (cod P )" the 

: • (x)) cod P , and l(x) exp(2~i tr( ~ [~D]/p)/]F p 
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Then extend the function of prime ideals p of K with p ~D : 

J(p) = ~ G(P) , 

multiplicatively to all ideals of K prime to D . Elementary proper- 

ties of Gauss sums show that J takes values in K . By a theorem of 

Stickelberger and an explicit version of the analytic class number for- 

mula for K one finds that, if J is an algebraic Hecke character, 

then its infinity-type 

: K* > K* 

is given by 

in+h)/2 -(n-h)/2 
X ~  > Z  X t 

where h is the class number of K . (Note that n and h have the 

same parity, by genus theory.) In other words, if J is a Hecke cha- 

racter, then 

(13) j. IN- (n+h)/2 .%,h 

character ~ of K~ of finite order and some Hecke character for some 

of K of weight -I 

That J is in fact a Hecke character, i.e., is well-behaved at the 

places dividing D , if viewed on id~les, was proved by Weil (loc. cit) . 

But it can also be deduced, e.g., from the following construction of a 

motive for J which was given by Greg Anderson, [AI],[A2]. 

Anderson finds a motive defined over K , with coefficients in K , 

whose l-adic representations are given by J , in H n-2 of the zero- 

set Z of the function 
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~(~D ) > K 

x ~----> tr~ (~D) / K(xm) 

viewed as a projective variety in ]PK (Q(~D)) , the projective space 

of the K-vector space ~(bD ) . Note that 

{ D .+xD 0}cipn-1 
Z XK~(D D) = x1+.. n = 

Anderson's construction is of course motivated by the well-known fact 

that Fermat-hypersurfaces contain motives (carved out by the action of 

their large automorphism groups) attached to Jacobi-sum Hecke characters 

of cyclotomic fields: see [DMOS], pp. 79 - 96. For details of Anderson's 

more general construction, we refer to his preprints, or to [Sch]. 

At any rate, thanks to Anderson's work, we have at our disposal a motive 

M(J) for the character J , which lies in the category of motives ob- 

tained from abelian varieties. (This last fact is proved by Shioda- 

induction: [DMOS], p. 217). Thus, by (13), the periods of the motive 

M(JIN- (n+h)/2) : M(J) @KK((n+h)/2) 

will be the same as those of any motive constructed for the character 
. ~h 

The period calculations on Fermat-hypersurfaces always reduce even- 

tually to Beta-integrals. For M(J) one essentially gets the product 

a I 7T F {<~>)- 
X (a)=-1 

-m) Here, X(P) : (~- is the Dirichlet character of the quadratic field 

K , and the product is taken over those a6 (Z/D Z )* for which 
a 

X(a) = -I . <~> is the representative of the class ~ mod Z which 

lies between 0 and I 
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A motive for 5.~h can be built up from elliptic curves with complex 

multiplication by K . - Assume for simplicity that ~ONH/K takes 

values in K* , for H the Hilbert class field of K . Choose any 

elliptic curve A/H such that HI(A) is a motive for ~ONH/K , and 

call B = RH/KA its restriction of scalars to K . Calling E the 

field of values of ~ , HI(B) ®Eh can be shown to be a motive for 

~h (viewed as taking values in E ) : cf. [GS], § 4. Using formulas 

derived in [GS], § 9, the periods of this motive can be computed in 

terms of the periods % of the conjugates AJ/H of our elliptic 

curve A , for 

d 6 GaI(H/K) : CI(K) 

Straightening out the twists by the norm and the finite order character 

(cf. § 4.6 and 4.7), one finally obtains the following relation, up to 

a factor of K* : 

a 
6 C£ (K) ~ X (a) =-I r (<~>) 

where y generates the abelian extension of K belonging to ~ . 

Multiplying (14) with its complex Conjugate, we get 

(15 
d 6 C£ (K) a6 (~/m~) * 

for some z with z 4 6 ~* . Except for the different interpretation 

of z and the ~ , this is the exponential of an identity proved 

analytically by Lerch in [Le], p.303. The first geometric proof of 

(15), up to a factor in ~* , was given by Gross in [Gr], a paper 

which in turn inspired Deligne's proof of the theorem about absolute 

Hodge cycles on abelian varieties - which again is essential in 

proving uniqueness of the motive for an algebraic Hecke character. 
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