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In the paper (Beilinson 1986), Beilinson defined the "Eisenstein symbol", a 
universal construction of elements in higher K-theory (motivic cohomology) of self 
products of elliptic curves. This generalised a construction by Bloch of elements in 
K 2 of an elliptic curve (Bloch 1980). A refinement of Beilinson's Eisenstein symbol 
was given in (Derringer 1989). 

The purpose of the present paper is to calculate the boundary of the Eisenstein 
symbol at a place of bad reduction of the elliptic curve. 

In the case of an elliptic curve over a number field, this gives a criterion for the 
"integrality" of Eisenstein symbol elements, and thus generalises a formula found 
by (Bloch and Grayson 1986). In the case of the universal elliptic curve, we obtain 
the boundary of the Eisenstein symbol at the cusps. [In characteristic zero an 
equivalent result was proved in (Beilinson 1986) by an analytic method.] 

In our presentation the formula involves Bernoulli polynomials. These arise 
essentially on account of their well-known distribution property-cf. 2.7 (i) below. 

We now give a precise summary of our main result. Let E/F be an elliptic curve 
over afield, and PCE a finite subgroup scheme of E defined over F. For any integer 
n ~ 1, consider the Eisenstein symbol map, following the definition of (Deninger 
1989, Sect. 8): 

s;: Q[P]0 ~ H':1 1(En, Q(n + 1 ))sgn. 

Here the following notations are used. 
:- Q[P] 0 is the Q-vector space ofGal(F/F)-invariant functions fJ: P(F)_.Q satisfy­
ing L /J(x)=O (which we identify with divisors on E in the obvious way). 

xeP(/') 

- H~( - , Q(j)) = KYJ- i( - ) is motivic cohomology - cf. (Beilinson 1985, 2.2), 
(Schneider 1988, Sect. 3), (Deninger and Scholl, Sect. 1). 
- for a group scheme A, we identify An with the kernel of the sum-mapping 
~:An+t_.A, This gives an action of the symmetric group Yn+ 1 on An. 

* Heisenberg Fellowship (DFG) 
*" Partially funded by NSF grant DMS-8610730 



304 N. Schappacher and A. J. Scholl 

- subscript "sgn" denotes the image under the projector 

1 
n.gn = (-t)' L: sgn(a). a. 

n + • t1ESl'n+ 1 

Now suppose F admits a non trivial discrete valuation v, and let (lJ and k be the 
valuation ring and residue field of v, respectively. We shall assume that k is perfect. 
Let E1~ be a minimal regular model of E, and E1k its special fibre at v. We make the 
following additional assumptions: 

i) E1k is a Neron N-gon (untwisted), for some N~1. 
ii) P extends to a finite flat subgroup scheme P1~ of the Neron model of E over 

@.(For example, one could take P to be the N-torsion points of E, with N as in i.) 
Write E for the connected component of the Neron model of E over(!), and fix 

an isomorphism E1k ~ Gmlk· This induces an orientation on E1k, i.e., a bijection 
between Z/ NZ and the set of components of E1k. The component corresponding to 
v E Z/NZ will be denoted C,. If PE Q[P]0 and v E Z/NZ then we write d11(v) for the 
degree of the restriction of the flat extension of p to the component c .. 

The boundary map 

an: H~ 1(En, Q(n+ 1)).gn-+H'.Jt(E;k, Q(n))sgn 

arises from the localisation sequence of the pair (E~, E'fk). The target space is a 
one-dimensional Q-vector space generated by <I>:=nsgn(y0 u ... uy"}, where 
Yo =(y1 ••• Yn)-1, and for 1:;:;;; i;;i;n, Yi is a coordinate on the i1h copy of Gmlk (cf. 1.5 
below). 

The main result of this paper is: 

Theorem. 

()no@'~ (P)=C'P,Nce~Nz d11(v)Bn+2 ( (;))) · <1>:, 

where C~.N is an explicit nonzero constant, Bk(X) is the k'h Bernoulli polynomial, and 
0:;:;;; (x) < 1 is the representative of x E Q/Z. 

The case n = 1 was found by Bloch and Grayson by a somewhat different 
method. The reader will find applications in their paper (see also 3.6 below), and in 
the case n = 2 in (Mestre and Schappacher 1990, Sects. 3.4, 3.5) - cf. Sect. 6 below. 
In these applications F = Q and the theorem is used to describe the obstruction to 
the Eisenstein symbols belonging to the "integral" motivic cohomology 
H~ 1(E", Q(n + 1 ))z. 

The formula of the theorem was discovered by the second author while 
studying the work of Beilinson on modular curves (Beilinson 1986). There t; 
(which Beilinson denotes$~) is constructed for the universal elliptic curve over the 
field of modular functions. Beilinson's main result concerning the symbol 
(Theorem 3.1.7 of loc. cit.) is equivalent to 7.4 below, but his proof is analytic, in 
contrast to our algebraic approach. 

Acknowledgement. This paper was completed while both authors enjoyed the hospitality of the 
Institute for Advanced Study, Princeton. 
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1 The basic formula 

We continue to use (and expand upon) the notation of the introduction. 

1.1 The Eisenstein symbol. We recall the construction of the Eisenstein symbol 
map, following (Deninger 1989, Sect. 8). For an integer n~1, let pi:En-+E 

n 

(1 ~ i ~ n) denote the projections, and Po= - L Pi· Write U = E - P, and define 
i= 1 

H we need to emphasize the dependence on P we write UP• etc. 
For i=O, ... ,n, let PieQ[P]0, and choose functions J;el9(U)*©Q with divisors 

fli· We use the "symbol" notation { - , ... , - } for the cup product 

u: ©1H~(-,Q(1))-+H~(-,Q(l)). 

Then there is a well-defined map 

(1.1.1) ei: Q[PJ0®"+ I -+W,l 1(U"', Q(n+ 1)}!;:, 

given by 

Po© ... ©Pn H llpn ° n.,n{P~fo, ... ,p:J..}. 

Here llpn= ;(F)" L Y'x* is the projector onto the space of P(F)n-invariants. 
=If: xeP(E°)" 

With the special choices 

(1.1.2) P1 = ... =Pn=rY.p= L (0)-(x), 
xeP(P) 

it is the first step of the construction of the Eisenstein symbol map rt;, and other 
choices of P 1, ..• , Pn do not give rise to new elements of motivic cohomology. 
However we will not make this substitution at once, in order to preserve the 
symmetry for the subsequent calculation. Note that we are taking the invariants 
under translations by P(F), rather than the coinvariants considered in (Deninger 
1989), in order to calculate explicitly. 

The second step in the construction - only needed when n ~ 2 - is the 
decomposition of the target space of 1.1.1 into eigenspaces under the 
L- 1-multiplication. This will be discussed in Sect. 4. 

1.2 Varying P. Let P l Q be (a closed immersion of) two finite subgroup schemes of 
E defined over F. Then there are commutative diagrams: 

Q[QJO®n+ I~ W,l l(U~, Q(n + 1))~ 
(1.2.1) I j1 Ires 

Q[PJo®n+ i...!!_. H':: l(U';, Q(n + 1)>;.'n 

and 

Q[QJo- w..: 1cu~,Q(n+t))~ 
(1.2.2) ~I ~Q:~X-

Q[PJ0- W,l 1(U';,Q(n+1))!';. 
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where j 1 is extension by zero, and the unlabelled horizontal arrows are the maps 

Pr+ 8'fi(P®a.~n) and Pr+ 8'P(/J®a.1") respectively. 

Now let L !?;; 1 be an integer, and write P = [ x Lr 1(P) c E, 0 = E- P, etc. Write 
n:P-+P for the projection. Multiplication by L induces a Galois covering 

[xL]:U"'-+Un'. 

By Galois descent, this gives a homomorphism 

[ x L]*: H':1 1(U"', Q(n+ 1)r-+H':J 1(U"', Q(n+ 1)i"'' 

and we have two further commutative diagrams: 

Q[fSJO®n+t ~H':Jl(On',Q(n+ 1)1.;n 

(1.2.3) jir• r (XL]• 

Q[PJo®n+t ~H':Jl(Un',Q(n+1));;n 

and 

Q[.PJ0 - H':J 1(U"', Q(n + 1)~: 
(1.2.4) I,,. I [XL]• 

Q[PJ 0 - H':J 1(Un', Q(n + 1)fsg: 

with the unlabelled maps in 1.2.4 being 

fJr-+8~P®a.f") and Pr-+8'P<_P®rx.1n). 

All of this is straightforward to prove by direct calculation from the formulae in 
(Deninger 1989, proof of 8.2). 

1.3 Base change. Let F'/F be a finite extension, v' a discrete valuation of F', and v 
the restriction of v' to F. Then the following square is commutative: 

w_; 1(EiF'•Q(n+ 1))~H'A(i-1k.,Q(n)) I rcsy•/F • I e(v' /v) x r••k'/k 

H':1 1(EiF• Q(n + 1)) ~ H'A(E11, Q(n)). 

Here resF'/F• res1•11 are the restriction homomorphisms, and e(v'/v) is the 
ramification index. (Recall that we are assuming k to be perfect.) 

In view of 1.2.1 and 1.3, we may now restrict to the following situation. 

1.4 Assumptions. 
- Er" is an untwisted Neron N-gon with N !?;; 3; 
- P=p,N x Z/NZcE(F) is a level N structure on E; 
- P1" gives the standard level N structure on (E1Jsmooth=Gm x Z/NZ. 
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l.5 Write UN= E - P, and U 1 for the complement of the zero section in E119• 

Consider the Galois covering*: 

U';1k= LJ Pi 1((Gm-PN) x Z/NZ) 
l[xN]0;2;i;2;n 

Ui)k= LJ P;- 1(Gm-l) 
O~i~n 

which by Galois descent gives an isomorphism 

(1.5.1) 

In the next section we shall prove the following basic formula for the composite of 
ei with the boundary map in motivic cohomology 

ov: H~(U~/F' Q(*)):;n-+H:i 1 (U~1k, Q(* -1)f.g:. 

1.6 Proposition. 

a B"(®f3·) = + ~ ~ (n) ~ (aom ... Jn(O [ x N]*tl>" 
v P 1 - N2n+l ~ q L.. (1' -1)q+2 q• 

q-0 l*(eµN ~ 

The meanings of the symbols are: 
- d;(v)=dp,(v)= L {3,(((, v)) for veZ/NZ; 

(EµN 

- cl;(()= L: (•d;(v) is the Fourier transform of d;; 
veZ/NZ 

- <P: is the element of H~(Ui'1k, Q(n))sgn given as follows: let y= t- 1 be the inverse 
of the natural coordinate on Gm, and let Y; = p{(y), for the n + 1 projections 
P0, •.• ,pn: G;:.-+Gm. Let .'1;,+ 1 be the symmetric group permuting the coordinates 
Yo, ... , Yn· Then 

q,; = 1Isgn{Y1, • · ., Yq, 1-Yq+ 1' • • ., 1-Yn} • 

1. 7 Remark. Note in passing that for the special functions f;, i = 1, ... , n with 
divisors div f;=a as in 1.1.2, we have that d;(v)=N2bv,o -N, so that here we find for 
(t1 that a;(()=N2• 

We will see in Sect. 4 that the proposition actually implies the theorem. 

2 The calculation 

2.I We begin with some geometry on the arithmetic surface E119• For the moment, 
?'e need only assume that E1k is an untwisted Neron N-gon with N ~ 3, and that P 
Is a finite subscheme of E whose flat extension P119 is contained in the smooth part 
of Ef(I}· We normalise the orientation of the special fibre E1k = U c. and the 

• veZ/NZ 
coordmate t. on c. such that t. = 0, oo are the points of intersection of c. with 
C,_hCH 1 respectively. (There is no ambiguity as N~3.) 

; If ch~r(k) divides N then [ x N] is the composite of a Galois covering and a power of the 
. ro"l'.mus mapping. As the Frobenius induces an automorphism on motivic cohomology, [ x N]* 
18 an isomorphism in this case also 
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Let f E lP*(U)®Q, and let a(v) be the order off along the v'h component c. of 
E k· Choose once and for all a unif ormiser n of the valuation v, and let 
g'I•> =n- 0 Mf E F(E)*. Since ordc,.(n)= 1, the function gM is regular outside of P and 
the C,. with µ=+:v; so its restriction to c. is an element of k(C,)®Q which we also 
denote gM. Let D1() be the flat extension of div f to E1(), and d(v)=deg(D1ll'nC.) (cf. 
introduction). 

2.2 Proposition. (i) divg<•>=(D1ll'nC.)-b(v-1)-(0)+b(v)·(oo), where b(v) 
=a(v+1)-a(v); 

(ii) d(v)=b(v-1)-b(v). 

Proof (ii) follows from (i) as deg(divgM)=O. The only remaining non-trivial 
assertions are the claimed multiplicities at t,=0, oo. To verify these, represent the 
completed local ring at 0 as R=&[[u,v]]/(uv-n), where u=O, v=O are local 
equations for C., C,_ 1 respectively. Then the image off in the field of quotients of 
R is of the form 

f =(unit) X u0 <•>va<•-1) =(unit) X n°Mv-b(v- l) 

= (unit) x n°<•- llub(•- l). 

Therefore the order of g<•> at t, =0 is -b(v-1), and the order of g<•- 1> at t._ 1 = oo 
is b(v-1). 

2.3 Now we continue under the assumptions of 1.4. Then gMe£P*(Gm-PN)®Q, 
and we write 

where y= 1/t. 

2.4 We apply the above with f = f;, 0 ~ i ~ n, with the obvious additional subscripts. 
To calculate the boundary of 8~ we need the following compatibility of the cup­
product and the boundary map [see (Loday 1976, 2.3) and (Grayson 1976)]. 

Let X/lP be smooth, and o :H; 1(Xp, QU+ 1))-+H~(X", Q(J)) the 
boundary map of the localisation sequence. For e E H~(X, Q(i)), 
write eF, e" for its images in H~X F• QU)), H~(X"' QU)). Then for 
every e, 

±o(nuep>=e" 
(the sign depending only on (i,j)). 

In particular, up to sign and torsion, the boundary maps in Milnor and Quillen 
K-theory agree. This gives (up to sign) the following formula for the restriction of 
o{p~fo, ... ,p:fn} to the component c •• x ... x c,n: 

n _......__ 
L a,(v,) {gS'o>(y0), •. ., g~•·l(y,), ... , g~•nl(y.)} 

r=O 

n 

Here and elsewhere v0 = - :E v1• Applying the projector JI P" -defined in 1.1.1- we 
obtain 1=1 
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where v=(v1, ... , vn). Applying the inverse of the isomorphism 1.5.1 we write this 
as the following element of H'.:tt(Ui'tto Q(n)): 

n -
N-2n L L a,.(vr){too(vol(1-yo)"o(vo>, ... (r) ... , .v:,.(v,.)(1-yJ""(v,.)}. 

ve(Z/NZ)" r=O 

We can expand this in terms of a sum over the symmetric group 
g;,+ 1=Symm{O,1, ... ,n}: 

2n n sgn(o') ( )b ( ) b ( ) 
N- L L L ( )' 1 a110 "110 111 1'111 ··· 111tY11q 

ve(Z/NZ)" q=O 11e9',.+1 n-q .q. 

X d11(q+ 0(1'11(q+ 1~ ··· d.,nCv11J {Y111• ···•Y11q• 1-Y11(q+ 1)> ••• , 1-Y11n} 

and applying the projector n.11.n we obtain the following expression. 

(2.4.1) N-2n r ( \ I L L a11o(vo)b111(v1) ... b.,Jv,) 
q=O n-q .q. YE(Z/NZ)" 1re9',.+1 

x d.,<,+ 0(v<,+ 0) ... d.,n(vJ~. 

2.5 This last expression will be more palpable once it is rewritten in terms of 
Fourier transforms. Recall that we are taking$(()= L ("cf>(v). If cf>(v)=1P(v+a) 

veZ/NZ 
-V'(v), then we have $(()=((-0 -1)tjl((). In particular, by 2.2: 

aJ.C)=<e-1>6J.O= -c 1cc-1)2d;(O. 

Furthermore a;(1)=6;(1)=0. Therefore fixing q, O~q~n, we have the following 
identities, valid for any <1eg;,+ 1: 

1 Cao(() ... an(C) 1 (n6. 6. en 1' (n 1' (n 
-N L (( 1)q+2 =N L '2110'>1 ot··· 11q'>J'ao(q+l)'>J· .. a11n'>J 

1 *{Ell - 1 *'EllN 

= L 'a11o(Vo)b111(V1) ... b11Jv,)-dt1(q+ 1) (v(q+ o> ... d11nCvJ. 
ve(Z/NZJ" 

Consequently, expression 2.4.1 becomes (up to sign) 

N-1-2n f. (n+1)! ~ L Cao(() ... an(O 
q=o(n-q)lql 'uce11N ((-1)9 +2 

This proves Proposition 1.6. 

2.6 Fourier transforms of Bernoulli polynomials. Recall the definition of the 
Bernoulli polynomials Bk: 

te1x oo t1 
e1-1 = k~O Bk(X)k!' 

Thus, for example, 

Bo(X)=1, B1(X)=X-t, B2(X)=X2-X+i, 

B3(X)=X3-fX2+tx, B (X)=X4 -2X3+X2-$. 

Define, for 'E PN• Al.JO= I, u/ (~))c. Then it follows from the 
definition of the B1 that ve /NZ \' 

oo f' t N-1 t 
k~o Ak,J()kl = e1-1 Jo (Ce1'Nt= (Ce11N-1)" 
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Substitute u = e'fN and define 

Ak"): =Nl-kj}k,N(O=k( u :uy-1 'u~11u=1 · 
From this it is elementary to deduce the following proposition the first part of 
which is a convenient reformulation of the distribution property of the Bernoulli 
polynomials. 

2.7 Proposition. (i) For every integer L~ 1, 

}:, Ak(11) = I!'BiQ. 

(ii) For all k~j~2, there exist rational numbers ai,k independent of N such that 
ak,k=(-1)k-•jk! and 

For instance, one has 

3 The case n = 1 over a number field 

We are now already in a position to verify the theorem in the case n = 1 (Bloch and 
Grayson 1986). In fact· we will prove a more general result. We first describe the 
situation in terms of K-theory to make apparent the relation with loc. cit. 

Let E be an elliptic curve over a number field F. Consider the localisation 
sequence: 

0--+ H~(E, Q(2))--+ H~(F(E), Q(2))~ LJ F(e)* 

II II ~elEI 

K 2(E)®Q K2(F(E))®Q 

Here IEI is the set of closed points of E, and the sequence is exact on the left as Kz of 
a number field is torsion. The boundary map ff is the "tame symbol". 

Let fj, gie F(E)* be a finite collection of rational functions on E such that 

L: {fj,gJ ekerff. 
J 

Then L: {fj, g1} defines an element of H~(E/F, Q(2)) = Ki(EJF)®Q. 

No~ let v be a finite place of F, with residue field k, at which E has split 
multiplicative reduction with special fibre a Neron N-gon. We intend to calculate 
its image under the boundary map 

o:Ki(E)®Q-.K~(E11,)®Q. 
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First note: 
K't(E1J®Q~H~(E1k,Q(1))~Q. 

In fact, since k is finite, the localisation sequence gives a short exact sequence 

0--+K'i(E,k)®Q--+Ki(Ei;:'00th)®Q--+Ko(Ei~na)®Q 

II 6 II 
ll Q · tv ---+ Q[Z/NZ] 

veZ/NZ 
with ()(t,)=(v)-(v-1). Then the restriction 

K1 (Ei;:'001h)®Q-+Ki(E1k)®Q=H~(E,k, Q(t))=k(G,,,)*®Q ·to 

induces an isomorphism on the image of K~ (E1k)®Q. 

For the calculation we only need the following hypothesis on f.;,fJ: 

3.1 The closure of the support of the divisors of f.;, fj is contained in the smooth part 
of Ew 

Then, since k is finite, the reduction modulo v of this support is contained in 
PM x Z/NZ for some M; so by passing to a ramified extension F'/F and using 1.3 
we may, and do, assume M =N. The first part of the calculation of Sect. 2 then 
gives (up to sign): 

a (t {fj,fJ}) = ~3 ufe11N [ x N]* [(C ~ 1)24>A+(C!1)3 4>~ J tJ;{C)a~{C) 
where d/v), d~{v) are the degrees of the restriction to Cv of the closures of the 
divisors of f.;,fj. Using the examples following 2.7 and the relation 

1 1 { } 1 {1-y1} 1 { } 1 1 
4'0=2 0 ]-;

2
sgn(11) 1-Yai =1 t-yo =1 Yi =14'1 

(cf. 5.2 below), we obtain a formula involving only B3 and 4>~. (It is no accident that 

A2 drops out in this way - see Sect. 4 below.) Using B3 (( ~v)) = - B3 ((~ )) 

and the fact that [ x N]*4>~ =N4>L this gives: 

3.2 Proposition. For functions f.;,fj satisfying hypothesis 3.1 one has: 

a(I {/.;.ff})=± 3
1N I Id/µ)d~{v-µ)B/(Nv )) · 4>~. 

} µ, veZ/NZ j ~ 
. In the special case where all fJ have the standard divisor this proposition 

Sllil.plifies in view of 1.7 and due to the fact that Id1{µ)=0. 
µ 

3.3 Corollary. Let L {fj, g} e ker ff, with div Jj supported in the smooth part of E1tJ 
j 

and divg= L (0)-(x). Then 
xeP 
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3.4 We should remark that if vis a place of Fat which the reduction of Eis not split 
multiplicative, then K~(E1k)®Q = 0. Thus the restriction to the case where E1k is an 
untwisted Neron polygon does not miss any interesting cases. 

3.S Now let(!) momentarily denote the (global) ring of integers of F. We have the 
exact sequence 

(torsion)--+Ki(E1(1))--+Ki(E/F) o=Uov UK'1(E1k)--+ .... 
v 

The fact noted in 3.4, that the target of Bv is torsion unless v is a place of split 
multiplicative reduction for Eis in accordance with relative versions of Beilinson's 
conjectures - cf. (Deligne 1985, Ramakrishnan 1989, 4.7). In fact, we have 

dimQK~ (E tkJ®Q = ord Lv(E, s) 
s=O 

where the L-function of E/F is written L(E/F,s)=ITLv(E,s)- 1. But even if the 
v 

reduction at vis split multiplicative, the tame symbol may nonetheless be trivial on 
the elements of K 2(E1F) we considered here. In fact, if E1kv is a Neron polygon with 
one or two sides, then for rational functions fj, fj with reduced divisors supported 
in Ei:'ooth, we always have o(:;:{fj,fj}) =0 because B3(1-x)= -B3(x). 

3.6 Remark. When the divisors of fj, fj are supported in torsion points, 
Proposition 3.2 implies the formula of(Bloch and Grayson 1986, p. 88); cf. (Mestre 
and Schappacher 1990, 1.5.1). But there are also examples of elements 
L {fj,fl} e ker ff when the support of the divisors of fj,fj contains points of 
j 

infinite order. The first such example, on a curve with complex multiplication, was 
found by R. Ross (1990 Rutgers Thesis). Recently Jan Nekovar, modifying 
successfully an earlier attempt by the first author, wrote down a one-parameter 
family of elliptic curves on which non-trivial such elements can be constructed. 
Some curves in this family have places v with non-trivial K~(E1k)®Q. They 
provide concrete applications of the general statement 3.2. But we do not go into 
this here. 

4 The weight decomposition 

4.1 The remaining step in the construction of the Eisenstein symbol is the "weight 
decomposition" of H~(U';;1F, Q(•))!'8: under. the "C 1"-multiplication. Recall 
(Deninger 1989, Sect.8) that if L>1, and P=[xLr 1P as in 1.2 above, the 
endomorphism ft' is defined by the commutativity of the diagram: 

H~(Un', Q(•)Y.;n 4 H~(Un', Q(•))~:- H~(Un', Q(•)t.;n 

(4.1.1) ~ l•(XL~ 
!I' fr.,1t(Un', Q(•)f.;n 

where j* is induced by the inclusion 

j: onr c. uni. 
On the image of H~En, Q(•))sgn (which is invariant under pn), ft' coincides with 
[xL]*- 1, and is simply multiplication by L-n. 
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4.2 Theorem (Beilinson 1986, Deninger 1989). H"At(Un', Q(•))!';n decomposes into 
eigenspaces on which ff' acts as multiplication by L-n-i, O~i~n-1; and the 
inclusion U"' c. En induces an isomorphism of H~(En, Q( * ))sgn with the 
cn-eigenspace of H~(U"', Q(*))!'8';.. 

The definition of the Eisenstein symbol is now as follows: let a= L: (0)-(x). 
xeP 

Then <!;(_ff) is the projection of e1;,(.ff®a®n) into the L-n eigenspace, viewed as an 
element of H'.'.ti 1(E", Q(n+ 1)) under the isomorphism of Theorem 4.2. 

Let us give a slightly different proof of Theorem 4.2. Recall that 

um={(x1,.-•,xn)EEnlfor all O~i~n, X;f;P}, 

where x0 = -x1 - ... -xn. We define, for O~q~ n, 

Yqn={(x1,. .. ,xn)EE"lat least q of the x;'s are in P}; 

Y;= {(x1,. .. ,xn)EEnlexactly q of the x;'s are in P}. 

Then U"' = YQ, E" - um= YI' and 

(4.2.1) i;n~u<n- 1 >1 x{O, ... ,n}xP. 

Moreover we have a decomposition E" = U t" of En into locally closed subsets 
O~q~n 

which are invariant under the action of Y..+ 1 · pn. This group acts transitively on 
the set of components of tn with isotropy subgroup (Y..+ l-q x Sf;,)· pn-q. Notice 
that the subgroup Sf;, acts trivially on the component 

{(x1, ... , Xn)E Enlx0 , •.• ,Xn-q-l <!;P, Xn-q = ... =Xn=O} 

from which it follows that if q ~ 2 then 

H~(t", Q(•))!'8';. =0. 

Then by the long exact sequences of motivic cohomology, we deduce that 

H~(En, Q(•))sgn =H~(E", Q(*))!'g"n = H~(YcfuY;, Q(*))!'g"n. 

Moreover, by 4.2.1, 

H~(Y1~ Q(•))!'g';.n+ '~H~(u<n-1)', Q(•))!';n~'. 

We therefore have a long exact sequence: 

(4.2.2) Ir - 2( u<n - 1 >' Q(* _ 1 ))P" - ' ~ H• (En Q(•))P" 
A ' sgnn A ' sgnn+ 1 

~H~(Um, Q(•))!'g':.n+ '~H:i icu<n-1)', Q(•-1))!'g';.~' ~ ... 

By 4.2.1 the localisation sequence is compatible with the family of endomorphisms 
~hich are ff' on the middle two terms and C 2 ff' on the outside ones. By 
simultaneous induction it follows that: 

(4.2.3) The boundary maps b are zero. 

(4.2.4) The eigenvalues of ff' on H~(Um, Q(•))!'8':.n+ 1 are~ -n-'., for O~ i~ n-1, and 
the corresponding eigenspaces are isomorphic to H9.,i'(E"-',Q(*-i))880n-•+•· 

4.3 One would like a similar statement with E replaced by Gm and P by µN. The 
exact sequence analogous to 4.2.2 still holds. For us the only case of interest is 
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• = * = n. Then <> vanishes, since the space 

HA(G::,Jk• Q(n))sgn 

is one-dimensional, spanned by the symbol {Yi. ... ,yn}· Hence it will certainly 
inject into W""'(k(G::,), Q(n)).10 = K~(k(y1, •• • , YnM~Q. Therefore the long exact 
sequence splits into short exact sequences, and by a similar induction argument we 
see that HA((Gm-PNr', Q(n)fs;n has dimension n, spanned by ~ •... , <J>:. (In 
particular, there is a non-trivial relation between cf>i, ... , tJ>: - cf. Sect. 5.) However 
there is no canonical decomposition as it is easy to see that the analogue of !l' acts 
by the scalar L-", for every L~ 1. 

4.4 In order to decompose erp according to the weights of !l', we must therefore 
calculates; explicitly. Write '2p for the composite 

Op= [ x L]* o !l': H~(U"', Q(•))--+H~(U"', Q(•)). 

(4.4.1) 

" where O Ll 1 denotes the iterated composite LI,, o ••• o LI 1• Write plJI = L-ip. We can 
i=l 

rewrite the above expression as 

(4.4.2) [
n-1 
;[I1 (L-"-L-n-1)-1[ x L"-1]'11-1 

n-1 J 
o 

1
91 (Op11-•1-L-"- 1[xL]*) 0 8'P(P®11.®"). 

Note that we may even extend the range of i to, say, i = n, making the operator 
explicitly kill off one more eigenspace which we already know by 4.2 to be zero. We 
will do this in the computation because it will painlessly suppress the 
~-component in 1.6. (If we did not do it, this component would have to be shown 
to cancel out because of relation 5.2 - cf. the alternative proof we gave for 
Proposition 3.2 which of course represents the simplest case.) 

4.5 Let us analyse formula 4.4.1 with a view to computing an o 8'P via 1.6. As 
indicated we modify 4.4.1 by letting i run from 1 to n. This also replaces 
[ x L"- 1]*- 1 by [ x L"]*- 1 in 4.4.2. 

4.5.1 Expand 
n n 
0 (Opu-11-L-n-l[xL]*)= L (-1)111 0 A1,1=}:(-1)111A1, 

I= l Is;{l, .. .,n) i= 1 I 

where III denotes the cardinality of I, and for each I~ {1, ... , n} and i e {1, .. ., n}, we 
define 

{Op1•-•1 if i~I 
Ai,;= L-"- 1[xL]* if ieI. 

For fixed I, we shall now compute 

(4.5.2) 
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By 1.2 we find that 

Dpc•-11° 8'}.11-11(P®a.®n)= 8'}.u1UiP@j1 a.®") 

and 

Thus, writing 

n 

A.r= 0 A.1,;, 
i=l 

{jl if if!/ 
A.i,;= n* if ie/, 

1.6 allows us - neglecting signs - to transform 4.5.2 into 

3) n + 1 n (n) n 11 ( 1" 1"n n · 
(4.5. Tn(TnN)2n+ 1 I tPq I ( -1)q+2 x ll;.Ipllix1xH11) n c -·. 

L L q=O q l *'IEILL"N 11 1el 

315 

Here the first factor of L" in the denominator comes from 1.3. In fact, in order to 
apply 1.6 relative to the group of L" N-torsion we have to extend the base field to an 
extension with ramification index L". 

The following lemma is straightforward. (Notice however that we are using the 
notationj! and n* in two different meanings: on functions 31 these operators refer 
to the groups µN, µLN; on divisors the notation is relative to µN x Z/NZ, 
JlLN x Z/LNZ. In each case, j is inclusion and n the natural projection.) 

4.5.4 Lemma. For any yeQ[P]0 , we have 

3ilY=n*31 , 3,..1 =I?Jr31 • 

This transforms 4.5.3 into 

(455) n+1 "(n) 33':. TIL"+2-; 11 · · L"(LnN)2n+ 1 L tP; L ( II IX)(C) X. ) (n 1)q+2' 
q=O q 1 *{EILN 1el ,,d'fl ={ 'I -

where f ={1, .. .,n}-1. - Now apply 2.7 and get 

But observe that 
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Thus taking the sum over all J ~ { 1, ... , n} in 4.5.6 and inserting this into 4.4.1, all 
powers of L duly cancel, and we obtain: 

on°t!;l,p)= ± (n+;)7~2n+ 1 ut"N (JpJ:Dn+2HO[ x N]*<P~. 
Since [ x N]*<P:=N"tP,;, the theorem now follows from 1.7 by a trivial computa­
tion. The constant comes out to be Cj,,N= ±N"(n+1)/(n+2)1 in the case 1.4. 

5 A linear relation 

As observed in 4.3 above, there is a non-trivial relation between the elements <P; for 
0 ~ q ~ n. We include it here even though the proof of the theorem we chose to 
present does not rely on it, cf. the remark at the end of 4.4 above. 

The relation is derived from the following identity in Milnor K-theory. 

5.1 Lemma. In Milnor K-theory tensored with Z[1/2], we have 

{1-X1X2 ... Xm, X1(1-X2), ... ,Xm-1(1-xm)} =O. 
1-x1 1-x1 1-Xm-1 

Proof By induction: assume true form, and replace Xm by xmxm+ 1. Then we get: 

O= {1-X1X2···Xm+1 'X1(1-X2)' ... , Xm-2(1-Xm-1), Xm-1(1-XmXm+ 1)} 
1-x1 1-x1 1-Xm-l 1-Xm-l 

= {1-X1X2 ... Xm+ l X1(1-x2) Xm-2(1-Xm-1) 1-XmXm+ 1} 
1-x1 ' 1-x1 , ... , 1-xm_ 2 ' 1-xm 

{ 1-X1X2 ... Xm+l X1(1-X2) Xm_i(1-Xm-1) Xm-1(1-xm)} + ' ' ... , ,-----
1-xl 1-x1 1-Xm- 2 1-Xm-l 

Now take the product with 

-Xm(1-Xm+ 1) = 1_1-XmXm+ 1 
1-xm 1-Xm 

to obtain the desired formula. 
Apply this now with m=n and y1=x;. We get 

{Yo(1-y1), Y1(1-y2), ... , Yk(1-yk+ 1), .. .,Yn-1(1-yn)} =O. 
1-Yo 1-y1 1-yk 1-Yn- 1 

Expand this using bilinearity. If the (k+ 1)"1 choice is Yk or (1-yk)- 1, then for the 
resulting term to be non-zero the kth choice must be Yk- 1 or (1 - Yk- 1)- 1, and we 
obtain: 

~{Yo Yi Yp-1 1 1 }-o t... -=-·-=-, ... ,1_ , -Yp+1,.··• -y" - · 
p=o 1 Yo 1 Yt Yrt 
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Now apply n.gn· Using the permutation (012 ... p) the result can be written as 

0= I (-1)1'{ 1 ~1 , .•• , 1 ~P ,1-Yp+l•····1-yn}sgn 
p=O Yi Yp 

n P 
= L L (-1)q L {1-y., ... ,yii•···•Yi , ... ,1-Yp+l,. .. ,1-yn}sgn• 

p=O q=O O~it < ... <iq~P • 

Here the k1h entry is Yk for k=i1, ••• , iq and 1-yk for the remaining (n-q) values of 
k. We conclude: 

5.2 Proposition. 

I. c-1>q( I. (v)) ~=o. 
q=O p=q q 

6 The number field case 

Let F be a number field, (9 its ring of integers, and let v denote finite places of F. The 
subspace H~(EiF• Q( * ))z of "integral" elements of H~(EiF• Q( *))is defined to be the 
image of 

H~(EifJ• Q(•))-H~(Ej'p, Q(•)), 

where EifJ-(E1fJ)" is a desingularisation of the n-fold power of a global regular 
minimal model of E. (See 6.6 below.) By the long exact sequence for the pair EifJ• EiF 
this space of integral elements H"] 1(Ej'p, Q(n+ 1))z equals the kernel of the 
boundary map 

H"] 1(£ip, Q(n+ 1))- il W.1,f,,>(EifJ•Q(n+ 1)), 
allv 

where subscript (v) denotes cohomology with support in the fibre at v. 

6.1 Now let v be a place of F satisfying the assumptions 1.4. Write e the projector 
onto the subspace on which the group µ2 · 9',, · P" acts as follows: every µ2 acts by 
-1, 9',, acts via the sign-character sgnn, and pn acts trivially. We then have a 
commutative diagram: 

W.1 1(EiF• Q(n+ 1))(e)---. W.J.fv>(EifJ• Q(n+ 1))(e) 
(") l• 

H"] 1(EiF• Q(n + 1 )) ____... H".,11(Eik.• Q(n)) 

~here the isomorphism is between one-dimensional Q-vector spaces. For this 
isomorphism see [Scholl 1990], proof of 3.1.0(iii); the proof given there applies 
equally well in the present situation. 

6.2 In general, given any finite place v of F, there exists a finite extension F'/F such 
that, above v, E1r has either good reduction or situation 6.1 applies. And in the 
good reduction case one has that H'.:tt(Eikv• Q(n)) = 0: see (Soule 1984, 
Theorem 3 (iii)). 

6.3 Lemma. Let F'/F be a finite extension. Then 

coresF' JFirJt(Eir• Q( * ))z = HA(EiF• Q( * ))z. 
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This is proved by a slight variation of (Beilinson 1985, 2.4.2), cf. (Schneider 1988, 
p.13). 

6.4 Finally, if vis a place where E has either additive and potentially multiplicative 
or non split multiplicative reduction, then the target space H~(Ejkv• Q(n)) is zero if 
and only if n is odd. This is seen from the Galois action on the generator t1 u ... utn 
of the corresponding motivic cohomology over a suitable extension field. 

We conclude: 

6.5 Proposition. H".1 1(Ejp,Q(n+1))z is the kernel of the boundary maps 

W ,l 1(Ejp, Q(n + 1 ))-t lJ H~(Ejkv• Q(n)), 
v 

the product being over all (finite) places of F where E has split multiplicative 
reduction, if n is odd; and over all (finite) places of F where E has potentially 
multiplicative reduction, if n is even. 

Our theorem then allows to calculate explicitly the integrality obstruction for 
elements of W ,l 1(Ejp, Q(n + 1 )). This justifies in particular the computations of this 
obstruction performed in (Mestre and Schappacher 1990). 

6.6 Some words regarding the desingularisation Eim are in order. [Note that in 
Sect. 2.2 of (Mestre and Schappacher 1990), E~ is incorrectly defined as the 
normalisation.] 

If E has semistable reduction, then the singularities of (E1mt are products of 
ordinary double points, and can be explicitly resolved (Deligne 1968, Lemme 5.4), 
(Scholl 1990, Sect. 2). In general, the existence of a desingularisation seems open. 

If one does not want to assume the existence of E'Jm, one may choose F' as in 6.2 
and take the left hand side of 6.3 as the definition of H~(E'jp, Q(•))z. 

7 The modular case 

7.0 In this section we show how our theorem gives a different proof of one of the 
main results of (Beilinson 1986) - Theorem 7.4 below. [In (Deninger and Scholl), 
this paper is summarised in a language closer to ours.] 

7.1 Let N be an integer ~ 3, and let MN be the modular curve of level N, and F Nits 
function field. We consider E/F N• the universal elliptic curve with level N structure 
a::E[N]-=i-(Z/NZ)2• Taking P=(Z/NZ)2 (which we identify with the N-torsion 
subgroup of Evia ix) we obtain the Eisenstein symbol map, which we write 

IN: Q[(Z/ NZ)2] 0 -t W ,l 1(En, Q(n + 1 )) . 

7.2 Write M'N for the cusps of MN· Then as is well known, by regarding the cusps as 
giving level N structures on the standard Neron N-gon, one has an identification of 
the set of closed points: 

IM'Nl.::.GL2(Z/NZ)/(~ ; 1) 

where 1 e GL2(Z/NZ) corresponds to the level N structure 

G"' x Z/NZ)p.N x Z/NZ.:+(Z/NZ)2 

({;.,, b)t-+ (a, b) 
defined over Q(CN). 
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7.3 The main theorem enables us to calculate the effect of the boundary map 

a:H':.: 1(En,Q(n+ 1)).80 --+H~(Gm x M;,Q(n)).sn~Q[IM;I] 

on the image of the Eisenstein symbol. Notice that the first arrow depends on the 
choice of orientation of the special fibre of the Neron model of E, so that as written 
the composite map is not canonical. To make it canonical we replace the target by 
the space v<->", where 

y± = {1: GL2(Z/NZ)--+Q jl( gG ;) ) = f(g)= ±f(-g)}. 

Then our theorem shows at once that the composite a o tS'N is a nonzero multiple of 
the GLi(Z/NZ)-equivariant map WN: Q[(Z/NZ)2] 0 --+ v<-)" given by the formula: 

(7.3.1) (wN<J>)(g)= L </>(g · ~)Bn+2 (/ XN2)). 
l&e(Z/NZ)2 \ 

Observe that this formula makes sense for any N~2. 

7.4 Theorem (Beilinson 1986, Sect. 3). The boundary map 

a: H':.: 1(En, Q(n+ 1)),80 --+ y<->" 

is an isomorphism on the image of the Eisenstein symbol. 

This is an immediate consequence of (7.3.1) and the properties of the 
"horospherical isomorphism" [see the paragraph after 3.1.6 in (Beilinson 1986)]. 
Since we were unable to find a suitable reference for these properties, we give here a 
direct proof. It is in two steps. 

7.5 Step I. For every N~2 and every n~ 1 the map wN is surjective. 

Clearl\ one is free to tensor with C. We first show that any function supported 

on ( ~ : } is contained in the image. The subspace of y± ©C composed of such 

functions has for a basis the set of functions 

( a b) {O if c=l=O 
fx.: c d 1-+ x(d) if c=O 

where x : (Z/ NZ)* --+C* runs over Dirichlet characters with x( -1) = ± 1. 
Define 

Then 

I
Nx(d) L x(w)-1e2o:iw.x/NBn+2 (I!._)) t"f c=O 

<.On A. • a I-+ we(Z/NZ)* ( b) ~~u \N 
N'f'x.· c d O if c=l=O. 

Writing the values of the Bernoulli polynomial in terms of Dirichlet L-series and 
using the character orthogonality relations, the last expression becomes 

{7.S.1) 
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Here M is the conductor of x. for each DI~ we have written XD for the character 

modulo DM associated to x, and -r{xn) denotes the Gauss sum 

L xr/...x)- le2ni:x:fDM. 
:x;e(Z/DMZ)* 

Rewriting 7.5.1 in terms of the primitive character Xi modulo M, we finally obtain 

-(n+2)N<p(N) (pn+2_x1(p)-1) 
m'k</>x= Mn+l<p(M) ~ pn+t(p-i) -r(xi)L(;(i,-1-n)fx· 

(p,M)=t 

As x(-1)=(-1f, the L-value is nonzero, as are the remaining factors. We 
therefore have found a nonzero multiple of fx in the image of wN. 

Now as a representation of GL2(Z/NZ), y± is generated by the functions fx. 
This shows the surjectivity of wN. 

It follows that for every n G; 1 the map 

(w'k, wN+ 1): Q[(Z/NZ)2] 0 -+ v+ E9 v-
is surjective. Therefore the theorem will be a consequence of the next assertion. 

7.6 Step II. If NG;3 and nG;1 then 

dimlm(GN)+dimlm(8N+ 1)~dim v+ +dim v-. 
To prove this we consider (for the moment arbitrary) functions</>: Z 2 -+Q, and 

make the convention that c/J(x)=Owhenever xEQ2 -Z2• For a squarefree integer 
D=p1 ···Pk~1 define 

where K(_E) is the number of prime divisors of E. Now, 

(7.6.1) 

The operators An have the properties: 
(i) AD is injective for every D G; 1 ; 

(ii) If (D,D')=1 then Im.dnnlmL1n·=lm.dDD'· 
The first one of these follows from the elementary identity 

(7.6.2) 

To prove (ii), suppose that ,1 n</> =Li»·</>'. Then setting 

1fJ= L E-"</>'(x/E) 
EID 00 

and using 7.6.2 one sees that An1fJ=</>' and also AD·1P=</>. 

7.7 Now if DIN then An induces an injective map 

AD,N:Q[ ( z/~ Z rr -+Q[(Z/NZ)2] 0 

and from 1.2 and 7.6.1 
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We have 8'k(</>(-x))=(-1t8;(cf>(x)). Moreover, let A'b,N denote the composite of 
AD,N with the projection onto the subspace of</> e Q[(Z/NZ)2] 0 satisfying</>(-~) 
= ( -1 t</>(~). Then dim lmA'b,N depends only on N, D and the parity of n; and 

dimlmA'b,N+dimlmA'b~J =(N/D)2 -1 

for D > 1. The usual inclusion-exclusion argument then yields 

dim lm(8;)+dim lm(s;+ 1) 

~(N2 -1)- L ((N)2 -1) + y ((N)2 -1)- ... 
PIN p p,qjN pq 
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A sign confusion crept into the calculations leadingto Proposition 3.2 ofthe above
article: the normalisation of po,...,p, used in Sect. 1 to define the Eisenstein
symbol does not lead to the usual Steinberg symbol in the case of K2. Thus the first
displayed formula following 3.1 (p.311) should read

a (t {t - ]J' r, t;})= #,.;"" t " t' [/,p re. f ,i' rlfl a pap.

This has the efrect of replacing the term dXv - F) in the formula of Proposition 3.2
by dlv + pl. The correct statement of 3.2 is therefore:

3.2 Propmition For functions frfj satisfying hypothesis 3.1 one has:

a (LUk I;l) : t *,,,Z,."ldlddX,+dB. ( ;)) @l

Further results are not affected.
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