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Norbert Schappacher∗

This little article is an attempt to kindle the reader’s interest in some modern
research in the domain of complex multiplication by sketching a few episodes
from the history of the very first example of this theory, the lemniscatic elliptic
integral and the corresponding elliptic functions. Even though treating such an
example offers elementary proofs of some key properties, our exposition is not
mathematically self-contained. All we hope is that it will motivate the reader
to look up some of the further literature which we indicate. At the same time,
we have tried to draw attention to the differences between the various periods
of the history of lemniscatomy, and to a few historical details which may not be
generally known.

1. Prelude in antiquity.1 The story from which we are about to tell a few instructive
episodes does not really begin, but is vaguely suggested to begin, in the dawn of times, or
rather in the twilight of Greek mathematics, where the sources which are extant today do
not quite permit us to know what was said and thought, and at what time.

The leading Neo-Platonist of his time, Proclus from Lykia (on today’s maps, this is
roughly the region between Fethiye and Antalya) lived from 410 to 485 AD, and went from
Alexandria, where he got his education, to Athens. His numerous works, most of which are
strongly philosophical or even religious in character, also include a Commentary on Book
I of Euclid’s Elements. These were basically notes for his own elementary mathematics
courses in the Neo-Platonic Academy, but for us they constitute the richest extant source on
the history of Greek geometry. At one point Proclus tells us about the work of a certain
Perseus, about whom we do not know anything else today. Proclus quotes a distich of
Perseus’s,

Tρεις γραµµας επι πεντε τoµαις ευρων • • − •
Περσευς των δ′ενεκεν δαιµoνας ιλασατo.

∗ UFR de mathématique et d’informatique, 7 rue René Descartes, 67084 Strasbourg Cedex, France,
e-mail: schappa@math.u-strasbg.fr.— This text appeared in the volume: Algebraic Geometry, Sinan
Sertöz (ed.), Marcel Dekker, Lecture Notes in Pure and Applied Mathematics Series, no. 193 (August,
1997).

1 See [Thomas (1941), pp. 360–365], [Heath (1921), pp. 203–206, 529–535], [Brieskorn & Knörrer
(1986), §1.6].
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“Finding three . . . curves upon five sections, Perseus thanked the gods therefor.” The
precise interpretation of these lines and of some of Proclus’s explanations, as well as the
missing word(s) at the end of the first verse are open to discussion. But Proclus seems
to suggest that Perseus had considered what reminds us today of pictures one draws to
motivate Morse theory: Imagine a torus, not the way it would float on the water, but
being immersed vertically into water, and look at the curves marked on the torus by
the water level. Increasing the depth of the immersion, one finds sometimes an oval,
sometimes a pair of circles, but if the water touches precisely the inner hole of the torus,
the resulting curve looks somewhat like a figure-eight, or, as Proclus puts it, like a horse
fetter: εoικυα τη τoυ ιππoυ πεδη, locking, say, the ankles of the horse’s forelegs. In the
case where the diameter of the hole in the torus equals that of the ring of the torus, this
curve is precisely

2. The lemniscate of the Bernoulli brothers.2 The Swiss brothers Jakob and Johann
Bernoulli hit upon the lemniscate almost exactly three hundred years ago from a completely
different point of view, which brings us quite a bit closer to what we want to explain in
this paper. They proposed the curve as the solution to an integral, more precisely to the
differential equation

(1)
dr√
ar

=
2adz√

az(a2 − z2)
,

where a is a (positive) parameter. This differential equation itself was the answer, found
by the Bernoullis, to the so-called problem of paracentric isochrones which had been posed
by Leibniz. The curve “integrates” (1) in the sense that the integral of the right-hand side
of (1) measures the arc-length of the lemniscate.

We see that, at the end of the seventeenth century, it was considered desirable and
satisfactory to describe an integral as giving the arc-length of a curve—which in turn
could be given by an explicit equation or be mechanically constructed. This attachment to
rectilinear integration is quite different from our modern standards. Today we usually insist
on expressing an integral formally, for instance, expand it into a power series if no closed
formula is available. Still, the increasing use of computer packages like MATHEMATICA
or MAPLE which also produce beautiful pictures may bring back a bit of the 17th century’s
predilection for geometric solutions to analytic problems.

To actually get the lemniscate from integrating the right-hand side of (1), Johann
Bernoulli renormalized slightly, and looked for functions x(z), y(z) satisfying

(2)
a√
2

2adz√
az(a2 − z2)

=
√

(dx)2 + (dy)2.

It is not too hard to guess (and even easier to check) that

x(z) =
√
az + z2 y(z) =

√
az − z2

2 See [Bos 1993] and references given there. For the computations at the end of the section see [Siegel
1969, §1.1].

2



do the job. So we see that x and y satisfy the following algebraic equation identically in z.

(3) (x2 + y2)2 = 2a2(x2 − y2)

This is the standard equation of the lemniscate (with parameter a). The name, by the
way, was chosen by Jakob Bernoulli, in an article published in 1694. The Greek word
ληµνισκoς is related to τo λη̃νoς, wool—cf. the French laine—, and originally means a
woolen band. This is a softer metaphore than Perseus’s horse-fetter.

The points P (x, y) in the (x, y)–plane satisfying equation (3) are characterized geo-
metrically by the fact that the product of the distances from P to the point (−a, 0) and
from P to the point (+a, 0) is constant, equal to a2.

We will not need to look at more general curves which also go under the name of
lemniscates. In fact, for our purposes we will even normalize the parameter and assume
that 2a2 = 1. Doing this and rewriting (3) in terms of r =

√
x2 + y2 gives

2x2 = r2 + r4 and 2y2 = r2 − r4.

This clearly yields a parametrization of the lemniscatic arc in terms of the variable r. Con-
sidering the leaf in the first quadrant, the integral giving the arc-length on the lemniscate
then comes out to be

(4) s(r) =
∫ r

0

dr√
1− r4

(0 ≤ r ≤ 1).

3. Elementary arithmetic of elliptic integrals: the count of Fagnano, Euler, and
Legendre.3 We now enter an era of the history of our subject where new discoveries
were made through the formal manipulation of integrals. This is especially visible in the
works of the count G.C. di Fagnano (1682–1766). In fact, they are somewhat disconcerting
for the modern reader because of the great number of formulas which do not easily betray
the line of thought that led to them. But his various investigations about the lemniscate
constitute the first milestone in the history of lemniscatomy, i.e., of the division of the
lemnsicate. This is not only so from our point of view, but Fagnano himself must have
realized the importance of his discoveries. In fact, a lemniscate appears in the inscription
on his tombstone in the Church of Santa Maria Magdalena in Senigallia: Veritas Deo ∞
gloria. . . .

In 1718, Fagnano published the following seminal result (which is easily checked):

(5)
∫ z

0

dz√
1− z4

= 2
∫ u

0

du√
1− u4

, if z =
2u
√

1− u4

1 + u4
.

3 We do not know any comprehensive, detailed reference for this section. We are not convinced, for
instance, by the speculations in [Ayoub 1984]. Of course, all historical accounts of the theory of elliptic
functions—see for instance the encyclopedic [Brill, Noether 1892–93], and in particular the thorough study
[Houzel 1978]—talk about Fagnano, Euler, Lagrange, Legendre, etc. Still, it is not superfluous to actually
refer to the collected works [Fagnano 1750], second volume, esp. no.s xxxii, xxxiii, xxxiv. There is a nice
discussion of Fagnano and Euler in the (somewhat rare) book [Enneper 1876, pp. 477ff]. More accessible
is the account of Fagnano’s doubling of the lemniscatic arc in [Siegel 1969, 1.1] and in the related short
note [Siegel 1959].
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Before explaining its significance, let us discuss C.L. Siegel’s comments about this result—
see [Siegel 1959]. He tried to divine how Fagnano obtained (5). We mention his comments
not because we find this kind of mathematical psychology across the centuries very con-
vincing. But Siegel’s observations prepare us for later stages of the history of our subject.

Siegel’s first conjecture is that Fagnano may have found (5) by analogy with the
arclength of the circle

(6.0) arc sin(r) =
∫ r

0

dr√
1− r2

(0 ≤ r ≤ 1).

Here, the substitutions

(6.1) r =
2s

1 + s2
, s =

2t
1− t2

lead, respectively, to

(6.2)
dr√

1− r2
= 2

ds

1 + s2
,

ds√
1 + s2

= 2
dt

1− t2
.

The essential difference between the circle and the lemniscate is that (6.2) reduces (6.0)
to an elementary integral, whereas in (5) we find the same lemniscatic arclength on both
sides.

Siegel also writes [Siegel 1959, p. 250] that (5) “in fact belongs to the theory of complex
multiplication”, because we may break up the relation between z and u using the Gaussian
integer α = 1 + i and its complex conjugate α = 1− i (thus αα = 2, α4 = α4 = −4):

(7.1) z = α
t√

1− t4
, t = α

u√
1− u4

,

and these two algebraic relations yield, respectively, the differential equations:

(7.2)
dz√

1− z4
= α

dt√
1− t4

,
dt√

1− t4
= α

du√
1− u4

.

Siegel claims [Siegel 1959, p. 251] that the possibility to decompose (5) into the simpler
steps (7) was “obviously relevant to Fagnano’s success”. Since there is no mention of
complex numbers or of formulas like (7) in Fagnano, this probably says more about Siegel’s
insights than about Fagnano’s.

Instead of trying to slip further into Fagnano’s mind let us now explain why his result
was such a breakthrough. Fagnano’s thorem (5) means that the differential equation

dz√
1− z4

= 2
du√

1− u4

can be integrated algebraically . Indeed, given u, there is an algebraic formula (5) for z
such that the lemniscatic integral from 0 to z is twice that from 0 to u. We may also look
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at (5) the other way around: suppose we are given z, or more precisely (remembering the
way we obtained (4) above), suppose we are given a point (x, y), say in the first quadrant,
which lies on the lemniscate, so that 2x2 = z2 + z4 and 2y2 = z2 − z4. Then, if u satisfies
the algebraic equation deduced from (5),

(8) z2u8 + 4u6 + 2z2u4 − 4u2 + z2 = 0,

and if (x′, y′) lies on the lemniscate and in the first quadrant satisfying 2x′2 = u2 +
u4, 2y′2 = u2 − u4, then the lemniscatic arc between the origin and (x′, y′) has half the
length of that between the origin and (x, y).

In this sense, Fagnano found the multiplication by 2 of the lemniscatic integral.4 The
method also leads to the trisection of the total lemniscatic arc in the first quadrant. To
see this, note that the relation between u and z in (5) really should be written

z2 =
4u2(1− u4)
(1 + u4)2

.

This leaves two possible signs for the root, and the minus sign yields the equation

dz√
1− z4

= −2
du√

1− u4
.

In this case, the points (x, y), (x′, y′) on the lemniscate and in the first quadrant such that
2x2 = z2 + z4 and 2y2 = z2 − z4, resp. 2x′2 = u2 + u4, 2y′2 = u2 − u4, are situated such
that the arc between the origin and (x, y) has half the length of the arc from (x′, y′) to the
point (1, 0). Thus, if z = u in this case, (x, y) = (x′, y′) marks one third of the arc from
(0, 0) to (1, 0). The condition z = u implies that z4 = 2

√
3− 3.

As mentioned before, Fagnano’s algebraic divisions by 2 and by 3 of the lemniscatic
arc seem to be the first explicit examples of lemniscatomy in the history of mathematics.
It is, however, amusing to note that some eighty years before Fagnano, P. de Fermat,
working in an entirely different context, had developed a proof by infinite descent which,
when translated into our language of elliptic curves, uses the bisection of the lemniscatic
arc—see [Goldstein 1995, pp. 91–103], and the end of section 5 below.

According to Jacobi [Stäckel, Ahrens 1908, p. 23], the 23rd of December 1751 was
the birthday of the theory of elliptic functions, because it was on this day that Euler
received the collection [Fagnano 1750] from the Berlin Academy for internal review. Euler
immediately started to generalize Fagnano’s results and presented his first publication on
elliptic integrals on January 17, 1752—see [Euler 1761]. This note was the beginning of a
whole sequence of articles by Euler on this topic which, taken together, run to almost 400
well-filled pages. Of all this production, history has essentially retained only the general

4 Siegel’s formulas (7) do the same for the multiplication by 1+i and its complex conjugate. This pos-
sibility of arithmetic operations involving irrational integers, i.e., the presence of ‘complex multiplication’
is a special feature of the lemniscatic integral which we will understand more clearly further on.
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addition theorem of elliptic integrals.5 In the special case of the lemniscatic integral, this
fundamental result reads as follows—see [Siegel 1969, p. 9]:

(9)
∫ u

0

du√
1− u4

+
∫ v

0

dv√
1− v4

=
∫ r

0

dr√
1− r4

, if r =
u
√

1− v4 + v
√

1− u4

1 + u2v2
.

It expresses r algebraically in terms of u and v, if the arc from the double point of the
lemniscate all the way to the point of modulus r is as long as those to u and to v added
together.

In the spirit of this article, we refrain from discussing more general elliptic integrals.
After Euler these were classified and systematized in particular by Legendre—see [Legendre
1825–28]. The unfortunate name for this class reflects the fact that the arclength of an
ellipse is also given by an “elliptic integral”. However, it is not an integral “of the first
kind” like (4), i.e., it is not an integral of the form

∫
dx√
P (x)

for a polynomial P of degree

3 or 4, but rather “of the second kind”, i.e., of the form
∫

t2dx√
P (x)

for a polynomial P of

degree 4. An important concrete question which does lead to an elliptic integral of the
first kind is the mathematical theory of the pendulum.

The elliptic integrals constitute the first examples of integrals arising naturally which
(exceptions apart) cannot be integrated in terms of elementary functions. By the way, as
R. Remmert pointed out to me, it would be nice to see an explicit elementary proof of
this fact, for instance for our lemniscatic integral (4).

Let us close this section with a few variations on the lemniscatic integral (4):

(10)
∫ ∞

1

dx√
4x3 − 4x

=
∫ 1

0

dr√
1− r4

=
1
4

∫ 1

0

dt

t
3
4 (1− t) 1

2
=

Γ( 1
4 )2

4
√

2π
.

These identities, which we leave as an exercise, follow from the substitutions: r = 1√
x

and
r4 = t, and from standard properties of Euler’s beta integral. The last expression occurs
in [Legendre 1811, p. 209f]. It is the first special case of a general formula (due to Lerch,
and known as the formula of Chowla and Selberg) which relates elliptic integrals with
complex multiplication to special values of the gamma function—see [Schappacher 1988,
p. 123–125], see also [Henniart 1987].

4. The Galois theory of lemniscatomy: from Gauss to Abel. Carl Friedrich
Gauss finished writing his momentous book Disquisitiones Arithmeticæ [Gauss 1801] when
he was 21 years old. It transported arithmetic to a new theoretical level. It also contained
the complete solution of a longstanding problem: in the final section VII [Gauss 1801, pp.
592–665], Gauss determined precisely the regular n-gons which can be constructed by ruler

5 This selective injustice of history has infuriated some later writers who criticize that too much credit
was given in particular to Legendre, to the detriment of Euler’s contributions—see for example [Enneper
1876, pp. 490f], [Plana 1863]. These are emotions of the past. But in the otherwise excellent recent article
[Belhoste 1996, p. 3], there is a surprising sentence creating the wrong impression that Euler treated only
the lemniscatic integral.
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and a pair of compasses alone. The well-known answer is: those for which n is of the form
2νp1 · · · pr where ν ≥ 1 and the pi are distinct odd prime numbers of the form 2m + 1.

This result is obtained from an algebraic analysis of what we call today the field
extension Q(ζp)/Q, for any odd prime p. Indeed, Gauss carries out the “Galois theory”
(Galois was −13 years old when Gauss’s book was completed) of this particular cyclic
extension, exhibiting distinguished primitive generators of all intermediate fields and what
we would call their behaviour under automorphisms.

In the field C of complex numbers, the n-th roots of unity can be given analytically
as exp(2πir/n) with r = 0, 1, . . . , n − 1. So the seventh section of the Disquisitiones
Arithmeticæ develops the theory of the extensions generated by the division values of the
function x 7→ eπix. Now, in the introduction to this section, Gauss writes: “The principles
of the theory we are about to set out extend to a much broader context. . . For they
may be applied not only to the circular functions, but with equal success to many other
transcendental functions, e.g., to those which are related to the integral

∫
dx√
1−x4 .”6 He

also announces a forthcoming study of those transcendental functions (which was never
published). Gauss probably had in mind (at least) the elliptic integrals of the first kind
and their inverse functions—see for instance [Houzel 1978, p. 17].

Gauss’s Nachlass (papers published only after his death) contains various sets of notes
on the lemniscatic integral, its inverse function, and other related functions [Gauss (III),
pp. 404ff]. But it was Niels Henrik Abel who first published a systematic theory along
these lines—see [Abel 1827–28]. In this seminal article, Abel shifts attention from the
elliptic integral to its inverse function. Formally, his theory deals with the function ϕ
characterized by the equivalence

(11) ϕ(α) = x ⇐⇒ α =
∫ x

0

dx√
(1− c2x2)(1 + e2x2)

.

The special case of the lemniscatic integral corresponds to the choice of parameters c =
e = 1. Abel calls the functions ϕ elliptic functions—much to Legendre’s chagrin, who used
this name for the corresponding integrals, and did not like to see his terminology chucked.

To be sure, formula (11) presents the problem of the dependence of this integral on
choices of the root and of the path of integration. These questions were solved in general
only after Riemann—see for instance [Siegel 1969, pp. 29–37]. Abel proceeds with care, in
a rather piecemeal way. We specialize right away to the lemniscatic case c = e = 1 which
interests us here. There Abel puts (see also (10) above):

(12) ω = 2
∫ 1

0

dr√
1− r4

.

Then he defines ϕ first on the interval [0, ω2 ] of positive real numbers. After this he passes
to the imaginary interval i · [0, ω2 ] by the rule

(13) ϕ(αi) = iϕ(α) (i =
√
−1),

6 [Gauss 1801, p. 593]: “Ceterum principia theoriæ, quam exponere aggredimur, multo latius patent,
quam hic extenduntur. Namque non solum ad functiones circulares, sed pari successu ad multas alias

functiones transcendentes applicari possunt, e. g. ad eas quæ ab integrali
∫

dx√
1−x4

pendent.”
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and finally he uses parity, and double periodicity modulo 2ω and 2ωi, to define ϕ on all of
C. We will not follow Abel’s developments in detail here, but rather present things from
Weierstrass’s point of view in the next section. This will break the chronological order of
our exposition, but should make it more accessible to the reader.

The main result about lemniscatomy that Abel finds in [Abel 1827–28] is analogous to
Gauss’s cyclotomic result: the division of the entire lemnicate into n equal parts is possible
by ruler and a pair of compasses alone if n is of the form 2νp1 · · · pr where ν ≥ 1 and the
pi are distinct odd prime numbers of the form 2m + 1. The main reason for this is that
Abel can exhibit a cyclic “Galois action” on the ϕ( rωn ) (r = 1, . . . , n − 1) if n is a prime
number of the form 4ν + 1—see [Abel 1827–28, no.s 36, 37].

Those who like rare plants and pointless beauty may appreciate to see explicit geo-
metric constructions of the division of the circle or the lemniscate into, say, 17 = 222

+ 1
equal parts. (Gauss himself did not give this but computed algebraically, up to 10 decimal
digits, the 19th and the 17th roots of unity in [Gauss 1801, no.s 353, 354].) It so happens
that both constructions can be looked up in the 75th volume of Crelle’s Journal from
1873—see [Schröter 1873] and [Kiepert 1873].

5. Lemniscatic elliptic functions from the point of view of Weierstrass theory
and elliptic curves. In order to have a modern analytic language for what follows, let
us briefly recall here the Weierstrass theory of elliptic functions as far as we need it to treat
the lemniscatic integral and its inverse function. In using this theory from now on, rather
than Jacobi’s formalism which dominated the greater part of the 19th century, we choose
to skip an important part of the historical development. Even though Jacobi’s system was
rooted in a period where the definition of classes of functions by abstract properties was not
yet established, his formalism could capture anything that can be couched in Weierstrass’s
approach, and Jacobi’s theta series sometimes provide greater flexibility.7

We assume some basic familiarity with Weierstrass theory—see for instance [Siegel
1969, pp. 56–89], [Silverman 1986, chap. VI], [Freitag, Busam 1995, chap. V], or [Remmert
1991, pp. 71–74].

The theory starts with a lattice. In order to get out the lemniscatic integral at the
end, we take Λ = Z + Zi ⊂ C. For every ν ≥ 3, the series

Gν(Λ) =
∑
λ∈Λ

′ 1
λν

=
∑

m,n∈Z

′ 1
(n+mi)ν

converges absolutely. Here the prime signifies that undefined terms are deleted from the
sum, i.e., we restrict to nonzero λ = n+mi. The Gν are called Eisenstein series, but this
is another story. . .

Our lattice admits complex multiplication in the sense that multiplication by i takes
the lattice Λ into itself. Therefore we find: Gν(Λ) = 0 unless ν is divisible by 4. Also, the
lattice Λ is invariant under complex conjugation, so that all the G4k(Λ) are real numbers.

7 Let us note in passing that the Chelsea reprint of Jacobi’s Collected Works has recently been
made available again by the AMS. See also the 550 page almost day-to-day scientific biography of Jacobi,
[Königsberger 1904].
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Proposition. For all k = 1, 2, 3 . . ., one has G4k(Λ) > 0.

The proof follows from the theory of modular forms, more precisely, from the Fourier
development of Gν considered as functions on all complex lattices—see for instance [Serre
1970, VII.4.2].

In Weierstrass’s setup one defines

g2 = 60G4, g3 = 140G6.

Thus, for our lattice Λ, we have g3(Λ) = 0, and we can define the positive real number
ω > 0 by the relation

(14a) g2(Λ) = 4ω4.

In other words, defining L = ω · Λ to be the lattice with basis ω, iω, we have

(14b) g2(L) = 4.

Note that g3(L) = g3(Λ) = 0.
Recall that, in modern terminology, an elliptic function with respect to a lattice Γ ⊂ C

is a meromorphic function f on C such that for all z ∈ C and γ ∈ Γ, one has f(z+γ) = f(z).
The first example of such an elliptic function, which is holomorphic except for double poles
at the lattice points, is the Weierstrass-P-function:

℘(z,Γ) =
1
z2

+
∑
γ∈Γ

′ 1
(z − γ)2

− 1
γ2
.

It satisfies the fundamental differential equation

℘′(z,Γ)2 = 4 ℘(z,Γ)3 − g2(Γ) ℘(z,Γ)− g3(Γ).

For the particular lattice L = ωΛ defined above, it reads:

(15) ℘′(z, L)2 = 4 ℘(z, L)3 − 4 ℘(z, L).

This allows us to establish the link between (10), (12), and (14a):

(16) ω = 2
∫ 0

−ω2
dz = 2

∫ ∞
1

dx√
4x3 − 4x

= 2
∫ 1

0

dr√
1− r4

=
Γ( 1

4 )2

2
√

2π
= 2.62205755 . . . .

In fact, all we have to check is the second equality. It follows from the substitution
x = ℘(z, L) once we know that ℘(−ω2 , L) = ℘(ω2 , L) = 1. To see this, recall that ℘ is an
even function of z, so ℘′ is odd. ℘′ has a pole of order three at each lattice point. Its zeros
(mod L) are therefore ω

2 ,
iω
2 ,

ω+iω
2 . By (15), the corresponding values of ℘(z, L) are 0,±1.

But the above proposition and the well-known Taylor expansion [Serre 1970, VII.2.3]:

(17) ℘(z, L) =
1
z2

+
∞∑
k=1

(4k − 1)G4k(L)z4k−2
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show that ℘(ω2 , L) > 0.
The function ℘(z, L) is the inverse function of the lemniscatic integral in the context

of Weierstrass theory, where one considers the integral
∫
dx/y related to the Weierstrass

equation (15): y2 = 4x3 − 4x. It must not be confused with the inverse function ϕ for the
integral (4) studied by Abel and Eisenstein, and also already by Gauss in his unpublished
papers [Gauss III, pp. 404ff] where it is written sin lemn. The relation with Weierstrass’s
formalism is as follows—see [Hurwitz 1899, §3]:

(18) sin lemn(z) = ϕ(z) =

√
1

℘(z, L)
.

The following theorem holds in general, for any lattice L ⊂ C.

Addition theorem. For u, v ∈ C such that u− v 6∈ L, one has

℘(u+ v, L) = −℘(u, L)− ℘(v, L) +
1
4

(℘′(u, L)− ℘′(v, L)
℘(u, L)− ℘(v, L)

)2

.

And for z ∈ C, one has

℘(2z, L) = −2℘(z, L) +
1
4

(℘′′(z, L)
℘′(z, L)

)2

.

The way we stated it here, this seems purely analytic. In fact, it can be deduced
from the observation that the difference of both sides of the first equation is a holomorphic
function of u, once v is fixed; it is then constant, and indeed zero. But if we combine it
with the differential equation (15), we get the following consequence which we state only
for the case of our lattice L = ωΛ.

Corollary. The map

Φ : C/L −→ E(C) = {(x : y : z) ∈ P2(C) | y2z = 4x3 − 4xz2} ⊂ P2(C)

which sends z + L for z 6∈ L to the point (℘(z, L) : ℘′(z, L) : 1), and 0 + L to the point
0 = (0 : 1 : 0), is a bijection from the complex torus C/L onto the complex points of the
elliptic curve E : y2 = 4x3 − 4x. Φ transforms the addition on C/L into the geometric
group law on the cubic E (the chord and tangent process) with neutral element 0.

Bijectivity is an easy consequence of the basic properties of meromorphic functions on
C/L. The geometric group law on a cubic curve in the projective plane works as follows.
Given two points P and Q on the curve, draw the line through both. (If P = Q, take the
tangent to the curve at this point). Since the curve is cubic and we work in the projective
plane, this line will meet the curve in 3 points (counting multiplicities): P,Q,R. Now take
for the “sum” P ⊕Q the third point of intersetcion with the curve of the line through R
and 0. This last twist in the construction is necessary to make 0 the neutral element, and
in fact turn the whole operation into an (abelian) group law—see [Silverman 1986, III.2],
[Schappacher 1991]. But note that, in view of the position of our point 0 at infinity, lines
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passing through 0 are parallel to the y-axis. So this last step from R to P ⊕ Q leaves
the x-coordinate unchanged, and only switches y to −y. To check, on the level of the x-
coordinates, that Φ transforms the addition of complex numbers into this geometric group
law, one has to recognize in the two formulas of the addition theorem above the equations
for the line through the given points Φ(u),Φ(v) (resp. the tangent at Φ(z)). The fact that
the y-coordinates also work out, is left to the reader.

The curve E to which the lemniscatic elliptic integral has led us, is an elliptic curve
over Q—i.e., a nonsingular cubic with a distinguished rational point, namely 0. It may
also be given by the simpler equation y2 = x3−x. It is a famous elliptic curve—although a
good part of ‘its’ history consists of studies that only our modern viewpoint acknowledges
as being related to this curve. We are alluding here to the tradition of diophantine analysis
‘over Z’. Contrary to Diophant himself, this tradition asked for integral solutions—or for
the proof that there are none, or only ‘trivial’ ones—of polynomial equations with integer
coefficients. It starts essentially in the Arab world in the 10th century. Its first eminent
representative was al-Khæzin—see [Houzel 1995, p. 6f], [Rashed 1996, p. 74f].

Fermat (1601–1665) lifted this branch of mathematics into a new era by inventing
the method of infinite descent. The only proof by infinite descent of which Fermat has
left us a rather detailed verbal sketch (in the margin of his Bachet-edition of Diophant’s
Arithmetics) concerns (among other results) the following theorem.

A theorem proved by Fermat. There is no right triangle with rational sides whose
area is a rational square.

Since the problem alluded to is invariant under scaling the triangle, it actually is,
despite its formulation, a problem ‘over Z’, not ‘over Q’. Thus the theorem claims that
there are no positive (or, equivalently, nonzero) integers a, b, c such that a2 + b2 = c2 and
ab = 2A2, for some integer A (whose square is the area of the triangle (a, b, c)). Making
the substitutions

x =
a+ c

b
y = 2A

a+ c

b2
,

gives a rational point (x, y), x, y ∈ Q, on our elliptic curve y2 = x3−x. Since we assumed
abc 6= 0, we never get the trivial solutions (x, y) = (0, 0), (±1, 0) in this way, nor the point
at infinity 0. Therefore Fermat’s result shows that the elliptic curve E has exactly four
rational points. In particular, the group of rational points E(Q) is a finite torsion group.
Translating Fermat’s proof to the elliptic curve, one shows that a hypothetical non-trivial
element of E(Q) can be divided again and again by 2. This process strictly decreases the
size (technically speaking, the “height”) of the point involved. But the heights of rational
points form a discrete set bounded below; a contradiction.8

Probably the first—and for a long time, the only—publication about the interrela-
tion between elliptic integrals and diophantine analysis is due to Jacobi: [Jacobi 1835]. It

8 See [Goldstein 1995] for a thorough investigation of this whole circle of ideas. See also, for instance,
[Weil 1984, chap. I, §XI]. Fermat’s result concerns a special case of the problem of congruent numbers
which, in the modern analysis, leads to an infinite family of elliptic curves all of which are isomorphic to

E over C (in fact, over the algebraic numbers Q). There is a whole introductory book on this subject:
[Koblitz 1984]. See also [Schappacher 1989].
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was inspired by an unpublished manuscript of Euler and simply states the potential use-
fulness of the addition theorem for diophantine questions, without giving examples—see
[Schappacher 1991, §3].

6. The higher arithmetic of the lemniscatic function: Gotthold Eisenstein (and
Gauss again). Only about 20 years separate Abel’s article from Eisenstein’s work on
the arithmetic of the lemniscatic function. The world of number theory was still under
the spell of Gauss’s Disquisitiones Arithmeticæ. But this book contains a lot more than
just cyclotomy. In fact, its chapter VII on cyclotomy is the least arithmetic, the most
algebraic of all. One mildly arithmetic aspect of chapter VII concerns the irreducibility
of the cyclotomic polynomial Xp−1 + . . .+ 1. The analogue of this for lemniscatomy, i.e.,
the irreducibility of the equation for the division of the lemniscate into m equal parts for
an odd prime number m in the ring Z[i], was not proved in Abel’s article. This is one of
the critical remarks with which Eisenstein opens his sequence of articles [Eisenstein 1850],
the milestone treated in this section. Of course, one voices such criticism only if one can
do better; Eisenstein shows the irreducibility of the lemniscatomic equation by applying
what is well-known today as “Eisenstein’s irreducibility criterion”. It was developed for
this purpose.9

Eisenstein’s Irreducibility Criterion (for Z[i]). Let m ∈ Z[i] be a prime element,
and let f =

∑n
ν=0 an−νX

n ∈ Z[i][X]. Assume that a0 = 1, aν is divisible by m for all
ν = 1, . . . , n, and an = iam for some a = 1, . . . , 4. Then f is irreducible.

There are three types of prime numbers m in the euclidean ring Z[i]. First there
is 1 + i which divides the rational prime 2. Indeed, one has (1 + i)(1 − i) = 2. Now,
1 − i = −i(1 + i), so, up to units, there is only one prime number dividing 2 in Z[i].
Second, given a rational prime number p of the form 4k + 1, Gauss had shown it is a sum
of two squares in a unique way: p = a2 + b2 = (a + bi)(a − bi). Here, the two factors are
not the same up to units, and we have two different primes of Z[i] dividing p. Eisenstein
calls these primes a + bi zweigliedrig (because they have a real and an imaginary term).
Third, the rational prime numbers p of the form 4k + 3 are also prime elements in Z[i].
Eisenstein calls them eingliedrig . Now, let m ∈ Z[i] be any prime element not dividing 2,
either zweigliedrig or eingliedrig . Gauss had already proposed a way to privilege one of
the four elements ia ·m, a = 1, . . . , 4, representing the same prime. He had called m a
primary prime (“primäre Primzahl”) if m ≡ 1 (mod (2 + 2i)). Given m, there is always
a unique unit ia satisfying iam ≡ 1 (mod (2 + 2i)) because the unit group of residues
(Z[i]/(2 + 2i))∗ = (Z[i]/(1 + i)3)∗ consists precisely of the classes of the four units ia.

In proving that the m-th lemniscatomic equation satisfies the irreducibility criterion
Eisenstein discovered and emphasized [Eisenstein 1850, p. 549 and passim] the following
result about the lemniscatic function (18):

9 The criterion is formulated, proved, and slightly generalized in [Eisenstein 1850, pp. 541–544].
Eisenstein also transfers “Gauss’s lemma” from Z[X] to Z[i][X]: the product of two monic polynomials
with rational coefficients that are not all integers cannot have integer coefficients [Gauss 1801, no. 42].
Eisenstein had already stated and used his criterion in [Eisenstein 1846]. But at that time he managed
to apply it only to the lemniscatomic equation for primes m ∈ Z[i] dividing a rational prime of the form
p = 4k + 1. He settled the general case before August 1847—see [Eisenstein 1847].
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Eisenstein’s Theorem. If m is a primary prime number in Z[i] and Nm = mm ∈ Z,
then there exist polynomials P,Q ∈ Z[i][X] such that one has the following identity of
complex functions:

(19) ϕ(mt) =
ϕ(t)Nm +m P (ϕ(t))

1 +m Q(ϕ(t))
.

Eisenstein stresses how important it is that there are no undetermined units in this
formula. Part of the reason for this remark seems to be related to his latent—and some-
times not so latent—rivalry with Jacobi. The latter had published a two page note in
Crelle’s journal [Jacobi 1846] dismissing the earlier partial version of Eisenstein’s theorem
in [Eisenstein 1846, p. 301] as an easy consequence of his general theory. But this human
aspect should not distract us from Eisenstein’s remarkable insight. In fact, his theorem
says that we have the following (coefficientwise) congruence between rational functions of
ϕ(t) :

(20) ϕ(mt) ≡ ϕ(t)Nm (mod m).

Note that the right-hand side of (20) depends only on the prime ideal10 p = (m) = m ·Z[i],
not on the particular generator m, whereas the left-hand side does depend on the condition
that m be primary; otherwise the congruence does not hold in general.

In other words, Eisenstein shows (and obviously appreciates) that Gauss’s normal-
ization of the prime numbers in Z[i] defines a mapping from ideals prime to (1 + i), to
complex multipliers of the lemniscatic function,

(21) ψ : p 7→ m, where p = mZ[i], m ≡ 1 (2 + 2i),

which describes the reduction modulo p of the action of the normalized generator m in
terms of the q-th power automorphism x 7→ xq mod p for q = Np. Following our trained
reflexes, we call this map the Frobenius automorphism relative to the finite field F = Z[i]/p.
It generates the Galois group of any finite extension of F. (When Eisenstein’s paper went
to press, Georg Frobenius was less than one year old. On the other hand, the “Frobenius”
automorphism is explicitly visible on roots of unity, and this was the model that Eisenstein
tried to generalize.) To project even further into the future, the map ψ is a very explicit
and simple example of an (algebraic) Hecke character—see [Hecke 1918], [Hecke 1920],
[Neukirch 1992, Kap. VII]—, i.e., a Größencharakter of type A0 in the sense of [Weil
1955c].

Before continuing these observations, let us try to stay closer to the text. It is not
obvious what exactly intrigued Eisenstein in his formula (19). Compared to other papers
of his, the sequence of articles [Eisenstein 1850] proceeds at a rather slow pace. At times,
the 27 year old man—who had just about two more years to live at the time of this
publication—simply alludes to striking applications of his result without actually carrying
them out—see for instance [Eisenstein 1850, p. 559].

10 Ideals were introduced only by Dedekind. On the other hand, Eisenstein alludes explicitly [Eisenstein
1850, p. 595] to Kummer’s works [Kummer 1847] which introduced ideal numbers—see also below.
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Let us put this work into the perspective of his earlier paper [Eisenstein 1846]. Recall
that the supreme challenge in higher arithmetic after the Disquisitiones Arithmeticæ was
to construct the theory of higher reciprocity laws. Now, Eisenstein, in [Eisenstein 1846],
managed to deduce the biquadratic reciprocity law from the special case of the above
theorem where m is zweigliedrig .

For two distinct primary prime numbers m,n such that n is zweigliedrig , the 4-th
power residue symbol

[
m
n

]
is defined to be the power of i such that

[
m
n

]
≡ nNm−1

4 (mod m).
In [Eisenstein 1846, p. 306], this symbol is written in the form

[m
n

]
=
∏
r ϕ( 2nrω

m )∏
r ϕ( rωm )

,

with r ranging over a certain set of residues mod m. Then the reciprocity law[ n
m

]
= (−1)

Nm−1
4 ·Nn−1

4

[m
n

]
follows easily from Eisenstein’s theorem. (The case of two eingliedrig primes m,n, for
which the theorem was not available in 1846, is elementary.)

In the same vein, the later series of articles culminates in a final section [Eisenstein
1850, pp. 613–619] proving the reciprocity law for 8-th power residues. Preceding parts
[Eisenstein 1850, pp. 575–613] set the stage for this, preparing in particular for the arith-
metic of the field of 8-th roots of unities.

Let us now come back to the general lemniscatic arithmetic in Eisenstein’s work of
1850. In [Eisenstein 1850, p. 558], Eisenstein arrives at the following easy consequence of
his theorem (19).

Corollary. Let m and n be distinct primary prime numbers and put q = Nn. Let k ∈ Z[i],
and let F (k) be a polynomial expression with coefficients in Z[i], in the division values

ϕ( rk(1+i)ω
m ), where r ranges modulo m. Then there exists a polynomial expression T in

the same values such that
F (k)q = F (nk) + nT.

He recognized this corollary—see [Eisenstein 1850, p. 559]—as the essential tool to
understand the arithmetic of the extensions generated by division values of ϕ in the same
way as Kummer had developped the arithmetic of cyclotomic fields in [Kummer 1847].
This encourages us to sketch a few consequences of the corollary using some of the further
development of algebraic number theory. Let us switch at the same time from ϕ(z) to
℘(z, L)—recall the comparison (18)—, and also treat ℘′(z, L) along with ℘(z, L).

Call K = Q(i) our base field and recall the notation of the corollary of section 4 above.
Given a primary prime m, we want to study the arithmetic of the field Km = K(Em)
generated over K by the coordinates of all m-division points Em = Φ( 1

mL/L). Let n be
any primary prime of K which is unramified in Km. Then n acts on the points of Em via:

Φ
( (a+ bi)ω

m

)
7→ Φ

(
n

(a+ bi)ω
m

)
.
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Here, a + bi ranges over Z[i]/(m). Eisenstein’s corollary means that we can describe this
action by reducing modulo the ideal n · oKm in the ring of integers oKm of Km, i.e. (as n
is unramified), modulo any prime ideal P of oKm dividing p = nZ[i]. In fact, the points of
Em reduce injectively modulo P because m and n are relatively prime. We may do better
if we use the fact that Km/K is an abelian extension. For the field generated just by the
x-coordinates of points in Em, this follows already from Abel’s work. To see it for our field
Km, one may adapt the proof in [Silverman, Tate 1992, VI.5] to our elliptic curve.

Since Km/K is abelian, the Frobenius automorphism of the extension of finite fields
(oKm/P) / (Z[i]/p) lifts to a unique automorphism σp ∈ Gal(Km/K), and, in the notation
of (21), we find for all m-division points that

(22) Φ
( (a+ bi)ω

m

)σp

= Φ
(
ψ(p) · (a+ bi)ω

m

)
,

where ψ was defined in (21). In modern parlance—much used recently in the context of
Wiles’s proof of Fermat’s Last Theorem—, this just means that ψ gives the (abelian) mod
m Galois representation of the elliptic curve E.

Let us note in passing that the extensions generated by division values of the elliptic
curve y2 = x3 − x generate in fact all abelian extensions of Q(i). This special case of
what is known as “Kronecker’s Jugendtraum” was proved (with slight incorrectnesses) by
Takagi in his thesis [Takagi 1903]; see also [Schappacher 1997].

Eisenstein remarks that the corollary extends to powers nµ instead of n, with q re-
placed by qµ, and in particular: “one has F (k)q

µ

= F (k) + nT if nµ ≡ 1 (mod m)”
[Eisenstein 1850, p. 558]. (Note the analogy with what happens for roots of unity.) Even
without taking powers, we get the same conclusion if we take m dividing n − 1. In other
words, we see that all the n−1-division points on the elliptic curve y2 = x3−x are invariant
under Frobenius, i.e., their reduction is defined already over the finite field Z[i]/p. Since
there are N(n− 1) torsion points, and they remain distinct after reduction, the curve has
at least that many rational points over this finite field—in fact, these are all.

This result about the number of points of E over Z[i]/p (counting also points at in-
finity!) was conjectured after numerical experiments by Gauss: see the last entry, dated 9
July 1814, of his mathematical diary [Gauss 1976], where he calls this conjecture a “most
important observation, found by induction, which links the theory of biquadratic residues
with the lemniscatic functions in the most elegant manner” (Observatio per inductionem
facta gravissima theoriam residuorum biquadraticorum cum functionibus lemniscatis ele-
gantissime nectens). In fact, Gauss worked with the model x2 +y2 +x2y2 = 1 of the curve
E which corresponds to the equation satisfied by his two basic lemniscatic functions sin
lemn and cos lemn, whereas we took y2 = x3 − x, or equivalently y2 = 4x3 − 4x, because
it corresponds to the Weierstrass equation (15) relating the basic functions ℘, ℘′.

Eisenstein met Gauss once. It is not clear whether he learned about Gauss’s con-
jecture. It was published only after Gauss’s death (and Gauss died three years after
Eisenstein). When Gauss’s entry became known later in the 19th century, people did ap-
parently not link it with Eisenstein’s work. Dedekind for instance checked the conjecture
numerically for all primes of norm less than 100. Fricke recognized the equation of the
curve as the one linking Gauss’s lemniscatic functions, but it was not until 1921 that the
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conjecture was proved, by Gustav Herglotz (the teacher of Emil Artin). His concise ar-
ticle [Herglotz 1921] uses the Weierstrass theory, albeit with notation that has not quite
survived to the present day. He does allude to Eisenstein’s irreducibility criterion in the
original lemniscatic context, but otherwise does not seem to derive inspiration from Eisen-
stein’s paper—however, see also [Herglotz 1922, p. 455f]. A modern account, in the spirit
of the Weil conjectures can be found in [Ireland, Rosen 1982, 11-5].

Today one defines the L-function of the elliptic curve E over K = Q(i) by the infinite
product over prime ideals of Z[i] different from (1 + i)

(23) L(E/K, s) =
∏
p

1
1− apNp−s + Np1−2s

(s ∈ C, <(s) >
3
2

),

where ap = Np + 1 − Np for Np the number of points of E over the finite field Z[i]/p.
Using Gauss’s conjecture proved by Herglotz, we find for a zweigliedrig prime p = nZ[i],
n = a + bi primary: ap = a2 + b2 + 1 − (a − 1)2 − b2 = 2a = ψ(p) + ψ(p). And for an
eingliedrig prime p = pZ[i]: ap = p2 + 1− (p− 1)2 = 2p = 2ψ(p) = ψ(p) + ψ(p). Since for
any p, one clearly has ψ(p)ψ(p) = Np, this proves that

(24) L(E/K, s) = L(ψ, s) · L(ψ, s),

where we define the Hecke L-series of a Hecke character by the rule

(25) L(ψ, s) =
∏
p

1
1− ψ(p)sNp−s

.

For a general elliptic curve with complex multiplication, the analogous result was obtained
by Deuring approximately 100 years after Eisenstein’s work—see [Deuring 1953+]. In the
1950’s the time was ripe because the progress of abstract algebraic geometry and, more
specifically, Weil’s work on points of (abelian) varieties over finite fields, had provided
the necessary theoretical basis for discussing arithmetic applications and in particular the
reduction of algebraic curves modulo primes which we näıvely took for granted in the above
discussion of our special case.

The beginning 1950s also saw the generalization of the theory of complex multipli-
cation to higher dimensional abelian varieties by Taniyama and Shimura. Eisenstein’s
theorem was thus generalized in this higher dimensional theory to the crucial congru-
ence relation of [Shimura, Taniyama 1961, chap. III, §13]—see also [Giraud 1968] for the
grothendieckian digest of this relation. But Eisenstein’s work had not been entirely forgot-
ten between 1850 and 1950. In fact, Leopold Kronecker had not only generalized Eisen-
stein’s congruence to arbitrary transformations between elliptic curves [Kronecker 1886, p.
439], but also greatly emphasized the importance of this “fundamental congruence”. Thus,
Shimura and Taniyama [loc. cit., p. 110] call their theorem a “generalization of Kronecker’s
congruence formula”.

In the vast motivic generalization of the theory of Shimura and Taniyama, one may
use Eisenstein’s theorem as the one special check which implies the general identity of
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the “cocycles” describing on the one hand Langlands’s Taniyama group and on the other,
the motivic Galois group of a category of motives constructed from abelian varieties with
complex multiplication—see [Schappacher 1994, §0, and §4.4.4].

7. Special L-values and p-adic L-functions: Adolf Hurwitz. Let us come back
to the analytic theory of section 5 above. Differentiating (17) twice in z, we get

(26) ℘′′(z, L) =
6
z4

+
∞∑
k=1

(4k − 1)(4k − 2)(4k − 3)G4k(L)z4k−4.

On the other hand, differentiating (15) once and dividing by ℘′ yields

(27) ℘′′(z, L) = 6℘2(z, L)− 2.

Developing both sides of this equation using (17), resp. (26), we obtain recursive formulas
for the coefficients G4k(L). For simplicity, let us drop the fixed argument L from the
notation. First, comparing the constant terms in (27), we deduce 30G4 = 2 which is
equivalent to (14b). In z4, we find G8 = 6

7G
2
4. Comparison at z8 yields G12 = 7

22G4G8.
Continuing in this way, we get the recursion valid for all k ≥ 2:(

(4k − 1)(4k − 2)(4k − 3)− 12(4k − 1)
)
G4k = 6

∑
l+m=k

(4l − 1)(4m− 1)G4lG4m,

where the sum is over positive integers l,m that add up to k. Therefore the G4k(L) are
all rational numbers. Equivalently, passing from L to Λ, we obtain the following result of
Hurwitz—see [Hurwitz 1897, p. 339], [Hurwitz 1899, p. 342]:

Proposition. For every k ≥ 1 there exists a rational number ek such that one has

(28)
∑
a,b∈Z

′ 1
(a+ bi)4k

= ek · ω4k.

Hurwitz observes the striking analogy of this statement with the well-known rational-
ity of ζ(2k)/π2k for the Riemann zeta function ζ(s): note that π = 2

∫ 1

0
dx/
√

1− x2 and
rewrite the special ζ-value as ∑

n∈Z

′ 1
n2k

=
(2π)2k

(2k)!
B2k

with the 2k-th Bernoulli number B2k—see for instance [Neukirch 1992, VII.1.10].
In today’s perspective, there is no single natural generalization of the Riemann zeta

function whose special values would give the expressions studied by Hurwitz. Rather, the
modern approach adduces a different Hecke L-series for every value of k, namely that
attached to the 4k-th power of the Hecke character ψ:

L(ψ4k, 4k) =
∏
p

1
1− ψ(p)4kNp−4k

=
1
4

∑
a,b∈Z

′ 1
(a+ bi)4k

.
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See for instance [Harder, Schappacher 1984, §1].
In his perspective, Hurwitz tried to carry over as many properties as possible from the

Bernoulli numbers to the ek (after suitably normalizing the latter). He manages in partic-
ular for the congruences proved in [v. Staudt 1845]. These congruences are seen today—
following [Kubota, Leopoldt 1964]—as giving the possibility to p-adically interpolate the
rational parts of special values of ζ(s) (and of similar Dirichlet series), thus constructing
p-adic zeta functions. Likewise, Hurwitz’s result is at the origin of the construction of
p-adic L-functions for elliptic curves with complex multiplication—see [de Shalit 1987].
These p-adic considerations were crucial for the first major breakthrough by Coates and
Wiles towards the Conjecture of Birch and Swinnerton-Dyer—see [Coates, Wiles 1977].
The Coates-Wiles theorem was in a sense completed (following, as it were, a new idea of
Thaine in the theory of cyclotomic fields) by Karl Rubin in 1987. There, our elliptic curve
E : y2 = x3 − x derived from the lemniscatic integral is among the very first for which
the conjecture of Birch and Swinnerton-Dyer could be verified completely: [Rubin 1987,
p. 528]. In this conjecture, the finiteness of the group of rational points E(Q) corresponds
to the fact that L(ψ, 1) 6= 0 (L(ψ, s) can be analytically continued to the whole complex
plane; this was proved by Hecke), and the quotient L(ψ, 1)/ω is interpreted arithmetically
in terms of homogeneous spaces of E.
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181, 3, 160–190 [ = Œuvres complètes (Sylow, Lie, ed.s), vol. I, pp. 263–388]

R. Ayoub (1984), The lemniscate and Fagnano’s contributions to elliptic integrals, Archive Hist. Exact.
Sciences 29, no. 2, 131–149
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über die Verhandlungen der Sächsischen Akademie der Wissenschaften Math.-phys. Klasse 74,
269–289 [ = Gesammelte Schriften (Schwerdtfeger, ed.), Göttingen 1979, 436–456]

C. Houzel (1978), Fonctions elliptiques et intégrales abéliennes, in: J. Dieudonné (ed.), Abrégé d’histoire
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A.M. Legendre (1825–28), Traité des fonctions elliptiques, 3 vol., Paris

T. Masahito (1995), Three aspects of Complex Multiplication; in: The intersection of history and math-
ematics (S. Chikara, S. Mitsuo, J.W. Dauben, ed.s), Science Networks, Historical Studies, vol.
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