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The abstract formalism used to define higher algebraic K-groups is more often than
not the envy and the despair of the mathematician eager to work with them. In fact, on
the one hand, finite generation results tend to be as clearly expected as they are impossible
to prove, and, on the other, the general theory makes it usually quite hard to produce
explicit non-zero elements in specific K-groups. Recent progress in the spirit of Zagier’s
polylogarithm conjecture now has provided some (in part conjectural) remedies for the
second one of these diametrically opposed problems. Research in this area is moving fast
at the moment. We will concentrate here on the group K, (E), for an elliptic curve E
defined over @, where solid progress has been realized by A. Goncarov, A. Levin, and
J. Wildeshaus over the last two years.

The aim of our note is to present a down-to-earth treatment of the case of the elliptic
analogue of Zagier’s polylogarithm conjecture pertaining to K, (E) — see section 4 below
for the final result, which enables one to systematically produce elements of K, (E£) from
certain divisors on E. We thus complete the first author’s thesis [18]. More precisely,
outside of K-theory, we use only the classical theory of elliptic functions according to
Eisenstein, Kronecker and Weierstrass, as well as algebraic number theory. And from
K-theory, except for a few basic exact sequences and well-known properties of K-groups
of fields, or of varieties over finite fields, we only need [20], §3. However, the way we set
things up is of course modelled on (earlier versions of) the papers [10] and [24]. Contrary
to Concarov and Levin, we will systematically neglect the torsion in the groups under
consideration, tensoring with Q.

The original motivation of the first author’s thesis [18] was to check Beilinson’s
conjecture numerically for certain examples of elliptic curves over @ — see section 5 below
as well as the tables in [18].

Since our approach is deliberately down-to-earth, we do not discuss the recent
preprints [5], [11]. Nor do we go into the higher conjectures which concern the special
values L(Sym"E, n+ 1), for n = 2. By Beilinson’s general formalism, the corresponding
absolute cohomology groups are the groups H'","'(Sym"E, Q(n + 1)) attached to the
motive Sym" E which can be defined as the sub-motive of 4#(E*) on which the permutations
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of %, ., act via the sign character. Here, E*' is the sub-variety of E¥*! where the sum of
the components is 0. Thus, H""*(Sym"E, Q (n + 1)) can be described as a sub-vector space
of K,,,(E") ®,Q. The peculiar problems of these higher cases and some conjectural
solutions are discussed in the preprints [9] and [25].

We thank S. Bloch, A. Goncarov and J. Wildeshaus for very helpful discussions.

1. Recalling K, (E)

Let F be a number field over which the elliptic curve E is defined, and let E/o, be
a regular minimal model of E over the ring of integers of F. The second K-groups of &
and of E/F are connected by the localization exact sequence

11) - —— [[K3(&) —— Ky (8) —— Ky(E) —> [[Ki(6,) — -,

the direct sums being taken over the finite places of F. As to the fibres &, of & at the finite
primes, it is well-known that all the K7, (&,) are torsion groups, and that K; (&,) is non-torsion
if and only if K (&,) ®,Q is a Q-line (and the p-component of d is surjective), and that
this happens if and only if E has split multiplicative reduction at p — see for instance [20],
§3 or [18], 1.3.

1.2. Beilinson’s conjecture, I. Denote by rp the number of infinite places of F. Then
one expects that

dimg (K, (&/0,) ®,Q) = ord,_, L(E, 5) = rp..
Or, equivalently, that
dimg (K, (E/F) ®, Q) * rp + 4 {p| E has split multiplicative reduction mod p}.

The conjecture is fleshed out by considering a regulator map. To define it in the case
at hand use the following short exact sequence, which is derived from the localization
sequence of E with respect to its generic fibre,

(13) 0 —— K,(E/F)®,0 —— K,(F(E))®,0 7 [] (k(P)* ®,0Q),

PeE

where P varies over the F-valued points of E, and k(P) denotes the field of definition of
P. The zero on the left follows from the fact that the second K-group of a number field
is torsion. By Matsumoto’s theorem (which the second author learned by presenting it in
Martin Kneser’s Oberseminar, some twenty years ago),

/\*F(E)*
SAL=SfIfeF(E), [+0,1),

K (FE) = >{/.g}.

In terms of these generators, the P-component of the tame symbol 7 in (1.3) is explicitly
given by the formula
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vp(9)
(1.4) Tp({f g}) = (=)rr)er@ ’;—UP( 5 (P).

We can now define the regulator. In the spirit of this note, we simply present it as a mapping

reg,: K,(E/F)®,0 - R"= PR

v| oo

which depends on the choice of a holomorphic differential form w on E defined over F.

It was S. Bloch who first defined it in [3], on the generators {f, g} of K,(F(E)). Write

the divisors of the functions as (/) = ) a,[x], (g) = Y, b,[ y]. Fix an embedding 7 : F ¢ C,

and call v the infinite place of F given by 7. Via 7, we have over C, (E, w) = (C/I, dz)
1

with a unique lattice I’ = v, Z ® w, Z < C, say Im <&> >0.Put L=—"T.1If xe E(C),
Wy Wy

denote by z(x) the corresponding class in C/L. The v-component of the regulator is defined

1 d
to be the real part of the integral reg,, ,({ /. g}) = Re <—. | log|f] (f) A dz). According
i o
to [3], this can be transformed into the following expression — see also [17]:

(1.5)  reg,,({/:g}) = —Re(4(L)? Y a,b, K, (0,2(x) — 2(1), 2, L)).

Here we have used the notation from [22] for the Kronecker-Eisenstein series: If
the basis w,,w, of a lattice I' is such that w, is real and y =Im(w,/w,)>0,

2
wiy
ot

then A(I') = The Pontryagin duality between I' and C/I' is afforded by

{y, x> =exp (VZ(_F))W) Then for ze C/I, and an integer v = 0, one has the convergent

series in the half-plane Re(s) > % +1,

?v
1.5.1 0 =)/ .
(1.5.1) K, (0, z5,1) «,;r 2 07

(The extra parameter which we set equal to zero here because we will not need it, is relevant
for the analytic continuation of these series.)

The analogues of these regulator maps for the finite places are the components of
the boundary map 0 in (1.1). They were determined by Bloch and Grayson, and more
generally in [20]. They are zero unless E has split multiplicative reduction at p. Suppose
this is so, i.e., the fibre &, is a Néron N-gon for some N. Just as we chose a differential
o in order to obtain the regulators at the infinite places as real-valued functions, we now
pick a basis of the Q-line K (&,) ®; Q. Specifically, we number the components of &, and

. . . 1 . . .
take, in the notation of [20], the basis element N @] in order to identify

Ki(6,) ®,Q = Q. Then the component map J, on K, (E) is obtained by linearity from
the following rule on Steinberg symbols { f, g} which have the property that the closure
of the support of the divisors (f) =) a,[x], (g) = Y b,[y] are contained in the smooth
part of &

(161) {f?g} = — ZaxbyB?:,p(x_y)’
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where

(1.6.2) By, (x) = B, <<%>> ,

if and only if the section of & defined by x meets the Néron N-gon &, in its v-th side. Here

3 1
B;(t)=1— 2 >+ 2 t is the third Bernoulli polynomial. Cf. [20], 3.1, p. 815.

1.7. Beilinson’s conjecture, Il. (1) Let S be the set of places of F where E has split
multiplicative bad reduction. The Q-vector space

(I@ regw,v @ @ B3,p)(K2(E/F) ®Z@)

pesS

is a Q-structure of PR ® @ R.

v|oo peS
(i) /\* (reg, (K,(8/op) ®,Q)) = L'(E/F,0)- @ = R = /\'*(R'™).

One may enhance the analogy between the infinite places and those in S by building
a factor of log(Np) into the definition of B, ,, and then relating the total regulator
(including the S-components) to the derivative at s = 0 of the imprimitive L-function, with
Euler-factors at places in S removed. This was proposed, in slightly greater generality, as
an “S-Beilinson conjecture” in [16]. But we find this formal procedure rather pointless
in the case at hand.

It is not known at present for a single curve E, that K, (&) ®,Q or K, (E) ®,Q are
finite dimensional. The strongest results towards (ii) known to date still are, on the one
hand, Bloch’s treatment of the CM case in [3] which was refined in [17] and generalized
in [8], and on the other, Beilinson’s theorem on modular curves, and thus on modular
elliptic curves — see [19].

1.8. Remark on the injectivity of the regulator. It is sometimes heuristically use-
ful — say, in the case of an elliptic curve £/ — to assume that the Beilinson regulator
reg,, is injective on all of K, (F) ® Q — cf. [4], p. 84, note (*) for a case in point. But, as
Bloch pointed out to us, this hypothesis inspires less confidence, from a theoretical point
of view, than conjecture 1.7(i), because it postulates the injectivity of a real map on a
Q-vector space which is not always going to be one-dimensional. In fact, compare 1.7 (i)
to the injectivity of the classical regulator for a number field, i.e., the injectivity of the
map on the right in the commutative triangle of theorem 3.4 below.

2. The basic diagram

The obvious idea to try and construct elements in K, (E) is to use the exact sequence
(1.3). Let us pass to the direct limit over all number fields. This gives the exact sequence
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21) 0 — K(E/D)®,0 — K,(V?E) ®,0 T Q" ®, 1,

®x>.

Here we have written (tensoring with @ a notation used by Goncarov and Levin) 7 for
the augmentation ideal of the group algebra Q[E(@Q)], i.e., for the divisors of degree 0
on E with (Q-coefficients. Weil reciprocity guarantees that the tame symbol does indeed
take values in this subspace.

where the tame symbol now sends

; . f”x(g)
{f,g} — z (_1) x<(f) x(g)<W

xeE(Q)

Factoring out I, by principal divisors, i.e., by I7, and inserting Matsumoto’s theorem
for the middle group, we obtain the exact sequence

7 Q(E*)
@ AQE)S A=)y
7, 0 ®,EQ) ®,0.

To see this (cf. the proof of (3.7) in [10]), note first that a Steinberg symbol of the form
{c, g}, with a constant ¢ e Q°, is mapped by 7 to ¢ ® div(g), and therefore lies in the
kernel of 7. But the kernel of the restriction of J to

Q@ADE)®,0 -0 ®,I12

is K,(Q) ®,Q =0, again by Matsumoto’s theorem, and Z thus restricted to a map
(QAQE))®,0=0"Q®, I > Q" ®,I} is simply the identity.

Note that, if we work over a field of definition F of E which has finite degree over
Q, then (2.2) can be simply cut down by taking invariants under G, := G(Q/F), because
the K-groups tensored with Q have Galois descent. Note also that all the maps reg,, , and
B, , vanish on symbols of the form {c, g}.

The exact sequence (2.2) immediately gives what used to be known as

2.3. Bloch’s lemma. A Steinberg symbol { f, g} such that the divisors of f and g are
supported on torsion points of E, can be corrected by elements of the form {c, g} to come

from K, (E) ®, Q.

For a long time this was the only method to produce explicit elements in K, (E). If
E has complex multiplication (and therefore in particular no primes of bad multiplicative
reduction), such elements conjecturally suffice — according to (1.7) — to generate all of
K, (E)—see [17]. However, for elliptic curves with sufficiently big image of G in Aut(E,,,,),
the elements given by Bloch’s lemma will all lie in the kernel of &P reg,, , ® P B, ,, and

v|oo p

therefore conjecturally be zero — see [15], 1.3.1. Beilinson’s Eisenstein Symbol — see [8] — is
essentially a generalization and refinement of Bloch’s lemma.
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A rather short-lived and somewhat frustrating phase in the development of our
current knowledge of K, (E), roughly between 1989 and 1994, saw a number of ad hoc
constructions of non-trivial elements in K, (E) from certain points of infinite order on
special elliptic curves without complex multiplication, working directly from the sequence
(2.1) or (2.2) (unpublished constructions by Schappacher-Nekovar, R. de Jeu, J.-F. Mestre;
also R. Ross obtained an element on the Fermat elliptic curve, which is a CM curve). We
will briefly discuss the oldest such example in section 5 below.

We now write down the commutative diagram which will give us the most general
way to obtain elements in K, (E) from divisors on the elliptic curve. It is suggested by
Goncarov and Levin [10], although our presentation of it blends in some notions from
Wildeshaus [24]. It begins with the line (2.2). The rest will be explained as we go on.

2.4. Commutative diagram.

/\2 QE)
(@ AQE)SAA =)z
1 % =T, ®id
| I
LA = Da
| T I

K,(E/Q) ®,0 <= ®,0 75 O ®,EQ®,0

— kerd, ®4(E(Q) ®, Q)

| Ig — kerd, ®¢(E(@) ®,Q)
| . 4
ker dy = &z 4 2, ®4(E@) ®,0)

The column on the right will be defined and constructed in the next section — see
3.6. Let us discuss the central column. We implicitly encountered the map  when we were
discussing regulators. It is defined by

B(frg =) ablx—yle QLE@)],

where the divisors of the functions are written (f) =) a,[x], (g) =), b,[y]. Since the
principal divisors make up 72, the image of 8 coincides with the fourth power I} of the
augmentation ideal.

The vertical map p is the natural projection, and the space at the bottom of the
central column is defined, following [24], by

7 = Q[E@) —{0}].

The inclusion of I} into it is defined by forgetting the contribution of 0 in the divisors.
Since they are all of degree 0, this does not erase any information.



Rolshausen and Schappacher, K, of an elliptic curve 67

We now turn to the right column of the diagram. This will take a certain amount of
preparation.

3. The multiplicative group of a number field
Choose again a number field F over which the elliptic curve E is defined. Put
%' = QLEF)— {011,

and write elements of this vector space in the form ) ¢;{x;};. Define a Q-linear map by
its effect on the basis: i

df - & - E(F)®,EF)®,0Q,
x}5 — XR®x®1.
The kernel of di contains a few obvious types of elements: the divisors supported on
torsion points of E(F), the relations {kx} —k?{x} (for keZ and xe E(F) not killed

by k), and the ‘parallelogram equations’ (3.1.1) below. It is elementary to show that certain
among these elements already suffice to generate all of kerd,. See for instance [10], 4.6.

3.1. Lemma. kerd; is generated by all divisors of the following form, where
x,ye E(F):

(3.1.1) x+0}3 +{x =05 —2{x}3 —2{y}3 forx+=y,
(3.1.2) (2x)% —4{x}¥ for2x %0,

(3.1.3) (2x}F —2{x}¥ —2{=x}* for2x=+0,
(3.1.4) —4{x}¥ for2x=0.

3.2. Remark. Note that all divisors in kerd; are such that the global Néron-Tate
height /4 on E over F, extended linearly from points to divisors, vanishes on them. — If, for
a basis x, ..., x, of the Mordell-Weil group E(F) modulo torsion, the heights h(x;) are
Q-linearly independent real numbers, then kerdy = {Y a;{x;}5|> a;i(x;) = 0}.

3.3. Notation. For any place v of F, denote by /4, the local Néron height on E/F,,
extended Q-linearly to divisors. For a finite place v, log, : F* — Z is the additive valuation
onto Z, and if v is the infinite place given by the embedding 7: F ¢, C, then log,: F* - R
is the function log | |,. In either case, we extend by Q-linearity to F* ®, Q.

The local Néron height at the infinite places is related to Kronecker double series:
If the infinite place v of F is induced by the embedding 7: F < C, and if the point
xe E(F) =*» E(C) = C/I" corresponds to the complex number z, modulo the lattice T,
then we have (notations being as in (1.5.1) above)

(3.3.1) mm:ﬂ?Km%Ln.
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This follows for instance from a comparison of [27], Thm. 1.3, with [21], chap. VI.

3.4. Theorem (Elliptic analogue of Zagier’s polylogarithm conjecture for K, (F)).
There is a unique Q-linear map @5 rendering the following diagram commutative:

@5 kerdf —— F*®,0
LA v @log,
’ DR PO ’
vinf. vfin.

Proof. There are now several proofs of (variants of) this theorem — see [10] and
[24], Thm. 2 for a proof using the Poincaré bundle and Deligne’s symbol, and [26] for
a motivic approach. We sketch here the proof which seems to us to be the most elementary.
It was first envisaged in [18].

The uniqueness of ¢} follows from Dirichlet’s unit theorem. Also, one can easily
define @} on generators of kerd;, say those listed in 3.1, in such a way that the triangle
commutes, by invoking standard formulae from the theory of local heights — see for
instance [21], chap. VI, in particular ex. 6.3: Fix a Weierstrass model for E/F of the very
classical shape Y2 =4X> — g, X — g5 (g,, g5 € F), denote by X, Y the coordinate functions
with respect to this model, by 4 its discriminant. Then we want to prescribe the following
values in F* ® Q:

1
G4 e (x+y5 +ix =y} —2{x}) 21D =X®-X(1) *4® o

1

P20~ 4D = (- Y@) @,

1
oL (235 —20x)1 —2{=x}D) = (= Y() A @ .

5 (—4{x}5) = <—3X(x)2+ %g2> 4 ®%.

So we have to show that there exists a well-defined map on kerd; which takes all
those values. For this we may work over C, fixing any embedding of F. The idea is
to exponentiate an analytic formula for the local archimedean height. But since these
formulae involve some theta function, one has to be careful about writing down an
expression which is independent of the representatives in C chosen for the points of C/T,
where I' is a lattice corresponding to E. Specifically, given & =) a;{x;}3 e kerj, choose

J
E=) A,[z]eQ[C—TI] such that £+ ¢ under z, — (z;mod I'), and such that Z lies in
k

the kernel of the Q-linear map Q[C —I'] - C ®,C defined by z+—z ® z. (This last
condition was introduced in [24], p. 374-375, emending the treatment given in [18], V.4.4.)
For instance, if ¢ is a generator of type (3.1.1) and if x =zmod T, y = z'mod I, then
=[z+4+z]+[z—z]—2[z] —2[z] will do. Similarly, one sees that such representatives
exist for all divisors ¢ € kerdy; generators of type (3.1.4) can be recuperated over C
(where all 2-torsion points are rational) from (3.1.1), for various distinct 2-torsion points
x and y.

—
=)
—

—
=
—
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Restricting to such representatives Z = ) A4,[z,] of &, the expression
k

42 o1@ =3[ ey He (- )]ecr .0

where 7, o are the classical Weierstrass functions relative to the lattice I', is well-defined.

Indeed, if E,Z" are two such representatives of &, then & —Z' is of the form

Y ¢,([z,] — [z, + 7,]), for suitable ¢, Q, z;€C, and y,e I. Write the complex numbers
1
z, and y, in terms of a fixed basis of the lattice: z; = 4,0, + B,w, (4, B;eR),

v = Ciw,+ D,w, (C, D, € Z). The transformation formula for our theta function — see
for instance [21], VI.3.1.(b) — combined with Legendre’s period relation then shows that
formula (3.4.2) evaluated on & — E’ yields

exp(), {4, D,— C,B)} - i) e C* ®, Q.
1

So it suffices to show that ) ¢,{4, D, — C, B;} € Q. On the other hand, ) ¢,([z] — [z, + 7,])

1 l
goes to 0 in C ® 4 C, since this is true by hypothesis for = and Z’. This yields in particular
the relations

Z aD(4,0,® w,) =0 = Z C(w; ® Bw,),

LA ¢Q LBi¢@Q

and thus Y ¢D,4,= Y ¢C,;B, =0, which is enough to prove what we want.
LA ¢Q I,B1¢Q

To see that (3.4.2) does reproduce in C all the values prescribed algebraically on
individual generators in (3.4.1), use for the type (3.1.1) the divisor

E=z4+z]+[z—2]—-2[z] —2[Z]
and the classical addition theorem for the Weierstrass o-function:

oc(z+z)a(z—12")
a(2)*a(z')?

=p@)—-pE),

and similarly, deriving this addition formula, for the other types of generators.

Note that ““Siegel’s function™, used by Wildeshaus in Proposition 2 in loc. cit., does
agree with (3.4.2) for our divisors =, as can be seen by going through the proof of [21],
Thm. VI.3.4.
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3.5. Distribution relations. The map ¢} satisfies the following compatibility with
isogenies of elliptic curves — see [24] and cf. [23], I-5, where the term ‘norm compatibility’
is used: Let y: E — E’ be an isogeny defined over F (with pointwise F-rational kernel)
andlet & =) a;{x;}; € & Then p(&) =) a;{w(x;)}; belongs to kerd; on E’ if and only

i i
if one has d5 (), a; ), {x;+ t}5) =0 on E. Furthermore, if these equivalent conditions
i tekery

hold, then one has for the maps @3 on E, resp. on E’, the following identity in F* ®, Q:

(3.5.1) Q’?(Z a; Z {x; + t}ﬁ) = ¢3 (Z ai{lp(xi)}g)'

i tekery

The direct proof of this distribution relation from (3.4.2) is somewhat nontrivial — see
[12], cf. the appendix to [6]. Note that, at least if y is multiplication by d on E, the
distribution relation follows from the corresponding property of the local heights — see
[21], ex. 6.4; for the infinite places see also [15], 2.4.2.

3.6. Back to diagram 2.4. 'We can now complete our discussion of diagram 2.4 above.
First, divide by the kernel of ¢ :

d,: %, =%fkeros - E(F)®,EF)®,0Q,

ker dj
ker ¢}

(3.6.1)
¢, kerd, = - F*®,0.

Elements of %, will be written ) a;{x;},. Then, following the usual inductive procedure

J
of Zagier’s polylogarithm conjecture, Wildeshaus defines the mapping analogous to d;,
one level up, by

dy &5 =Q[E(F)—-{0}]] » %, ®@(E(F) ®z@)a

(3.6.2) .
(x5 = L ex®l.
This is the definition over any fixed field of definition F of the curve E. In diagram 2.4,
notations refer to the case F = Q.

3.6.3. As in the diagram, consider /5 as included in %" by forgetting the 0-com-
ponent. Then

dy (If) = ker(d, ® dg @ e,0) = kerd, ®q(E(@) ®;0).

Indeed, to see thatd5’ @ id(d3 (Y. a,b,{x —y})) = 0,if Y a,{x}and ) b,{y} are principal
xFy x y
divisors, is just an exercise in regrouping terms, and adding the missing contributions for

x = y (which average out), once the tensors have been expanded bilinearly. That d; factors
through p will be a byproduct of the commutativity 3.6.5 below.

Thus all solid arrows in diagram 2.4 are defined.
3.6.4. Surjectivity of ¢, over Q. For every o€ F*, there exists an extension field

FS FcQ of degree [F':F]1<4 and an element ée[(kerdf)/F,]G(@/F) such that
#05) —
P =a®1.
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This follows from the first formula in (3.4.1). As a consequence, ¢, is an isomorphism
for F= Q.

3.6.5. The commutativity of diagram 2.4. For all elliptic functions f, g with divisors
()= a.[x], (g) =) b,[y], putting E = ) a b, {x -y}, we have
x y

(9, ®id) o dff &) =T (fng).

Proof.  Any expression f A g can be written as a linear combination of f; A g; such
that, for all i, no inclusion holds between the supports supp( f;), supp(g;) (multiply £, g
by functions introducing new, disjoint zeroes or poles). We are therefore reduced to
checking 3.6.5 under this additional assumption on the supports of f and g. Assuming
this, we may choose divisors D(f) = Y| 4,[z,] € Q[C] and D(g) = ) B,[z;]€ Q[C] such
that: k !

(1) D(f), resp. D(g), projects to the divisor of f, resp. g, on C/T,
(i1) ZA —ZA Z, = ZB ZB z;=0inC,

(iii) for all k, 7, if z, — zje T, then z, = z|.

By (ii), & = Z A, B[z, — z;], and therefore also £= Y A4, B[z, — z/], goes to
k,l; zk:#z

zeroin C ®,C. Then in view of (i), (iii), ¢, ( ). a, y} ) is given by formula (3.4.2)

xFy
evaluated on Z. And more importantly: refining in a stralghtforward manner the arguments

of the proof of 3.4, for the well-definedness and the validity of formula (3.4.2), one sees
that also the image of d (&) = Y a,b,({x —y}, ® (x —»)) under ¢, ® id is computed

xFy,
=
H

by the same theta function, using =

Furthermore, defining

1 1
F(z) = l_[ (e—j(z—Zk)n(z—Zk)O-(Z _ Zk) . Aﬁ)Ak’
k
G(2) = [[(e 2 Mg (z — zf) - AT2)",
1

a classical computation shows (using (i) and (ii)) that F'is in fact a meromorphic function
on C/I', with the same divisor as f, and likewise for G and g. It will therefore suffice to
check 3.6.5 for F A G instead of f A g. Expanding bilinearly

di () =(Y ab{x—y},®(x—y)eL ®x(E@Q) ® Q)

xFy

and taking first an x in the support of f which is distinct from all the y’s, we find in
(¢, ® id)(d¥ (&) the contribution

G(X)@X@ _ZAk7
k
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with the sum extended over all k’s such that x = z, (mod I'). This is precisely the contribution
at x of 7 (F A G). Similarly, 3.6.5 works out at all points y in the support of g which do
not figure among the zeroes or poles of f.

Finally, take x € supp () nsupp(g), say, x = z; (mod I') = z; (mod I'). Then, by (iii),
(¢, ® id)(d5 (¢)) contains the term

F(2) Bilg(z—zp)B\ ™
(e 5e) (™))

which again is precisely the contribution at x of J (F A G) — even with the correct sign
(—1)41B1in front (which we could have slobbered working, as we do, in C* ® Q), because
the Weierstrass sigma function is an odd function of z.

Xx®1,

— =
z2=2z1=2z)

This concludes the proof of the commutativity of diagram 2.4, as far as the solid
arrows in it are concerned. Next, we turn to the dotted arrow.

4. The elliptic polylogarithm conjecture for K, (E)

As before, E denotes an elliptic curve defined over the number field F. Recall the
maps d, from (1.1) (the components of 0), reg, from (1.5) (for a fixed choice of differential
, which is used to determine the lattices I attached to the elliptic curve with respect to
the different embeddings of F into C), and Bj ,(x), S from 1.6—7. Write K" for the
Q-linear extension to divisors of the function which, in the notation of 1.5, takes a point
zmod T, on the elliptic curve to the complex number A (I,)*K, (0, z, 2, I,). Recall also the
notation introduced in (3.6.1-2).

4.1. Theorem (Elliptic analogue of Zagier’s polylogarithm conjecture for K, (FE)).
There exists a Q-linear map r% :kerdy — K,(E) ®,Q making diagram 2.4 and the
following triangle commute.

Sid
3

kerd¥ 25 K,(E)®,0Q
@ Re(K{") ® @ B,, N / @ reg, ® D0,

DR D

vinf. peS

4.2. Distribution relations. Let y : £ — E’ be an isogeny defined over F (with point-
wise F-rational kernel), and let & =) a,{x;}3 € &' Then p (&) =) a;,{y(x;)}; ekerd] on

E' if and only if one has df (Y. a; ) {x;+1}%5)=0 on E. (This follows from 3.5.)

i tekery
Furthermore, if these equivalent conditions hold, then one has for the maps ¢} on E,

resp. on E’, that

veo0s Ca Y {(+ 43 =0 (X afv(x)i}).

i tekery i

wherey, : K, (E£) ® Q — K, (E') ® Qis the Gysin map of y. For instance, if y is multiplica-
tion by d on E, then v, also multiplies the elements of K, (E) by d.
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4.3. Construction of ¢3. Recall from (3.6.2) that kerd; is a subspace of divisors
supported on F-rational points of E. Denote temporarily by & the G(Q/F)-invariants of
the space (ker dj )g, taken relative to the ground field Q. Then, for any given ¢ € kerdy,
we can find a Q-linear combination D € & of divisors of the form {x}§ —d ) {y}§ (with

dy=x
d = 1), such that ¢ — Disa G(@Q/F)-invariant element of the space I consideryed in diagram
2.4. This follows immediately from the fact that I} is the space of divisors on E which go
to zero under the three Q-linear maps Q[E(Q) — {0}] - E(Q)®' ®,Q given by x — x®,
for i =1, 2, 3. The fact that D goes to zero under d5 follows from 3.5.

4

E
LA =)o
independent of our choice of D, because any linear combination of divisors of the
form {x}5—d ) {y}§ that lies in I already belongs to {(fA(1—f)>g — see
d-y=x

lemma 3.20 in [10].

Now, map & — D up in diagram 2.4 to p(¢ — D) e . This element is

Since both ¢ and Z belong to the kernel of d5, the commutativity of 2.4 shows that
any element of 1 ( p(¢ — 2)) has trivial tame symbol, and therefore lies in K, (E/Q) ® , Q.
Since diagram 2.4 is clearly Galois-equivariant, and our elements are invariant under
G(Q/F), they lie in (K,(E/Q) ®, Q)P = K, (E/F) ®, Q.

Thus, choosing any Galois equivariant section of  defines some mapping ¢’ which
makes the diagram 2.4 commute, and satisfies 4.2 for the multiplication by d (d = 1) by
construction. Any such map also renders the triangle in 4.1 commutative, as we have
already remarked in (1.5) and 1.6 above.

4.4. Uniqueness of ¢35. If one believes Beilinson’s conjecture 1.7(i), then the com-
mutativity of the triangle in theorem 4.1 determines @} uniquely. This conjecture seems
inaccessible at the moment. However, refining the analysis of a commutative diagram like
2.4 above, Goncarov and Levin have recently succeeded to prove (even over an arbitrary
algebraically closed field) that one has the following sequence, which is exact modulo
2-torsion [10], theorem 1.5:

HO(E’ *%/2) ]}‘EL,Z
K, (@) BLIA M =1))z
— ker(HY(E, ;) — @) — 0.

Tor (Q", E(Q)) = - Q' ®,EW@Q)

Here I;; , is the augmentation of the integral group ring Z[E(@)], and %} is the K,-sheaf.
Tensoring all groups with @ turns the second term simply into K, (Q) ®, @, and kills the
first term of the sequence, thus showing that no choice of splitting of f was needed for
our construction. Then 4.2 follows in general.

5. Examples in a family

Now that we have at our disposal theorem 4.1, which we view in the first place as
a systematic way to produce elements of K, (F) ® Q from certain divisors, we want to
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illustrate the result in a one-parameter family of elliptic curves which was written down
by Jan Nekovar in 1990, following an idea of the second author. The first numerical
experiments in this family were performed in the Spring of 1990 by D. Grayson and the
second author. This was then later taken up by the first author in his thesis.

Similar numerical computations, for individual elliptic curves, were performed in
1991 by Don Zagier and Henri Cohen, with an intuition guided closely by the formalism
of Zagier’s polylogarithm conjecture. They saw in particular that local heights impose
conditions on the divisors that may create elements in K, — see section 3 above. Beilinson,
Goncarov, and Levin learned about this. Beilinson and Levin subsequently supplied the
general motivic theory of elliptic polylogarithms, i.e., Kronecker double series, in [2],
which was complemented by explicit constructions in [13], [14]. And in 1995, Gonc¢arov
and Levin, with the initial version of [10], gave their first treatment of the elliptic poly-
logarithm conjecture in the case of K,.

In contrast to this experimental prehistory of the work of GoncCarov and Levin,
Wildeshaus came up with the first version of [24] early in 1995 because he was seeking a
motivically inspired elliptic analogue of Zagier’s polylogarithm conjecture, generalizing
[1] directly. There the rdle of the local heights in the preliminary case of K, (F) was only
recognized by R. de Jeu in subsequent discussions.

5.1. An elementary construction. Let E be an elliptic curve over @, and assume that
Pe E(Q) is a rational point of infinite order. Let fe Q(£)* be a function with divisor
(f)=2(P)+(—2P)—3(0) — take for instance the equation of the tangent to E at P.
Assume that we can find a function g € Q(E)* such that, for some M = 2,

(i) the divisor (g) is supported in E,;

(i) g(P)=—g(—2P) +0.
For every point Q in the support of (g), let F, denote the field generated over Q by the
coordinates of Q, and let F be the composite of these fields F,. Then (i) insures that there
is a function y, € F, (E)* such that (z,) = M (Q) — M(0).

We find for the tame symbol 7 of (2.1):

(1.1 TM{fg) =T (M{fg(=2P)} + 1 {f(2)°?, 10}).
Q

Due to Galois descent in K, (F(E)) ® @, the Galois invariant sum on the right, like every
other term in the identity, defines an element of K,(Q(E)) ® Q. Therefore, correcting
{f, g} by symbols with a constant component, it comes from an element of K, (E) ® Q.

1
5.2. Nekovai’s family. Take the following special case of 5.1. Forae Q witha #+ — 3

let £,:Ba+1))y*=x>—Ba*+1)x+Q2a*>+a+1),and P, = (a+1,1). P, is a point of

1
infinite order except for a = 3 in which case E, = X;(11) and P, is of order 5. Henceforth
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1
we assume that a + + 3 Then —2P, = (a —1, —1), and we consider the symbol { f,, g.},

where f/, =y —x+a, and g, = g =y, so that M = 2. By 5.1, {f,, g,} defines an element
of K, (E,) ® Q. The divisors of our functions are:

(/) =2(R) +(=2P) —3(0), (9=-30)+ ) (Q).

i=1

where Q; = (e;, 0) are the 2-torsion points on E,.

Let Z+ 1,7, Im(z,) > 0, be the lattice corresponding to <Ea, %), where o, is a

non-zero rational differential on E, with real period Q,=| [ ,|. Furthermore, let
Eq (R)°

z, € C correspond to the point P, under the analytic parametrization C/Z +1,Z — E,. And

let #; (i =1, 2, 3) correspond to the 2-torsion points Q;. Then the regulator reg, ({f,,g})

of any element of K, (E,) ® Q mapping to { f,, g} € K, (Q(E,)) ® Q equals, in the notation

of 4.1:

Im(r,)’

TCZ

3
(_3(2K2,1 (z,) + K2,1(—2Z)) + Z 2K, 1 (z,— 1)+ K, (—2z,— ti))'

i=1

(5.2.1)

By standard properties of the Kronecker series, this transforms into

Im(z,)*
2

T

(522) <_ 8K,.1(z,) +5K,,,(22,) — % K, (4Za)> .

In order to test Beilinson’s conjectures 1.7, the first author computed the expression

n’reg, ({f.»g})
(5.2.3) NLED

where N, is the conductor of the curve E,, for small values of a using the software package
PARI. In fact, in doing so one passes to a minimal model of the curve E,, and the point
on it corresponding to P,. Beilinson’s conjectures (1.7) — together with the functional equation
for the L-function L(E,, s) (which is conjectural in that one cannot quite prove yet that all
elliptic curves in Nekovar’s family are modular) — predict that the quantity (5.2.3) is a
rational number whenever 0,({ f,, g}) = 0 at all primes p where E, acquires split multiplicative
reduction — see 1.1. This integrality obstruction is computed explicitly, using [20], §3, in
[18], IV.3. It turns out that

(5.2.4) Vp 0,({/.,8}) =0 = 12a€eZ.

5.3. Relation to ¢%. In terms of the map ¢} : Q[E(Q)— {0}] - K,(E) ® Q con-
structed in section 4 above, the element —2{f,, g} of K, (E,) ® Q is given — at least modulo
the kernel of the regulator — by the following divisor, suggested by (5.2.2):

&o=16{P}5 —10{2R}3 + {4R}3.
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It is easy to see that ¢, € ker dy. The tables in [18], chap. VI show about one hundred curves
1
E, forallae o Z with —16 < a < +16, where ¢} (¢,) is integral. In each of these cases,

the quantity (5.2.2) is apparently a non-zero rational number.

For values of a where ¢} (¢,) is not integral, (5.2.2) seemed irrational (as far as any
number does in the computer). But in these cases, it is more interesting to see whether
theorem 4.1 allows us to produce other elements in K, (£,) which are integral, and compare
their regulator to L(E,, 2). The search for such elements is greatly facilitated by the fact
that we could define ¢} on all of kerdy, not just on divisors in 7. Let us illustrate this
with just one example — for more material, see [18], VI.2.

1
5.4. The example a = 7 The minimal equation of £ = E, ; over Z is
y2 4y = x> —325x + 6156.

The conductor is N = N, , = 4025. J. Cremona informed us that this curve has the label
4025 D1 in his tables. Two points are easy to find on the minimal model: the standard point
P=P,;=(20,87), and another one, Q = (45, 287). By (5.2.4),

@5 (16{P}5 —10{2P}3 + {4P}3)
does not lie in the integral part of K, (£) ® Q. But an easy search gives the element
&= —11{Q}} —2{20}% + {30}} e kerd?

which does pass the integrality test via (1.6.2) at p = 7, which is the only prime where split
multiplicative reduction occurs for E. Note that & adds up to —12Q in E, so this element
of kerd; does not itself belong to I;;. Numerically one finds that

n’reg, (93 (&) 1

N,L(E,2) 96
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