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Forenote. Following a short course I had taught in Strasbourg, I gave on 29 May 1998
a talk at the yearly “Euler-Vorlesung” in the old theater in Sanssouci Park at Potsdam,
entitled “Wer war Diophant?” (“Who was Diophantus?”). A write-up of this talk, with
added footnotes, appeared shortly afterwards in Mathematische Semesterberichte 45/2
(1998), 141–156. The publication was in German since the talk had been prepared in
German for a German audience.

During my visit to India in December 1999 – January 2000, I was based at Tata
Institute, Mumbai, but spent one week at the Chennai Mathematical Institute, during
which Prof. Seshadri asked me to also talk on Diophantus in Madras. This and a similar
talk later on in Bombay provided the occasion to write up the present English version
of the paper. It is not a translation but a rewriting of my earlier text, with quite a few
modifications. For instance, I omitted certain allusions (e.g., to Karl May) which cannot
be understood by anybody who has not been steeped in German (sub-)culture. On the
other hand, I heeded some critical advice that I have received after the publication; for
instance, I am glad to correct my previous ignorance of Otto Neugebauer’s contribution to
the dating of Heron of Alexandria, which was kindly pointed out to me by several readers.
I also added quite a bit of material here and there.

On the other hand, the introduction to my original Potsdam talk was not deemed fit
to print for the Mathematische Semesterberichte. It does not translate well into English.
So I insert it here, in the original version, simply for the pleasure of those readers who do
understand German:

Ein Freund und Kollege, der vor einigen Jahren den Leibnizpreis verliehen bekam, und
der mit dem Kanzler seiner Universität zu jener Zeit nicht auf gutem Fuß stand, erzählte
mir von dem Telefonanruf, mit dem dieser Kanzler ihm zu der großen Ehre des Preises
gratulierte. Der geehrte Kollege nahm natürlich an, daß der Kanzler sich nunmehr eines
unterwürfigeren Tons ihm gegenüber befleißigen würde als das bis dahin der Fall gewesen
war. Stattdessen aber nahm der Kanzler die Erwähnung diophantischer Probleme in der
Preisbegründung zum Anlaß zu fragen, wer dieser Diophant, auf den jene Probleme doch
zurückgingen, denn gewesen sei, und wann er gelebt habe. Der Erfolg der Frage war total:
der Kollege wußte nichts Genaues und war somit von dem Verwaltungsbeamten wieder
einmal in die Defensive gedrängt.

Was hätten Sie geantwortet? Vielleicht meinen Sie, Sie könnten auch dann nicht
in diese Verlegenheit kommen, wenn sich die DFG entschließen sollte, Ihnen den Leib-
nizpreis zu verleihen — nämlich deshalb nicht, weil Sie in Ihrer Arbeit kein diophantisches
Problem gelöst haben. — Aber heute, nach dem erfolgreichen Beweis des Großen Fer-
matschen Satzes durch Andrew Wiles, kann jeder Mathematiker, gewissermaßen auf der
Straße, befragt von einem x-beliebigen Bekannten, in dieselbe Verlegenheit geraten. Denn
die besagte Fermatsche Vermutung war ja bekanntlich eine Randbemerkung in einer Aus-
gabe der Arithmetica eben jenes Diophant. Und was sagen Sie dann, wenn man Sie fragt:
“Wer war Diophant”, und: “Was haben die diophantischen Probleme mit Diophant zu
tun”?

∗ UFR de mathématiques et d’informatique, 7 rue René Descartes, 67084 Strasbourg
Cedex, France; schappa@math.u-strasbg.fr
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Abstract. Diophantus’s Arithmetica is one of the most influential
works in the history of mathematics. For instance, it was in the
margin of his edition of Diophantus that Pierre de Fermat, some
day between 1621 and 1665, wrote the statement of his so-called
Last Theorem (which was proved only a few years ago). But Fer-
mat was not the first to derive inspiration from Diophantus’s col-
lection of algebraic/arithmetic problems: the Arabs had profited
from reading the Arithmetica when developing Algebra as a math-
ematical discipline. Nor was he the last: at the end of this paper
we present the example of a Berkeley Ph.D. thesis of 1998 which is
directly inspired by a problem of Diophantus.

But for all the influence that this author had on various math-
ematicians at various times, we know almost nothing about him,
and even the text of the “Arithmetica” betrays very little of what
Diophantus actually knew — or did not know.

We first present views of well-known historians who speculated
on who Diophantus was, then go on to describe some salient features
of the Arithmetica, and finally we survey the main different readings
of this text that have been given over the centuries: first in the
Arab world in the 9th and 10th century, and during the Byzantine
Renaissance (11th to 13th century); then during the 16th and 17th
century in Western Europe (Viète, Fermat), up to the 20th century
way of looking at Diophantus.

1. Dating Diophantus. Two works have come upon us under the name
of Diophantus of Alexandria: a very extensive collection of solved problems
entitled “Arithmetica,” and a short, more theoretical treatise on polygonal
numbers, which is rather euclidean in style.1 The Arithmetica are essentially
self-contained: at least as far as we know them, they do not contain any
explicit reference to other mathematical authors.2

On the other hand, we know of only one mathematician of the pre-
Arabic and pre-Byzantine era who quotes from Diophantus’s Arithmetica:

1 For the treatise on polygonal numbers, see the Greek-Latin edition [Tannery
1893/95], vol. I, 450–481. Polygonal numbers are: triagonal numbers, i.e., numbers that
can be arranged in triangular shape, like 1, 3, 6, 10, 15, 21, . . ., or perfect squares, or pentag-
onal numbers like 1, 5, 12, 22, 35, . . ., etc. Thus in general, the sequence of a-fold polygonal
numbers is given by the rule n

2
{2 + (n − 1)(a − 2)}, for n = 1, 2, 3, . . ..

2 At three places, which all occur in book “V” from the Byzantine tradition (see below
for the numbering of the books) the text refers to “porisms”: see [Tannery 1893/95], vol.
I, 316 (6), 320 (2), and 358 (5). It is not clear whether these results were part of another
book of the Arithmetica which is now lost, or if the references are to an independent
treatise (by Diophantus, or simply known to Diophantus’s intended readers?) of which
no other trace has come upon us. See also our discussion of general statements in the
Arithmetica in section 4. below.
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Theon of Alexandria,3 father of Hypatia, the best-known woman scientist of
(late) antiquity, who however owes her fame not least to the fact that she
was gruesomely murdered by street gangs of the Bishop and Early Father of
the Curch Cyril in 415 AD.4 Theon of Alexandria thus belongs to the middle
of the fourth century AD, and this gives us an upper bound for the dating
of the Arithmetica, and of their presumed author Diophantus.

If we accept, and we might as well, that the same Diophantus was indeed
also the author of the treatise on polygonal numbers, then we obtain a lower
bound because in this work there is a quote from Hypsicles who lived around
150 BC—see [Tannery 1893/95], vol. I, 470 (27).

The known works of Diophantus thus provide us with an interval of 500
years for their composition, and this is about all that we may be certain of
when it comes to dating Diophantus of Alexandria. No reliable biographical
information about him is available.5

The great French classical scholar (and mathematician) Paul Tannery
(1843–1904), to whom we owe (among other standard works of reference
of the time—see for instance his [Fermat]) the monumental critical edition
[Tannery 1893/95] of the six books of the Arithmetica which we have from
the Byzantine tradition, discovered in the library of the Escurial a letter of
the Byzantine intellectual Michael Psellus6 which has been used to date Dio-
phantus more precisely—see [Tannery 1893/95], vol. II, 37–42. In this letter,
Psellus mentions work on arithmetic (the “Egyptian method of numbers,” as
he calls it) by a certain Anatolios which was dedicated to Diophantus—see
[Tannery 1893/95], vol. II, 38 (22) – 39 (1). Tannery identified this author
with the historically known Anatolius of Alexandria, a philosopher who was
the Bishop of Laodicea (an ancient town on today’s Syrian coast) around
270/280 AD, and who was indeed the author of a treatise on arithmetic of
which we have fragments. Assuming a treatise can be ‘dedicated’ only to a
person still alive, this would put Diophantus in the third century AD.

But considering the late date and the nature of the Psellus source (the
sentence itself which mentions the dedication is slightly corrupt in the manu-

3 See [Tannery 1893/95], vol. II, 35 (9-11), cf. vol. I, 8 (13–15).
4 The year 415 is undisputed. There are, however, diverging opinions about the age

at which Hypatia met her tragic death. See for instance [Dzielska 1995].
5 Note that, even though such an uncertainty of dates may seem enormous for the

historic mediterranean cultures, in the history of Indian culture and science, for instance,
even larger intervals of uncertainty are the rule rather than the exception—see for example
[Gupta 1995], p. 263f.

6 Michael Psellus, 1018–1081(?), was for many years a philosopher at the court of
Byzantium and authored a great number of works on a broad variety of subjects, from
philosophy and theology to the sciences and alchimy. Aside from numerous letters he
was maybe best known for his Lives of various Emperors and politicians, which take
a psychological approach to the personalities portrayed. He liked to present himself as
influential although he and his group lost their leading position under Constatin IX in
1054. At times he lived as a monk.
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script), one may want to be sceptical about these conclusions. It actually
seems that Tannery got somewhat carried away with this letter that he had
discovered; he used it as his only basis for emending the single most im-
portant methodological statement of the Arithmetica, in which Diophantus
introduces his symbol for the one and only unknown that he can handle in
his notation.7

Still, independently of the Psellus letter, the fact that, as far as we know,
nobody before Theon mentions Diophantus, and also the fact that the prob-
lems of the Arithmetica are rather unusual in classical Greek mathematics,
make it probable that Diophantus wrote his works rather towards the end of
the 500 year interval. Today, he is generally said to have lived around 250
AD, as Tannery’s argument suggested. There is also a mathematical papyrus
in Greek from the third century, not by Diophantus, but which uses the same
symbol for the unknown that we also find in the Byzantine manuscripts of
the Arithmetica.8

But one ought not to forget the basic uncertainty in all these conjectures.
In fact, a lot can be and has been said in favour of relating Diophantus
closely to Heron of Alexandria, an encyclopedic author of texts on questions
of mathematics, and in particular on applications of mathematics. Heron also
discusses problems similar to those of Diophantus, and both use the same
notation for the minus sign. If one assumes a close relationship between the
two, one may even wonder, as Sir Thomas Heath did, whether the Dionysius
to whom the Arithmetica are formally addressed was maybe identical with
the addressee Dionysius of Heron’s book on Geometric Definitions and of
his Elements of Arithmetic. The dates of Heron, after having been hotly
debated for a long time, seem to have been settled by Neugebauer via the
computation of a certain lunar eclipse in Rome mentioned in Heron’s treatise
on the diopter; according to Neugebauer, Heron was alive in 62 AD.9 Should
this lead us to place Diophantus up to two centuries earlier than is generally

7 See [Tannery 1893/95], vol. I, 6 (3–5). Instead of leaving this sentence as it
reads in all the manuscripts, i.e., as defining the αλoγoς αριθµoς, the untold number,
the number which is as yet unknown, to be “what has none of these special properties
[that were discussed in the preceding lines, like the property of being a square, cube,
etc.], but simply holds some multitude of units,” Tannery wanted us to read (in Yvor
Thomas’s English translation, [Thomas 1941], p. 523): “The number which has none of
these characteristics, but merely has in it an undetermined multitude of units, is called
arithmos.” But the untranslated last word of the Greek sentence that Tannery created
simply means ‘number,’ thus rendering the statement at least very awkward. This criticism
of Tannery’s ‘correction’ of the crucial sentence was made in a very convincing way by
Rashed and Allard—see the note on the Arabic word for the unknown, “šay”, in [Rashed
1984], tome III, 120–123.

8 Pap. Michigan 620. I owe this reference to [Gericke 1984], p. 143.
9 For the relation between Heron and Diophantus, see [Heath 1921], p. 306, note

1, as well as the long footnote 149 in [Klein 1992], 244–248. Neugebauer’s argument was
published in 1938, after Heath and after the original German version of Klein’s book. See
[Neugebauer 1975], p. 846f.
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done today?
A little mathematical poem which claims to be the inscription on Dio-

phantus’s tomb almost strikes me as a parody of our ignorance. It determines
the length of Diophantus’s life by a linear equation to 84 years.10 There are
obituary notices also for Nicolas Bourbaki. So this poem need not deter any-
one from speculating that ‘Diophantus’ was in fact the name of a collective
author. On the other hand, there is no positive reason to embark on such a
speculation, and most of all: I do not see how any of the difficult questions
related to Diophantus would thereby become easier to answer.

2. Speculations on Diophantus’s origins. Just as the precise dates of his
life, Diophantus’s ethnic or religious affiliation is open only to speculations.
The possibility to speculate has been extensively used by many authors. Let
us give some examples:

Hermann Hankel in his work on the history of mathematics in ancient and
medieval time, adopts an almost poetic tone when he comes to Diophantus:11

Here, in the midst of this sad and barren landscape of the Greek
accomplishments in arithmetic, suddenly springs up a man with
youthful energy: Diophantus. Where does he come from, where
does he go to? Who were his predecessors, who his successors? We
do not know. It is all one big riddle. He lived in Alexandria. If a
conjecture were permitted, I would say he was not Greek; . . . if his
writings were not in Greek, no-one would ever think that they were
an outgrowth of Greek culture.. . .

Around the same time, the German historian of mathematics Moritz Can-

tor12 confessed that, to him,

Diophantus, with this name which is frequent in Greece, was a true
Greek, disciple of Greek science, if one who towers high above his

10 See [Tannery 1893/95], vol. II, 60f. In Y. Thomas’s translation [Thomas 1941], p.
513: This tomb holds Diophantus. Ah, what a marvel. And the tomb tells scientifically
the measure of his life. God vouchsafed that he should be a boy for the sixth part of
his life; when a twelfth was added, his cheeks acquired a beard; He kindled for him the
light of marriage after a seventh, and in the fifth year after his marriage He granted him a
son. Alas! late-begotten and miserable child, when he had reached the measure of half his
father’s life, the chill grave took him. After consoling his grief by this science of numbers
for four years, he reached the end of his life. It is a poem from the Anthologia Palatina of
mathematical problems in poetic garb. The interpretation which Harder admits in [Harder

1995], 267f, to the effect that the solution is 65+ 1

3
years rather than 84 is compatible with

the German translation that Harder uses, but not with the Greek original.
11 [Hankel 1874], 157. For the original German quotations of this section, see also

the published version of this talk in Mathematische Semesterberichte 45/2. Hankel is of
course well remembered as a mathematician, for instance for his integral for the gamma
function (Habilitationsschrift Leipzig 1863), and by his “Untersuchungen über unendlich
oft oscillierende und unstetige Funktionen,” Math. Annalen 20, 1882.

12 [Cantor 1907], 396. The first edition of Cantor’s work dated from 1880.
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contemporaries. He was Greek in what he accomplished, as well
as in what he was not able to accomplish. But we must not forget
that Greek science, as it conquered the East from Alexandria . . . ,
brought new ideas back home from these campaigns, that Greek
mathematics as such has never ceased to pick up whatever it found
worth picking up here and there.

Paul Tannery himself did not speculate on the ethnic origin of Diophantus.
However, he suggested one may identify that Dionysius to whom the Arith-

metica are addressed as Dionysius, Bishop of Alexandria, and deduce from
this that Diophantus was christian.13

For Oswald Spengler, the author of the most successful, and terribly po-
litically influential German book of the 1920s: “Der Untergang des Abend-
landes”, “The Decline of the Occident,” Diophantus was a crucial indicator
of the change of culture that, according to Spengler, took place in late an-
tiquity. Much like Toynbee after him, Spengler undertook a parallel, cyclic
description of the big cultures of world history, in each of which he claimed
to be able to recognize the same morphological developments. Spengler bat-
tled the idea of universally valid mathematics. For him, the mathematics
developed by a culture are a particularly telling indicator of the type of this
culture. Late antiquity for him was no longer part of the classical culture,
but belonged already to the Arab culture which, according to Spengler, was
characterized by the magisches Weltgefühl , the magic apprehension of the
world. This culture would later on find its religion in Islam. The Pantheon
in Rome for instance was thus diagnosed by Spengler as “the earliest of all
mosques.”

Now, Diophantus’s Arithmetica stand out because of their formal, alge-
braic rather than geometric treatment of quantities, which prompts Spengler
to comment:14

This is indeed not an enrichment, but a complete negation of the
Weltgefühl of antiquity. This alone should have sufficed to prove
that Diophantus is no longer part of classical culture. A new
Zahlengefühl , a new notion of number . . . is at work in him. What
an undetermined number a, an unnamed number 3 is—both neither
quantity, nor measure, nor line segment—a Greek would have not
been able to say. . . . Diophantus lived around 250 AD, i.e., in the
third century of Arab culture.

Spengler, who must have had his own way of recognizing truly great works,
unperturbed by detailed mathematical scrutiny, had his personal view on the

13 See [Tannery 1912], 527–539.
14 [Spengler 1923], 96–97.
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mathematical qualities of Diophantus; he would not let himself be impressed
by a collection of tricky problems that have but inspired later writers:15

To be sure, Diophantus was not a great mathematician. Most of
what his name stands for is not in his writings, and what there is,
is surely not quite his own invention. His accidental importance lies
in the fact that, as far as we know, he was the first in whose works
the new Zahlengefühl is recognizable beyond any doubt.

Diophantus being a clear representative of the new, ‘magic’ culture, Spengler
even proceeded to make him comply racially with this role. While Spengler
categorized the philosopher Spinoza as the “latest representative of the magic
Weltgefühl , in fact a latecomer,” for the simple reason that “he came from
the ghetto,” i.e., since he was Jewish,16 he turned this argument around in
the case of Diophantus, whom he had already introduced as the first repre-
sentative of the magic Zahlengefühl , forgetting even that he had previously
said that Diophantus was not a great mathematician:17

How many of the great Alexandrians may have been Greek only in
the magic sense? Were Plotin and Diophantus maybe of Jewish or
Chaldaic origins?

David M. Burton. The most absurd statement about Diophantus’s origins
that I have been able to find generously conflates different historical eras and
transposes the often conjectured influence of Babylonian problems on those
found in the Arithmetica into ethnic categories. In “Burton’s History of
Mathematics” from 1991 one reads:18

Diophantos was most likely a Hellenized Babylonian.

3. And the text ? All these quotes use the absence of biographical infor-
mation in order to make metaphorical statements about the Arithmetica by
way of speculating on the origin of their author. I claim that the same phe-
nomenon which we see here with respect to Diophantus’s biography repeats
itself with respect to his mathematics. The Arithmetica are almost as elu-
sive as their author. The way in which mathematicians through the centuries
have read and used the Arithmetica is always a reliable expression of their
proper ideas; but never can we be sure of what these readings tell us about
the text itself. The Arithmetica are probably the most striking example of
a mathematical text which, on the one hand, has inspired, and continues to

15 [Spengler 1923], 98/99.
16 Cf. [Spengler 1923], 391. See the wonderful ironic comments on this by Leonard

Nelson in [Nelson 1921], 115–117.
17 [Spengler 1923], 770. The Chaldaic dynasty, the last Babylonian dynasty, as of 626

BC, were Aramaic families that were generally respected as learned people.
18 [Burton 1991/95], 223. I have thus far searched in vain for an author who suggests

that Diophantus was black african.
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inspire, generations of mathematicians at various different moments of the
history of algebra and number theory; but which, on the other hand, has
never, for all that we know, be developed further as such.

At least mathematicians tend to find it hard to admit this. We are
convinced, are we not, that, if we peruse the text sufficiently carefully, we can
practically look over Diophantus’s shoulder while reading the Arithmetica.
But this text, with its unique history of different readings over the centuries,
provides a particularly good example to demonstrate the problems of this
naively optimistic mathematical attitude.

I will thus succinctly survey four major historic occasions on which a
group of mathematicians or learned people rediscovered the Arithmetica. In
fact, since we have no original parts of the text, nor any direct knowledge of
what happened to it between its first writing and the 9th century AD, all we
can talk about are re-discoveries of a text that had slipped into oblivion. Such
a rediscovery may conveniently be called a renaissance of Diophantus for the
time and place where it occurs. I will suggest that there were four major
such renaissances of Diophantus so far, or more precisely, two times two.
All the parts of the Arithmetica which we possess today go back no further
than to the first double renaissance, the two chapters of which took place in
Bagdad, resp. in Byzantium, between the ninth and the thirteenth century.
The twofold second renaissance comprises the appropriation of the Arithme-

tica in Europe and the Western world as of the sixteenth and seventeenth
century.

4. A few observations on the text of the Arithmetica. Before turning
to the first renaissance and its two chapters, however, let us try to take a
brief look at “the text itself.” Of course, strictly speaking, this is impossible.
There is no original text of Diophantus which has not somehow passed at
least through the first double renaissance. And from the main thesis I am
defending here it should be clear that I have no illusions whatsoever about
the feasibility of “simply reading the text.”19

This being said, one does of course have to look at it. And the reader of
Diophantus then finds himself in a situation somewhat analogous to that of
Hardy and Littlewood when they were perusing Ramanujan’s manuscripts
sent to them from India.20 Both texts clearly show a virtuoso author who is
able to solve problems some of which, in the case of Diophantus, are not easy
to solve today for, say, a good first year university student of mathematics.
For Ramanujan the level is of course even higher. But both texts are also

19 Note the subtle way in which André Weil seems to indirectly acknowledge this
problem in his book [Weil 1983]: his brief chapter on Diophantus is placed in Chapter I:
“Protohistory” (§X, pp. 24–29). This allows Weil to treat Diophantus essentially by way
of various looks cast back on the Arithmetica from later developments of number theory.

20 I am indebted to Don Zagier for this nice comparison.
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written in a way very different from what we are used to, and, above all,
they contain notoriously few hints at the underlying general methods that
the author has employed to find his solutions. This makes it extremely hard
to pin down explicitly “what he knew.”

But it will be convenient for the reader if we briefly point out a few
properties of the Arithmetica which are good to have in mind when looking
at the further voyage of this text through history.

Let us take as a very easy example problem I.28: Find two numbers
whose sum and the sum of whose squares are given numbers. The context
reveals that by “number” Diophantus always means: positive rational num-
ber. Before solving this problem, Diophantus states a necessary condition:
twice the sum of the squares minus the square of the sum of the two numbers
has to be a square (of a positive rational number).

Nowadays, using algebraic notation and knowledge which dates back at
most to the sixteenth century, we would probably reconstruct this somewhat
like this: We look for X and Y such that X + Y = a and X2 + Y 2 = b.
Then 2b− a2 = (X − Y )2 = (Y −X)2 does indeed have to be a square. And
a moment’s thought shows us today that this condition is also sufficient; for
Y = a−X transforms X2+Y 2 = b, divided by 2, into the quadratic equation

X2 − aX +
a2 − b

2
= 0 of discriminant

2b − a2

4
.

If we want, we can then find the two rational solutions of this equation
expressed in terms of a and b, from the formula we have learnt at school.

Diophantus has no such notation, nor was there any general notion or
theory of quadratic equations that he could have been taught at school. It
is also not completely clear whether he understands his necessary condition
(which is clearly stated as such) in fact as a necessary and sufficient condition
for the solubility of the problem.21 All he does is ‘solve the problem,’ and
here is what ‘solving’ means for him: first he chooses the value 20 for what
we have called a, and he chooses the value 208 for what we have called b.
(Note in passing that 2 × 208 − 202 = 42 is indeed a perfect square, so the
necessary condition is respected.)

Then Diophantus proceeds to use his only notation for one (and only
one at a time) unknown quantity.22 Following Tannery, let us write x for this

21 The necessary conditions stated for other problems of the Arithmetica tend to
be necessary and sufficient to insure the general solvability of the problem as stated in
positive rational numbers. But at times the divergence of the generality of the statement
and the particularity of the given solution make the logic more involved. The first such
instance occurs with problem I.21, and was already remarked as such by Bachet. Cf. also
footnote 34 below.

22 According to a generally accepted hypothesis of Heath’s, his sign for this was
probably originally a contraction of the first two letters, αρ, of the Greek word for number,
αριθµoς.
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unique unknown that Diophantus can handle notationally. Diophantus then
writes the difference of the two numbers (the bigger one minus the smaller
one) in the form 2x. In other words, x + 10 will be the bigger, and 10 − x
the smaller of the two numbers we want. Then, noting explicitly that 10 is
half the first given sum, this leaves him with the following equation:23

208 = (x + 10)2 + (10 − x)2 = 2x2 + 200.

Note that it very conveniently does not have a linear term, and therefore
immediately yields x2 = 4, i.e., x = 2 since only positive solutions are
allowed by Diophantus. The two numbers sought are then 12 and 8.

A generous mathematician’s way of reading this ‘solution’ would be to
say that Diophantus shows here a general method to deal with quadratic
equations, and it is only his restricted notation which does not allow him to
spell things out in appropriate generality. He is thus led to choose more or
less generic values for the constants, and also for those unknowns which are
not covered by x.

It is true that Diophantus commands the technique of choosing numer-
ical values to perfection, never losing sight, even in the most involved prob-
lems, of which choices have been made at which stage of the argument, and
not hesitating to go back and correct such a choice if it becomes apparent
that it would lead him to an irrational or negative solution of the principal
problem, or of some auxiliary problem along the way.

However, it is not clear whether Diophantus was aware, for instance,
of a general notion of “quadratic equation.” He does, in the later books,
occasionally indicate more or less general recipes for handling various types
of quadratic equations.24 But the only overriding principle that he seems to
have at heart is a ranking of expressions according to species, i.e. essentially,
according to powers of x, which occur in them, with a view to transforming
the equations at hand in such a way that one is finally left with an equation
between two multiples of the same power of x—see the explanations in the
introductions to books I and IV.25

And yet more seriously, one begins to suspect that there may be more
to those ‘generic choices’ of numerical values than our understanding with

23 To be quite precise, for Diophantus what we write as + and − are not on the same
footing: addition of terms he handles by simple juxtaposition, and in every expression all
terms prefixed by a minus are collected together at the end.

24 See in the first place “IV”.39, [Tannery 1893/95], vol. I, 304, (5) – (10), for an
instance of bx + c = ax2. Similarly “VI”.6, in particular [Tannery 1893/95], vol. I, 402,
(14) – (16), for an instance of ax2 + bx = c. Cf. also the remark in “VI”.22, [Tannery
1893/95], vol. I, 444, (23) – (24), on an equation of type bx = ax2 + c.

25 See the end of the introduction to book I, [Tannery 1893/95], vol. I, 14 (11ff),
which is taken up again in the introduction to Book IV, [Rashed 1984], tome III, p. 2–3;
cf. the commentary about the term species in [Rashed 1984], tome III, p. 104–105.
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its anticipated generality made us guess at first sight, when it comes to
what we call indeterminate problems, i.e., problems that do not, like the
previous one, have a unique solution in positive rational numbers. In fact, in
most cases there is nothing in Diophantus’s usual treatment of indeterminate
problems that shows any difference from the case of determinate problems.
Once a single solution in positive rational numbers is obtained, the problem
is considered done and Diophantus moves on to the next one.

Let us take as example the famous problem II.8, in the all too narrow
margin of which Fermat inscribed the statement (but not his would-be won-
derful proof) of what came then to be called “Fermat’s Last Theorem.”26

The problem reads: Partition a given square into two squares. Diophantus
takes the given square to be 16, and writes the first square of the required
partition as x2. He therefore has to make 16 − x2 a square, which we might
write y2 in our modern notation. In order to do this, Diophantus will use
the Ansatz : y = 2x− 4. This works well because x2 + y2 = 16 then becomes
5x2 = 16x, i.e., x = 16

5 , and we have divided 16 into the sum of the two
squares 256

25 and 144
25 .

This is a fair description of how Diophantus usually treats indeterminate
problems, giving one special solution which depends on numerical choices and
specializations made along the way. The fact that other linear substitutions
y = kx−4 would have yielded a solution to the original problem as well, tends
not to be mentioned. Nor, to be sure, does he ever show any indication of
being aware of the geometric interpretation of this or similar problems as that
of finding rational points on a circle of rational radius, and of his operations,
as intersecting the circle with the line y = 2x − 4.27

In the peculiar, exceptional case of problem II.8, however, there is one
sentence which, for once, expresses greater generality: Before the substitution
of 2x − 4 for the root of the second square, we read: Let us take the square
of some multiple of x minus the number whose square makes 16. In other
words, it is suggested that any substitution of the form kx −

√
16 for y will

yield a solution. And we seem to be referred back to this observation when

26 Fermat’s oft-quoted note reads: Cubum autem in duos cubos, aut quadratoquadra-
tum in duos quadratoquadratos & generaliter nullam in infinitum ultra quadratum potes-
tatem in duos eiusdem nominis fas est diuidere cuius rei demonstrationem mirabilem sane
detexi. Hanc marginis exiguitas non caperet. — That is: “To split a cube into two cubes,
or a biquadrate into two biquadrates, or in general, to infinity, any power higher than the
square into two powers of the same order, is impossible. Of this fact I have discovered a
truly extraordinary proof. The exiguity of the margin would not hold it.” — In one of the
manuscripts, which dates from the 13th century, there is also a note in the margin of this
same problem II.8, by an unhappy reader who curses Diophantus for the difficulty of his
text—see [Tannery 1893/95], vol. I, 84, and [Tannery 1893/95], vol. II, 260.

27 Examples of indeterminate problems in the Arithmetica which Diophantus treats
in such a way that they become definite abound—see for instance the group of problems
II.21, II.22, II.23, II.25.
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we read later on, in problem III.19: We have learned how to decompose the
given square into two squares in an infinite number of ways.28

It is well worth to dwell a bit on this problem III.19. In fact, in all the
Arithmetica as far as we possess them today, III.19 is the most outspoken
passage in the way of allusions to general mathematical facts around the
decomposition of squares into two squares. But it is not theoretical in the
sense of a systematic general treatise. It rather strikes us as a particularly
virtuoso, surprising, and dense solution, which is interspersed with hints at
general insights, a true ‘Champagne Aria’ among the problems of the Arith-

metica. We may assume with Tannery that III.19 originally marked the end,
and indeed the climax, of the first three books of the Arithmetica, which bring
the art of Diophantus up to equations involving the square of the unknown.29

Problem III.19 itself is a mouthful, asking for eight conditions to be
satisfied simultaneously: Find four numbers such that the square of the sum
of all four, plus or minus any one of the numbers, is a square.

Diophantus’s solution of this problem starts with a general observation
which, for once, is not a necessary condition, but presents a preliminary
problem to which the given one will be reduced: Since the square of the
hypotenuse of any right triangle, plus or minus twice the product of the
two sides around the right angle, makes a square, I first look for four right
triangles that have the same hypotenuse. In modern terminology, Diophantus
proposes to look for four different (positive rational) solutions to

(4) a2
i + b2

i = c2 (i = 1, 2, 3, 4)

because then he will have, for i = 1, 2, 3, 4, that c2 ± 2aibi = (ai ± bi)
2 =

a square.
Having stated this auxiliary problem in terms of right triangles, Dio-

phantus immediately goes on to remark that this is really the same as what
the reader is supposed to know, for instance from II.8: This is the same as
decomposing a given square into two squares [in four ways], and we have
learned how to decompose the given square into two squares in an infinite

28 [Tannery 1893/95], vol. I, 184 (3–4). Here and in the following discussion of III.19,
I translate, resp. paraphrase, myself directly from the Tannery edition. — Note that Dio-
phantus does not give any explicit reference to an ealier problem here, nor does he every
take the time to actually prove that infinitely different choices of what we have called k in
our discussion of II.8 do indeed produce infinitely many different partitions of the given
square.

29 See [Tannery 1893/95], vol. I, p. 187, footnote, where it is suggested that the two
subsequent problems III.20 and III.21, which mark the end of book III in the manuscripts,
are later additions. If we discuss III.19 in detail, we do so assuming, at least for the
sake of the argument, that this problem and its solution is indeed an original part of the
Arithmetica.
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number of ways.30 But this sentence, the way it is inserted here into the
solution of III.19, is a mere aside; we will see how Diophantus will actually go
about finding a concrete solution to the auxiliary problem without directly
invoking the method of II.8. Does this maybe suggest that the infinitely
many solutions whose existence we may be sure of, are not as such easy
to make explicit for Diophantus, or at least that he finds it too difficult
for pedagogical reasons to follow this approach here? Or is it merely the
overflowing abundance of ideas of the true virtuoso which prompts him to
solve the auxiliary problem in another way?

Be that as it may, having made his general observation, here is how
Diophantus actually solves his auxiliary problem:

So let us now exhibit two right triangles on smallest numbers,
namely (3,4,5), (5,12,13), and multiply all sides of each triangle
with the hypotenuse of the other triangle; then the first triangle
becomes (39,52,65), the second (25,60,65). These are right [trian-
gles] having the same hypotenuse. But 65 is naturally partitioned
into squares in two ways; as 16 plus 49, and as 64 plus 1. This is
so because the number 65 is the product of 13 and 5, and each of
these can be decomposed into two squares. I now take the roots of
the said 49 and 16, i.e., 7 and 4, and form the right triangle from
the two numbers 7 and 4: (33,56,65). Similarly, 64 and 1 have the
roots 8 and 1; so I form again a right triangle, from these numbers,
whose sides are (16,63,65).

There are several general facts used or alluded to in this passage. First,
Diophantus knows how to systematically produce right triangles with inte-
ger sides. More precisely, given positive integers, in our notation p > q, he
knows how to, as he he calls it, “form the right triangle from these num-
bers,” i.e., in our notation, he knows how to write down the right triangle
(p2−q2, 2pq, p2+q2) (or with the two first sides permuted), and also multiples
((p2−q2)λ, 2pqλ, (p2 +q2)λ) of it. Such a forming of right triangles from two
numbers is what is treated nowadays—apparently as a late echo of a histori-
cal attribution made in the fifth century AD by Proclus—under the name of
‘pythagorean triples.’ This basic technique is used by Diophantus in many
places, in particular in the problems of book “VI”. It is by no means surpris-
ing to find such knowledge in Diophantus, given that the famous Babylonian
tablet Plimpton 322 which is believed to be certainly not more recent than
1600 B.C. already contains a list of fifteen ‘pythagorean triples.’31 But note
that it is not evident from the text of the Arithmetica, whether Diophantus

30 [Tannery 1893/95], vol. I, 184 (1–4). Our parenthesis [in four ways] indicates
a slight insecurity in the text which, however, causes no trouble for understanding the
sentence.

31 See for instance [Weil 1984], p. 8f.
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knew that all right triangles with rational sides can be obtained in this way
(a fact which we ‘simply’ like to see today as the parametrization of the
rational points on the unit circle via stereographic projection from a chosen
rational point P : the rational points on the unit circle are the second points
of intersections with the circle of lines with rational slope passing through
P ). This kind of statement, aiming at exhausting all solutions of a problem,
seems in fact alien to the very style of Diophantus’s problems.

The other striking observation in the text at hand is the remark about
65 being the sum of two squares in two different ways, because it is the
product of the two integers 5 and 13, each of which is the sum of two squares.
This indicates knowledge on the multiplicativity of the property of being
decomposable into two squares, i.e., something like what we would indicate
by the formulae32

(a2 + b2)(c2 + d2) = (ac − bd)2 + (ad + bc)2 = (bc − ad)2 + (bd + ac)2.

Such knowledge in Diophantus seems more remarkable than that about con-
structing right triangles.

At any rate, following this ingenious play with different right triangles,
Diophantus has now at hand, as he says, four right triangles having the
same hypotenuse. Or in terms of what we called (4): 652 = 332 + 562 =
162 + 632 = 392 + 522 = 252 + 602. So he may continue: Let us therefore
go back to the original problem. I put the sum of the four numbers equal to
65x, and the individual ones equal to x2 times four times the areas of the
triangles.

Let us transfer this to our general setup: Suppose we have found c
and the four pairs (ai, bi) satisfying (4). Note in passing that Diophantus’s
four times the area of the right triangle (ai, bi, c) is precisely the quantity
2aibi which, when added to or deducted from c2, each time makes a square.
Now, there is of course no reason to assume that we will also have c =
2a1b1 +2a2b2 +2a3b3 +2a4b4, as we would wish in order to solve the original
problem. So, Diophantus suggests that we scale the four triangles: we may
multiply all ai, bi, c by the same factor x, and still have four solutions to
the homogeneous equation (4). Then, all we have to do is to choose x such
that (2a1b1 +2a2b2 +2a3b3 +2a4b4)x

2 = cx. This is achieved by the rational
value x = c

2(a1b1+a2b2+a3b3+a4b4)
, and thus we obtain a solution to the original

problem.
This is what Diophantus executes for his numerical values.33 The solu-

tion of the original problem that he thus winds up with is given by the four
numbers 17136600

163021824 , 12675000
163021824 , 15615600

163021824 , and 8517600
163021824 .

32 See also [Weil 1983], p. 24f.
33 See the end of his solution to III.19, [Tannery 1893/95], vol. I, 186 (1) – (9). Note

that the editors’ corrections of some of the numbers in this final passage of III.19 appear
to be straightforward.
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To sum up: the disparity between the general formulation of problems
and certain restrictive conditions, as well as some very rare general comments
on the one hand, and the particularity of the presented solutions on the
other, make it hard if not impossible to judge with any kind of precision the
‘theoretical’ algebraic knowledge that Diophantus had at his disposal. There
is also never a statement to the effect that all solutions of a problem have
been found.34

If one just looks for statements or general methods described as such in
the Arithmetica, there are some to be found in the introductions to books
I and IV. For instance, Diophantus gives the abstract rule for handling the
‘minus’-operation (λειψις): in our notation, (−) · (−) = +.35 Furthermore,
within the problems, some more or less general approaches are given special
names; for example, the double equation (διπλoισoτης), in our notation:36

x + a = u2

x + b = v2

where Diophantus tries to write a − b = u2 − v2 = pq =
(

p+q

2

)2

−
(

p−q

2

)2

.

Roughly 15% of the approximately 300 problems that we currently know
of the Arithmetica contain so-called diorisms, i.e., necessary conditions like
the one on 2b − a2 being square which we encountered in our first example,
II.8, above. Their generality tends to be close to that of the statement of the
problem.37 Among these are the six problems of whose necessary condition

34 Bašmakova, who is always ready to attribute advanced knowledge to Diophantus of
which there is no explicit trace in the text, draws up a list of more general solutions of prob-
lems in the Arithmetica [Bašmakova 1974], 40–42. Apart from III.19 just cited, she quotes
four problems of book “IV” which are to be solved in indeterminato (εν τω αoριστω):
“IV”.19, “IV”.33, lemma, “IV”.34, lemma, “IV”.35, lemma. Here we find indeed that the
text explains one-parameter families of solutions, but a careful analysis of the text would
have to try to explain: why here and not elsewhere? Finally, Bašmakova quotes from the
book “VI”, which treats primarily problems involving rational right triangles, a domain
where we have already seen that the Arithmetica contain statements that go beyond par-
ticular solutions to indeterminate problems. First she points to “VI”.11, second lemma,
which does make an infinity claim which is reduced to those listed before. And then she
mentions the “lemma” preceding problem “VI”.15, which according to Bašmakova has a
“much more general character” than the other quotes. But as a matter of fact, Diophantus
treats it by specialization as usual, concluding once a special solution is found.

35 [Tannery 1893/95], vol. I, 12 (19–21).
36 See for instance problem I.11 in [Tannery 1893/95], vol. I, 96 (8–14).
37 I am thinking of the following 46 problems, of which I put in brackets those which

Sesiano, in his list [Sesiano 1982], 461–483, does not recognize as problems with diorisms:
I.5, I.6, I.8, I.9, I.14, I.16, I.17, I.19, I.21, I.27, I.28, I.30; II.6, II.7, (III.16), (III.19) [see the
discussion above]; IV.17, IV.18, IV.19, IV.20, IV.21, IV.22; V.7, V.8, V.9, V.10, V.11, V.12;
(VI.21), VII.6, (VII.16), (VII.17), (VII.18); (“IV”.7), (“IV”.14), “IV”.34, “IV”.35; (“V”.3
[“porism”]), (“V”.5 [“porism”]), (“V”.6, 2. lemma), (“V”.7), (“V”.8), “V”.9, “V”.11,
“V”.16 [“porism”]; “VI”.11, 2. lemma.
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we read that “This is πλασµατικoν” (plasmatikon). Reading this reminds
the modern mathematician of remarks of the sort “this is trivial,” but who
knows what this word held for Diophantus? A lot of ink has been spilled
about this question. It may well be unanswerable.38

Finally, there is one famous diorism in which Diophantus may have
recorded that a (squarefree) odd number can only be decomposed as a sum
of two squares, if it has no factor of the form 4n − 1. But the text in the
manuscripts is obviously corrupt. Jacobi tried to correct it (yielding, of
course, the statement we would very much like to credit Diophantus with),
and it is touching to see how he tries to reconstruct the way in which the orig-
inal text may have been deformed by copists who were unable to understand
its meaning.39

5. The first renaissance of Diophantus took place in the world of Islam;
it began probably in the 70s of the ninth century. Qusţa ibn Luqa, a Greek
christian whose mother probably called him Kostas, worked for the better

38 The six problems are I.27, I.28, I.30; IV.17, IV.19; V.7. Already the various
translations that have been proposed over the centuries give an idea of what one is up
against: from Xylander’s (1575) “effictum aliunde,” and Nesselmann’s (1842) “das läßt sich
aber bewerkstelligen,” via Tannery’s (1893) “hoc est formativum”, Heath’s (1910) “This is
of the nature of a formula (easily obtained)”, Ver Eecke’s (1959) “chose qui est figurative,”
Sesiano’s (1972) “constructible,” the spectrum goes all the way to Wertheim’s (1890) “und
man kann immer solche Zahlen als gegeben annehmen, daß diese Bedingung erfüllt ist,” or
Rashed’s (1984) “Ceci est un problème convenablement déterminé.” Probably the biggest
obstacle to solving the problem lies in the fact that, as far as we know today, this word
or its Arabic equivalent occurs only six times in the Arithmetica (and the text in the first
Arabic occurence is also problematic), and it does not occur with many diorisms where
we would expect it according to the interpretations given by Rashed ([Rashed 1984],
tome III, 133–138) or Sesiano ([Sesiano 1982], 192). Ver Eecke—see [Ver Eecke 1959], p.
37, footnote—thought that these words are remarks made by some early reader of Dio-
phantus, which slid into the text after copying. (But he could not know about the three
occurences in books IV and V, from the Arabic translation discovered in the 1970s. And
this translation is based on a tradition of the text of the Arithmetica which is different
from the one that led to the Greek manuscripts we know.) In [Caveing 1997], 389–393,
on the other hand, the Greek expression is used as evidence for a geometric background
of Diophantus’s algebra. (But serious doubts remain whether the jargon of a working
mathematician is accessible to Caveing’s refined philology.)

39 Problem “V”.9, [Tannery 1893/95], vol. I, 332 (17)–334 (2). See [Jacobi 1847].
His proposed corrected version reads: δει δη τoν διδoµενoν µητε περισσoν ειναι, µητε o
διπλασιων αυτoυ και µ◦ α µειζων εχη µερoς τετραχη µετρεισϑαι παρα την α µ◦. That
is : “It is necessary that the given quantity be neither odd, nor that any part of twice
the given quantity plus 1 be measured four-fold next to 1.” This is meant, according to
Jacobi, to express a necessary condition for ‘twice the given quantity plus 1’ being a sum
of two squares. Jacobi also proves this necessary condition at length in a way which, he
thinks, was accessible to Diophantus. Tannery’s reconstruction of this difficult sentence
expresses the (equivalent) condition that no prime divisor p of ‘twice the given quantity
plus 1’ should be such that 4 divides p + 1. It has the advantage of leaving the word
‘prime number,’ which occurs in some manuscripts, intact. The same reading, without
philological anlysis, had already been suggested by Fermat on mathematical grounds—see
[Fermat II], p. 203f.
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part of his life as a translator and commentator at the court of Bagdad.
Thus he also translated Diophantus from Greek into Arabic (and wrote a
commentary which we do not have), probably the first seven books of the
Arithmetica. The books IV through VII from this translation resurfaced
around 1971 in the Astan Quds Library in Meshed (Iran) in a copy from
1198 AD.40 It was not catalogued under the name of Diophantus (but under
that of Qusţa ibn Luqa) because the librarian was apparently not able to
read the main line of the cover page where Diophantus’s name appears in
geometric Kufi calligraphy.

This discovery, and the subsequent editions and translations by Roshdi
Rashed and Jaques Sesiano substantially changed our view of the Arithme-

tica. Before, the six books of the Arithmetica which have come upon us
through Byzantine copies (see below, the second renaissance of Diophantus)
had been taken to be the first six books of the work.41 But now we have to
count them like this: I, II, III, “IV”, “V”, “VI”. The first seven books of the
Arithmetica are: the first three books I, II, III from the Greek sources, and
then books IV through VII of which we have the Arabic translation. The
remaining Greek books “IV”, “V”, and “VI” come somewhere between VIII
and XIII, but we do not know where.

Qusţa ibn Luqa’s translation was made about half a century after al-
Khwarizmi had created, also in Bagdad, Algebra as a mathematical disci-
pline, through his famous book. Now, al-Khwarizmi’s book is the exact
opposite of Diophantus’s Arithmetica in that it is on the one hand more el-
ementary, treating only linear and quadratic equations whereas Diophantus
has a lot of problems involving cubes, and other higher powers up to x9 oc-
cur. But the novelty (and other difference with Diophantus) of al-Khwarizmi
lies in his extremely systematic treatment, aiming at a general classification
of linear and quadratic equations, and at general methods of solving them
which are established with proofs. Thus, by translating the Arithmetica,
Qusţa ibn Luqa implanted them into an active scientific environment which
was marked by a systematic development of the young discipline of algebra.

This not only meant that Diophantus’s work was now occasionally re-
ferred to as his “Art of Algebra,” and that Qusţa ibn Luqa used the new
Arabic algebraic terminology for his translation. But the translation was read
and used as inspiration by working mathematicians who had their own math-
ematical notions and interests to put it into place. Thus abu-Kamil in Cairo,
for instance, wrote a book on algebra hardly ten years after Qusţa ibn Luqa’s

40 See [Rashed 1984], cf. [Sesiano 1982].
41 See for instance [Ver Eecke 1959], p. XII–XV, for a survey of different views con-

cerning the part of the complete Arithmetica that the six Greek books were supposed to
represent by various authors, before the discovery of the Arabic books. Ver Eecke even
tries to convince the reader that no other books than those known in Greek ever existed
in Arabic translation: p. XIVf.
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translation, which discusses the existence of infinitely many solutions to equa-
tions which we recognize as defining conic sections, provided they admit at
least one rational solution.42

And there was yet another line of research which began to be cultivated
by mathematicians of the world of Islam during the second half of the tenth
century, and for which Diophantus’s problems were as interesting as they
were a priori differently conceived: I mean the number theoretic movement
in Arabic algebra which Roshdi Rashed in particular has drawn attention
to and analyzed. This is usually described as the discipline which asks for
solutions in (positive) integers, rather than, as Diophantus does, in (posi-
tive) rational numbers, of polynomial equations in two or more variables.
This description is slightly awkward in that the rational solutions to a given
equation in n variables (say, x3 + y3 = 1) correspond to integer solutions of
the homogenized equation in n + 1 variables (x3 + y3 = z3). So it is better
to describe the difference between the algebraic and the arithmetic line of
research differently. What strikes us in tenth century arithmetic, in contrast
to Diophantus’s Arithmetica, is the new notion of unsolvability that makes
its appearance.

All problems in the Arithmetica are not only solvable but actually solved.
Difficulties with the solvability in positive rational numbers, which naturally
come up in the course of the work, occur for Diophantus when an equation
would lead either to a nonpositive, or to an irrational solution. These difficul-
ties are systematically avoided by going back and choosing other numerical
values for the data of the problem. Just as he never discusses systematically
all solutions of a given problem, he also never proposes problems that have
no solution in positive rational numbers.

But around 940 al-Khazin refuted an argument that abu-M. al-Khujandi
had proposed to show that the equation (in our notation) x3 + y3 = z3 has
no solution in positive integers, and this discussion was carried on further
involving also Abdallah ben Ali !43 And it was also al-Khazin, and not Dio-
phantus, who formulated the problem which has become over the past 15
years among arithmetic algebraic geometers a favourite topic of lectures for
a wider audience:

Congruent Number Problem. Decide whether a given squarefree integer
is the area of a right triangle with rational sides.

It is still unsolved, although we today have a very simple conjectural answer
which can be reduced to the well-known Conjecture of Birch and Swinnerton-
Dyer for certain elliptic curves over Q. To be precise, if the Birch-Swinnerton-

42 Here we follow Rashed’s account in the chapter Analyse combinatoire, analyse
numérique, analyse diophantienne et théorie des nombres of [Rashed 1997], in particular
pp. 72–85. See also the literature quoted there.

43 See [Anbouba 1979], 136f; cf. [Rashed 1979], [Rashed 1997], 80–85.
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Conjecture is admitted for all elliptic curves Ek : ky2 = x3−x, for k varying
over all squarefree positive integers, then it follows that such a k is a congru-
ent number (i.e., is the area of a right triangle with rational sides), if and only
if

∑

(−1)n = 0, where the sum is taken over all possible ways of writing k in
the form `2 + 2m2 + 8n2 (if k is odd), resp. over all possible ways of writing
k
2 in the form `2 + m2 + 8n2 (if k is even), with nonnegative integers `, m, n.
The proof of this implication makes serious use of very recent developments
in arithmetic algebraic geometry.44

On the face of it, the congruent number problem seems to ask for rational
solutions of equations of just the same type as we find discussed in the Arith-

metica : k is a congruent number if and only if there are (positive) rational
numbers a, b, c satisfying a2 + b2 = c2 and such that k = ab

2 . But it actually
requires quite a different sort of technique precisely because the issue is the
solvability of these equations. This is apparent from the first special case: the
theorem that 1 is not a congruent number. It is tantamount to saying that
the area of a right triangle with rational sides can never be a square, or to the
fact the equation x4 + y4 = z2 has no solution in positive integers, so that it
contains the special case n = 4 of the so-called Fermat’s Last Theorem. This
theorem was first proved by Fermat with his technique of descent (descente

infinie).45 The Arab number theorists have opened up mathematics for this
kind of problems, and they were surely in part inspired by Diophantus. But
they did not yet have the means to prove the unsolvability theorems which
they were the first to envisage.

A late echo, from the first half of the 13th century, of this number
theoretical research of the World of Islam is found in the works of Leonardo
di Pisa, better known as Fibonacci, who profited from direct exchange with
the Arab speaking world, as did the Sicilian court of Frederic II where he
worked. This exchange did not make Diophantus directly accessible to the
Occident. But it did contribute to making the congruent number problem
known in the West.

6. The second renaissance of Diophantus, or more precisely, the second
chapter of the first renaissance, took place during the intellectual revival of
the Byzantine empire between the 11th and the 13th century. It is linked to
the first chapter in that it was to a large extent the interest of the world of

44 The result, in a less explicit form, is due to J. Tunnel (Inventiones Math. 72 (1983),
323–334); the refinement, using a result of Waldspurger’s, was proposed by D. Zagier. See
for instance [Schappacher 1989], [Koblitz 1984].

45 The proof is sketched, and constitutes the only explicit sketch by Fermat of a proof
by descent that we have, in a note in the margin of his Bachet edition of Diophantus,
following some number theoretical problems that Bachet has added at the end of book
VI of the Arithmetica. See the fundamental book [Goldstein 1995], which incidentally has
suggested the basic thesis of this paper. For the nature of Bachet’s edition, cf. below, the
third renaissance.
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Islam for old Greek manuscripts which finally triggered the growing interest
of the Byzantines in their intellectual heritage. It is this Byzantine aware-
ness of heritage to which we owe the manuscripts (copies of copies) of the six
books I, II, III, “IV”, “V”, “VI” of the Arithmetica, which have come upon
us in Greek.46 The oldest of these manuscripts themselves are thought to
date from the 13th century. The whole Byzantine tradition of the text does
not go back to the same original ‘edition’ of the Arithmetica as the Greek
text from which Qusţa ibn Luqa had translated. The latter is richer in com-
menting the solutions given, and also places a standard sentence at the end of
each solved problem which sums up the solution obtained. There have been
discussions whether Qusţa ibn Luqa’s copy was maybe Hypatia’s “commen-
tary” on Diophantus which existed according to the Byzantine encyclopedia
Suda (Σoυδα).47

If the Byzantine interest in Diophantus and other ancient mansucripts
was mainly motivated by a sense of cultural heritage, and not by active math-
ematical interests comparable to those of the scholars in the Arab world, this
is of course not to say that the Byzantine scholars did not study their Dio-
phantus. The historian of mathematics Christianidis has recently proposed
a reading of Diophantus via the theory of proportions, which is a direct
generalization of a commentary by Maximus Planudes on problem II.8—see
section 4 above for our brief discussion of this problem.48 Thus Christianidis
explains Planudes’s way of reconstructing Diophantus: if we extend the no-
tation which we used above in section 4 to state the general problem II.8 in
the form x2 +y2 = a2, then the substitution “y = kx−a” is obviously equiv-
alent to saying that k equals the proportion (a + y) : x. And Christianidis
shows how similar reconstructions in terms of proportions can be given for
Diophantus’s solutions of other indeterminate problems in a mathematically
coherent way.

But there is no shortage of such mathematically coherent reconstructions
of Diophantus’s alleged method. Bašmakova’s account in [Bašmakova 1974],
or its echo in Zagier’s presentation [Zagier 1991], who proceeds with the

46 See the table in [Tannery 1893/95], vol. II, p. XXIII.
47 This entry of the Suda is included in [Tannery 1893/95], vol. II, 36 (20–25).

There, Tannery suggests a slight modification of the text of the manuscript. The Suda
is a compilation of compilations dating from about 1000 AD. Tannery reproduces the old
erroneous reading of the name of this encyclopedia as the name of a person, “Suidas.” —
For the maximal list of works that one might today attribute to Hypatia, see [Cameron et
al. 1993], p. 49, and the references given there. More specifically for the commentary on
Diophantus, see [Bašmakova et al. 1978], as well as [Sesiano 1982], 71–75. These hypothe-
ses about a “major commentary” which would have been the basis of Qusţa ibn Luqa’s
translation have been violently rejected by Rashed and his circle—see for instance [Rashed
1984], tome III, the end of the long footnote 63, on page LXII.

48 [Christianidis 1998]. The Byzantine monk Maximus Planudes (appr. 1255–1305)
was the Byzantine scholar to whom the most important class of Greek manuscripts of the
Arithmetica which we have today goes back to.
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modern classification of the problems according to the genus of algebraic
curves in mind, provide other examples. Christianidis draws our attention
to a Byzantine way of looking at Diophantus. Short of assuming a particular
communication of souls between Diophantus and Planudes over some seven
centuries or more, there is no reason to grant this reading any more authority
than other reconstructions. But as a Byzantine reading it might actually be
relevant to understand particularities of the Byzantine manuscripts on which
our knowledge of the Greek books of the Arithmetica depends.

7. The third renaissance of Diophantus, or the first chapter of the
second double renaissance, was started by the humanist Johannes Müller,
better known as Regiomontanus, who discovered at the end of 1463 one of the
Byzantine manuscripts of Diophantus in Venice.49 Giovanna Cifoletti50 has
shown that, over the following 200 years, Diophantus’s Arithmetica was taken
on the one hand as the ultimate proof for the creators of the new Algebra
like Gosselin, Stevin, Pelletier, Viète, and others that algebra was not an
Arab invention, but that it had existed with the Greeks as a pure science,
whereas the barbaric Arabs had humiliated it into an applied discipline.51

On the other hand, we see in this third renaissance almost a repetition of
what we found in the Arab world during the first renaissance: a number
theory movement sets in which starts to rival the algebraic approach to the
Arithmetica.

Thus, the first European edition, of the (six Greek books of the) Arith-

metica52 realized as a Latin translation in 1575 at Basel by the humanist
Wilhelm Holzmann (1532–1576), who called himself à la grecque Xylander,
was soon followed by another one, in Greek with Latin translation, done
with great care and lots of remarks and added problems by the ‘lover of
numbers’ Bachet de Méziriac (Paris 1621).53 This was the edition of Dio-
phantus which Pierre de Fermat studied and into which he inscribed his

49 For Regiomontanus in general see [Zinner 1968], cf. also [Mett 1996] and [Belyi
1985]. Regiomontanus describes his discovery of this Greek work on Algebra in a letter to
Bianchini dated 11 February 1464. There he says in particular, quite characteristically for
a humanist at the time, that he would like to translate this text into Latin and publish it,
but not before he has found the remaining 7 of the 13 books. . .

50 [Cifoletti 1996], cf. also [Morse 1981].
51 See Viète, preface to his Zététiques [Vaulézard 1986], p. 271: “L’art que je produis

aujourd’hui est un art nouveau, ou du moins tellement dégradé par le temps, tellement
sali et souillé par les barbares, que j’ai cru nécessaire de lui donner une forme entièrement
neuve.”

52 This is not counting Bombelli’s Algebra from 1579 which contained many problems
taken from Diophantus.

53 To cite but one famous example of Bachet’s numerous comments on the possibility
of decomposing numbers as sums of 2, 3, or 4 perfect squares, on the occasion of problem
problem IV.29. This remark triggered the general claim in the margin by Fermat, that
any number is the sum of at most a a-polygonal numbers, which was subsequently proven
by Lagrange, Legendre, Gauss for squares (a = 4), and for general a by Cauchy.
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famous marginal notes. Now, as we mentioned above, Fermat introduced
as a major novelty into arithmetic the technique of infinite descent. But
for a descent argument (i.e., for the contradiction at the end) to work it is
essential that one deals with (hypothetical) solutions to the problem which
are measured by positive integers, and not just by rational numbers or other
non-discrete quantities. Therefore Fermat was unhappy about the algebraic
tendencies of his time, in particular Viète’s success, but also with Diophantus,
and tried to rally support for number theoretic investigations in his style. In
fact, it seems that this danger, as he saw it, of the new algebra of his time
to move from integer variables to rational numbers, or even to continuous
quantities without having to change notation, prompted Fermat not to use
algebraic notation, but Latin prose, when he was doing number theory, in
particular via descent (no wonder then, that the margin was often too small).
But of course he was well aware of how much inspiration he had received from
Diophantus for his number theory, and thus he once speculated whether
among the 7 books of the Arithmetica unknown to him, there might not be
one or several that would treat problems looking for integer solutions instead
of rational ones. This speculation strikes us as very unlikely today; it is a
marvellous example for the many different ways in which Diophantus has
been approached over the centuries.54

To give yet another example of a reading of Diophantus in a certain
historic context, let us quote d’Alembert’s entry on Diophantus in the great
Encyclopédie [d’Alembert 1784]. There he soon points out the usefulness of
Diophantus’s methods for the transformation of integrals of algebraic func-
tions, and thus finds the occasion to quote a paper of his which he had
published in 1746 in the Berliner Monatsberichte.

8. Diophantus in the twentieth century. And nowadays? The renais-
sance initiated by Regiomontanus, Viète, and Fermat has been brought to
a certain conclusion by the classical scholarly work on Diophantus (as well

54 See Fermat [II], no. LXXXI, Second défi de Fermat aux mathématiciens, Février
1657; p. 334f (our translation): “Arithmetical questions—there is almost no-one proposing
them, almost no-one understanding them. Or isn’t this the reason why arithmetic has been
hitherto treated geometrically rather than arithmetically? This is in fact what most of
the books of ancient as well as recent authors suggest; this is what Diophantus himself
suggests. Even though he stood a bit more apart from geometry than others, in that he
restricts to analysis with only rational numbers. This domain, however, is not completely
free from geometry, as is proved over and over by Viète’s Zetetica in which Diophantus’s
method is extended to the continuous quantity, and thereby to geometry. Thus it is the
theory [doctrina] of integers that arithmetic claims as its proper patrimony. This theory,
which is already, if only with a light touch, sketched in Euclid’s Elements, and which has
not been sufficiently developed by those who followed (if a substantial amount of it is not
hidden in those books of Diophantus which the adverse course of time has withdrawn from
us)—the students of arithmetic should strive to advance or renew.”
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as on Fermat) done by Heath and Tannery around the turn of the century.
In the twentieth century I see a new renaissance of Diophantus which began
even before the discovery of the four Arabic books in the 1970s. If a date has
to be given to mark the transition from the third to the fourth renaissance

of Diophantus, I would propose Poincaré’s research programme [Poincaré
1901] where he indicates how the arsenal of birational algebraic geometry,
which had seen such a formidable progress in the nineteenth century, should
be systematically brought to bear on diophantine problems. Poincaré’s pro-
gramme suggests that we turn to the theory of algebraic curves to understand
the Arithmetica; that we use the genus as the classifying invariant for Dio-
phantus’s problems; that we see chords and tangents in many places where
Diophantus chooses numerical values. Algebraic geometry has provided the
modern language for discussing Diophantus. The impressive success story
of Arithmetic algebraic geometry in the twentieth century has given it an
additional momentum.

What I find most intriguing in the current situation is the strange con-
vergence of two tendencies which are really opposed to each other: At first
sight, the historical-philological approach seems to be neatly separated to-
day from the creative mathematical one, as it naturally ought to be. For
instance, if one compares Rashed’s edition of the Arabic books [Rashed 1984]
with Tannery’s classical edition of the Greek books [Tannery 1893/95], the
main difference is that Rashed and his collaborators separate the mathemat-
ical commentary clearly from the pure, literal translation, whereas Tannery
amalgamated translation and notational retranscription in his Latin text,
thus avoiding a separate mathematical commentary altogether. This should
be seen as a natural progress over the past 100 years of the philological care
taken also with scientific texts. After all, archeologists do also no longer im-
itate Evans’s behaviour while unearthing the Knossos palace in Crete, who
simply threw many fragments away if they did not come from the ‘classical’
stratum that interested him. It may also be an indication that our current
algebro-geometric frame of interpretation for Diophantus is farther removed
from the text than that of Fermat, even though the current editions have not
yet adopted Grothendieck’s language of schemes; Lachaud, who prepared the
commentary for the Rashed edition, compromised for the language of Weil’s
Foundations of Algebraic Geometry from 1946.

But in spite of this crystal clear separation of the historical text from the
modern interpretation, certain historians of mathematics try to surpass the
mathematicians in blending modern inspiration with Diophantus’s alleged
thoughts. The worst example of this thoughtless tendency is given by the
Russian historian of mathematics Bašmakova in her book on Diophantus
[Bašmakova 1974]. To give but one telling example, she claims that Dio-
phantus uses also negative numbers, in spite of the obvious fact that he only
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accepts positive rational solutions. To substantiate her claim55 she analyzes a
problem (II.9) in terms of the chord and tangent process, according to which
Diophantus draws “a line through the point (2,−3).” That neither the line
nor that point are mentioned in Diophantus does not seem to distract this
author who continuously confuses her own mathematical interpretation with
the content of the text.

Contrary to the historian, a mathematician cannot be asked to separate
his creative ideas from the text. After all, his duty is not to do history of
mathematics, but to use Diophantus as a sort of virtual colleague in the quest
for new problems and theorems. To conclude, let us take a look at Joseph L.
Wetherell’s 1998 Berkeley thesis: “Bounding the number of rational points
on certain curves of high rank”.56 This work takes off from problem VI.17 of
the third Arabic book: “Find three squares which when added give a square,
and such that the first one is the side (i.e., the squareroot) of the second,
and the second is the side of the third.”57 Call the first number, which has
to be a square, x2, then the second is x4, and the third x8, and we want
that x2 + x4 + x8 be a square, which in modern notation we may write as
y2. Diophantus solves this problem by taking y as x4 + 1

2 . This gives the
equation

x2 + x4 + x8 = x8 + x4 +
1

4
,

in which he may, according to the first principles of the Arithmetica, simplify
terms of equal order. This gives

x2 =
1

4
,

and therefore (since only positive rational numbers are acceptable) the solu-
tion x = 1/2. Thus the first number sought is 1/4, the second (which had
to be the square of the first) “the half of one eighth”, as Diophantus says,
and the third is 1/256. Their sum is 81/256, which is indeed a square. This
finishes this problem of the Arithmetica, which clearly belongs to the less
complicated ones.

Its special role when viewed through our current spectacles comes from
the observation that today we instinctively substitute in the equation

y2 = x8 + x4 + x2

55 [Bašmakova 1974], 36.
56 I thank Wetherell (jlwether@alum.mit.edu, oder: wetherel@math.usc.edu) for

promptly sending me the files.
57 See [Rashed 1984], tome IV, 65. Cf. [Sesiano 1982], 149f. Apparently because this

problem does not fit into any group of problems in an obvious way, it is simply omitted
from the Conspectus of all the problems in Rashed’s edition: [Rashed 1984], tome IV, 129.
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y = xw, and thus obtain the hyperelliptic curve

w2 = x6 + x2 + 1.

Blowing up at infinity resolves this into a smooth projective curve of genus
2. According to Gerd Faltings’s theorem from 1983 (the former Mordell
Conjecture), such a curve can only have finitely many rational points.58

Thus Wetherell writes in his introduction:

This work was motivated by a problem from the Arithmetica of
Diophantus. In problem 17 of book 6 of the Arabic manuscript,
Diophantus poses a problem which comes down to finding positive
rational solutions to y2 = x6 + x2 + 1. This equation describes a
genus 2 curve which we will call C. Diophantus provides the so-
lution (1/2, 9/8) and a natural question is whether there are any
other positive rational solutions. It clearly will suffice to find all
rational points on C. In addition to the solution given by Diophan-
tus and the 3 obvious variations obtained by negating the x and
y-coordinates, we have the 4 trivial solutions (0, 1), (0,−1), ∞+,
and ∞−. Here ∞+ and ∞− are the points on the non-singular
curve which lie over the point at infinity in the hyperelliptic plane
model for C.

There are several reasons why C is intriguing. First, it appears
to be the only curve of genus greater than one in the ten known
books of the Arithmetica.59 Since the genus is greater than one, we
know by Faltings’ theorem that C has only finitely many rational
points. So it makes sense to ask if Diophantus had found all of the
positive rational solutions. In other words, are the 8 solutions we
have described the only rational points on C?

Second, while C has many pleasant properties, it is just outside
of reach for the usual methods of determining the set of rational
points on a genus 2 curve. In particular, C covers two elliptic
curves:

E1 : y2 = x3 + x + 1,

E2 : y2 = x3 + x2 + 1.

If either of these elliptic curves had only finitely many rational
points, it would be a short calculation to find the set of rational
points on C; however, both E1 and E2 have rank 1. Along the
same lines, if J = Jac(C) had rank 0, then it would be a finite

58 Cf. the allusions to this in [Rashed 1984], tome IV, p. LXXVIII.
59 Note by N. Sch.: This is not true. There is one other example in the Greek books

which lie past book VII of the Arithmetica: problem “IV”.18.
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calculation to determine C(Q). If J had rank 1, then it would be
possible to bound the number of points in C(Q) by using Flynn’s
explicit description of Chabauty calculations on genus 2 curves. But
J is isogenous to the product E1 × E2, so that J has rank 2.

Using a refinement and strengthening of Chabauty’s method, Wetherell
finally succeeds in showing that the equation y2 = x6 + x2 + 1 has indeed
only the six obvious solutions (x, y) with x, y rational.

It is exciting to see how a problem which is over 1700 years old can
suggest an interesting research topic today. It is clear that our mathematical
interest in Wetherell’s work is not in the result but in the refined method
he applies. And if we care for a bit of historical perspective, we should not
forget that the diophantine problem solved here—namely, to determine all
rational solutions of the given equation—is of the sort that Diophantus would
not have been able to express.
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I.G. Bašmakova (1974), Diophant und Diophantische Gleichungen, Berlin (VEB Deutscher
Verlag der Wissenschaften)
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Attributed to Qusţa ibn Luqa, New York - Heidelberg - Berlin (Springer)

O. Spengler (1923), Der Untergang des Abendlandes (2 Bände), we quote from the ‘Gesam-
tausgabe,’ dtv, 1972

P. Tannery (1893/95), Diophantus Alexandrinus, opera omnia, I & II, Leipzig (Teubner);
I am using the reprint Stuttgart (Bbibliotheca Teubneriana) 1974
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J.-L. de Vaulézard (1986), Introduction en l’art analytic ou nouvelle algèbre, and: Les
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avec une introduction et des notes; nouveau tirage 1959, Paris (Blanchard)

A. Weil (1983), Number Theory. An approach through history. From Hammurapi to
Legendre; Boston, etc. (Birkhäuser)
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