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Preface

This book is an outgrowth of the Workshop on “Regulators in Analysis, Geom-
etry and Number Theory" held at the Edmund Landau Center for Research in
Mathematical Analysis of The Hebrew University of Jerusalem in 1996. During
the preparation and the holding of the workshop we were greatly helped by the
director of the Landau Center: Lior Tsafriri during the time of the planning of the
conference, and Hershel Farkas during the meeting itself. Organizing and running
this workshop was a true pleasure, thanks to the expert technical help provided by
the Landau Center in general, and by its secretary Simcha Kojman in particular.
‘We would like to express our hearty thanks to all of them.

However, the articles assembled in the present volume do not represent the
proceedings of this workshop; neither could all contributors to the book make it
to the meeting, nor do the contributions herein necessarily reflect talks given in
Jerusalem. In the introduction, we outline our view of the theory to which this
volume intends to contribute. The crucial objective of the present volume is to
bring together concepts, methods, and results from analysis, differential as well
as algebraic geometry, and number theory in order to work towards a deeper and
more comprehensive understanding of regulators and secondary invariants.

Our thanks go to all the participants of the workshop and authors of this volume.
May the readers of this book enjoy and profit from the combination of mathematical
ideas here documented.

Alexander Reznikov
Durham, UK

Norbert Schappacher
Strasbourg, France



Introduction

A. Reznikov and N. Schappacher

The theory of regulators, of which this volume presents various recent highlights,
is best described as the border area where number theory leaves its original habitat
within the domain of abstract algebra in order to rub shoulders with analysis and
geometry, in particular, with differential geometry. The unsuspecting algebraist
may react to such an alliance with distrust; Sylvester for instance, in one of his
formulations beyond emulation, once scorned the unintuitive “recourse to con-
cepts drawn from reticulated arrangements, as in the applications of geometry to
arithmetic made by Dirichlet and Eisenstein."!

Today's number theorists or arithmetic algebraic geometers, however, who at
any rate are used to seeing boundaries between mathematical (or physical) theories
lose their traditional significance, seem to welcome the theory of regulators above
all precisely because it awards analysis, at least conjecturally, an even more serious
right to residence than the mere definition of L-functions would imply. More
precisely, L-functions made their appearance in the history of mathematics towards
the end of the first half of the 19th century, in parallel with work by Dirichlet
(Dirchlet L-functions, in the case of quadratic characters), Eisenstein (Eisenstein’s
double series, which today we relate to L-functions of elliptic curves with complex
multiplication), and Riemann’s zeta function (whose investigation by Riemann was
probably inspired also by Eisenstein’s musings about the functional equation of
one of Dirichlet’s L-functions).?

Iy, Sylvester, Math. Papers, vol. [II, p. 344: “On certain ternary cubic-form equations” (1879/80).

25ee A. Weil, On Eisenstein’s Copy of the Disquisitiones; in: Algeraic Number Theory—in honor
of Kenkichi Iwasawa (Coates, Greenberg, Mazur, Satake, eds.); Advanced Studies in Pure Mathematics
17, Academic Press 1989, 463-469.
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During the 20th century, the growing awareness of arithmetic algebraic geom-
etry initiated by Poincaré, Weil, and Hasse led to the common interpretation of
the zeta and L-functions in number theory as gadgets that use analysis simply as
an expedient to store all various local data about a geometric object X defined
over a number field K, gathered by looking at the reduction of X at the different
places of K, into a single mathematical entity. But already the so-called analytic
class number formula (which goes back to the 19th century), i.e., the occurrence
of the unit regulator in the residue at 1 (or the derivative at 0) of the Dedekind zeta
function of an algebraic number field, pointed to a genuinely “global" nature of
L-functions. This perspective was increasingly developed in the second half of the
20th century, first at the central point of the (conjectured) functional equation in
the conjecture of Birch and Swinnerton-Dyer, and then, following the pioneering
work of S. Bloch, at all integer points in the far-reaching conjectures of Beilinson,”
and their more recent refinement due to Bloch and Kato.*

Let us look at this first and principal strand of the historical development of the
arithmetic theory of regulators in a little more detail.

The arithmetic of regulators and L-values

In the analytic class number formula (rewritten using the functional equation), the
first nonvanishing derivative at s = 0 of the Dedekind zeta function {r(s) of an
algebraic number field F is expressed as a rational multiple of the regulator of
F, which itself is a nonvanishing determinant of logarithms of absolute values of
fundamental units of the ring of integers 0. The work of Bloch and Beilinson
started from the basic observation that 0% = K (or), and then proceeded

« to establish a general numerology associating a certain part of a higher K-
group (or “motivic cohomology group™) to any given pair (M, n) of a motive
M and an integer n—the latter may be conveniently normalized with respect
to the (in general only conjectural) functional equation of the L-function,

-

to define a regulator map on this motivic cohomology group which gener-
alizes the logarithm of the absolute value of units in the number field case,
and allows us to form a determinant which is then conjectured to equal, up
to a rational multiple, the first nonvanishing term in the Taylor expansion
around s = n of the L-function of M.

Beilinson defined his general regulators via Chern class maps on higher K-groups
with values in the corresponding Deligne cohomology. This is quite satisfying

3See the volume edited by M. Rapoport, N. Schappacher, and P. Schneider: Beilinson's Conjectures
on L-values, Oberwolfach Proceedings April 1986, Perspectives in Mathematics 4 (Academic Press)
1988. The conjectures had been proposed in: A.A. Beilinson, Higher regulators and values of L-
functions, J. Sevier Math. 30 (1985), 2036-2070.

45, Bloch, K. Kato, L-functions and Tamagawa numbers of motives, Grothendieck Festschrift, vol.
I, Progress in Mathemarics 86; Birkhiiuser, Boston, Basel, 1990, 333-400.
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from a functorial point of view but usually inaccessible to explicit computations
if only because our knowledge of K-groups is severely limited.

In the special case of noncritical values s = n of the Dedekind zeta functior
£r(s) of an algebraic number field F, however, the rational K -groups are known
as a consequence of our knowledge of the cohomology of discrete arithmetically
defined groups. This is the general context of the contribution to this volume of
Blasius and Rogawski.

Furthermore, A. Borel was able to determine the first nonvanishing coefficiem
in the Taylor expansion of {r(s) ats = 1—n as the covolume of the corresponding
“Borel” regulator map, defined by integrating a specific differential form agains'
homology cycles coming from K-theory. It is a nontrivial affair to check tha
Beilinson’s regulator coincides, up to a rational factor, with Borel's regulator.”

Soon after, it was realized independently by Deligne and Scholl® that the conjec-
tures of Birch and Swinnerton-Dyer, Deligne, and Beilinson concerning specia
values of L-functions can all be treated rather uniformly via the (partly hypo-
thetical) theory of mixed motives. In this framework, Beilinson’s regulator map
reappears as a realization functor for mixed motives.

The later refinement of Beilinson’s conjectures due to Bloch and Kato, whict
amounts to an indirect determination of the ratio between the L-value (resp. deriva-
tive) and the regulator up to 1, was rep d at the J lem workshop ir
particular by Peter Schneider’s two survey talks on Kato's refinement of the Bloch-
Kato conjectures—but it is not present as such in these proceedings. Instead, the
articles in the present volume reflect

» variants of this main strand of ideas, such as the generalizations of Zagier’s
polylogarithm conjecture;

» other recent imports of differential geometry into arithmetic, in particula:
Arakelov Theory.

Polylogarithms

It was D. Zagier who, having previously investigated the interrelations of vol-
umes of hyperbolic manifolds, the dilogarithm, and special values of the Riemann
zeta function, guessed from numerical experiments a conjectural expression for all

3See A. Borel, Stable real cohomology of arithmetic groups, Ann. Sei. ENS 7 (1974) 235-272.

6See the beautiful exposition in A. Borel, Cohomologie de SL, et valeurs de fonctions zéta, Ann
Scuola Normale Superiore 7 (1974), 613-636.

7See the chapter by Rapoport in the volume edited by Rapoport, Schappacher, Schneider quoted ir
footnote 3, as well as H. Esnault, On the Loday symbol in the Deligne-Beilinson cohomology, K -theory
3(1989), 1-28.

8See: A.J. Scholl, Remarks on special values of L-functions; in: L-functions and Arithmetic
(IH. Coates, M.J. Taylor, editors), Cambridge Univ, Press 1991, 373-392; as well as: C. Deninger
A1 Scholl, The Beilinson Conjectures; in the same Durham proceedings, pp. 173-209, in particula
the appendix to this article.
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(noncritical) integral special values of Dedekind zeta-functions as linear combi-
nations of certain polylogarithms, Thus Zagier's conjecture, like Beilinson’s, also
predicts explicitly (in the number field case) the transcendental part of {¢(n), for
all noncritical n. Several nontrivial special cases of Zagier's conjectures were set-
tled in 1993 in groundbreaking work by A. Goncharov, which uses Borel's works
quoted above.

In his contribution to this volume, Alexander Goncharov attacks a new case
via the Aomoto (and the classical) trilogarithm: the value ¢ (4).

The general formal relation between Zagier’s polylogarithm conjecture and
Beilinson’s conjectures (specialized to the case at hand) is given by Deligne’s
and Beilinson's motivic interpretation of Zagier’s conjecture. A key notion here is
that of a (motivic) variation of Tate-Hodge structures on Plc \ {0, 1, oo}. In a more
down-to-earth way, one may observe that the values of all higher polylogarithms at
roots of unity in Gy, \ {1} = P'\ {0, 1, 0o} lie in the image of Beilinson’s regulator
map from K-theory to Deligne’s cohomology of cyclotomic fields.

With this general formalism in mind, one may say that “the goal of the theory
of polylogarithms is to give an explicit description of motivic cohomology of
algebraic varieties and of regulator maps. For example, the K-theory groups of
a field F have a natural y-filtration and the motivic cohomology of Spec(F) is
equal to H.:\A (Spec(F), Q(n)) = gr')’, Kan-i(F)q. One would like to construct a
natural complex representing RHom (Q(0), Q(n)) in the category of mixed (Tate)
motives over F, with cohomology groups H jM(Spec(F ), Q(n)).

Forn = 2 the answer is %iven by the Bloch-Suslin complex (in degrees 1 and 2):
8: Q[F* — {1}]/Ry — A" Fj, where §([x]) = x A (1 — x) and R is generated
by

(=] = (1731 + [ = x) /(1 = xy)] = [1/(1 = 2]+ [(1 = »)/(1 = xp)],

as Coker(8) = K(F)q and Ker(8) = K"M(F)q.

The relations in R; come from the functional equation of the dilogarithm
function Li; (Lig(z) = ¥ oo, z"/n¥) and its single-valued version Da(z) =
Im(Liz(z)) + arg(1 — z)log |z|. For F = C the map Q[C* — (1}] — R send-
ing [x] to Dy(x) factors through Q[C* — {1}]/R; and its restriction to Ker(d) =
Ké“d (C)q — R coincides with the Borel regulator (up to a scalar)."?

Strong computational evidence for a conjecture of Goncharov’s concerning the
weight 4 part of the Quillen K -theory of fields, and thereby indirect support for
Zagier's conjecture about Dedekind zeta-functions at s = 4 is presented in Herbert
Gangl's contribution to this book.

Replacing P(': \ {0, 1, oo} in the above by a punctured elliptic curve leads to
a theory of (mixed motivic sheaves associated to the) so-called “elliptic polylog-
arithms.” As functions these are simply Kronecker-Eisenstein-Lerch series, as-

9Qumcd from the featured review no. 98d:11073 by J. NekovéF of the article: J. Wildeshaus, On
an elliptic analogue of Zagier's conjecture, Duke Math. J. 87 (1997), 355-407; in: Mathematical Re-
views 1998. For the functional equations satisfied by polylogarithms, see J. Oesterlé, Polylogarithmes,
Séminaire Bourbaki 762, (1992-93).
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sociated to the elliptic curve in question, i.e., the same kind of functions whict
Bloch already discovered as the right substitutes of the logarithm in his semina
construction of a regulator on K2(E) for an elliptic curve E.'0

The contribution to this volume which runs along these lines and aims at the
greatest generality is Andrey Levin's article, whereas the articles by Spencei
Bloch and Jorg Wildeshaus are more immediately inspired by the one classi-
cal case which had been the focus of attention already at the very beginning o!
Beilinson’s conjectures in the work of Bloch of the late 1970s, as well as in the firs
experimental forays into the elliptic analogue of Zagier’s polylogarithm conjecture
performed in 1991 by Don Zagier and Henri Cohen: the value at s = 2—or, equiv-
alently (given the functional equation), the derivative at s = 0—of the L-functior
of an elliptic curve defined over Q!

Inroads of differential geometry

In the spirit of the definition given at the beginning of this introduction, Arakeloy
theory, i.e., the introduction of hermitian geometry at the infinite places with a view
to having differential geometry contribute to a perfect analogy between numbe:
fields and function fields, belongs to the theory of regulators. The same is true, anc
for the same reason, for the even more daring attempt to find in classical analysis
and topology the tools for a truly satisfactory treatment of the Euler factors a
infinity of the zeta and L-functions. This latter line of research is represented here
by Christopher Deninger's article.

The contributions to this volume, by Héléne Esnault, Kai Kéhler, Klaus
Kiinnemann, and Vincent Maillot, and by John Lott are situated along the fol-
lowing line of development.

The hyperbolic volume, from the “regulator™ point of view, is the imaginary
part of the Cheeger-Chern-Simons class. It is an invariant in H%~'(BGL(C), R)
So for a compact manifold M and a representation p : 71(M) —> GL(C), one
obtains a hyperbolic volume class vol(p) € HY~'(M;R). If M is a compac
hyperbolic three-manifold and p is the natural representation, this gives back the
classical hyperbolic volume vol(M) of M.

The central importance of the numerical volume vol(M) as an invariant of
hyperbolic manifolds follows from the theorem of Wang-Gromov: For any boun
B, there are only a finite number of hyperbolic manifolds of dimension > 4 with
volume bounded by B.

The situation changes dramatically in the case of three-manifolds: according tc
Thurston, the set of volumes of hyperbolic three-manifolds is a nondiscrete well-

10Gee the volumes Motives (Jannsen, Kleiman, Serre, editors), Proceedings of Symposia in Pure
Mathematics 55, AMS 1994, in particular the contributions by Beilinson & Levin, and by Goncharov
See also J. Wildeshaus, Realizations of polylogarithms, Springer Lecture Notes in Math. 1650, 1997
as well as the Duke article of the same author mentioned in the previous footnote.

1 A5 background, see also A. Goncharov and A. Levin, Zagier’s Conjecture on L(E, 2), Inventione:
Marh. 132 1998, 393-432, as well as K. Rol and N, Schapp On the second K-group o
an elliptic curve, Crelle 495 (1998), 61-77.
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ordered subset of the reals. Despite some strong conjectures due to Milnor, the
arithmetic nature of this subset remains mysterious at the moment.

The connection of these volumes with regulators was established by Beilinson
who indicated a proof of the fact that, in the case of flat bundles over an algebraic
variety, the hyperbolic volume class (or, equivalently, the Borel regulator), is the
imaginary part of the Bloch-Beilinson regulator in Deligne cohomology. Using this
and vanishing results for the hyperbolic volume invariant vol(p), the conjecture
of Bloch that all regulators of flat bundles over projective varieties are torsion has
recently been settled by Reznikov.

Ever since its invention in 1973 by Cheeger, Chern and Simons,'? the Chern-
Simons invariant has played an increasing role in geometry, topology and mathe-
matical physics.

Formally speaking, it is a cohomology class ChS; € H*~!(BGL!(C), C/Z).
For any manifold M, and a representation of the fundamental group p : m (M) —
GL(C), one gets a class ChS(p) € H¥~'(M, C/Z). The representation may be
viewed as a flat bundle £ over M, so that ChS(p) may be interpreted as a secondary
class, attached to the (torsion) Chern class ¢;(£). The fundamental property of
the Chern-Simons class which makes it so interesting is rigidity, that is, one has
ChS(p,) = const, in any continuous family of representations p;.

The Chern-Simons invariant plays a central role in low-dimensional topology,
since it provides a frame for a set of invariants of three-manifolds which is sufficient
to prove the infinite generation of the homology sphere bordism group, as has
become clear after the work of Floer, Fintushel, Stern and Furuta.

The connection to regulators has emerged from the ground-breaking work of
Bloch and Beilinson. In particular, for flat bundles on algebraic varietes, the Chern-
Simons class is claimed to map to the Chern class in Deligne cohomology.

For an affine variety V, one is led to replace the finite dimensional Lie group
GL,(C) by the so-called current-group GL,(C[V]). One then defines cohomol-
ogy classes similar to the Chern-Simons class. These give rise to regulators in
Hom(K[™(V), C/Z)."3

The Ray-Singer analytic torsion is a fundamental invariant of a flat bundle £
over a compact manifold M. Itis by definition the value at O of the zeta-function of
the twisted Laplace operator acting on the sections of £. By a well-known theorem
of Cheeger and W. Miiller, the analytic torsion coincides with the combinatorial
torsion, which can help to compute this invariant. The theorem and the yoga around
it was recently generalized considerably by Bismut.

Calculations of the analytic torsion are central in Witten's evaluation of volumes
of moduli spaces. And this evaluation in turn involves special vaues of so-called
Witten zeta-functions at positive integers which, when suitably normalized, are

125 .. Chem, 1. Simons, Characteristic classes and geometric invariants; Annals Math. 100 (1974);
J. Cheeger, J. Simons, Characteristic classes and secondary invariants, in: Geometry and Topology
(Alexander, Harer, editors), Springer LNM 1167, 1986.

135ee A. Reznikov: He py of Lie algebras and higher
classes in symplectic topology (preprint 1994).

(preprint 1993); Characteristic
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essentially integers. On the other hand, one may derive divisibility results about
these values, via group cohomology (multiplicative transfer). The results are paral-
lel to the classical von Staudt theorem, thereby building another bridge from these
analytic theories to number theory.



