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Foreword

In 1998, the editors convinced themselves that it was the right time to take stock of
recent research concerning the modern history of number theory, and to evaluate in
its light our comprehension of the development of this discipline as a whole. One
issue at stake was to bring together historiographical results coming from different
disciplines and linguistic domains which, we felt, had remained too often unaware
of each other.

We organized two meetings at the Mathematisches Forschungsinstitut Oberwol-
fach : first a small RIP-workshop held June 14–19, 1999, among historians of number
theory and historians of related topics, and then a larger conference which took place
June 17–23, 2001, two hundred years after the publication of Carl Friedrich Gauss’s
Disquisitiones Arithmeticae. The latter brought together historians and philosophers
of mathematics with number theorists interested in the recent history of their field.
Two further meetings, organized by one of us in Vienna and Zürich the following
years, continued our venture.

Two concrete projects arose from these activities. One concerned the creation
of resources, for scholars and students: we initiated a bibliography of secondary
literature on the History of Number Theory since 1800.1

The present volume is the second result of our work. It aims at answering the
question, already raised during the first workshop, on the role of Gauss’s Disquisi-
tiones Arithmeticae in the definition and evolution of number theory. This role is
here appraised in a comparative perspective, with attention both to the mathematical
reception of the treatise, and to its role as a model for doing mathematics. The volume
is the result of a collective work. Although all authors have kept their proper voices,
they have also accepted quite a bit of editorial interference with a view to making the
volume as coherent as possible. We have nonetheless left room for original analyses
and results, including newly discovered documents.

1. A preliminary version of this bibliography has been kindly put on line by Franz Lem-
mermeyer on a website hosted by the University of Heidelberg ( http://www.rzuser.uni-
heidelberg.de/∼hb3/HINTbib.html ).
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po teorii čisel [Works on number theory], ed. I. M. Vinogradov, B. N. Delone,
pp. 7–583. Moscow: Academy of Sciences USSR.

1966. Disquisitiones Arithmeticae. English transl. A. A. Clarke. New Haven: Yale
University Press. Rev. ed. W. C. Waterhouse. New York: Springer, 1986.

1995. Disquisitiones Arithmeticae. Spanish transl. H. Barrantes Campos, M. Josephy,
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Fig. I. Title page of Disquisitiones Arithmeticae, 1801 edition
(Private copy)



Part I

A Book’s History

Welche Wichtigkeit Gauß: Disquisitiones Arithmeticae für die Ent-
wicklung der Mathematik gehabt haben, darüber existiert wohl
kein Zweifel. Es ist ein Werk, das ungefähr in der Mathematik
dieselbe Stellung einnimmt, wie die Kritik der reinen Vernunft
von Kant in der Philosophie.

Carl Itzigsohn, March 23, 1885





Fig. I.1. A newspaper review of the Disquisitiones Arithmeticae
Gazette nationale, ou le Moniteur universel, March 21, 1807



I.1

A Book in Search of a Discipline

(1801–1860)

CATHERINE GOLDSTEIN and NORBERT SCHAPPACHER

Carl Friedrich Gauss’s Disquisitiones Arithmeticae of 1801 has more than one claim
to glory: the contrast between the importance of the book and the youth of its
author; the innovative concepts, notations, and results presented therein; the length
and subtlety of some of its proofs; and its role in shaping number theory into a
distinguished mathematical discipline.

The awe that it inspired in mathematicians was displayed to the cultured public of
the Moniteur universel ou Gazette nationale1 as early as March 21, 1807, when Louis
Poinsot, who would succeed Joseph-Louis Lagrange at the Academy of Sciences six
years later, contributed a full page article about the French translation of the Disqui-
sitiones Arithmeticae:

The doctrine of numbers, in spite of [the works of previous mathematicians] has
remained, so to speak, immobile, as if it were to stay for ever the touchstone of their
powers and the measure of their intellectual penetration. This is why a treatise as
profound and as novel as his Arithmetical Investigations heralds M. Gauss as one of
the best mathematical minds in Europe.2

1. This French newspaper, created by Charles-Joseph Panckoucke in the first months of the
French Revolution, had the goal of informing its readers of administrative, political, and
cultural events and of promoting French achievements. It opened its columns regularly
to reviews of books recommended by the Institut national des sciences et des arts.

2. Gazette nationale ou Le Moniteur universel 80 (1807), 312: La doctrine des nombres
malgré leurs travaux [antérieurs] est restée, pour ainsi dire, immobile ; comme pour
être dans tous les tems, l’épreuve de leurs forces et la mesure de la pénétration de leur
esprit. C’est pourquoi Monsieur Gauss, par un ouvrage aussi profond et aussi neuf que
ses Recherches arithmétiques s’annonce certainement comme une des meilleures têtes
mathématiques de l’Europe.

3



4 I. A Book’s History

A long string of declarations left by readers of the book, from Niels Henrik Abel to
Hermann Minkowski, from Augustin-Louis Cauchy to Henry Smith, bears witness
to the profit they derived from it. During the XIXth century, its fame grew to almost
mythical dimensions. In 1891, Edouard Lucas referred to the Disquisitiones Arith-
meticae as an “imperishable monument [which] unveils the vast expanse and stunning
depth of the human mind,”3 and in his Berlin lecture course on the concept of number,
Leopold Kronecker called it “the Book of all Books.”4 In the process, new ways of
seeing the Disquisitiones came to the fore; they figure for instance in the presentation
given by John Theodore Merz in his celebrated four-volume History of European
Thought in the Nineteenth Century:

Germany … was already an important power in the Republic of exact science which
then had its centre in Paris. Just at the beginning of the nineteenth century two events
happened which foreboded for the highest branches of the mathematical sciences a
revival of the glory which in this department Kepler and Leibniz had already given to
their country. … The first was the publication of the ‘Disquisitiones Arithmeticae’
in Latin in 1801.5 … [Gauss] raised this part of mathematics into an independent
science of which the ‘Disquisitiones Arithmeticae’ is the first elaborate and system-
atic treatise.… It was … through Jacobi, and still more through his contemporary
Lejeune-Dirichlet … that the great work of Gauss on the theory of numbers, which
for twenty years had remained sealed with seven seals, was drawn into current ma-
thematical literature… The seals were only gradually broken. Lejeune-Dirichlet
did much in this way, others followed, notably Prof. Dedekind, who published the
lectures of Dirichlet and added much of his own.6

Gauss’s book (hereafter, we shall often use the abbreviation “the D.A.” to des-
ignate it) is now seen as having created number theory as a systematic discipline in
its own right, with the book, as well as the new discipline, represented as a landmark
of German culture. Moreover, a standard history of the book has been elaborated. It
stresses the impenetrability of the D.A. at the time of its appearance and integrates it
into a sweeping narrative, setting out a continuous unfolding of the book’s content,
from Johann Peter Gustav Lejeune-Dirichlet and Carl Gustav Jacob Jacobi on.

In this history modern algebraic number theory appears as the natural outgrowth
of the discipline founded by the Disquisitiones Arithmeticae. Historical studies
have accordingly focused on the emergence of this branch of number theory, in
particular on the works of Dirichlet, Ernst Eduard Kummer, Richard Dedekind,
Leopold Kronecker, and on the specific thread linking the D.A. to the masterpiece
of algebraic number theory, David Hilbert’s Zahlbericht of 1897. In addition, they
have also explored the fate of specific theorems or methods of the D.A. which are
relevant for number theorists today.

Yet a full understanding of the impact of the Disquisitiones Arithmeticae, at

3. [Lucas 1891], p. vi: Ce livre, monument impérissable dévoile l’immense étendue, l’éton-
nante profondeur de la pensée humaine.

4. [Kronecker 1891/2001], p. 219: das Buch aller Bücher.
5. The second event alluded to by Merz is the computation of Ceres’s orbit, also by Gauss.

6. [Merz 1896–1914], vol. I, pp. 181, 181–182 (footnote), 187–188 and 721.
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all levels, requires more than just a “thicker description”7 of such milestones; it
requires that light be shed on other patterns of development, other readers, other
mathematical uses of the book – it requires a change in our questionnaire. We need
to answer specific questions, such as: What happened to the book outside Germany?
What were the particularities, if any, of its reception in Germany? Which parts of it
were read and reworked? And when? Which developments, in which domains, did it
stimulate – or hamper? What role did it play in later attempts to found mathematics
on arithmetic?

Such questions suggest narrower foci, which will be adopted in the various
chapters of the present volume. In this first part, however, we take advantage of the
concrete nature of our object of inquiry – a book – to draw a general map of its tracks
while sticking closely to the chronology. That is to say, instead of going backwards,
seeking in the Disquisitiones Arithmeticae hints and origins of more recent priorities,
we will proceed forwards, following Gauss’s text through time with the objective of
surveying and periodizing afresh its manifold effects.8

But let us start, first, at the beginning of all beginnings…

1. The Writing and the Architecture of the Disquisitiones Arithmeticae

Gauss began to investigate arithmetical questions, at least empirically, as early as
1792, and to prepare a number-theoretical treatise in 1796 (i.e., at age 19 and, if
we understand his mathematical diary correctly, soon after he had proved both the
constructibility of the 17-gon by ruler and compass and the quadratic reciprocity
law). An early version of the treatise was completed a year later.9 In November
1797, Gauss started rewriting the early version into the more mature text which he
would give to the printer bit by bit. Printing started in April 1798, but proceeded
very slowly for technical reasons on the part of the printer. Gauss resented this very
much, as his letters show; he was looking for a permanent position from 1798. But
he did use the delays to add new text, in particular to sec. 5 on quadratic forms, which
had roughly doubled in length by the time the book finally appeared in the summer
of 1801.10

7. The reference is to Gilbert Ryle and Clifford Geertz, in particular [Geertz 1973].
8. We have systematically tracked mentions of the D.A. in the main nineteenth-century jour-

nals, and then in the complete works – if published – of the mathematicians encountered.
For want of space (in the text or in the margin …), only part of the evidence used to
establish our main claims can be presented here.

9. Parts of the manuscript, known as Analysis residuorum, were published posthumously in
Gauss’s Werke; other parts were identified as such in 1980 by Uta Merzbach in different
German archives; see [Merzbach 1981], also for a global comparison of the early version
with the printed book; for detailed comparisons of specific parts, in particular sec. 2,
see [Bullynck 2006a] and [Bullynck 2006b], appendices A and B. See also [Schlesinger
1922], sec. III.

10. Basic data on the genesis of the Disquisitiones can be derived from Gauss’s mathematical
diary, [Gauss 1796–1814], and from his correspondence. Our quick summary here is
based on [Merzbach 1981]. What exactly Gauss found in his predecessors and how
he was influenced by them remains a difficult question, in spite of his own historical
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1.1. The First Sections: Congruences to the Fore

Let us skim through the contents of the Disquisitiones Arithmeticae as they appeared
in 1801.11 Although it may make somewhat tedious reading, we think it useful to
indicate the full variety of matters treated by Gauss. The 665 pages and 355 articles
of the main text are divided unevenly into seven sections. The first and smallest one
(7 pp., 12 arts.) establishes a new notion and notation which, despite its elementary
nature, modified the practice of number theory:

If the number a measures12 the difference of the numbers b, c, then b and c are said
to be congruent according to a; if not, incongruent; this a we call the modulus. Each
of the numbers b, c are called a residue of the other in the first case, a nonresidue in
the second.13

The corresponding notation b ≡ c (mod a) is introduced in art. 2. The remainder of
sec. 1 contains basic observations on convenient sets of residues modulo a and on the
compatibility of congruences with the arithmetic operations. To consider numbers
or equations up to a given integer was not new with Gauss.14 His innovation was to
turn this occasional computational device into a topic in its own right.

Section 2 (33 pp., 32 arts.) opens with several theorems on integers including the
unique prime factorization of integers (in art. 16), and then treats linear congruences
in arts. 29–37, including the Euclidean algorithm and what we call the Chinese
remainder theorem. At the end of sec. 2, Gauss added a few results for future
reference which had not figured in the 1797 manuscript, among them: (i) properties

remarks. We do not go into it here, referring for a first orientation and survey of Gauss’s
obvious predecessors, in particular Euler, Lagrange and Legendre, to [Weil 1984]; the
less-expected tradition of German arithmetical textbooks and the more general impact
of Lambert’s and Hindenburg’s works are explored in the original thesis of Maarten
Bullynck, [Bullynck 2006b].

11. The reader is invited to go back and forth between our rough summary and Gauss’s
original detailed table of contents which we reproduce on the double page 10–11. In
the present section, expressions in quotation marks, with no explicit reference attached,
are the English translations of key words from this Latin table of contents. The table is
copied from the 1801 edition of the D.A. except that, for the sake of readability, we have
modified the letters “u” and “v” according to current Latin spelling. Other surveys of the
book are proposed in [Bachmann 1911], [Rieger 1957], [Neumann 1979–1980], [Bühler
1981], chap. 3, [Neumann 2005].

12. Along with this classical Euclidean term “to measure” (metiri), which, as well as “mod-
ulus” (small measure), reminds us of the additive flavour of Euclidean division, Gauss
also used “to divide” (dividere) as of sec. 2, art. 13, in the context of a product of natural
integers. This diversity of expressions was not always maintained in translations.

13. Our translation of the opening paragraph of D.A., art. 1: Si numerus a numerorum b, c
differentiam metitur, b et c secundum a congrui dicuntur, sin minus, incongrui: ipsum
a modulum appellamus. Uterque numerorum b, c, priori in casu alterius residuum, in
posteriori vero nonresiduum vocatur.

14. Gauss acknowledged this fact in the footnote to art. 2, noticing that Legendre had used a
simple equality in such situations, and pleading at the same time for his own, unequivocal
notation. Other authors are discussed in [Bullynck 2006b], appendix A.
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of the number ϕ(A) of prime residues modulo A (arts. 38–39); (ii) in art. 42, a proof
that the product of two polynomials with leading coefficient 1 and with rational
coefficients that are not all integers cannot have all its coefficients integers;15 and
(iii) in arts. 43 and 44, a proof of Lagrange’s result that a polynomial congruence
modulo a prime cannot have more zeros than its degree.16

Section 3 (51 pp., 49 arts.) is entitled “On power residues.” As Gauss put it,
it treats “geometric progressions” 1, a, a2, a3,… modulo a prime number p (for a
number a not divisible by p), discusses the “period” of a modulo p and Fermat’s
theorem, contains two proofs for the existence of “primitive roots” modulo p, and
promotes the use of the “indices” of 1,…, p − 1 modulo p with respect to a fixed
primitive root, in analogy with logarithm tables.17 After a discussion, in arts. 61–68,
of nth roots mod p from the point of view of effective computations, the text returns
to calculations with respect to a fixed primitive root, and gives in particular in arts.
75–78 two proofs – and sketches a third one due to Lagrange – of Wilson’s theorem,
1 · 2 · · · (p − 1) ≡ −1 (mod p). The analogous constructions and results for an
odd prime power are discussed in arts. 82–89, the exceptional case of the powers
of p = 2 in arts. 90–91. Finally, integers n for which there exists a primitive root
modulo n are characterized in art. 92.

Section 4 (73 pp., 59 arts.), “On congruences of degree 2,” develops a systematic
theory of “quadratic residues” (i.e., residues of perfect squares). It culminates in the
“fundamental theorem” of this theory, from which “can be deduced almost everything
that can be said about quadratic residues,”18 and which Gauss stated as:

If p is a prime number of the form 4n + 1, then +p, if p is of the form 4n + 3, then
−p, will be a [quadratic] residue, resp. nonresidue, of any prime number which,
taken positively, is a residue, resp. nonresidue of p.19

Gauss motivated this quadratic reciprocity law experimentally, gave the general
statement and formalized it in tables of possible cases (arts. 131 and 132), using the
notation a Ra′, resp. aNa′, to mean that a is a quadratic residue, resp. nonresidue,
modulo a′.20 He also gave here the first proof of the law, an elementary one by

15. This is one of several results known today as “Gauss’s lemma.”
16. See [Bullynck 2006a], for a closer study of sec. 2 in comparison to Gauss’s earlier

manuscript of the D.A.
17. In modern terms, the period is the order of the element a in the multiplicative group

(Z/pZ)∗, Fermat’s theorem states that this order divides p − 1, a primitive root is a
generator of the group and the index of an element is the corresponding exponent with
respect to the chosen generator.

18. D.A., art. 131: … omnia fere quae de residuis quadraticis dici possunt, huic theoremati
innituntur.

19. Our translation of D.A., art. 131: Si p est numerus primus formae 4n +1, erit +p, si vero
p formae 4n + 3, erit −p residuum vel non residuum cuiusuis numeri primi qui positive
acceptus ipsius p est residuum vel non residuum. The supplementary theorems about the
quadratic residue behaviour of −1 and 2 are treated in parallel.

20. Today one usually sees this quadratic reciprocity law written in terms of Legendre’s
symbol. It is defined, for any integer a and p a prime number not dividing a, by
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induction.21 A crucial nontrivial ingredient (used in art. 139) is a special case of a
theorem stated in art. 125, to the effect that, for every integer which is not a perfect
square, there are prime numbers modulo which it is a quadratic nonresidue.22

1.2. Quadratic Forms

The focus changes in sec. 5 of the D.A., which treats “forms and indeterminate
equations of the second degree,” mostly binary forms, in part also ternary. With its
357 pp. and 156 arts., this section occupies more than half of the whole Disquisitiones
Arithmeticae. Leonhard Euler, Joseph-Louis Lagrange, and Adrien-Marie Legendre
had forged tools to study the representation of integers by quadratic forms. Gauss,
however, moved away from this Diophantine aspect towards a treatment of quadratic
forms as objects in their own right, and, as he had done for congruences, explicitly
pinpointed and named the key tools. This move is evident already in the opening of
sec. 5:

The form axx + 2bxy + cyy,23 when the indeterminates x, y are not at stake, we
will write like this, (a, b, c).24

Gauss then immediately singled out the quantity bb − ac which he called the
“determinant”25 – “on the nature of which, as we will show in the sequel, the prop-

(

a
p

)

= ±1 ≡ a
p−1

2 (mod p), that is, 1 if a is quadratic residue modulo p, −1 if not; see
[Legendre 1788], p. 186, and D.A., art. 106, for the last congruence. Given distinct odd

prime numbers p, q, the quadratic reciprocity law then says that
(

p
q

)

= (−1)
p−1

2
q−1

2
(

q
p

)

.

Notwithstanding Dirichlet’s criticism (published after Gauss’s death) of the D.A. as lack-
ing a notational calculus for quadratic residues, [Dirichlet 1889–1897], vol. 2, p. 123, one
may point out that Gauss’s formulation stresses the normalization of ±p, a phenomenon
that would recur with higher reciprocity laws; see [Neumann 2005], p. 308.

21. In the late 1960s, John Tate “lifted directly from the argument which was used by Gauss in
his first proof of the quadratic reciprocity law” his determination of the second K -group of
the field of rational numbers K2(Q); see [Milnor 1971], p. 102. More generally, Gauss’s
argument is seen to provide an inductive procedure to determine successively the local
factors at all primes p of a given Steinberg symbol on Q∗ × Q∗, and the decomposition
of the universal continuous Steinberg symbol with values in {±1} is tantamount to the
reciprocity law. See [Milnor 1971], p. 101–107; cf. [Tate 1971], § 3.

22. This follows easily from the reciprocity law; Gauss does not even bother to give the
details. The difficulty is to prove it directly (arts. 125–129) in a special case which then
makes the proof by complete induction of the reciprocity law work: that every ±p, for a
prime p of the form 4n + 1, is a quadratic nonresidue modulo some prime q < p.

23. Gauss’s convention that the coefficient of the mixed term be even is original and its
advantages and drawbacks have been much in debate; see J. Schwermer’s chap. VIII.1.

24. D.A., art. 153: Formam axx + 2bxy + cyy, quando de indeterminatis x, y non agitur,
ita designabimus (a, b, c). In [Kronecker 1891/2001], p. 235, this move is heralded as
the first time in history that a system of three discrete quantities was introduced.

25. Nowadays called, sometimes up to a constant, the discriminant of the form. For the
various normalizations and names of this quantity in the XIXth century, see [Dickson
1919–1923], vol. 3, p. 2. We will usually employ Gauss’s word in this chapter.
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erties of the form chiefly depend”26 – showing that it is a quadratic residue of any
integer primitively represented27 by the form (art. 154).

The first part of sec. 5 (arts. 153–222, 146 pp.) is devoted to a vast enterprise
of a finer classification of the forms of given determinant, to which the problem of
representing numbers by forms is reduced. Gauss defined two quadratic forms (art.
158) to be equivalent if they are transformed into one another under substitutions of
the indeterminates, changing (x, y) into (αx +βy, γ x +δy), for integral coefficients
α, β, γ, δ, with αδ−βγ = +1 or = −1.28 Two equivalent forms represent the same
numbers. If αδ−βγ = +1, the equivalence is said to be “proper,” if αδ−βγ = −1,
“improper.” While integral invertible substitutions were already used by Lagrange,
this finer distinction is due to Gauss and greatly exploited by him. After generalities
relating to these notions and to the representation of numbers by forms – in particular
(art. 162), the link between the problem of finding all transformations between two,
say, properly equivalent forms, when one is known, and the solutions of the equation
t2 − Du2 = m2, where D is the determinant of the forms and m the greatest common
divisor of their coefficients – the discussion then splits into two very different cases
according to whether the determinant is negative or positive. In each case, Gauss
showed that any given form is properly equivalent to a so-called “reduced” form
(art. 171 for negative, art. 183 for positive discriminants), not necessarily unique,
characterized by inequalities imposed on the coefficients.29 The number of reduced
forms – and thus also the number of equivalence classes of forms – of a given
determinant is finite. Equivalence among reduced forms is studied – in particular,
the distribution of the reduced forms of given positive determinant into “periods” of
equivalent reduced forms, art. 185 – and a general procedure is given to determine if
two binary quadratic forms with the same determinant are (properly or improperly)
equivalent and to find all transformations between them. Using this, Gauss settled
the general problem of representing integers by quadratic forms (arts. 180–181, 205,
212), as well as the resolution in integers of quadratic equations with two unknowns
and integral coefficients (art. 216). The first half of sec. 5 closes with a brief historical
reminder (art. 222).

The classification of forms also ushers the reader into the second half of sec. 5,
entitled “further investigations on forms.” Art. 223 fixes an algorithm to find a good
representative for every (proper equivalence) class of quadratic forms of a given
determinant. Representing classes by reduced forms avoids working with the infinite
classes abstractly, just as Gauss never worked with our field Z/pZ, the elements of
which are infinite sets of integers, but with conveniently chosen residues modulo p.

26. D.A., art. 154: Numerum bb − ac, a cuius indole proprietates formae (a, b, c) imprimis
pendere, in sequentibus docebimus, determinantem huius formae vocabimus.

27. I.e., which can be written as axx + 2bxy + cyy, for two coprime integers x and y.
28. Gauss also handled the general case of arbitrary substitutions with integral coefficients

transforming a form into another one which is then said to be “contained” in the first.
29. A reduced form (A, B,C) of determinant D < 0 is such that A ≤ 2

√
−D/3, B ≤ A/2,

C ≥ A. A reduced form of determinant D > 0 is such that 0 ≤ B <
√

D,
√

D − B ≤
|A| ≤

√
D + B.
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Original Table of Contents of the Disquisitiones Arithmeticae

Dedicatio. Praefatio.

Sectio prima. De numerorum congruentia in genere.

Numeri congrui, moduli, residua et non residua, art. 1 sq. Residua minima, 4. Propositiones
elementares de congruis, 5. Quaedam applicationes, 12.

Sectio secunda. De congruentiis primi gradus.

Theoremata praeliminaria de numeris primis, factoribus etc. 13. Solutio congruentiarum
primi gradus, 26. De inveniendo numero secundum modulos datos residuis datis congruo 32.
Congruentiae lineares quae plures incognitas implicant 37. Theoremata varia 38.

Sectio tertia. De residuis potestatum.

Residua terminorum progressionis geometricae ab unitate incipientis constituunt seriem pe-
riodicam, 45. Considerantur primo moduli qui sunt numeri primi. Ponendo modulum = p,
multitudo terminorum in periodo metitur numerum p −1 art. 49. Fermatii theorema, 50. Quot
numeris respondeant periodi, in quibus terminorum multitudo est divisor datus numeri p − 1
art. 52. Radices primitivae, bases, indices, 57. Algorithmus indicum, 58. De radicibus congru-
entiae xn ≡ A, art. 60. Nexus indicum in systematibus diversis, 69. Bases usibus peculiaribus
accommodatae, 72. Methodus radices primitivas assignandi, 73. Theoremata varia de periodis
et radicibus primitivis, 75. (Theorema Wilsonianum, 76). De modulis qui sunt numerorum
primorum potestates, 82. Moduli qui sunt potestates binarii, 90. Moduli e pluribus primis
compositi, 92.

Sectio quarta. De congruentiis secundi gradus.

Residua et nonresidua quadratica art. 94. Quoties modulus est numerus primus, multitudo
residuorum ipso minorum multitudini nonresiduorum aequalis, 96. Quaestio, utrum numerus
compositus residuum numeri primi dati sit an nonresiduum, ab indole factorum pendet, 98.
De modulis, qui sunt numeri compositi, 100. Criterium generale, utrum numerus datus nu-
meri primi dati residuum sit an nonresiduum, 106. Disquisitiones de numeris primis quorum
residua aut non residua sint numeri dati 107 sqq. Residuum −1 art. 108. Residua +2 et −2,
art. 112. Residua +3 et −3, art. 117. Residua +5 et −5 art. 121. De ±7 art. 124. Praepa-
ratio ad disquisitionem generalem, 125. Per inductionem theorema generale (fundamentale)
stabilitur, conclusionesque inde deducuntur 130. Demonstratio rigorosa huius theorematis,
135. Methodus analoga, theorema art. 114 demonstrandi, 145. Solutio problematis generalis
146. De formis linearibus omnes numeros primos continentibus, quorum vel residuum vel non
residuum est numerus quicunque datus 147. De aliorum laboribus circa has investigationes
151. De congruentiis secundi gradus non puris 152.

Sectio quinta. De formis aequationibusque indeterminatis secundi gradus.

Disquisitionis propositum; formarum definitio et signum 153. Numerorum repraesentatio;
determinans 154. Valores expr.

√
(bb − ac) (mod. M) ad quos repraesentatio numeri M per

formam (a, b, c) pertinet, 155. Forma aliam implicans, sive sub alia contenta; transformatio,
propria et impropria, 157. Aequivalentia, propria et impropria 158. Formae oppositae 159,
contiguae 160. Divisores communes coëfficientium formarum 161. Nexus omnium transfor-
mationum similium formae datae in formam datam 162. Formae ancipites 163. Theorema
circa casum ubi forma sub alia simul proprie et improprie contenta est 164. Generalia de
repraesentationibus numerorum per formas, earumque nexu cum transformationibus 166. De
formis determinantis negativi 171. Applicationes speciales ad discerptionem numerorum in
quadrata duo, in quadratum simplex et duplex, in simplex et triplex 182. De formis deter-
minantis positivi non-quadrati 183. De formis determinantis quadrati 206. Formae sub aliis
contentae quibus tamen non aequivalent 213. Formae determinantis 0 art. 215. Solutio gener-
alis omnium aequationum indeterminatarum secundi gradus duas incognitas implicantium per
numeros integros 216. Annotationes historicae 222.
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DISQUISITIONES ULTERIORES DE FORMIS. Distributio formarum determinantis dati in clas-
ses 223; classium in ordines 226. Ordinum partitio in genera 228. De compositione formarum
238. Compositio ordinum 245, generum 246, classium 249. Pro determinante dato in singulis
generibus eiusdem ordinis classes aeque multae continentur 252. Comparantur multitudines
classium in singulis generibus ordinum diversorum contentarum 253. De multitudine clas-
sium ancipitum 257. Certe semissi omnium characterum pro determinante dato assignabilium
genera proprie primitiva (positiva pro det. neg.) respondere nequeunt 261. Theorematis funda-
mentalis et reliquorum theorematum ad residua −1,+2,−2 pertinentium demonstratio secunda
262. Ea characterum semissis, quibus genera respondere nequeunt, propius determinantur 263.
Methodus peculiaris, numeros primos in duo quadrata decomponendi 265. DIGRESSIO CONTI-

NENS TRACTATUM DE FORMIS TERNARIIS 266 sqq. Quaedam applicationes ad theoriam formarum
binariarum. De invenienda forma e cuius duplicatione forma binaria data generis principalis
oriatur 286. Omnibus characteribus, praeter eos, qui in artt. 262, 263 impossibiles inventi sunt,
genera revera respondent 287, III. Theoria decompositionis tum numerorum tum formarum
binariarum in tria quadrata 288. Demonstratio theorematum Fermatianorum, quemvis inte-
grum in tres numeros trigonales vel quatuor quadrata discerpi posse 293. Solutio aequationis
axx + byy + czz = 0 art. 294. De methodo per quam ill. Le Gendre theorema fundamentale
tractavit 296. Repraesentatio cifrae per formas ternarias quascunque 299. Solutio generalis
aequationum indeterminatarum secundi gradus duas incognitas implicantium per quantitates
rationales 300. De multitudine mediocri generum 301, classium 302. Algorithmus singularis
classium proprie primitivarum; determinantes regulares et irregulares etc. art. 305.

Sectio sexta. Variae applicationes disquisitionum praecedentium.

Resolutio fractionum in simpliciores 309. Conversio fractionum communium in decimales
312. Solutio congruentiae xx ≡ A per methodum exclusionis 319. Solutio aequationis
indeterminatae mxx + nyy = A per exclusiones 323. Alia methodus congruentiam xx ≡ A
solvendi pro eo casu ubi A est negativus 327. Duae methodi, numeros compositos a primis
dignoscendi, illorumque factores investigandi, 329.

Sectio septima. De aequationibus, circuli sectiones definientibus.

Disquisitio reducitur ad casum simplicissimum, ubi multitudo partium, in quas circulum
secare oportet, est numerus primus 336. Aequationes pro functionibus trigonometricis ar-
cuum qui sunt pars aut partes totius peripheriae; reductio functionum trigonometricarum ad
radices aequationis xn − 1 = 0 art. 337. Theoria radicum huius aequationis (ubi supponi-
tur, n esse numerum primum). Omittendo radicem 1, reliquae (�) continentur in aequatione
X = xn−1 + xn−2 +etc.+ x +1 = 0. Functio X resolvi nequit in factores inferiores, in quibus
omnes coëfficientes sint rationales 341. Propositum disquisitionum sequentium declaratur 342.
Omnes radices � in certas classes (periodos) distribuuntur 343. Varia theoremata de his peri-
odis 344 sqq. His disquisitionibus superstruitur solutio aequationis X = 0 art. 352. Exempla
pro n = 19, ubi negotium ad duas aequationes cubicas unamque quadraticam, et pro n = 17,
ubi ad quatuor quadraticas reducitur artt. 353, 354. Disquisitiones ulteriores de hoc argumento.
Aggregata, in quibus terminorum multitudo par, sunt quantitates reales 355. De aequatione,
per quam distributio radicum � in duas periodos definitur 356. Demonstratio theorematis in
sect. IV commemorati 357. De aequatione pro distributione radicum � in tres periodos 338.
Aequationum, per quas radices� inveniuntur reductio ad puras 359. Applicatio disquisitionum
praecedentium ad functiones trigonometricas. Methodus, angulos quibus singulae radices �
respondeant dignoscendi 361. Tangentes, cotangentes, secantes et cosecantes e sinubus et
cosinubus absque divisione derivantur 362. Methodus, aequationes pro functionibus trigono-
metricis successive deprimendi 363. Sectiones circuli, quas per aequationes quadraticas sive
per constructiones geometricas perficere dicet 365.

Additamenta.
Tabulae.
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In art. 226, certain classes are grouped together into an “order” according to the
divisibility properties of their coefficients.30 There follows (arts. 229–233) a finer
grouping of the classes within a given order according to their “genus.” Gauss
showed that, for every odd prime divisor p of the determinant of a form (with
coprime coefficients), integers prime to p that can be represented by the form (and
thus by all forms of its class) are either all quadratic residues, or all nonresidues
modulo p: recording this information, as well as similar information at p = 2 for
even discriminants, defines the “character” of the form (or of the class of the form).
Classes with the same character are put into the same genus. The principal genus
for a determinant D is that of the principal form (1, 0,−D).31

In art. 235, Gauss defined a form F(X, Y ) = AX X+2B XY +CY Y to be a “com-
posite” of f (x, y) = axx + 2bxy + cyy and f ′(x ′, y′) = a′x ′x ′ + 2b′x ′y′ + c′y′y′,
if F(B1, B2) = f (x, y) · f ′(x ′, y′), for certain transformations of the indeterminates
Bi (x, y; x ′, y′), bilinear, as we would say, in x, y and x ′, y′. While this definition
generalizes time-honoured relations like the following,32 with F = f = f ′ :

(xx ′ − N yy′)2 + N (xy′ + yx ′)2 = (x2 + N y2) · (x ′2 + N y′2),

the generality of the concept allowed Gauss to enter uncharted territory, for instance,
to check – by elaborate computations – formal properties like the commutativity and
associativity of the operation, as far as it is defined on the level of forms (arts. 240–
241). In the end, the concept yields a multiplicative structure on the set of orders
(art. 245) and of genera, with the principal genus acting like a neutral element (arts.
246–248), and indeed of classes (art. 239 and art. 249) of the same determinant.33

This rich new structure gave Gauss a tremendous leverage: to answer new
questions, for instance, on the distribution of the classes among the genera (arts.
251–253); to come back to his favourite theorem, the quadratic reciprocity law,
and derive a second proof of it from a consideration of the number of characters
that actually correspond to genera of a given discriminant (arts. 261–262); to solve a
long-standing conjecture of Fermat’s (art. 293) to the effect that every positive integer
is the sum of three triangular numbers. For this last application, as well as for deeper
insight into the number of genera, Gauss quickly generalized (art. 266 ff.) the basic
theory of reduced forms, classes etc., from binary to ternary quadratic forms. This

30. It is with explicit reference to this terminology that Richard Dedekind would later intro-
duce the notion of order into algebraic number theory in [Dedekind 1930–1932], vol. 1,
pp. 105–158.

31. See also §2 of F. Lemmermeyer’s chap. VIII.3 below. Such classificatory schemes, then
part and parcel of the natural sciences, already existed in mathematics, with variants,
see Hindenburg’s classification in [Bullynck 2006b], pp. 259–260. Note, however, that
Gauss put classes below genera and orders.

32. [Weil 1986]. Cf. the blackboard in [Weil 1979], vol. III, p. ii.
33. This particularly difficult theory of the composition of forms has been reformulated several

times by Gauss’s successors; two different perspectives, emphasizing different aspects
of its history and of its current relevance, are proposed in chaps. II.2 and II.3 below, by
H.M. Edwards and by D. Fenster and J. Schwermer.
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gave him in particular explicit formulae for the number of representations of binary
quadratic forms, and of integers, by ternary forms, implying especially that every
integer ≡ 3 (mod 8) can be written as the sum of three squares, which is tantamount
to Fermat’s claim.34 Sec. 5 closes (arts. 305–307) by open-ended reflections on the
analogy between the multiplicative structure of the prime residue classes modulo an
integer and of the classes of quadratic forms.35

Sec. 5 sometimes displays, and often hides, a tremendous amount of explicit
computations performed by Gauss,36 of numbers of classes, genera, or representa-
tions. To mention just one striking example of such extensive computations, which
had an intriguing long term history, Gauss observed that any given “classification,”
that is, any given pair of numbers, one for the number of genera (which Gauss wrote
as a Roman numeral) and one for the number of classes contained in a single genus
(Arabic numeral), is realized by at most finitely many negative determinants:

It seems beyond doubt that the sequences written down do indeed break off, and
by analogy the same conclusion may be extended to any other classification. For
instance, since in the whole tenth thousand of determinants there is none correspond-
ing to a class number less than 24, it is highly probable that the classifications I.23,
I.21 etc.; II.11; II.10 etc.; IV.5; IV.4; IV.3; IV.2 stop already before −9000, or at least
that they contain extremely few determinants beyond −10000. However, rigorous
proofs of these observations appear to be most difficult.37

34. The entry in Gauss’s mathematical diary about this problem is the only one accompanied
by Archimedes’s exclamation “EYPHKA”; see [Gauss 1796–1814], July 10, 1796.

35. This as well as the composition of orders and genera alluded to above would provide one
of the sources for the later development of the abstract concept of group, see [Wussing
1969], I, § 3.3, and [Wussing 2001].

36. Examples relative to the composition of forms are displayed in H.M. Edwards’s chap.
II.2 below, who argues that such computations play a crucial role in Gauss’s conception
of a well-founded theory. See also Gauss’s addition to art. 306 at the end of the 1801
edition and the tables in [Gauss 1863/1876], pp. 399–509. Gauss discussed how much
numerical material on quadratic forms ought to be published in extenso in an 1841 letter
to H. C. Schumacher, translated in [Smith 1859–1865], §119. Cf. [Maennchen 1930] and
[Neumann 1979–1980], p. 26.

37. Our translation of D.A., art. 303: Nullum dubium esse videtur, quin series adscriptae
revera abruptae sint, et per analogiam conclusionem eandem ad quasuis alias classifi-
cationes extendere licebit. E.g. quum in tota milliade decima determinantium nullus se
obtulerit, cui multitudo classium infra 24 responderit: maxime est verisimile, classifica-
tiones I.23, I.21 etc.; II.11; II.10 etc.; IV.5; IV.4; IV.3; IV.2 iam ante −9000 desiisse, aut
saltem perpaucis determinantibus ultra −10000 comprendere. Demonstrationes autem
rigorosae harum observationum perdifficiles esse videntur. Indeed, for one of the sim-
plest constellations of numbers of classes and genera (corresponding to “orders of class
number one” in imaginary quadratic fields, in Richard Dedekind’s terminology of 1877),
the proof that the list of determinants found by Gauss (art. 303) is actually complete was
given by Kurt Heegner only in 1954 – and at first not accepted – by a method which
subsequently would greatly enrich the arithmetic of elliptic curves. A book on Heegner
by H. Opolka, S.J. Patterson, and N. Schappacher is in preparation.
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1.3. Applications

Explicit calculations had evidently been part and parcel of number theory for Gauss
ever since he acquired a copy of [Lambert 1770] at age 15, and launched into counting
prime numbers in given intervals in order to guess their asymptotic distribution.38 In
these tables, Johann Heinrich Lambert made the memorable comment:

What one has to note with respect to all factorization methods proposed so far, is
that primes take longest, yet cannot be factored. This is because there is no way of
knowing beforehand whether a given number has any divisors or not.39

The whole D.A. is illustrated by many non-trivial examples and accompanied by
numerical tables. Section 6 (52 pp., 27 arts.) is explicitly dedicated to computational
applications. In the earlier part of sec. 6, Gauss discussed explicit methods for partial
fraction decomposition, decimal expansion, and quadratic congruences. Its latter part
(arts. 329–334) takes up Lambert’s problem and proposes two primality tests: one
is based on the fact that a number which is a quadratic residue of a given integer M
is also a quadratic residue of its divisors and relies on results of sec. 4; the second
method uses the number of values of

√
−D mod M , for −D a quadratic residue of

M , and the results on forms of determinant −D established in sec. 5.
The final Section 7 on cyclotomy (74 pp., 31 arts.) is probably the most famous

part of the Disquisitiones Arithmeticae, then and now, because it contains the con-
ditions of constructibility of regular polygons with ruler and compass. After a few
reminders on circular functions – in particular (art. 337), the fact that trigonometric
functions of the angles k P/n, for a fixed integer n and for k = 0, 1, 2, . . . n − 1,
where P = 2π denotes “the circumference of the circle,” are roots of equations of
degree n – Gauss focused on the prime case and the irreducible40 equation

X = 0, where X = xn − 1

x − 1
= xn−1 + xn−2 + · · · + x + 1 ; n > 2 prime,

which his aim is to “decompose gradually into an increasing number of factors in
such a way that the coefficients of these factors can be determined by equations of as

38. See Gauss’s letter to Johann Franz Encke of December 24, 1849 in [Gauss 1863/1876],
pp. 444–447. In [Biermann 1977], pp. 7–18, it is established that the page of Gauss’s
mathematical diary which follows the last entry of July 9, 1814, records the dates when
Gauss counted prime numbers in certain intervals. On the influence of Lambert’s and
Hindenburg’s tables on Gauss’s sec. 6, see [Bullynck 2006b]. See also [Maennchen
1930], in particular pp. 27–35.

39. [Lambert 1770], pp. 29–30: Was übrigens bey allen bißher erfundenen Methoden, die
Theiler der Zahlen aufzusuchen, zu bemerken ist, besteht darinn, daß man bey Primzahlen
am längsten aufsuchen muß, und zuletzt doch nichts findet, weil man nicht voraus weiß,
ob eine forgegebene Zahl Theiler hat oder nicht. Lambert went on to propose Fermat’s
Little Theorem as a first necessary criterion for primality.

40. D.A., art. 341. The word “irreducible” was established a few decades later. Cf. O. Neu-
mann’s chap. II.1 below.
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low a degree as possible, until one arrives at simple factors, i.e., at the roots� of X .”41

Art. 353 illustrates the procedure for n = 19, which requires solving two equations
of degree three and one quadratic equation (because n − 1 = 3 · 3 · 2); art. 354 does
the same for n = 17 which leads to four quadratic equations (n − 1 = 2 · 2 · 2 · 2).42

All roots of X = 0 are powers r i of one of them, but to solve the equation, Gauss
replaced the natural sequence of the exponents i , that is 1, 2, . . . , n − 1, by the more
efficient bookkeeping provided by sec. 3:

But in this [natural] form of the roots there is presented no means of distributing them
into cyclical periods, nor even of ascertaining the existence of such periods or of
determining their laws. It was the happy substitution of a geometrical series formed
by the successive powers of a primitive root of n in place of the arithmetical series
of natural numbers, as the indices [i.e., exponents] of r , which enabled [Gauss] to
exhibit not merely all the different roots of the equation xn−1

x−1 , but which also made
manifest the cyclical periods which existed among them. Thus if α was a primitive
root of n and n − 1 = mk, then in the series r , rα , rα

2
, . . . , rα

k−1
, . . . , rα

mk−1
the

m successive series which are formed by the selection of every k th term, beginning
with the first, the second … are periodical.43

Complementary results on the auxiliary equations, i.e., those satisfied by the sums
over all the roots of unity in a given period, are given in art. 359, applications to the
division of the circle in the final arts. 365 and 366. As a byproduct of his resolution
of X = 0, Gauss also initiated a study of what are today called “Gauss sums,” i.e.,
certain (weighted) sums of roots of unity, like the sum of a period, or of special
values of circular functions. For instance, he proved (art. 356) that, for an odd prime
n and an integer k not divisible by n,

∑

R

cos
k R P

n
−

∑

N

cos
k N P

n
= ±

√
n or 0,

according to whether n ≡ 1 or n ≡ 3 mod 4. Here, R varies over the quadratic
residues, N over the quadratic non-residues modulo n.44

1.4. The Disquisitiones Arithmeticae as a System

In the preface of the D.A., Gauss explicitly restricted the objects of arithmetic to be
the rational integers; he wrote:

41. Our translation of D.A., art. 342: Propositum disquisitionum sequentium … eo tendit, ut
X in factores continuo plures GRADATIM resolvatur, et quidem ita, ut horum coëfficientes
per aequationes ordinis quam infimi determinentur, usque dum hoc modo ad factores
simplices sive ad radices � ipsas perveniatur.

42. For Gauss’s early annoucements of these results and details on the case of the 17-gon,
see [Reich 2000]. The impact on the theory of equations is discussed in O. Neumann’s
chap. II.1.

43. [Peacock 1834], p. 316. Gauss described his view in his letter to Christian Gerling of
January 6, 1819; see [Gauss & Gerling 1927/1975], p. 188.

44. The sign of
√

n depends on whether k is or is not a quadratic residue modulo n, but Gauss
did not succeed in proving this fact in the D.A. See S.J. Patterson’s chap. VIII.2 below.
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The theory of the division of the circle … which is treated in sec. 7 does not belong
by itself to arithmetic, but its principles can only be drawn from higher arithmetic.45

In sec. 7 itself, he promised that the “intimate connection” of the topic with higher
arithmetic “will be made abundantly clear by the treatment itself.”46 There is of
course the technical link mentioned above, that is, the bookkeeping of the roots of
unity via sec. 3. But the “intimate connection” that Gauss announced goes further
and also concerns the systemic architecture of the treatise.

Despite the impressive theoretical display of sec. 5, one cannot fully grasp the
systemic qualities of the D.A. from the torso that Gauss published in 1801. At several
places in the D.A. and in his correspondence a forthcoming volume II is referred to.
The only solid piece of evidence we have is what remains of Gauss’s 1796–1797
manuscript of the treatise. This differs from the structure of the published D.A.
in that it contains an (incomplete) 8th chapter (caput octavum), devoted to higher
congruences, i.e., polynomials with integer coefficients taken modulo a prime and
modulo an irreducible polynomial.47 Thus, according to Gauss’s original plan, sec.
7 would not have been so conspicuously isolated, but would have been naturally
integrated into a greater, systemic unity. The division of the circle would have
provided a model for the topic of the caput octavum, the theory of higher congruences;
it would have appeared as part of a theory which, among many other insights, yields
two entirely new proofs of the quadratic reciprocity law.48

The treatise would thus have come full circle in several respects: beginning with
ordinary congruences and ending with higher congruences; encountering various
periodic structures along the way: prime residues, periods of reduced quadratic
forms of positive discriminant, classes of quadratic forms which are all multiples
of one class, cyclotomic periods and their analogues mod p; and proving quadratic
reciprocity four separate times in the process.

That scientificity ought to be expressed by way of a system was a widespread
idea in Germany in the second half of the XVIIIth century. Lambert, whose works
were well represented in Gauss’s library, wrote, besides his scientific œuvre, sev-
eral philosophical texts developing this idea, at least two of which Gauss owned
personally.49 German idealist philosophers from Immanuel Kant to Georg Wilhelm
Friedrich Hegel, for instance Johann Gottlieb Fichte, Friedrich Wilhelm Joseph von

45. Our translation of D.A., praefatio: Theoria divisionis circuli …, quae in Sect. VII trac-
tatur, ipsa quidem per se ad Arithmeticam non pertinet, attamen eius principia unice ex
Arithmetica Sublimiori petenda sunt.

46. D.A., art. 335: tractatio ipsa abunde declarabit, quam intimo nexu hoc argumentum cum
arithmetica sublimiori coniunctum sit.

47. We summarize in this paragraph G. Frei’s analysis, in chap. II.4 below, of the caput
octavum and its importance for the economy of the whole treatise that Gauss originally
planned.

48. Gauss published them later independently; see G. Frei’s chap. II. 4 below.
49. Maarten Bullynck has drawn our attention to [Lambert 1764] and [Lambert 1771]; see

[Bullynck 2006b], p. 278. Unfortunately, the dates of acquisition for these items are not
known.
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Schelling, Karl Leonhard Reinhold, and Jakob Friedrich Fries, cultivated various
systemic programmes. Starting with Fichte, a system with a circular instead of
linear architecture – returning to its initial point which thereby receives its higher
justification – is called upon to provide a self-justifying foundation for the unfolding
of self-consciousness. With Hegel this would become the unfolding of reason; in
his first philosophical publication, which appeared in the same year as Gauss’s D.A.,
Hegel wrote that “the method of the system, which may be called neither analytical
nor synthetical, is realized most purely if it appears as the development of reason
itself.”50

The systemic design of Gauss’s original plan for his arithmetic fits those ambient
ideas remarkably well.51 It makes it possible, for instance, to appreciate the four
proofs of the quadratic reciprocity law originally planned for the treatise in a dual
way: deducing a theorem at a certain place of the systemic development endows it
with a specific theoretical meaning;52 on the other hand, the various proofs of the
same result connect these theoretical frameworks into a system which is not simply
a deduction of increasingly complicated theorems from initial axioms. In Gauss’s
words,

It is the insight into the marvellous interlinking of the truths of higher arithmetic
which constitutes the greatest appeal of these investigations.53

Another systemic cyclicity is created precisely by the already mentioned recurrence
of periodic structures throughout the treatise. Gauss himself insisted on the analogy
between what we call cyclic components of class groups and the multiplicative
structure of residues modulo a prime number:

The proof of the preceding theorem will be found to be completely analogous to the
proofs of arts. 45, 49, and the theory of the multiplication of classes actually has a
very great affinity in every respect with the argument of sec. 3.54

50. [Hegel 1801], p. 35: Am reinsten gibt sich die weder synthetisch noch analytisch zu nen-
nende Methode des Systems, wenn sie als eine Entwicklung der Vernunft selbst erscheint.
For a general orientation about the philosophical ideas alluded to in this paragraph, see
[Ritter, Gründer 1998], art. “System,” pp. 835–843.

51. In spite of Gauss’s philosophical interests – e.g., he is said to have read Kant’s Critique
of Pure Reason several times; see [Dunnington 1955], p. 315; cf. J. Ferreirós’s chap.
III.2 and J. Boniface’s chap. V.1 below – we have no evidence of a direct and conscious
inspiration; later mentions of Hegel by Gauss are rather critical; see for instance [Gauss
& Schumacher 1862], vol. 4, no 944, p. 337. A reference to Gauss’s idea of science as a
system in the not very reliable biographical essay [Waltershausen 1856], p. 97, suggests
only a banal deductive structure.

52. From the philosophical point of view, cf. [Hartmann 1972], p. 106: “The point easily
lost sight of is that the [systemic] methodological structure provides a new meaning to
categories that already have a meaning.”

53. Our translation of [Gauss 1817], p. 160: Dann ist gerade die Einsicht in die wunderbare
Verkettung der Wahrheiten der höhern Arithmetik dasjenige, das einen Hauptreiz dieses
Studiums ausmacht, und nicht selten wiederum zur Entdeckung neuer Wahrheiten führt.

54. Our translation of D.A., art. 306: Demonstratio theor. praec. omnino analoga invenietur
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Gauss thus drew the attention of the reader to the fact that sec. 3 was not only
instrumental for decomposing the cyclotomic equation in sec. 7 but also linked the
theory of forms to the rest. He also significantly called “irregular” a determinant
whose principal genus was not cyclic, i.e., not constituted by the multiples of a single
class of forms.

Half a century later, the mathematician Ernst Eduard Kummer reflected upon a
suitable system for “the more recent mathematics,” and concluded that it should not
be linear but

rather like the system of the universe; its goal would be to give not just the deduction
of the mathematical truths, but an insight into all the essential relations among
them.55

As mentioned above, the subject of the Disquisitiones Arithmeticae was natural
numbers and Gauss’s proofs were anchored in intricate computations, both formal
(as in the sec. 5) and numerical, ultimately based on integers. The tension between
this anchorage of the book and the striving towards a wider theoretical scope, as
illustrated in the last section of the D.A., will be a recurring theme in what follows.
It explains why the question of the reception of the book is tightly linked to the
shaping of number theory as a specific discipline.

2. The Early Years of the Disquisitiones Arithmeticae

Gauss’s own impressions of the early reception of the Disquisitiones Arithmeticae
are scattered in his correspondence. A letter of June 16, 1805, to Antoine-Charles
Marcel Poullet-Delisle, his French translator,56 summarizes them well:

It is for me as sweet as it is flattering that the investigations contained in my Work, to
which I devoted the best part of my youth, and which were the source of my sweetest
pleasures, have acquired so many friends in France; a fate quite different from what

demonstrationibus in arts. 45, 49, reveraque theoria multiplicationis classium cum argu-
mento in Sect. III tractato permagnam undique affinitatem habet. Cf. the note on D.A.,
art. 306.IX: “Démonstration de quelques théorèmes concernant les périodes des classes
des formes binaires du second degré,” [Gauss 1863/1876], pp. 266–268, where Gauss
used, of course informally, the word “group” (groupe) referring to all classes of forms of
given determinant.

55. [Kummer 1975], vol. 2, p. 697: die neuere Mathematik … wird sich erst später ihr eigen-
thümliches System schaffen, und zwar wol nicht mehr nur ein in einer Linie fortlaufendes,
dessen Vollkommenheit allein darin liegt, dass das Folgende überall durch das Vorherge-
hende begründet werde, sondern ein dem Weltsysteme ähnlicheres, dessen Aufgabe es
sein wird, über die blosse Begründung der mathematischen Wahrheiten hinausgehend,
eine allseitige Erkenntnis der wesentlichen Beziehungen derselben zueinander zu geben.
In [Kummer 1975], vol. 2, p. 687, the parallel is made explicit between Hegel’s principle
of the systemic “self-interpretation of content” (Sichselbstauslegen des Inhalts) and the
system required for the new mathematics since Gauss.

56. On his life, see [Boncompagni 1882].
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they found in Germany where a taste for the most difficult parts of pure mathematics
is the property of a very small number of persons.57

The Disquisitiones Arithmeticae had in fact been mentioned at the French Academy
at least as early as January 1802:

Citizen Legendre communicates a geometrical discovery, made in Germany by M.
Charles Frédéric Bruce [sic], from Brunswick, and published by him in his work
entitled Disquisitiones arithmeticae, Leipsik, 1801,58

and was commented upon very positively from all quarters.59 The project of a French
translation was supported by arguably the most prominent mathematician of the
time, Pierre-Siméon Laplace, and on May 31, 1804, Joseph-Louis Lagrange wrote
to Gauss:

Your Disquisitiones have put you at once among the first mathematicians, and I
consider the last section as one which contains the most beautiful analytic discovery
made in a long time. Your work on planets will moreover have the merit of the
importance of its topic.60

The beginning of this praise is often quoted, but taken in its entirety, the citation pro-
vides important clues about the early reception of the D.A. First, attention focused
on the last section, the resolution of xn − 1 = 0 through auxiliary equations and
its consequences for the constructibility of regular polygons; this is the part of the
book which borders both on the general theory of equations and on geometry. Sec-
ond, Gauss’s innovation was described as “analytical.” Finally, number theory (and
more generally pure mathematics) was considered a subsidiary subject compared to
astronomy or mathematical physics.

57. Letter published by Ernest Fauque de Jonquières in 1896, Comptes rendus de l’Académie
des sciences 122, p. 829: Il m’est aussi doux que flatteur que les recherches contenues
dans mon Ouvrage, auxquelles j’avais dévoué la plus belle partie de ma jeunesse, et qui
ont été la source de mes plus douces jouissances, aient acquis tant d’amis en France;
sort bien inégal à celui qu’elles ont trouvé en Allemagne où le goût pour les parties
plus difficiles des mathématiques pures n’est la propriété que d’un fort petit nombre de
personnes. In the letter, Gauss also expressed his hopes to publish the sequel of the D.A.,
a project he described as delayed for lack of time and printer.

58. Procès verbaux de l’Académie des sciences, registre 114, vol. II, séance du 6 pluviôse an 10
(26 janvier 1802), p. 457: Le Citoyen Legendre communique une découverte géométrique,
faite en Allemagne par M. Charles Frédéric Bruce, de Brunswick, et publiée par lui dans
son ouvrage intitulé Disquisitiones arithmeticae, Leipsik, 1801.

59. Gauss’s fame in France was decisive for his connection to Alexander von Humboldt (then
in Paris), and for establishing on the German scene, through Humboldt, a place for himself
and, afterwards, for other number theorists; see H. Pieper’s chap. III.1 in this volume.

60. [Lagrange 1867–1892], vol. 14, p. 299: Vos Disquisitiones vous ont mis tout de suite
au rang des premiers géomètres et je regarde la dernière section commme contenant la
plus belle découverte analytique qui ait été faite depuis longtemps. Votre travail sur les
planètes aura de plus le mérite de l’importance de son objet. “Geometer” (géomètre)
remains a standard terminology for “mathematician” in French during the XIXth century.
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This challenges the disciplinary position of the Disquisitiones Arithmeticae both
in its mathematical and cultural aspects. Two situations typified the first genera-
tion of its readers:61 either their involvement with the book, even if significant and
fruitful, occupied only a small part within all their mathematical activities, or they
themselves occupied a marginal position in the mathematical community. Augustin-
Louis Cauchy is a good example of the first category, and Sophie Germain of the
second.62 And Gauss himself, after all, turned to astronomy and geodesy to secure a
position.

This does not mean, however, that the reading of the D.A. at the time was
restricted to one section, nor that it remained superficial and did not lead at all to
innovative work. Sophie Germain displayed in her papers a thorough knowledge of
all the sections: those on congruences of course which she used freely in her work on
Fermat’s Last Theorem as well as in her new proof of the quadratic residue behaviour
of the prime 2, but also the difficult sec. 5, and specifically the composition of forms
and the theory of ternary forms.63 In his memoir on symmetric functions, presented
to the Institut on November 30, 1812, Cauchy relied on concepts and a notation
which he borrowed directly from the D.A., such as the idea of an adjoint and the
notion of determinant, to prove that if a function of n quantities takes less than p
distinct values, where p is the greatest prime divisor of n, then it can take at most 2
values, and furthermore to develop his theory of combinations and of determinants,
seen with hindsight as key steps towards the development of group theory.64

However, as Lagrange’s quote suggested, the D.A. was first of all taken up for
its treatment of xn − 1 and therefore mostly in treatises on algebra. For instance,
Sylvestre François Lacroix included in the third edition of his Complément des
Élemens d’algèbre (1804) a discussion of Gauss’s results in the section on binomial
equations.65 Lagrange’s second edition of his Traité de la résolution des équations

61. Different aspects of this early reception have been documented in [Neumann 1979–1980],
[Reich 1996], [Reich 2000], [Goldstein 2003], and [Neumann 2005].

62. On the shifting professional status of number theory and number theorists, and the char-
acteristics of the craft at different moments, see [Goldstein 1989].

63. See for instance Bibliothèque Nationale de France, Manuscripts f.fr 9118, pp. 40–41,
86; f.fr. 9114, pp. 92–94. On Germain’s work, see [Edwards 1977], pp. 61–65, and
[Laubenbacher, Pengelley 1998].

64. See [Cauchy 1815], where Cauchy – perhaps significantly – refers to Gauss’s “Recherches
analytiques” [sic]; cf. [Belhoste 1991], pp. 32–35. Between 1813 and 1815, Cauchy also
published, in [Cauchy 1813–1815], his proof of Fermat’s general claim to the effect that
each natural number is the sum of no more than n n-gonal numbers. Gauss had shown
in passing how to reduce the case n = 4 (already proved by Lagrange) to his theorem
for n = 3; see end of D.A., art. 293. Cauchy then managed to reduce the cases n ≥ 5
to those proven by Gauss; the most original elements of this proof, however, seem quite
independent of the D.A.

65. [Lacroix 1804], p. 92: M. Gauss, dans un ouvrage très-remarquable, intitulé Disquisi-
tiones Arithmeticae, a fait voir que toute équation à deux termes, dont l’exposant est
un nombre premier, peut être décomposée rationnellement en d’autres équations dont
les degrés sont marqués par les facteurs premiers du nombre qui précède d’une unité ce
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numériques de tous les degrés [Lagrange 1770/1808] also includes, as a final note
XIV, a simplification of D.A., art. 360 rendering “the consideration of auxiliary
equations superfluous,”66 thanks to what are called “Lagrangian resolvents,” i.e.,
sums such as r + αra + α2ra2 + · · · + αμ−2raμ−2

, where α is a (μ− 1)th, r a μth

root of unity, and a a primitive root modulo μ.
Gauss’s treatment of the cyclotomic equation was mentioned many times, in

various countries, during the first decades of the century: Peter Barlow, a mathematics
teacher at the Royal Military Academy, Woolwich, better known for his chromatic
telescope lens, his work on magnetism and as a royal commissioner for railways,
devoted a chapter to it in his book on Diophantine analysis, [Barlow 1811]. Nikolai
Ivanovič Lobačevskii, who had been introduced to Gauss’s work by his teacher (and
Gauss’s friend) Martin Bartels at Kazan, published a note on it.67 Charles Babbage
included the D.A. among the small list of works he recommended to the members
of the newly created Cambridge Analytical Society, mentioning in particular “that
celebrated theorem of Gauss on the resolution of the equation of xn −1 = 0.”68 Hegel
used it as a famous example in his Wissenschaft der Logik in a discussion of analytical
versus synthetical proofs.69 In April 1818, Poinsot explained to the Academy his ideas
to develop simultaneously the theory of the resolution of xn − 1 = 0 and that of
xn − 1 = M(p), in Legendre’s notation.70 Mindful of a general view of the world
and the sciences in which the notion of “order” (ordre) played a key role, Poinsot
saw Gauss’s reindexation of the roots of the cyclotomic equation as a paradigm of
the fact that order was the natural source of the properties of numbers, and algebra
the proper domain to express it, see [Poinsot 1819–1820].

These variegated allusions to “analytic” and “analysis” redirect our attention to
the problem of the disciplinary landscape in which the Disquisitiones Arithmeticae

nombre premier. …, mais pour le démontrer il faut recourir à des propriétés des nombres,
que je ne pourrai faire connaître qu’à la fin de cet ouvrage. Indeed, on pp. 294–315,
the required parts of D.A., sec. 3 are explained, and then applied to the discussion of
x17 − 1 = 0 and, in less detail, of x19 − 1 = 0.

66. [Poinsot 1808/1826], p. xviii: de sorte que sa méthode rend superflue cette considération
des équations auxiliaires. Lagrange used Gauss’s sec. 7 to “reduce the resolution of
binomial equations to the same principle as that of cubic and quartic equations”; see
[Lagrange 1867–1892], vol. 14, p. 300.

67. See [Neumann 2005], p. 313.
68. [Babbage 1813/1989], p. 32.
69. [Hegel 1812–1816], vol. 2, p. 325. Hegel concluded that Gauss’s method to resolve

xm − 1 = 0 (which he called “one of the most important extensions of analysis in recent
times”) is synthetic, not analytic (in the Kantian, philosophical sense), because it uses
the residues modulo m and primitive roots, “which are not data of the problem itself.”

70. This notation was used in [Legendre 1798/1808] for what Gauss wrote as xn ≡ 1 (mod p)
(in other terms, xn − 1 is a multiple of p). Barlow, in [Barlow 1811] replaced Gauss’s
triple bar by another symbol of his own device. On the other hand, Christian Kramp,
a professor of mathematics in the then French towns of Strasbourg and Cologne, used
Gauss’s congruence notation in his Élémens d’Arithmétique Universelle, published in
1808; see [Cajori 1928–1929], vol. 2, p. 35.
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was to be situated.71 In the preface of the D.A., Gauss directly addressed this issue:
as said above, he defined the domain of his book as that of general investigations of
integers (and of fractions as expressed by integers),72 more precisely their advanced
part, as opposed to the elementary part which deals with the writing of numbers and
the usual operations. Moreover, according to Gauss, this domain entertains with
indeterminate (or Diophantine) analysis roughly the same relation that universal
analysis – which investigates general quantities – entertains with ordinary algebra,
i.e., the theory of algebraic equations. In other words, arithmetic provides the general
theoretical framework for the investigation of equations in integers or fractions.
Gauss thus claimed quite an important status for his domain, parallel to analysis and
rich in its own applications, as illustrated by secs. 6 and 7 of the D.A.

However, this was markedly different from the usual contemporary point of
view;73 Legendre for instance, in the preface to his Essai sur la théorie des nombres,
stated:

I shall not distinguish the Theory of Numbers from Indeterminate Analysis, and I
consider these two parts as making up one single branch of Algebraic Analysis.74

The report on the mathematical sciences presented to the emperor Napoléon on
February 6, 1808 by Jean Baptiste Joseph Delambre, Secretary of the Academy,
adopted a very similar view: the presentation moves from geometry to algebra,
number theory, and calculus – the three of them seen as analytical investigations –
and then on to mechanics, astronomy, physics and geography.75 Barlow also referred
to number theory as a “branch of analysis” in the preface of [Barlow 1811].

71. One has to keep in mind that 1801 was in the middle of a transitional period for ma-
thematics where one passes from a vision of analysis as a global approach to problems,
opposed to the synthetic one associated with Euclid’s geometry, to a vision of analysis
as a specific mathematical domain dealing with functions and limits. The last decades of
the XVIIIth century saw the triumph of algebraic analysis, as promoted for example by
Lagrange. See [Jahnke 1990], in particular chaps. 4–8.

72. See also J. Boniface’s chap. V.1 below.
73. This does not mean that Gauss’s point of view had no precedent. One may think of Pierre

Fermat, for instance, advocating an autonomous theory of integers (opposed to general
quantities) in his 1657 challenge, see Œuvres de Pierre Fermat, ed. P. Tannery, C. Henry,
vol. 2, p. 334. Paris: Gauthier-Villars, 1894.

74. [Legendre 1798/1808], p. xi: Je ne sépare point la Théorie des Nombres de l’Analyse
indéterminée et je regarde ces deux parties comme ne faisant qu’une seule et même
branche de l’Analyse algébrique.

75. [Delambre 1810]. About 30 pages are allotted to analysis, as opposed to some 230 pages
for the rest. Analysis gets about half the room devoted to astronomy, in accordance
with Lagrange’s point of view expressed in his 1804 letter. Gauss is mentioned several
times, as one of the very rare foreigners in this report which concentrates mainly on
the achievements of French scientists. Representing him as “one of the best minds in
Europe,” but also as a successor of Lagrange and Legendre, i.e., at the same time as
European and as an heir and participant of French culture, is quite characteristic of the
late French Enlightenment; see [Goldstein 2003].
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Notwithstanding the attention paid to the D.A., the disciplinary status quo re-
mained unchanged, as textbooks show. In Barlow’s treatise for instance, theoretical
arithmetic, including that inherited from Gauss’s book, only serves as prolegom-
ena to the solution of families of indeterminate equations. Legendre did not adopt
Gauss’s congruence notation, nor did he distinguish congruences as a topic worthy
of a separate treatment. He did present a proof of the quadratic reciprocity law as
well as a whole chapter on cyclotomic equations, after Gauss, in the second edition
of his Essai sur la théorie des nombres, but commented:

One would have wished to enrich this Essay with a greater number of the excellent
materials which compose the work of M. Gauss: but the methods of this author are so
specific to him that one could not have, without extensive detours and without reduc-
ing oneself to the simple role of a translator, benefited from his other discoveries.76

Thus, the Disquisitiones Arithmeticae had at first a strong effect, but in a direction
opposite to that of establishing number theory as an autonomous research discipline,
as defined by Gauss in the preface of the D.A., that is, focused on integers and
congruences; the book contributed to, and sometimes even launched, developments
in algebra (perceived as a branch of analysis), in the theory of equations and in the
study of linear transformations, determinants, and substitutions, towards the theories
of groups and of invariants.77 This partial fusion with other domains could even
be perceived as a valorization of number theory, in that this would overcome its
isolation. In his report to the British Association for the Advancement of Science
“on the recent progress and present state of certain branches of analysis,” delivered
at Cambridge in 1833, George Peacock, after an analysis of sec. 7 of the D.A., which
“gave an immense extension to our knowledge of the theory and solution of such
binomial equations” ([Peacock 1834], p. 316), comments on Poinsot’s investigations
on the cyclotomic equation and its analogue modulo p, mentioned above:

These views of Poinsot are chiefly interesting and valuable as connecting the theory
of indeterminates with that of ordinary equations. It has, in fact, been too much
the custom of analysis to consider the theory of numbers as altogether separated
from that of ordinary algebra. The methods employed have generally been confined
to the specific problem under consideration and have been altogether incapable of
application when the known quantities employed were expressed by general symbols
and not by specific numbers. It is to this cause that we may chiefly attribute the want
of continuity in the methods of investigation which have been pursued, and the
great confusion which has been occasioned by the multiplication of insulated facts

76. [Legendre 1798/1808], Avertissement, p. vi: On aurait désiré enrichir cet Essai d’un
plus grand nombre des excellens matériaux qui composent l’ouvrage de M. Gauss : mais
les méthodes de cet auteur lui sont tellement particulières qu’on n’aurait pu, sans des
circuits très étendus, et sans s’assujétir au simple rôle de traducteur, profiter de ses autres
découvertes.

77. For instance, Jacobi in his paper on Pfaff’s theory referred to the D.A. for the notion
of determinant, see [Jacobi 1882–1891], vol. 4, p. 26. However, given that the D.A.
was often not the only source of a mathematical development in those areas, gauging its
precise effect is a delicate question.
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and propositions which were not referable to, nor deducible from any general and
comprehensive theory.78

We will see that the following phase would be characterized by an even greater
entwinement around the Disquisitiones Arithmeticae of several disciplinary orien-
tations. Paradoxically enough, this would help to consolidate the status of number
theory, particularly in Germany.

3. The Disquisitiones as the Core for Arithmetic Algebraic Analysis

Because of the already-established fame of the book, and because it did not require
many prerequisites, the generations of mathematicians born after 1801 often read the
D.A. early on: the Norwegian Niels Henrik Abel, born in 1802, studied it in his first
year of university, the Italian Angelo Genocchi, born in 1817, perused it while he
was still in law school, and the Englishman Arthur Cayley, born in 1821, quoted it in
his first important paper on determinants presented to the Cambridge Philosophical
Society. The publication of shorter articles focusing on new results, instead of books
or long memoirs, began to spread as normal mathematical activity: these papers are
strewn with references to the Disquisitiones Arithmeticae in the second quarter of the
XIXth century, and witness engagement with several specific questions arising from
the first sections. A small industry developed for example around the determination
of primitive roots modulo a prime p, accompanied sometimes by the publication
of extensive tables. Guglielmo Libri and especially Victor-Amédée Lebesgue also
investigated at some length the number of solutions of various types of congruences,
in particular a1xm

1 + . . .+ ak xm
k ≡ a mod p, for p = hm + 1.79

However, the reception of the Disquisitiones Arithmeticae during the 1820s did
not simply result from a closer, more systematic study of the book, in the continuation
of the first decades: two new factors directly intervened in the 1820s, which would
at the same time consolidate and diversify a fledgling domain of research emerging
from the Disquisitiones Arithmeticae. One was cultural and institutional, the other
had to do with mathematical content and technique.80

78. [Peacock 1834], p. 322. We are indebted to M.J. Durand-Richard for drawing our attention
to this text.

79. See [Lebesgue 1837]. Lebesgue occupied several professorships in provincial towns and
published numerous articles, mostly on number theory, including a new proof of the
quadratic reciprocity law. He illustrates well the development of research activities and
publications outside the main centres, i.e., outside Paris and far from the Academy in the
case of France. Characteristically, he also published, in the same issue of the journal,
“astronomical theses” whose real topic was in fact substitutions of forms. His counting
of solutions for congruence equations is mentioned (rather dismissively) in André Weil’s
seminal article [Weil 1975], vol. 1, [1949b], which culminated in the statement of the
general “Weil Conjectures” (and referred to art. 358 of the D.A. as the origin of the
question).

80. For more details on the two aspects, see respectively Parts III and IV of this book.
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3.1. Mathematics in Berlin

The first aspect was the conscious renewal of German, and specifically Prussian,
mathematics in the aftermath of the wars against Napoléon and the founding of
Berlin University.81 The values associated with mathematics as of the late 1820s and
the corresponding efforts to hire adequate professors allowed Gauss’s D.A. to play
a prominent role in this development. As Abel wrote to Christoffer Hansteen on
December 5, 1825: “The young mathematicians in Berlin and, as I hear, all over
Germany almost worship Gauss; he is the epitome of all mathematical excellence.”82

Gauss’s letter of recommendation for Dirichlet, for instance, explicitly stressed num-
ber theory as a significant topic on which to judge the value of a mathematician, as
well as the patriotic aspect of the hiring.83 August Crelle’s foundation of the Journal
für die reine und angewandte Mathematik in 1826 provided the new discipline with a
crucial organ in Germany. A comparison of the papers published in Crelle’s journal
to those in, say, Joseph Gergonne’s Annales de mathématiques or the memoirs of the
Paris Academy in those years illuminates the new domains touched upon.

This orientation would be reinforced by the lectures offered on number theory at
Berlin University and the production of textbooks. Ferdinand Minding, for example,
Privatdozent at Berlin, published in 1832 an introduction to higher arithmetic, which
presents a shortened and expurgated version of the D.A. focusing on the basic parts
of the various sections, with the notable exception of sec. 7. Minding dropped
the more delicate part of Gauss’s theory of forms (genera, composition), but added
things expected from the perspective of a textbook, for instance, linear Diophantine
equations or continued fractions. He did, however, identify the quadratic reciprocity
law as “the most remarkable theorem of higher arithmetic,”84 and, in a historical
endnote, stressed rigour:

Gauss’s Disquisitiones Arithmeticae offers a presentation of arithmetic conducted
with ancient rigour and distinguished by new discoveries. Among other things an
excellent merit of the work lies in the rigorous proof of the reciprocity theorem. Since
then the science has been enriched by a non-negligible number of new proofs and
results, some of which are to be found in the memoirs of various learned societies,
others in mathematical journals, and especially in Crelle’s Journal for mathematics.85

81. This foundation goes back to 1810 and Wilhelm von Humboldt’s neo-humanist reform (see
[Vierhaus 1987]); but its strong impact on the development of mathematics mostly started
after Alexander von Humboldt’s return from Paris to Berlin in 1827. See [Biermann
1988], chap. 3.

82. Quoted from [Ore 1957], p. 91.
83. This letter to Encke and the hiring of number theorists is discussed in H. Pieper’s chap.

III.1, §2, below.
84. [Minding 1832], p. 53. We heartily thank Ms. Bärbel Mund at the Göttingen university

library for making Gauss’s copy of this little book accessible to us. In the author’s
announcement of his book in Crelle’s Journal (vol. 7, 1831, pp. 414–416), Minding
described pure number theory as both a necessary foundation for algebra (whose basic
notion is that of number) and a paradigm for a rigorously developed, autonomous branch
of mathematics.

85. [Minding 1832], p. 198: Eine in antiker Strenge durchgeführte und durch neue Entdek-
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A comparison with Legendre’s or Barlow’s books mentioned above also reveals a
change of focus: Minding’s treatment makes congruences an important topic per se,
instead of a mere prelude to the study of specific Diophantine equations.

3.2. Biquadratic Residues

The second new factor of change was paradoxically brought about by new develop-
ments in analysis, specifically analysis involving continuity. It eventually gave rise
to an active, largely international, integrated domain of research, which blossomed
in the middle of the century: for short, we shall refer to it as arithmetic algebraic
analysis. It was rooted in XVIIIth century algebraic analysis, onto which the Disqui-
sitiones Arithmeticae grafted a potent arithmetical shoot which grew to be its central
stem for a while. At least three new developments in analysis gave substance to
arithmetic algebraic analysis: (1) the acceptance of complex numbers and Gauss’s
publications on biquadratic residues between 1825 and 1832; (2) the integration of
Fourier analysis into number theory; and (3) the theory of elliptic functions. We
shall discuss them in turn, although they were actually tightly interwoven in much
of the production of those years.

Gauss’s investigations on biquadratic (that is, quartic) residues86 led him to
complex numbers and their claim to enter the subject matter of higher arithmetic.
Apparently conceived a few years after the publication of the D.A., his ideas on
extending the domain of arithmetic were published only after 1825.87 The goal
of this work was to state and prove a biquadratic reciprocity law; while his first

kungen ausgezeichnete Darstellung der Arithmetik geben die disquisitiones arithmeticae
von Gauß… Unter andern macht der strenge Beweis des Satzes der Reciprocität ein
vorzügliches Verdienst dieses Werkes aus. Seitdem ist die Wissenschaft durch eine nicht
unbedeutende Anzahl neuer Beweise und Resultate bereichert worden, welche sich theils
in den Denkschriften verschiedner gelehrten Gesellschaften, theils in mathematischen
Zeitschriften, und namentlich in Crelle’s Journal für Mathematik befinden.

86. He presented his results to the Göttingen Academy in two installments, the first in 1825, the
second in 1831, and announced both presentations in the Göttingische gelehrte Anzeigen
a few days later, some time before the papers themselves were published, see [Gauss
1863/1876], pp. 65–92, pp. 93–148, pp. 165–168, and pp. 169–178, respectively; an
English translation of the second self-announcement is to be found in [Ewald 1996],
vol. 1, pp. 306–313. During the first decades of the century, Gauss had also completed
the D.A. on several points; see [Gauss 1863/1876].

87. In [Gauss 1863/1876], pp. 165–168, Gauss dated the beginning of his work on cubic and
biquadratic residues to 1805. This is compatible with material evidence about two of
the early notes on cubic residues published in [Gauss 1900], pp. 5–11. However, his
mathematical diary records on February 15, 1807: “Beginning of the theory of cubic
and biquadratic residues” (Theoria Residuorum cubicorum et biquadraticorum incepta),
and on October 23, 1813: “The foundation of a general theory of biquadratic residues,
searched for during almost seven years with the greatest effort but always in vain, we have
finally and happily discovered on the same day that a son was born to us” (Fundamentum
theoriae residuorum biquadraticorum generalis, per septem propemodum annos summa
contentione sed semper frustra quaesitum tandem feliciter deteximus eodem die quo filius
nobis natus est); see [Gauss 1796–1814].
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communication handled the results on −1 and 2 as biquadratic residues for any prime
of the form 4n + 1, the second got as far as stating the biquadratic law. However, its
most original feature was elsewhere:

As easily as all such special theorems are discovered by induction, so difficult it is
to find a general law for these forms in the same way, even though several common
features are obvious. And it is even more difficult to find the proofs of these theorems.
… One soon recognizes that totally new approaches are necessary to enter this
rich domain of higher arithmetic, … that for the true foundation of the theory of
biquadratic residues the field of higher arithmetic, which before had only extended
to the real integers, has to be extended to also include the imaginary ones and that
exactly the same right of citizenship has to be given to the latter as to the former. As
soon as one has understood this, that theory appears in a totally new light, and its
results acquire a most surprising simplicity.88

Gauss then considered what are now called “Gaussian integers” a+bi (with i2 = −1
and rational integers a, b), and extended to them the concepts and results of arithmetic
as defined in the Disquisitiones Arithmeticae: the units ±1,±i ; (complex) prime
numbers and congruences; Fermat’s Little Theorem; the quadratic reciprocity law,
etc. In Gauss’s words:

Almost all the investigations of the first four sections of the Disquisitiones Arithme-
ticae find, with a few modifications, their place also in the extended arithmetic.89

He was then able to state a quartic reciprocity law for Gaussian integers.90

While we are now used to interpreting Gaussian integers arithmetically, as an
instance of algebraic numbers,91 the legitimacy of complex numbers inside analysis

88. [Gauss 1863/1876], pp. 170–171: So leicht sich aber alle dergleichen specielle Theoreme
durch die Induction entdecken lassen, so schwer scheint es, auf diesem Wege ein allge-
meines Gesetz für diese Formen aufzufinden, wenn auch manches Gemeinschaftliche bald
in die Augen fällt, und noch viel schwerer ist es, für diese Lehrsätze die Beweise zu finden.
… Man erkennt demnach bald, dass man in dieses reiche Gebiet der höhern Arithmetik
nur auf ganz neuen Wegen eindringen kann, … dass für die wahre Begründung der Theo-
rie der biquadratischen Reste das Feld der höhern Arithmetik, welches man sonst nur auf
die reellen ganzen Zahlen ausdehnte, auch über die imaginären erstreckt werden, und
diesen das völlig gleiche Bürgerrecht mit jenen eingeräumt werden muss. Sobald man
diess einmal eingesehen hat, erscheint jene Theorie in einem ganz neuen Lichte, und ihre
Resultate gewinnen eine höchst überraschende Einfachheit.

89. [Gauss 1863/1876], p. 172: Fast die sämmtlichen Untersuchungen der vier ersten Ab-
schnitte der Disquisitiones Arithmeticae finden mit einigen Modificationen, auch in der
erweiterten Arithmetik ihren Platz. Gauss also completed his purely arithmetical pre-
sentation with a geometric one, interpreting complex numbers as points in the plane, see
§§ 38, 39 and pp. 174–178.

90. For two distinct prime Gaussian integers α and β which are primary, that is, congruent to

1 modulo 2+2i , one has
[

α

β

][

β

α

]

= (−1)
Nα−1

4
Nβ−1

4 ,where
[

α

β

]

is the quartic analogue of
the Legendre symbol (which takes the four values, ±1,±i) and Nα designates the norm
of the Gaussian integer α; see [Lemmermeyer 2000], chap. 6. As in the D.A., Gauss did
not use any Legendre-like symbol.

91. Several authors would later describe the inclusion of the Gaussian integers as the initial
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was still very much in debate during these decades and contemporaries first perceived
Gauss’s move as establishing links inside analysis. The fact that Gauss announced a
proof of the biquadratic reciprocity law, but never published it, provided additional
incentive to work on reciprocity laws for small degrees, in particular cubic, quartic
and sextic.92 Jacobi was the first to make a proof of the biquadratic law at least
semi-public through Johann Georg Rosenhain’s notes of his 1836–1837 Königsberg
lectures: “Gauss advertises these theorems very much in that they occupied him
particularly, and they are indeed of the highest importance.”93 The proof relied on
cyclotomy: Jacobi’s point of departure was Gauss’s work on biquadratic reciprocity
as well as the D.A., reading the latter very much from the point of view of sec. 7.
Thus, his emphasis is different from Minding’s:

Number Theory in its present state consists of two big chapters, one of which may be
called the theory of the solution of pure equations, the other the theory of quadratic
forms. Here I will deal mainly with the first part whose discovery we owe to Gauss.94

This description is interesting because it does not mention congruences as a part by
itself; on the contrary, it suggests that congruences are a common theme underlying
both “chapters,” in agreement with the increasing importance of reciprocity laws as
the core of number theory, and also with what we can guess about Gauss’s original
plan of his treatise. It also fits well with the idea of arithmetic algebraic analysis, the
equations and forms (as algebraic core) providing the intermediary step between the
arithmetical topic (congruences) and analytic tools, as we shall now see.

3.3. Infinite Series

Gauss apparently had long had his own ideas on the proper discipline of analysis.
In 1812, he identified limiting processes as the “true soil on which the transcen-
dental functions are generated.”95 This marks a cautious distance from the tradition
of algebraic analysis, and Gauss would implicitly confirm this distance later in his

step in this direction; see for instance [Sommer 1907], p. i: Seitdem Gauß die Arithmetik
durch Aufnahme der komplexen Zahlen a + b

√
−1 erweitert hat, ist eine großartige

Theorie der allgemeinen algebraischen Zahlen entstanden. For a recent example of the
same perspective, see the beginning of [Neukirch 1999]. Cf. chap. I.2 below.

92. For detailed overviews, we refer to [Smith 1859–1865], §§28–38, and [Lemmermeyer
2000], chaps. 6–8. See also §3 of C. Houzel’s chap. IV.2 below. We will briefly discuss
Eisenstein below, who gave altogether five proofs of biquadratic reciprocity.

93. [Jacobi 1836–1837], 35th course, p. 221: Gauß preist diese Theoreme sehr an, indem
sie ihn besonders beschäftigten, u. sie sind in der That von der größten Wichtigkeit.
Handwritten copies of these lectures circulated in Germany; see [Jacobi 1881–1891],
vol. 6, 2nd footnote on pp. 261–262. Henry Smith, however, had apparently no access to
them when he wrote his report in the 1860s; see [Smith 1859–1865], p. 78.

94. [Jacobi 1836–1837], 1st course, p. 5: Die Zahlentheorie auf ihrem jetzigen Standpunkte
zerfällt in zwei große Kapitel, von denen das eine als die Theorie der Auflösung der reinen
Gleichungen, das andere als die Theorie der quadratischen Formen bezeichnet werden
kann. Ich werde hier hauptsächlich von dem ersten Theile handeln, dessen Erfindung
wir Gauß verdanken.

95. [Gauss 1866], p. 198: … überhaupt die Annäherung an eine Grenze durch Operationen,
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positive reaction to Enno H. Dirksen’s voluminous Organon [Dirksen 1845], a book
which, while obviously rooted in this tradition, stresses “transcendental determina-
tions” (transzendente Bestimmungsformen), phenomena lying outside the range of
algebra:96

I procrastinated from one week to the next, and it is only now that I have found the
time to familiarize myself with the tendency of your work. It is of the kind that I
have always held in high esteem. Already very early, a good deal more than 50 years
ago, I considered everything I found in books on infinite series very unsatisfactory
and abhorrent to the true mathematical spirit, and I recall that I made an attempt, in
1793 or 1794, to develop the basic concepts in a more satisfactory way which, as far
as I can remember, was … quite similar to yours.97

Infinite series and limits are central to the second aspect of arithmetic algebraic
analysis at the time: the introduction of functions of a real variable and Fourier
analysis as tools for higher arithmetic. The main actor here was Peter Gustav Lejeune-
Dirichlet who, around 1821, left Germany for Paris to study higher mathematics with
the Disquisitiones Arithmeticae under his arm. The topics and the spirit of Dirichlet’s
first papers – starting with the n = 5 case of Fermat’s Last Theorem,98 and divisors
of forms, then calculus and Fourier series – show the strong influence of his Paris
mathematical environment. But even there, the traces of his involvement with the
D.A. are already obvious from the frequent explicit references to specific articles of
it, very similar to the way early-modern authors referred to Euclid’s Elements. He
also reacted very quickly to Gauss’s publications on biquadratic reciprocity, studying
divisors of quartic forms in his 1828 dissertation ad veniam docendi, and completing
Gauss’s statements on quadratic reciprocity for Gaussian integers in 1832.

Back in Berlin from 1829 (professor at Berlin University from 1831), Dirichlet
devoted numerous articles to arithmetical questions, typically beginning with some
reference to Gauss. His German career indeed demonstrates the new possibilities
given specifically to number theorists in Prussia: Gauss recommended him for this

die nach bestimmten Gesetzen ohne Ende fortgesetzt werden – dies ist der eigentliche
Boden, auf welchem die transcendenten Functionen erzeugt werden.

96. [Jahnke 1990], p. 413, with reference to [Dirksen 1845], p. 44.
97. See the letter of Gauss to Dirksen of November 5, 1845 in [Folkerts 1983–1984], p. 73:

habe ich von einer Woche zur anderen procrastinirt, und erst jetzt habe ich dazu kommen
können, mich etwas näher mit der Tendenz Ihres Werkes bekannt zu machen. Es ist
eine solche die mir von jeher sehr werth gewesen ist. Schon sehr früh, das ist vor weit
mehr als 50 Jahren, war mir alles was ich über unendliche Reihen in Büchern fand sehr
unbefriedigend, und vom ächten mathematischen Geiste abhorrirend, und ich erinnere
mich, daß ich etwa im Jahre 1793 oder 1794 einen Versuch anfing die Grundbegriffe auf
eine genügendere Art zu entwickeln, die so weit mein Gedächtniß reicht mit Ihrem Wege
… viel Ähnlichkeit hatte.

98. Fermat’s Last Theorem had been proposed as a prize subject by the Paris Academy for
the year 1818. As is well-known, Gauss placed the general, theoretical development of
higher arithmetic above this individual result. To the news about the prize communicated
to him by Olbers, he replied on March 21, 1816 that this isolated statement had little
interest for him; see [Gauss & Olbers 1900/1976], part 1, p. 629.
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reason.99 On July 37, 1837, Dirichlet announced at the Academy of Berlin a proof
of the statement that “every infinite arithmetic progression whose first term and
difference have no common divisor contains infinitely many primes.” This fact had
been noticed and studied by Legendre – whose arguments were criticized in one of
the appendices of the D.A. – but Dirichlet commented:

It was only after I left completely the path taken by Legendre that I hit upon a totally
rigorous proof of the theorem on arithmetic progressions. The proof that I found
… is not purely arithmetical but relies in part on the consideration of continuously
varying quantities.100

Despite the difference in topics, we would like to underline the striking parallel with
Gauss’s 1831 description of his procedure for biquadratic reciprocity; Gauss also
stressed how he was led outside the traditional framework of number theory in order
to obtain satisfactory proofs.

To complete his proof on the distribution of primes, Dirichlet needed to establish
another result which was interesting for its own sake and which illustrates well the
mixture of arithmetic, algebra and analysis at work in this research area: he gave
a formula to compute a priori the number of classes of quadratic forms of a given
determinant. More specifically, for a prime q of the form 4n + 3, say, he showed
first, making Legendre’s symbol explicit, that

∑ 1

ns ·
∑

(

n

q

)

1

ns ·
(

∑ 1

n2s

)−1 =
∑ 2μ

ms ,

where m varies over the odd positive numbers having only quadratic residues of q
as prime factors, and μ is the number of distinct prime divisors of the corresponding
m. Then he identified the right-hand sum as

∑ 1

(ax2 + 2bxy + cy2)s
+

∑ 1

(a′x2 + 2b′xy + c′y2)s
+ . . . ,

where the quadratic forms in the denominators vary over a complete system of
representatives, up to proper equivalence, of forms of determinant −q and where
the sums are taken over all integers x and y which make the value of the considered
form odd and prime to q . Using results both of the D.A.101 and of Joseph Fourier’s
Théorie de la chaleur to evaluate the sums for s close to 1, Dirichlet obtained the
number h of classes of quadratic forms of discriminant −q to be

h = 2

[
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)
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]
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q
,

99. See H. Pieper’s chap. III.1 below. Note also that Dirichlet published a large number of
his papers in Crelle’s Journal.

100. [Dirichlet 1889–1897], vol. 1, p. 316: Erst nachdem ich den von Legendre eingeschlage-
nen Weg ganz verlassen hatte, bin ich auf einen völlig strengen Beweis des Theorems über
die arithmetische Progression gekommen. Der von mir gefundene Beweis … ist nicht rein
arithmetisch, sondern beruht zum Teil auf der Betrachtung stetig veränderlicher Grössen.

101. The paper “Sur l’usage des séries infinies dans la théorie des nombres,” [Dirichlet 1889–
1897], vol. 1, pp. 357–374, for instance contains 23 references to articles of the D.A.
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with a and b varying respectively over the quadratic residues and non-residues of q
which are smaller than q . For instance, Gauss’s relation for q ≡ 3 mod 4, proved
up to the sign in art. 356 of the D.A., and including the precise sign in [Gauss
1863/1876], pp. 9–45, 155–158,

∑

sin
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∑
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∑
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n
to that of classical Fourier series of the type

∑ sin nz

n
, for 0 < z < 2π .

In a letter to Gauss of September 9, 1838, Dirichlet commented:

I would almost like to conjecture that my method bears some analogy with the inves-
tigations alluded to in the final remark of the disq. arith., in particular because you
say about these investigations that they throw light on several parts of analysis, and
my method is so intimately connected with the remarkable trigonometric series that
represent discontinuous functions and whose nature was still completely mysterious
at the time of the publication of the disq. arith.102

Dirichlet favoured this kind of rapprochement between the different branches of
mathematics:

The method I use seems to merit some attention above all because of the link it
establishes between infinitesimal analysis and higher arithmetic.103

For a positive determinant, the formula for the number of classes contains a regulator,
involving logarithms and a solution of the Pell equation. He wrote:

[The expression of the law] is of a more composite nature, and somehow mixed,
because, besides the arithmetic elements on which it depends, it contains others
which have their origin in certain auxiliary equations appearing in the theory of
binomial equations, and therefore belonging to Algebra. The last result is particularly
remarkable and offers a new example of these hidden relations that a deep study of

102. [Dirichlet 1889–1897], vol. 2, p. 382: Ich möchte fast vermuthen, dass meine Methode
mit den in der Schlussbemerkung der disq. arith. angedeuteten Untersuchungen einige
Analogie hat, besonders deshalb, weil Sie von Ihren Untersuchungen sagen, dass sie
über mehrere Theile der Analysis Licht verbreiten, und meine Methode in so innigem
Zusammenhange mit den merkwürdigen trigonometrischen Reihen steht, welche discon-
tinuierliche Funktionen darstellen, und deren Natur zur Zeit des Erscheinens der disq.
arith. noch ganz unaufgeklärt war. Later, Dirichlet would find alternative analytic means
to handle the question.

103. [Dirichlet 1889–1897], vol. 1, p. 360: La méthode que j’emploie me paraît surtout
mériter quelque attention par la liaison qu’elle établit entre l’Analyse infinitésimale et
l’arithmétique transcendante. To the French readers to whom this particular paper is ad-
dressed, Dirichlet added his hope of attracting in this way the attention of mathematicians
who were not a priori interested in number theory.
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mathematical analysis allows us to discover between what appears to be completely
disparate questions.104

He expressed such priorities not only in the production of new results, but also in
his simplifications of Gauss’s proofs, through continued rereading of the D.A., esp.
in the 1840s: for instance, he would comment on his simplification of the theory of
binary quadratic forms with positive determinant by saying that “the characteristic
feature of this method is that it brings irrational numbers into the circle of our
ideas.”105 The intervention of analysis reveals links and, paradoxically enough for
an advanced subject, it simplifies and democratizes the Disquisitiones Arithmeticae:

My work may also contribute to the advancement of science in establishing on new
grounds and closer to the elements beautiful and important theories which until now
had been accessible only to the small number of geometers who were capable of the
concentration needed in order not to lose the thread of thought in a long series of
computations and of very complicated reasonings.106

3.4. Elliptic Functions

We now turn to point (3) mentioned at the beginning of § 3.2: the theory of elliptic
functions. At the beginning of sec. 7 of the D.A., Gauss put this section, and indeed
higher arithmetic as a whole, in a much wider perspective by mentioning “many other
transcendental functions” besides the circular functions, to which the methods and
results of sec. 7 could be extended. But he gave only one example of such functions:
“those which depend on the integral

∫

dx/
√

1 − x4,”107 and never published the

104. [Dirichlet 1889–1897], vol. 1, p. 536: [L’expression de la loi] est d’une nature plus
composée et en quelque sorte mixte, puisque, outre les éléments arithmétiques dont elle
dépend, elle en renferme d’autres qui ont leur origine dans certaines équations auxiliaires
qui se présentent dans la théorie des équations binômes, et appartiennent par conséquent
à l’Algèbre. Ce dernier résultat est surtout remarquable et offre un nouvel exemple de ces
rapports cachés que l’étude approfondie de l’Analyse mathématique nous fait découvrir
entre les questions en apparence les plus disparates.

105. [Dirichlet 1863], § 72. We quote here J. Stillwell’s English translation. Dirichlet asso-
ciated to such a form ax2 + 2bxy + cy2 the roots of the equation ax2 + 2bx + c = 0
and derived most of the facts about the reduction of the forms from these roots, and more
specifically from their expansions as continued fractions.

106. [Dirichlet 1889–1897], vol. 1, p. 414: Mon travail pourra encore contribuer à l’avance-
ment de la science en établissant sur de nouvelles bases et en rapprochant des éléments,
de belles et importantes théories qui n’ont été jusqu’à présent à la portée du petit nombre
de géomètres capables de la contention d’esprit nécessaire pour ne pas perdre le fil des
idées dans une longue suite de calculs et de raisonnements très composés. The context
is that of arts. 234 ff in the D.A.

107. D.A., art. 335: Ceterum principia theoriae … non solum ad functiones circulares, sed pari
successu ad multas alias functiones transscendentes applicari possunt, e.g. ad eas quae
ab integrali

∫

dx√
(1−x4)

pendent. In a letter to Schumacher (who would be the adressee of

Jacobi’s first notes on elliptic functions in 1827) dated September 17, 1808, Gauss called
the functions which are not reducible to circular or logarithmic functions a “magnificent
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“big treatise” (amplum opus) on these functions promised in 1801.108 In a letter
dated February 8, 1827, Jacobi tested Gauss on this announcement: “The application
of higher arithmetic to the division of the elliptic transcendents is promised in the
Disquisitiones; oh, may the promise be kept!”109

When Jacobi himself turned to elliptic functions,110 he first studied transforma-
tions between various elliptic integrals, rather than the immediate analogue of sec. 7,
i.e., the division of a single elliptic integral or function. But this division had then
just been settled by Abel, who had also been inspired by Gauss’s announcement
in the D.A.111 The story of Abel’s and Jacobi’s rival and parallel development of
the theory of elliptic functions is well-known.112 It was characterized by inverting
elliptic integrals classified in [Legendre 1811] and [Legendre 1825–1828], such as

u =
ϕ
∫

0

√

(1 − x2)(1 − κ2x2)
−1

dx ; by recognizing the double periodicity of the re-

sulting complex functions u 	→ ϕ(u, κ); and by studying certain algebraic equations
arising from the theory such as the division equation and the modular equation. The
division equation of order m > 1 for a given elliptic function ϕ is that whose roots
are the m2 values ϕ(β) such that ϕ(mβ) = ϕ(α), for a given α; generalizing Gauss’s
sec. 7 from a cyclic to a bicyclic situation, Abel showed that it could be solved by
radicals of rational expressions in ϕ(α). The modular equation is the one linking the
σ(n) possible moduli λ’s to a given modulus κ , for which there exist transformations
y = U (x)V (x)−1, with relatively prime polynomials U, V , where U has odd degree

golden treasure” (herrliche Goldgrube), and gave as specific examples those relating to
the rectification of the ellipse and the hyperbola; [Gauss & Schumacher 1860], vol. 1,
no 2, p. 3.

108. See [Schlesinger 1922], secs. III–VI, for the most complete published survey of Gauss’s
unpublished papers on elliptic functions. See also C. Houzel’s chap. IV.2 below as well
as [Houzel 1978]. Moreover, Jacobi would recognize formulae related to the theory
of elliptic functions in Gauss’s article establishing the sign of Gauss sums; see [Jacobi
1836–1837], 35th course, p. 221: die Formen enthält, welche auch in der Theorie der
elliptischen Funktionen vorkommen.

109. [Jacobi 1881–1891], vol. 7, p. 400: Die Anwendung der höheren Arithmetik auf die
Theilung der elliptischen Transzendenten ist in den Disquisitiones versprochen; o würde
doch das Versprechen erfüllt! Gauss’s reply to this, if any, is not known. At the time of
the letter, Abelian functions were not yet public knowledge.

110. See his letter to Schumacher of June 13, 1827 in [Jacobi 1881–1891], vol. 1, pp. 31–48,
and his subsequent publications as well as the letters to Legendre in [Jacobi 1881–1891],
vol. 1, pp. 185–461.

111. [Schlesinger 1922], p. 183–184. See also [Abel 1881], vol. 1, pp. 263–388, no. 21: Le
procédé par lequel nous allons effectuer cette résolution est entièrement semblable à
celui qui est dû à M. Gauss pour la résolution de l’équation θ2n+1 − 1 = 0.

112. See [Abel 1902], [Königsberger 1904], as well as the sources in [Abel 1881], [Jacobi
1881–1891], vols. 1 and 7. Dirichlet’s obituary of Jacobi, in particular [Jacobi 1881–
1891], vol. 1, pp. 7–18, offers a remarkably well written informal account. See also
[Houzel 1978] and Houzel’s chap. IV.2 below.
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n and V degree n−1, such that
dy

√

(1 − x2)(1 − λ2x2)
= dx

M ·
√

(1 − x2)(1 − κ2x2)

for an appropriate number M .113 Linking M and κ gives rise to yet another algebraic
equation of the same degree, Jacobi’s multiplier equation.114

Let us explain why we see these developments as characteristic of a new domain
of research, for which we have coined the name arithmetic algebraic analysis.

First, just as Jean-Baptiste le Rond d’Alembert, in his article on Diophantus
in the Encyclopédie in 1784, found it natural to underline how useful Diophantus’s
method of solving his number problems was for the transformation of integrals, the
new complex analytic theory of elliptic functions was at first derived directly from
arithmetico-algebraic properties of the integrals at hand (with additional inspiration
provided by Euler’s treatment of the trigonometric and exponential functions), but
not as the theory of a special type of complex functions within an existing general
function theory. The double periodicity of the inverse functions, for instance, was
deduced by Abel by defining very meticulously his function ϕ(α), first on a real
interval, then on a purely imaginary one via the substitution α 	→ αi , and finally on
all complex numbers via the addition theorem; see [Abel 1881], vol. 1, pp. 263–388,
secs. 1–5. We note that the same is true for the infinite series introduced by Dirichlet,

of the general type
∑ an

ns , whose construction at first directly reflected arithmetical

and algebraic properties.
Second, just like sec. 7 of the D.A., the new analysis of elliptic functions could

be claimed by the theory of algebraic equations as well as by arithmetic.115 Thus, the
cyclotomic equations, the division equations of elliptic functions, and the modular
equation all functioned as crucial model cases which oriented the general theory.
Now, in all these cases, the roots come indexed in a way which permits linear
operations on them by the integers taken with respect to a suitable modulus N .
Évariste Galois is often described as having created a general, abstract theory which
he then also applied to special classes of equations.116 But we think that theory and
examples were much more closely linked at the time, and that the examples we
mentioned informed Galois about what he had to formulate in the general theory.

113. See the first half of [Jacobi 1829]. Here, σ(n) denotes the sum of all the divisors of n.
114. [Jacobi 1881–1891], vol. 1, p. 261.
115. Concerning relations between the theory of elliptic functions and geometry, Abel’s con-

struction of the division of the lemniscate is geometric in precisely the same sense as is
Gauss’s result of sec. 7. Jacobi’s paper, in 1828, concerning Poncelet’s closure theorem
could be interpreted as a link with more recent geometrical works, see [Jacobi 1881–
1891], vol. 1, pp. 277–293 and [Bos, Kers, Oort, Raven 1987]. But most of the time the
geometry aimed at within the field during this period was more elementary, as in Kum-
mer’s paper on quadrilaterals with rational sides and diagonals, where the geometrical
setting is only a gloss on the key issue, the link between elliptic functions and traditional
Diophantine analysis; see [Kummer 1975], vol. I, pp. 253–273.

116. For instance, [Kiernan 1971], p. 89, writes about Galois’s second mémoire ([Galois 1962],
pp. 129–147): “This paper was, in GALOIS’ mind, not a development of his theory, but
rather an application of it to a particular class of equations.”
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Sec. 7 of the D.A., or “la méthode de M. Gauss,” as Galois says, and its elliptic
analogues, are recurring signposts in Galois’s writings. When he introduced his
“number-theoretic imaginaries,”117 i.e., the solutions of x pν ≡ x (mod p), his chief
application was to “the theory of permutations, where one constantly has to vary the
form of the indices,” and he showed how this indexing of the roots of an equation
of prime power degree allowed one to recognize its solvability by radicals.118 His
mathematical testament, written to Auguste Chevalier on May 29, 1832, starts very
plainly: “I have done several new things in analysis. Some concern the theory of
equations, the others the functions given by integrals.”119 But it exactly delineates
our domain: the last item in the first group of results was the determination of the
groups of modular equations.

Let us note in passing that Abel’s general approach to algebraic equations –
contrary to Galois’s – aimed at making explicit “the most general form of the solu-
tions” to equations of a given type. This appears not to be linked to the D.A., but
rather to the tradition of algebraic analysis. Among Abel’s followers on this point,
however, we find Jacobi and Kronecker who in their work would link this approach
to arithmetic inspirations from the D.A.120

In the further development of Galois theory, the parallel between the general
theory and the special examples continued to be evident for a while. Enrico Betti, for
example, is famous for the first systematic account of Galois’s theory in 1852 which
established the model of organizing the material, with an abstract part on substitutions
preceding the application to algebraic equations, see [Betti 1903], pp. 31–80. But
he followed this up by a paper focused on the division and modular equations of

117. The expression les imaginaires de la théorie des nombres is from Galois’s letter to Cheva-
lier; see [Galois 1962], p. 175. Note that Galois adopted in 1830 the approach to higher
congruences that the young Gauss had systematically avoided in his caput octavum back
in 1797; see § 4.2 of G. Frei’s chap. II.4 below, with reference to Gauss’s § 338.

118. [Galois 1962], p. 125: C’est surtout dans la théorie des permutations, où l’on a sans cesse
besoin de varier la forme des indices, que la considération des racines imaginaires des
congruences paraît indispensable. Elle donne un moyen simple et facile de reconnaître
dans quel cas une équation primitive est soluble par radicaux. In today’s parlance, if one
interprets the symmetric group S on pν letters as the group of permutations of the field
Fpν , a subgroup of S is solvable if and only if it is affine, i.e., if all its permutations are of
the form x 	→ ax +b. We recall incidentally that Poinsot – who wanted to treat in parallel
the study of congruences and of equations – already advocated in his 1808 analysis of
the 2nd edition of Lagrange’s Traité des équations keeping to a theoretical description of
the operations involved, in the presence of overwhelming numerical complexity: Par la
nature du problème, la longueur des calculs croit avec une telle rapidité que la question
ne peut plus être aujourd’hui de chercher la formule, mais simplement de prédire la suite
des opérations qui y conduirait à coup sûr.

119. [Galois 1962], p. 173: J’ai fait en analyse plusieurs choses nouvelles. Les unes concernent
la théorie des équations ; les autres, les fonctions intégrales. On relating Galois to the
D.A., see also O. Neumann’s chap. II.1 below.

120. For Abel and Kronecker, see [Petri, Schappacher 2004], §§ 1.4, 1.5, 2.1. Jacobi presented
the “true form of the surds of the equation x p = 1 which has never been given before” in
his applications of cyclotomy to number theory, [Jacobi 1881–1891], vol. 6, pp. 254–274.
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elliptic functions where he proved Galois’s claim concerning the modular equation,
see [Betti 1903], pp. 81–95. When he subsequently came back to the general subject
of his 1852 article, it was to show (among other things) how to derive the substance
of Gauss’s method of sec. 7 “directly from the decomposition of the corresponding
substitutions.”121 Again with reference to the modular equation, Kronecker noted in
1862 the

altogether singular circumstance … that the progress of algebra and of its methods
depends crucially on the material of equations which is delivered from outside, or
if I may say so, on the variety of algebraic phenomena provided by the further
development of analysis.122

An even later echo of the original unity may be seen in the strong presence of linear
substitutions, and the treatment of the modular equation, in [Jordan 1870].

Another telling illustration of the influence of elliptic functions on the theory of
algebraic equations is provided by Gotthold Eisenstein’s well-known irreducibility
criterion, which he introduced to show the irreducibility of the division equations of
the lemniscatic elliptic function, and which he also used to give another proof of the
irreducibility of X p−1 + · · · + X + 1 first shown in D.A., art. 342.123

This being said, explicit references to the D.A. in the context of algebraic equa-
tions tended to evaporate after 1850 outside Germany. For instance, Joseph-Alfred
Serret, in the first edition (1849) of his influential Cours d’algèbre supérieure, based
on his lectures at the Sorbonne and devoted to the algebraic resolution of equations
and “incident questions related to it,” discussed congruences in the 23th and 24th

lessons, cyclotomy in the 26th and 27th. The 25th presents “curious and useful theo-
rems” derived from the principles explained before, for instance the decomposition
of an integer as a sum of four squares; the name of Gauss is attached here to the
notation of congruence and to the solvability of the cyclotomic equations, and the

121. [Betti 1903], p. 123: La decomposizione dei gruppi complessi di grado non primo forma
la sostanza del metodo di Gauss per le equazioni binomie ; io ho mostrato come essa
deriva direttamente dalla decomposizione delle sostituzioni che loro appartengono…

122. [Kronecker 1895–1930], vol. 4, p. 213: Es liegt dieß an einem ganz eigenthümlichen
Umstande, welcher bei den in Rede stehenden Gleichungen auftritt und welcher wiederum
zeigt, daß … der Fortschritt der Algebra und ihrer Methoden wesentlich durch das ihr
von Außen herzugebrachte Material an Gleichungen bedingt ist oder, wenn ich mich
so ausdrücken darf, durch die Mannigfaltigkeit algebraischer Phänomene, welche die
Analysis in ihrer weiteren Entwickelung darbietet.

123. See his letter to C.F. Gauss, August 18, 1847, [Eisenstein 1975], vol. 2, pp. 845–855, and
[Eisenstein 1975], vol. 2, pp. 542–544. The footnote in [Lemmermeyer 2000], p. 254, led
us to Theodor Schönemann’s priority claim in [Schönemann 1850], and to [Schönemann
1846], p. 100, where a marginally more general criterion is derived in the context of
higher congruences modulo p2. This independent development of Gauss’s unfulfilled
promise of a sec. 8 on higher congruences, started in [Schönemann 1845], was continued
in particular by Richard Dedekind and would finally merge, at the very end of the XIXth

century, with the line of thought initiated by Galois’s imaginaries and expanded in [Serret
1849/1854], pp. 343-370, into a theory of finite fields; see G. Frei’s chap. II.4.
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D.A. is proposed more specifically next to Legendre’s Théorie des nombres as a gen-
eral reference for the 25th lesson. Five years later in the second edition, this section
has totally changed, and the arithmetical theorems are replaced by Galois’s theory
of imaginaries;124 a supplementary note about quadratic reciprocity mentions only
Legendre as its discoverer and then Jacobi as the author of the specific proof given
in the book; see [Serret 1849/1854], pp. 533–537.

The conjunction of the theory of elliptic functions with arithmetic is not restricted
to the D.A. Diophantine analysis is touched upon in Kummer’s paper on quadrilaterals
with rational sides and diagonals mentioned above (footnote 115) and is briefly
promoted in very general terms by Jacobi in 1835; see [Jacobi 1881–1891], vol. 2,
pp. 51–55. Jacobi was in fact actively promoting the introduction of elliptic functions
“into all parts of mathematical analysis,”125 blurring at the same time the direct
connection with the Disquisitiones Arithmeticae. As far as it continued the D.A.,
however, the impact of elliptic functions went deeper and revolved around three
interrelated topics: reciprocity laws, class numbers, and complex multiplication –
we shall meet them again in the remainder of this chapter. These investigations,
combined with the use of complex numbers and Dirichlet’s analytical methods,
constituted a solid ground for expanding Gauss’s ideas, knit together by multiple
links into what appeared to be a unified enterprise, though disruptive factors were
also present.

In the summer of 1848, for his second term of teaching at Berlin University,
Eisenstein offered two lecture courses which, taken together, would have constituted
an introduction to arithmetic algebraic analysis: one on “the integral calculus as
source of transcendental functions,” and another one “explaining Gauss’s Disquisi-
tiones Arithmeticae, with special investigations on the divisions of the circle.”126

We have already alluded in § 3.1 to Jacobi’s proof of the biquadratic reciprocity
law from his Königsberg lectures. One of Eisenstein’s proofs is sketched in sec. 3

124. The Gaussian roots of Galois’s work are not mentioned in Serret’s lectures. In the
subsequent restructured editions of this mathematical bestseller, after 1866, properties
of integers that are “necessary for the theory of the algebraic resolution of equations,” in
particular a study of congruences and higher congruences, are the topic of a third section
(with several chapters); Gauss’s name, like many others, is episodically mentioned on
specific points with no particular emphasis.

125. See his little 1831 paper presenting an application to continued fractions, [Jacobi 1881–
1891], vol. 1, pp. 329–331, in particular p. 329: j’ai avancé que les fonctions elliptiques
doivent entrer dans toutes les parties de l’analyse mathématique et contribuer essen-
tiellement à leur progrès.

126. [Eisenstein 1975], vol. 2, p. 902: Integralrechnung als Quelle der transcendenten Func-
tionen; Erläuterung der Disquisitiones Arithmeticae von Gauss mit speciellen Unter-
suchungen über die Kreisteilungen. The second did not find enough interested students,
though, so Eisenstein taught instead a class on the einfachsten Principien der Mechanik.
For a useful quick survey of Eisenstein’s life and work, which mentions in particular a
few important papers – for instance, on cubic forms, and on ternary quadratic forms –
that we do not go into here in spite of their direct connection with the D.A., see Weil’s
review of Eisenstein’s Mathematische Werke; e.g., in [Weil 1979], vol. 3, pp. 398–402.
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of C. Houzel’s chap. IV.2 below. All five of his proofs can pass for showcase
illustrations of arithmetic algebraic analysis. But some also contain special aspects
which foreshadow the end of this amalgamated research field. For example, in his
paper entitled “Applications of Algebra to Higher Arithmetic,” after having neatly
derived the classical quadratic reciprocity from the polynomial expression of sin pv
in the variable x = sin v, and the biquadratic law from an elliptic analogue, Eisenstein
remarked:

Maybe some readers do not approve of using circular or elliptic functions in arith-
metic arguments; but one has to observe that these functions enter here only symbol-
ically, so to speak, and that it would be possible to eliminate them altogether without
changing the substance and the basis of the proof.127

He went on to replace, for instance, the division values of the sine function by any
suitable geometric division of an arbitrary closed curve only assumed to be symmetric
with respect to both coordinate axes.128

If arithmetic was allowed to distance itself from analysis here, Eisenstein later
rewrote this proof within a long text where analysis clearly takes the lead, for he
introduced there the circular and elliptic functions via his own original method of se-
ries summation.129 Eisenstein was not the only author searching for a new analytical
foundation of the theory initiated by Abel and Jacobi. The 1830s and 1840s wit-
ness a growing interest in elliptic functions, with publications by Joseph Liouville,
Alfred Serret, William Roberts, Arthur Cayley, Joseph Raabe, Ludwig Schläfli, and
Königsberg colleagues and students of Jacobi, like Friedrich Richelot, Ludwig Adolf
Sohncke, and Christoph Gudermann (whose 1839–1840 course on elliptic functions
was followed by the young Karl Weierstrass). Many of these authors belong to the
tradition of arithmetic algebraic analysis (Richelot’s doctoral dissertation was about
x257 − 1 = 0), but they also began to propose alternative constructions of the func-
tions on a purely analytic basis. From the beginning of the 1830s on, Jacobi would
use the theory of theta functions as a foundation for the whole theory of elliptic
functions in his lectures.130 In long series of papers in Crelle’s Journal starting in the
late 1830s, Gudermann tried to build a systematic theory of elliptic functions on the

127. [Eisenstein 1975], vol. 1, p. 297: Il se pourrait qu’on n’approuvât pas l’usage des
fonctions circulaires et elliptiques dans les raisonnements arithmétiques ; mais il y a à
observer que ces fonctions n’y entrent que d’une manière pour ainsi dire symbolique, et
qu’il serait possible de les en chasser complètement sans détruire la substance et le fond
des démonstrations.

128. In his 1852 Théorie des nombres, focused on Diophantine problems, Eugène Desmarest
complained that Gauss had mixed up arithmetic with analysis. We do not know whether
Eisenstein reacted to somebody’s opinion with his remark, or if it was just a truly Gaussian
reflection on the specific merits of various proofs. Smith pointed out that Eisenstein
also gave his first proof of the biquadratic law (via cyclotomy, like Jacobi’s) “a purely
arithmetical form” when he presented it a second time; see [Smith 1859–1865], p. 81,
with reference to [Eisenstein 1975], vol. 1, pp. 141–163.

129. [Eisenstein 1975], vol. 1, pp. 357–478. Cf. [Weil 1976].
130. See his Theorie der elliptischen Funktionen aus den Eigenschaften der Thetareihen

abgeleitet, published from notes taken by C.W. Borchardt in [Jacobi 1881–1891], vol. 1,
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basis of expansions in infinite series. In France from 1847, Liouville and Hermite
started to work out a general theory of doubly periodic complex functions.131

In the same way, Dirichlet later gave alternative proofs of some of his results,
using simple calculus, see [Dirichlet 1863], § 103. While his formulas involving
Gauss sums had at first tightly linked Fourier series, residues and classes of forms,
these new proofs, although technically more direct, loosened the ties between ana-
lytical and arithmetical aspects. After the middle of the century, this emancipation
of analytical techniques from their algebraic roots, as much as the wish to elimi-
nate analysis from number-theoretical proofs, would contribute to tearing arithmetic
algebraic analysis apart.

4. … And Pastures New

While keeping close to their connections with the Disquisitiones Arithmeticae, the
investigations we described have the potential to launch autonomous lines of devel-
opment. This phenomenon may also operate at a finer scale than those met in the
preceding section. We will demonstrate it for a single, but remarkable, example of
research which, while building directly on the D.A. and on developments discussed
in the last section, ushered in several new lines of thought independent of Gauss’s
known and unknown work.

The mathematicians coming together here were Ernst Eduard Kummer (born
in 1810), and his younger colleagues Charles Hermite, Gotthold Eisenstein, and
Leopold Kronecker (all three born between December 1822 and December 1823).
They all had studied the Disquisitiones Arithmeticae early on132 and knew the works
of the preceding generation we have just discussed. Complex numbers, elliptic func-
tions (Kummer alone would hardly ever use them in his own work), and Dirichlet’s
series were part of their resources, and served in turn as filters for their reading of
the D.A. and of Gauss’s later work. Our point is that this wealth of resources would
lead to differing uses of the D.A., and in due course to diverging developments, even
though, for a few decades, these perspectives would still be seen as complementary
to rather than exclusive of one another, and the main actors would continue to see
themselves as taking part in the construction of a vast field of research combining
arithmetic, algebra, and function theory.

The impulse for all the far-reaching and diverging developments we are about
to sketch in this section was given by a programmatic 5-page note written by Jacobi,
[Jacobi 1839]. Not much is proved there; results obtained are alluded to, as was
still allowed in those days, and the paper is really about how to look at things,

pp. 497–538, and Weierstrass’s editorial comment thereon in [Jacobi 1881–1891], vol. 1,
p. 545. In his Fundamenta nova, on the contrary, Jacobi had deduced his theory from the
properties of elliptic functions, which were defined by inverting elliptic integrals.

131. See [Belhoste 1996].
132. Kronecker studied the Disquisitiones Arithmeticae under Kummer’s guidance; see [Kro-

necker 1891/2001], p. 219. Eisenstein bought the French translation in 1842 and read it
while travelling with his family in the British Isles; see [Ullrich 2001], p. 205. As for
Hermite, see chap. VI.1 below.
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more specifically at “complex prime numbers.” It starts by recalling Gauss’s work
on biquadratic reciprocity which called for generalizing the D.A. from rational to
Gaussian integers, introducing “complex numbers of the form a +b

√
−1 as modules

[of congruences] or divisors.” In perfect coherence with the idea of arithmetic
algebraic analysis, Jacobi speculated:

I do not believe that arithmetic alone has led to such an arcane idea, but that it was
drawn from the study of the elliptic transcendents, namely that special type which
gives the rectification of the lemniscatic arc. For in the theory of multiplication and
division of the lemniscatic arc, the complex numbers of the form a + b

√
−1 play

precisely the role of ordinary integers.133

After an allusion to the analogous connection between cubic residues, complex

integers a+b
√

−3
2 built from cubic roots of unity, and other elliptic functions, Jacobi

turned to quadratic forms with Gaussian integer coefficients, thus resuming in a new
way a theme alluded to before: the bringing together of what Jacobi saw as the two
main parts of number theory, cyclotomy and the theory of forms.

He showed for instance that a Gaussian integer which divides the form yy −√
−1 zz can be represented by it. Such is the case for any prime p = aa+bb = 8n+1

because, by Gauss’s theory,
√

−1 is a quadratic residue of a + b
√

−1. From this it
follows that a +b

√
−1 = φ(α)φ(α5), where φ(α) is a real linear combination of the

powers of an 8th root of unity α. Also a − b
√

−1 = φ(α3)φ(α7). This shows that
any prime p = 8n + 1 is the product of four complex numbers built from 8th roots
of unity; the three ways in which one can order the four factors in two pairs give the
three different representations of the prime p as a2 + b2, c2 + 2d2, e2 − 2 f 2, the
main point being that all three now flow, as Jacobi put it, “from a common source.”
He then announced identical results for primes of the form 12n + 1 with 12th roots
of unity. More generally, Jacobi had previously noticed that a prime p = 1 +λn can
usually be represented in different ways as a product of two complex numbers134 and
had manipulated products and quotients of such complex numbers with surprising
effects. He commented, allowing us a glimpse of the state of the art concerning
“complex prime numbers” a few years before Kummer’s work:

A closer consideration … convinced me that the complex factors of the prime number
p are in general themselves composite, so that if one decomposes them into true
complex prime numbers, the factors that make up the denominator will cancel one

133. [Jacobi 1839], p. 275: Ja ich glaube nicht, dass zu einem so verborgenen Gedanken die
Arithmetik allein geführt hat, sondern dass er aus dem Studium der elliptischen Trans-
cendenten geschöpft worden ist, und zwar der besonderen Gattung derselben, welche die
Rectification von Bogen der Lemniscata giebt. In der Theorie der Vervielfachung und
Theilung von Bogen der Lemniscata spielen nämlich die complexen Zahlen von der Form
a +b

√
−1 genau die Rolle gewöhnlicher Zahlen. (That Gauss was indeed aware of some

such connection is supported by the last entry (July 9, 1814) of his mathematical diary
[Gauss 1796–1814], a document discovered by Paul Stäckel only in 1898).

134. For instance, p = 8n + 1 can be written as the product (a + b
√

−1)(a − b
√

−1), or as
(c +

√
−2d)(c −

√
−2d) or as (e +

√
2 f )(e −

√
2 f ).
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by one against the prime factors of the numerator.135

Jacobi thought that these “true complex prime numbers” might be precisely what he
had just obtained for p = 8n + 1 or p = 12n + 1; he ended his paper by announcing
similar results for primes p = 5n + 1 (relative to the 5th roots of unity), and hoped
for a proof of higher reciprocity laws.136

These still mysterious and unproved statements clearly challenged younger ma-
thematicians: we shall examine how four of them, equipped in particular with their
different experience of the D.A., rose to the challenge.

4.1. Hermite’s Minima of Forms

A French translation of Jacobi’s article appeared in 1843, and at this point Hermite
entered the scene. After a previous exchange with Jacobi about Abelian functions,
Hermite wrote him in 1847 a letter proposing a proof of the decomposition of a prime
5m + 1 (resp. 7m + 1) into complex factors built from the 5th (resp. 7th) roots of
unity. Hermite took up Jacobi’s allusion to elliptic transcendents rather than the link
with reciprocity laws; he even mentioned as his immediate starting point Jacobi’s
theorem that there is no complex analytic function with three independent periods.

The decompositions of prime numbers were deduced from Hermite’s celebrated
theorem on the minima of quadratic forms which he had proved by closely following
Gauss’s discussion of ternary forms in the D.A.137 For a prime p = 5N + 1, for
instance, Hermite considered linear forms

ϕ(ξ) = N x0 + (ξ − a)x1 + (ξ2 − a2)x2 + (ξ3 − a3)x3 + (ξ4 − a4)x4,

where ξ is a primitive 5th root of unity and a an integer different from 1, which verifies
the congruence a5 ≡ 1 mod N . For all integral values of the indeterminates xi , the
product F = ϕ(ξ)ϕ(ξ2)ϕ(ξ3)ϕ(ξ4) is an integer multiple of N , say M N . Hermite
then cleverly associated a quadratic form with real coefficients to this product of

135. [Jacobi 1839], p. 279: Eine genaue Betrachtung … führte mich zu der Ueberzeugung, dass
diese complexen Factoren der Primzahl p im Allgemeinen selbst wieder zusammengesetzt
sein müssen, so dass, wenn man sie in die wahren complexen Primzahlen auflöst, die
complexen Primzahlen, welche die Factoren des Nenners bilden, gegen die Primfactoren
des Zählers sich einzeln aufheben lassen.

136. Cauchy also established a few of these results, and announced the possibility of proving
higher reciprocity laws, in a memoir presented to the Paris Academy on May 31, 1830.
Its publication was, however, delayed for ten years as Cauchy left France after the 1830
Revolution; see [Belhoste 1991], chaps. 9 and 10. A shorter version had already appeared
in 1829. It ends with the remark that Jacobi told Cauchy he also had obtained the same
results with basically the same approach. Via cyclotomy, Cauchy had also deduced results
on the decomposition of primes in complex quadratic domains: “M. Jacobi’s research on
the quadratic forms of prime numbers,” Cauchy wrote in [Cauchy 1840], “and one must
say as much of mine, may be considered as offering new developments of M. Gauss’s
beautiful theory.”

137. Hermite’s response to Jacobi’s 1839 note and his derivation of Jacobi’s statement are
studied in detail in C. Goldstein’s chap. VI.1 below.
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linear forms: his result on the minima of forms applied to this quadratic form shows
that there exist integers (x0, . . . , x4) such that the product F is strictly smaller than
2N , and thus equals N . This provides the decomposition of N as a product of four
complex numbers built from 5th roots of unity.

Hermite’s further programme was to study algebraic complex numbers in general
and to classify them in the spirit of Lagrange’s and Gauss’s classification of binary
quadratic forms. But pursuing his own direction, he wanted to base this study on
that of n-ary quadratic forms, and keep close to elliptic functions. This would lead
him and a number of his followers to enter more deeply into general invariant theory
and to promote general complex functions as a leading topic.

4.2. Kummer’s Ideal Numbers

Meanwhile, Kummer’s reaction to Jacobi’s statements was more directly linked to
reciprocity laws. His first mathematical works of the 1830s had mainly dealt with
differential equations and series.138 He turned seriously to number-theoretical ques-
tions in the following decade, in connection with his appointment at the University
of Breslau. His letter to his friend and former pupil Kronecker on January 16, 1842,
again documents the role of number theory in the Berlin sphere of influence:

Since I noticed during my last stay in Berlin that the Breslau affair could get serious,
I sat down at home and worked very hard in order to elaborate something like a
habilitation thesis, and I started with something completely new to me, the cubic
residues of the prime numbers 6n + 1.139

In this letter, Kummer mentioned only the D.A. and Dirichlet. A month later, how-
ever, he had begun reading Jacobi’s work on cubic residues140 and, following Jacobi
even further, getting involved with complex numbers and, with less conviction, ellip-
tic functions. Until the mid-1860s, number theory, and more specifically, the study
of “numbers built from roots of unity,” would be at the centre of his activities.

Kummer’s focus in this early work was what we now call Gauss sums for cubic
residues,

p−1
∑

0

cos
2αk3π

p
,

p−1
∑

0

cos
2βk3π

p
,

p−1
∑

0

cos
2γ k3π

p
,

for p a prime of the form 3n +1, α denoting a cubic residue, β and γ representatives
of the two kinds of cubic non-residues. These sums are the roots of the cubic equation
z3 = 2pz + pt , where t is a normalized solution of 4p = t2 + 27u2. Kummer’s

138. Including his well-known paper on the hypergeometric series. An exception was a small
1835 paper on Fermat’s Last Theorem for even exponents.

139. [Kummer 1975], vol. 1, p. 46: Seit ich bei meiner letzten Anwesenheit in Berlin merkte,
es könne mit Breslau Ernst werden, so setzte ich mich zu Hause hin und arbeitete sehr
fleißig um so etwas wie eine Dissertation zur Habilitirung zu arbeiten, und ich fing bei
etwas mir ganz neuem an, nämlich bei den Cubischen Resten der Primzahlen 6n + 1.

140. [Kummer 1975], vol. 1, p. 51: “I had also striven from the very beginning for a cubic
reciprocity law,” which Jacobi stated. (Einem Reciprocitätsgesetze für cubische Reste
habe ich ebenfalls ganz anfangs nachgestrebt.)
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aim was to determine completely which sum corresponds to which root, in analogy
with Gauss’s determination of the sign of the quadratic Gauss sums.141 He failed,142

but did find results allowing him to compute the Gauss sums up to p = 100, using
in particular analytic techniques in Dirichlet’s style.

Studying our paper of reference [Jacobi 1839] would redirect his research. Dur-
ing the autumn of 1844, Kummer obtained a rigorous proof of Jacobi’s statement
for 5 and extended it to 7. The proofs are based on a study of “complex numbers
built from 5th roots of unity” (respectively 7th roots of 1), that is, complex numbers
of the form f (α) = a0 + a1α + a2α

2 + a3α
3 + a4α

4, for a primitive 5th root of
unity α and integer coefficients ai (or the analogue for 7); for simplicity, we shall call
such numbers “5-cyclotomic (or 7-cyclotomic) numbers.” The key point of Kum-
mer’s proof is that the norm N f (α) = f (α) f (α2) f (α3) f (α4) allows one to define
a Euclidean division on 5-cyclotomic numbers, as was the case for Gaussian inte-
gers; adapting the Euclidean algorithm then shows that a prime p = 5n + 1 is the
norm of a 5-cyclotomic integer, that is a product of four 5-cyclotomic numbers, as
desired (with analogous results for 7). Kummer never published these results,143 but
this very same year, he devoted an article to related matters, fittingly published in a
volume dedicated by Breslau University to the tercentenary celebration of the Uni-
versity of Königsberg, i.e., Jacobi’s university. Here, Kummer studied λ-cyclotomic
numbers, this time for an arbitrary prime λ: he showed in particular that the norm
N f (α) = f (α) f (α2) · · · f (α)λ−1, for α a λth root of unity, is congruent to 0 or 1
modulo λ and gave an explicit criterion, based on computations with ordinary inte-
gers, to decide if one complex number divides another. But, above all, he produced
the first example of a number having different decompositions into λ− 1 irreducible
cyclotomic factors, for λ = 23. The stakes are clearly indicated in a communication
to the Berlin Academy, on March 26, 1846:

However, I have noticed that, even if f (α) can in no way be decomposed into complex
factors, it yet does not have the true nature of a complex prime number, because it
usually lacks the first and most important property of prime numbers: that is, that
the product of two prime numbers is not divisible by any prime number different
from them. These numbers f (α) thus have the nature of composite numbers even
though they are not decomposable into complex factors; but the factors are then not
actual, but ideal complex numbers.144

141. See [Kummer 1975], vol. 1, pp. 143–144 and p. 145–163. For the normalizations of
Gauss sums, and further results, see S.J. Patterson’s chap. VIII.2 below. Kummer’s point
of departure is closely related to art. 358 of the D.A.

142. It follows from [Heath-Brown, Patterson 1979] that it is not possible to determine the
argument of cubic Gauss sums through local informations at a finite number of places
(that is, by a finite number of congruences).

143. Kummer’s hitherto lost manuscript has been recovered by Reinhard Bölling; see his
commentary and transcription in chap. IV.1 below.

144. [Kummer 1975], vol. 1, p. 203: Ich habe nun aber bemerkt, daß, wenn auch f (α) auf keine
Weise in complexe Factoren zerlegt werden kann, sie deshalb noch nicht die wahre Natur
einer complexen Primzahl hat, weil sie schon gewöhnlich der ersten und wichtigsten
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From then on, Kummer steadily elaborated his theory of ideal complex numbers,
which he defined by a set of divisibility properties, in fact a set of congruences. They
could be “multiplied” (more exactly: multiplicatively composed) and they provided
a substitute for the decomposition of primes into ordinary complex numbers expected
by Jacobi. The construction of the theory, its use in the decomposition of primes,
the further applications to the proofs of higher reciprocity laws and of Fermat’s Last
Theorem for regular primes,145 have been well documented and analyzed,146 In par-
ticular, H. Edwards has reconstructed Kummer’s heavy reliance on the “periods” used
by Gauss in sec. 7 (which, as sums of roots of xλ− 1, are in particular λ-cyclotomic
numbers) to establish the properties of divisibility which his theory required; see
[Edwards 1977], chap. 4. Kummer referred to the Disquisitiones Arithmeticae quite
often: for instance, in a synthesis published in French in 1851, he referred to art. 52
(giving the multiplicative structure of the residues modulo a prime number), art. 306
(on cyclic properties of the classes of forms), and art. 358 on cubic residues and
equations. The D.A. serves both as a model and as a source of problems to be taken
up afresh. Another feature very much in the style of the D.A. is the use of induction
and of numerical examples. Sometimes relying on already existing, extensive tables,
like Jacobi’s Canon Arithmeticus, the examples are highly non-trivial and thus do not
serve as mere illustrations but, as in the D.A., as inspirations for the understanding
of phenomena and the clarification of laws.147

Mathematically, Kummer decisively contributed to placing higher reciprocity
laws at the center of attention. Reporting in 1850, through Dirichlet, to the Academy
on his recent achievements, he said:

Through my investigations on the theory of complex numbers and its applications
to the proof of Fermat’s Last Theorem … I succeeded in discovering the general
reciprocity laws for arbitrarily high power residues, which are to be regarded, ac-
cording to the present state of number theory, as the main task and the summit of
this science.148

Eigenschaft der Primzahlen ermangelt: nämlich, daß das Product zweier Primzahlen
durch keine von ihnen verschiedene Primzahl theilbar ist. Es haben vielmehr solche
Zahlen f (α), wenn gleich sie nicht in complexe Factoren zerlegbar sind, dennoch die
Natur der zusammengesetzten Zahlen; die Factoren aber sind alsdann nicht wirkliche,
sondern ideale complexe Zahlen. Notice the distinction introduced here between what
we call today “irreducibility” and “primality.”

145. Kummer defined an equivalence relation among ideal complex numbers associated to
λ-cyclotomic numbers (more or less saying that two ideal numbers are equivalent if they
differ multiplicatively by a usual cyclotomic number); the number of equivalence classes
hλ is finite. A prime λ is regular if it does not divide the class number hλ. Kummer
characterized this condition by an effective test in terms of Bernoulli numbers.

146. See [Edwards 1975–1977], [Edwards 1977], chaps. 4 and 5, [Edwards 1980], [Neumann
1981], and [Haubrich 1992], chap. 3.

147. See [Edwards 1977].
148. [Kummer 1975], vol. 1, p. 346–347: Bei meinen Untersuchungen über die Theorie der

complexen Zahlen und den Anwendungen derselben auf den Beweis des Fermatschen
Lehrsatzes … ist es mir gelungen die allgemeinen Reciprocitätsgesetze für beliebig hohe
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Kummer also made available a stock of images and stories concerning number
theory. His national German tenor is quite pronounced in this context. In official
discourses, but sometimes also in his mathematical papers and reviews, he would
insist on what he saw as the German mathematical tradition. For instance, in his
announcement of the first volume of Jacobi’s Mathematische Werke, he described
the changing scene of the 1820s like this:

It was also at that time that Lejeune-Dirichlet returned from France … to Germany,
and we proudly count him completely as one of us; for it is the German genius which
pulled him back to his fatherland and which gives his works their admirable depth.
… As Germans we are certain that we now have the creative force of the Geist on
our side.149

Kummer was also at the origin of some famous anecdotes, like the description of
Dirichlet’s never putting the D.A. back on the shelf.150 As we saw in Merz’s quote at
the beginning of this chapter,151 later commentators would take their clue from such
sources, even if they cut out the explicitly nationalistic component.

Kummer’s work on ideal numbers ties together ideas coming particularly from
the first sections of the D.A. on congruences and from the last on cyclotomy. Re-
membering Hermite’s approach to Jacobi’s problem, it is interesting to understand
whether and how Kummer dealt with the sec. 5 on forms. On the one hand, this sec-
tion operates as a decisive source of inspiration for the key question of equivalence
among ideal numbers:

Potenzreste zu entdecken, welche nach dem gegenwärtigen Stande der Zahlentheorie als
die Hauptaufgabe und die Spitze dieser Wissenschaft anzusehen sind. One may also
recall his famous statement that Fermat’s Last Theorem is a curiosity rather than a focal
point of science. (Der Fermatsche Satz ist zwar mehr ein Curiosum als ein Hauptpunkt
der Wissenschaft); see [Kummer 1975], vol. 1, p. 281.

149. [Kummer 1975], vol. 2, p. 695: Damals kehrte auch Lejeune-Dirichlet aus Frankreich
… nach Deutschland zurück: und wir rechnen ihn mit Stolz ganz zu den Unserigen;
denn es ist der deutsche Genius, welcher ihn in sein Vaterland zurückgezogen hat, und
welcher seinen wissenschaftlichen Arbeiten ihre bewunderungswürdige Tiefe verleiht. …
Wir [Deutschen] sind dessen gewiss, dass wir jetzt die schöpferische Macht des Geistes
auf unserer Seite haben. Another example is provided by his 1856 speech at a Leibniz
ceremony.

150. See [Dirichlet 1889–1897], vol. 2, p. 315, where Kummer also states that the D.A. had a
“much more important influence on Dirichlet than his other, Parisian, studies.” (Dieses hat
auf seine ganze mathematische Bildung und Richtung einen viel bedeutenderen Einfluß
ausgeübt als seine anderen Pariser Studien.)

151. Compare for instance Merz with [Kummer 1875], vol. 2, p. 695, where Kummer writes:
“ the blossoming of the mathematical sciences in Germany dates back to the beginning of
the century, when Gauss first appeared on the scene with his Disquisitiones Arithmeticae.
It towered so much above everything done before in this discipline that at first only very
few of the best mathematicians were capable of understanding it. … for a long time he
remained in splendid isolation … until about 1826 a new life began in this science for
our fatherland, for which Crelle’s Journal was created as its chief organ. It was then that
Jacobi started his investigations on elliptic functions.”
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The general investigation of ideal complex numbers has the greatest analogy with
the section “on the composition of forms,” treated in such a difficult way by Gauss,
and the main results which Gauss proved for quadratic forms starting in art. 234 are
also valid for the composition of general ideal complex numbers.152

However, on the other hand, Kummer perceived his theory of ideal numbers as
capable of throwing light in turn on the complicated concept of proper equivalence
in Gauss’s D.A. Elsewhere, ideal numbers helped him to find the key to the question of
irregular determinants.153 That is, while Hermite’s solution was pushing him towards
the study of higher forms in order to solve, among others, questions inherited from
algebraic numbers and reciprocity laws, Kummer’s solution was to develop “ideal
complex numbers” to tackle them all. Both the alternative and Kummer’s position
are very explicit in his 1851 synthesis:

If one considers the coefficients of a complex number as indeterminates, the norm
will represent a homogeneous form of a certain degree, of the kind decomposable
into linear factors. The theory of complex numbers amounts in essence to the theory
of these forms, and thus belongs to one of the most beautiful branches of higher
arithmetic… [But] the discussion of these forms seems to us less simple than that of
the complex numbers themselves, which are their factors, their elements so to speak,
and of which the analogy with integers is striking.154

4.3. Eisenstein and Kronecker on Complex Multiplication

In 1844, Gotthold Eisenstein wrote from Berlin to his friend Moritz Stern in Göt-
tingen: “I am writing up the residues of the 8th, 12th, and also 5th powers, which
are finished.”155 Four years later, he would explain that he had not pursued for some
time the investigation of decompositions into complex primes, the main theme of

152. [Kummer 1975], vol. 1, p. 209: Die allgemeine Untersuchung über die idealen com-
plexen Zahlen hat die größte Analogie mit dem bei Gauß sehr schwierig behandelten
Abschnitte: De compositione formarum, und die Hauptresultate, welche Gauß für die
quadratischen Formen pag. 337 sqq. bewiesen hat, finden auch für die Zusammensetzung
der allgemeinen idealen complexen Zahlen Statt.

153. See his 1853 article on this issue, [Kummer 1975], vol. 1, pp. 539–545. Edwards convinc-
ingly shows how Kummer’s innovative work can be interpretated as a conservative move
with respect to the D.A., [Edwards 1977], pp. 152–154: “The Gaussian notion of proper
equivalence is something which needs to be saved from [its] appearance of artificiality”
and ideal numbers might be this saviour.

154. [Kummer 1975], vol. 1, p. 363, 366: Si l’on prend les coefficients du nombre complexe
pour des indéterminés, la norme représentera une forme homogène d’un certain degré,
du genre de celles qui sont décomposables en facteurs linéaires. La théorie des nombres
complexes revient, au fond, à la théorie de ces formes, et à cet égard, elle fait partie
d’une des plus belles branches de l’Arithmétique supérieure… [Mais] la discussion de
ces formes nous paraît moins simple que celle des nombres complexes eux-mêmes, qui en
sont les facteurs, les éléments pour ainsi dire, et dont l’analogie avec les nombres entiers
est frappante.

155. [Eisenstein 1975], vol. 2, p. 793: Die Reste der 8ten, 12ten, und auch 5ten Potenzen, welche
fertig sind, arbeite ich jetzt aus.
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Jacobi’s seminal note [Jacobi 1839], because of tensions with Jacobi. However,
in Eisenstein’s hands, Jacobi’s note would help to kindle the arithmetic theory of
complex multiplication of elliptic integrals and functions.

An elliptic integral like u =
ϕ
∫

0

dx√
(1−x2)(1−κ2x2)

, or its inverse function, an ellip-

tic function like ϕ(u, κ) = sinam(u, κ) (in Jacobi’s notation), admits multiplications
by rational integers in the sense that, for every integer m, sinam(mu, κ) is a rational
function of sinam(u, κ) and its derivative, in the same way that sin(mu) is a polyno-
mial in sin(u) and cos(u).156 They are said to have complex multiplication if there
exist multiplications besides those by rational integers. This happens precisely when
the ratio of the two basic periods of the elliptic function is an imaginary quadratic
irrationality

√
−n, and the transformations in question are then multiplications by

complex integers of the form a + b
√

−n, or a + b (1+
√

−n)
2 , depending on n, with a

and b integers.
Examples of such elliptic integrals and functions presented themselves from the

very beginning: the integral
∫ dx√

1−x4
measuring the lemniscatic arc has complex

multiplication by Gaussian integers; other elliptic integrals such as
∫ dx√

1±x3
admit

complex multiplications by numbers of the form a + b (1+
√

−3)
2 .157 Eisenstein first

studied elliptic functions with complex multiplication by the third (or sixth) roots of
unity in the context of cubic reciprocity.158 But while such examples of complex mul-
tiplication had been available for some time, their arithmetic theory – albeit inspired
by Abel’s159 and Jacobi’s works – only took shape after Kummer had introduced

156. For odd m, the derivative of sinam(u, κ) does not intervene. These functions (or the
integrals) admit also more general transformations, linking ϕ( au+b

cu+d , κ1) and ϕ(u, κ), for
different moduli κ1 and κ , where a, b, c, d are integers with ad − bc = n > 0, the
order of the transformation. Such transformations for integrals were alluded to in §3.4
above. In modern parlance, these transformations are the isogenies between the lattices,
or the elliptic curves, associated to elliptic functions. Multiplication by m is obviously a
particular case of transformation, with κ1 = κ and order m2.

157. See for instance [Gauss 1796–1814], September 9, 1796; cf. [Gauss 1900], pp. 93–95.
Only these two types of complex multiplication are hinted at in [Jacobi 1839]; they are
those for which the complex multipliers are generated by a root of unity.

158. In the first volume of [Eisenstein 1975], this theme occurs on pp. 80; 89–94 (this 1844
paper picks up [Jacobi 1839] explicitly, and also envisages a possible generalization from
elliptic to Abelian functions with complex multiplication by general rings of cyclotomic
integers); 111; 389–394; and 454–461 (this last part containing a parallel treatment of
complex multiplication by the 4th and the 6th roots of 1). The tension with Jacobi alluded
to above is mentioned in [Eisenstein 1975], vol. 2, pp. 506–510, see also [Lemmermeyer
2000], pp. 270–275 and the footnote 74 of H. Pieper’s chap. III.1 below.

159. Beside his resolution of the division equation of the lemniscate mentioned above, Abel
remarked in 1828 that the equations for the moduli κ of elliptic integrals with given
complex multiplications are solvable by radicals, see [Abel 1881], vol. 1, p. 425–426,
and § 1 of C. Houzel’s chap. IV.2 below. Note that even Gauss’s posthumously published
papers did not explicitly anticipate the arithmetic theory of complex multiplication.
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ideal numbers in the wake of Jacobi’s paper.
A big stride was taken in a long and leisurely article published (in three parts)

by Eisenstein in 1850, again in Crelle’s journal; see [Eisenstein 1975], pp. 536–619.
It starts with Eisenstein’s irreducibility criterion, applied to the division equation for
the inverse function ϕ of the integral measuring the lemniscatic arc; see §2 above.
But the whole paper revolves around formulae such as

ϕ(mt) = ϕ(t)N (m) + m · P

1 + m · Q
(1)

F(k)N (n) = F(nk)+ nT (2)

The first line states that, for a Gaussian prime number m ≡ 1 (mod 2 + 2i), there
exist P, Q, polynomials in ϕ(t) with Gaussian integer coefficients, such that (1)
holds; the second states that, for a Gaussian prime number n ≡ 1 (mod 2 + 2i), and
different from m, and for F any polynomial with Gaussian integer coefficients, there
exists T , a polynomial with Gaussian integer coefficients, such that (2) holds, when
F and T are applied to the roots of the mth division equation of ϕ; in both formulas,
N denotes the norm.

Eisenstein read these identities in two ways: on the one hand, he took them as
higher congruences (mod m), resp. (mod n), in the spirit of Gauss’s unpublished
eighth section160 and Schönemann’s theory, involving the natural, but fundamental,
exponentiation ( ϕ(t)N (m) and F(k)N (n) ) which we today view as the Frobenius
automorphism with respect to the Gaussian integers modulo m, resp. n. On the other
hand, Eisenstein recognized that Kummer’s then recent invention of ideal numbers
for the cyclotomic integers could be imitated precisely for the algebraic integers
generated over the Gaussian numbers by the mth division values of ϕ,161 putting into
practice his conviction, expressed to Stern in 1844, that the lemniscatic function
plays with respect to the complex numbers exactly the same role as the circular and
exponential for the real theory.162

160. Like other readers of the D.A., Eisenstein wondered what exactly Gauss had intended to
present there; see for instance a note in the margin of his copy of the D.A., art. 62 (in
[Ullrich 2001], pp. 208–209, the editor erroneously corrects “Section VIII” into “Section
VII”). In his 1850 article, [Eisenstein 1975], vol. 1, footnote on p. 550, he suggested
that Gauss might also have wanted to allow certain infinite series to occur in higher
congruences. See also the footnote on pp. 559–560, where he suggested improving on
Kummer’s theory of complex numbers from the point of view of higher congruences.
At least today, it is not hard to prove the inductive observation recorded in the last entry
of Gauss’s mathematical diary using Eisenstein’s formulae; cf. [Schappacher 1997], §6.
But we have no evidence that anything like this was realized at the time.

161. [Eisenstein 1975], vol. 1, pp. 574–575, where he wrote in particular that before learning
of Kummer’s theory, he had found these properties only in a rather clumsy form.

162. [Eisenstein 1975], vol. 2, p. 797: die Lemniscaten Funktionen, welche in Bezug auf die
complexen Zahlen genau dieselbe Rolle spielen, als die Sinus für die reelle Theorie. For
an ordinary integer m, the roots of the cyclotomic equation over the rationals, xm−1

x−1 are

the m th roots of unity, that is e2ikπ/m , i.e., the division values of the exponential.
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The end of his paper presents applications to the theory of 8th power residues.
Eisenstein developed the Euclidean algorithm for the domain of 8th roots of 1 and
derived Jacobi’s decomposition of prime numbers N (m) = p = 8λ + 1 in this
domain (where m denotes a Gaussian prime number). He considerably refined the
analysis of the factors of this decomposition with the help of polynomial expressions
in the m-division values of the lemniscatic function ϕ and the 8th roots of 1, which
behave under permutations of the division values in a way closely analogous to
the behaviour of certain resolvents studied by Kummer while trying to find actual
complex numbers, in larger domains, which would represent the ideal factors found
in the decomposition of primes in cyclotomic fields.163

Given Eisenstein’s adoption of Kummer’s ideal numbers, the continuity with
Kronecker is particularly striking. In 1853, Kronecker conceived of what is now
called the Kronecker-Weber Theorem – in his terms,164 “the roots of any Abelian
equation with integer coefficients can be expressed as rational functions of roots of
unity” – as a direct application of precisely that same article of Kummer on ideal
prime numbers that Eisenstein had transposed to the lemniscatic context. Kronecker
thought at first that ideal numbers were needed to prove it, and he also generalized
his statement immediately to equations abelian over the Gaussian numbers, linking
them here to the lemniscatic theory.165 But Kronecker did not stop there. “The subject
itself,” as he put it, pushed him to study not just the division equations of a particular
elliptic function (the analogue over the Gaussian integers of the cyclotomic equation
over the rational numbers), but “the arithmetic properties of those moduli” κ for
which complex multiplication occurs.166

The elliptic functions for which complex multiplication occurs are situated … bet-
ween the circular functions and the other elliptic functions. … thus the values of the
moduli of that special type of elliptic functions are characterized as limit values by the
fact that only for them does the modular equation have multiple roots. Furthermore,
while for circular functions there is only multiplication, and for general elliptic
functions both multiplication and transformation, for that particular type of elliptic
functions, transformation loses in part its peculiar character and turns into a sort of
multiplication by ideal numbers. Indeed, as, for an integer p which is represented
by the principal form x2 + ny2 of determinant −n, one of the transformations of
order p is the multiplication by x + y

√
−n, i.e., sin2 am (x + y

√
−n)u is expressed

as rational function of sin2 am u and κ , one of the transformations of order q, where
q is represented by one of the other forms of determinant −n, gives a transformed
function: sin2 am(μ · u, λ) expressed as a rational function of sin2 am(u, κ) and κ ,
where λ is one of the other moduli for which multiplication by

√
−n occurs, and

μ belongs to a certain value of
√

−n (mod. q) and thus represents an ideal factor

163. See [Kummer 1975], vol. I, pp. 211–251.
164. Kronecker coined this terminology “Abelian equation” in that paper. Today it means that

the Galois group of the equation is commutative; but see O. Neumann’s chap. II.1 below
for the evolution of Kronecker’s usage.

165. [Kronecker 1895–1930], vol. 4, pp. 3–11; [Petri, Schappacher 2004], pp. 234–239 and
pp. 252–255.

166. [Kronecker 1895–1930], vol. 4, p. 209.
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of q. These multipliers: μ are explicit algebraic irrationalities and it is in many ways
remarkable that this gives a first example where analysis provides the irrationalities
for the representation of ideal numbers.167

Extending Kummer’s usual cyclotomic frame of reference, Kronecker here, in 1858,
thought of ideal numbers of the imaginary quadratic domain of complex mul-
tiplication. He remarked that the various classes are represented by (functions
of) the various moduli for which complex multiplication by

√
−n occurs, the so-

called “singular moduli.”168 Kronecker came up on the one hand with a list of
formulae involving class numbers of binary quadratic forms with negative dis-
criminants, and on the other with an explicit resolution, related to the genera of
corresponding quadratic forms, of the modular equations in the case of complex
multiplication.169 For instance, he stated that, if n ≡ 3 mod 4, φ(n) the sum of
divisors of n which are greater than

√
n, ψ(n) of the remaining divisors, one has

2F(n) + 4F(n − 22) + 4F(n − 42) + . . . = φ(n) − ψ(n), where F(m) denotes
the number of classes of binary quadratic forms which are either properly primitive
(i.e., (a, 2b, c) are coprime) of determinant −m or a multiple of such forms, the sum
on the left being stopped when n − i2 = 0 or < 0. Such formulae would in turn be
taken up by Hermite, which nicely closes up our circle of papers inspired by Jacobi’s
1839 article, [Jacobi 1839].

167. [Kronecker 1895–1930], vol. 4, p. 181: Die elliptischen Functionen, für welche com-
plexe Multiplication stattfindet, stehen ihren wesentlichen Eigenschaften nach zwischen
den Kreisfunctionen einerseits und den übrigen elliptischen Functionen anderseits. … so
werden auch die Werthe der Moduln jener besonderen Gattung von elliptischen Functio-
nen dadurch als Grenzwerthe charakterisirt, daß nur für diese … die Modulargleichungen
gleiche Wurzeln enthalten. Während ferner für die Kreisfunctionen nur Multiplication,
für die allgemeinen elliptischen Functionen aber Multiplication und Transformation statt-
findet, verliert die Transformation bei jener besondern Gattung elliptischer Functionen
zum Theil ihren eigenthümlichen Charakter und wird selbst eine Art Multiplication, in-
dem sie gewissermaaßen die Multiplication mit idealen Zahlen darstellt. Wie nämlich für
eine Zahl p, welche sich durch die zur Determinante −n gehörige Hauptform x2 + ny2

darstellen läßt, eine der Transformationen pter Ordnung die Multiplication mit x+y
√

−n
d.h. die Darstellung von sin2 am (x + y

√
−n)u als rationale Function von sin2 am u und

κ gewährt, so ergiebt eine der Transformationen qter Ordnung, wenn q durch eine der
übrigen zur Determinante −n gehörigen Formen darstellbar ist, eine transformirte Func-
tion: sin2 am(μ · u, λ) ausgedrückt als rationale Function von sin2 am(u, κ) und κ , in
welcher λ einer der andern Moduln ist, für welche Multiplication mit

√
−n stattfindet, in

welcher ferner μ zu einem bestimmten Werthe von
√

−n (mod. q) gehört und geradezu
die Stelle eines idealen Factors von q vertritt. Diese Multiplicatoren: μ sind explicite al-
gebraische Irrationalitäten und es ist in vielfacher Hinsicht bemerkenswerth, daß hier ein
erstes Beispiel gegeben ist, in welchem die Analysis die Irrationalitäten zur Darstellung
idealer Zahlen gewährt.

168. This sentence is compatible with the language of the 1850s and 1860s as well as with
modern presentations of the theory; see for instance [Serre 1967], last theorem in §1.

169. See [Kronecker 1895–1930], vol. 4, pp. 185–195, cf. [Smith 1859–1865], §§ 130–137,
and § 2 (cf. also § 6) of C. Houzel’s chap. IV.2 below. An explicit appeal to D.A., art. 227,
occurs for instance in [Kronecker 1895–1930], vol. 4, p. 210; see also p. 237.
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Kronecker, however, would come back to complex multiplication in a long series
of papers from the 1880s,170 and directly take up Eisenstein’s work, and in particular
the formulae (1) and (2), in the very context of the quote given above (footnote 167).
His “main goal” (Hauptzielpunkt) then was to establish – which he does by giving
three different proofs – the following vast generalization of (1) and (2)171 :

(−1)
1
2 (n−1)

√
λ sin am (μu, λ) ≡

(√
κ sin am(u, κ)

)n
(mod μ).

Commenting on this formula, Kronecker stressed the simultaneous presence of trans-
formation (indicated by the two moduli: κ and λ) and multiplication (indicated by the
multiplier μ).172 This comment is actually presented as a praise of Jacobi’s notation,
underscoring the markedly traditional style of this whole series of notes. Contrary
to modern reflexes,173 Kronecker appreciated this formula, not in algebro-geometric
terms, but as a quintessential result of arithmetic algebraic analysis: a congruence
derived from an algebraic relation involving analytic functions. Already in the long
quote above we saw him stress the role of analysis as being able to deliver to arith-
metic what is hard or impossible to come by in a purely arithmetic way.174

5. In Search of a Discipline

By the middle of the XIXth century, the Disquisitiones Arithmeticae had left its
imprint on several areas of mathematical research: in higher arithmetic and in the
theory of equations, of course, but also, for instance, in all those domains where
determinants or substitutions were used. It had also found new readers: mathemati-
cians who had studied it closely, often early in their careers, who would devote an
important part of their professional activities to developing it, and of whom several
occupied key positions on the mathematical scene.

170. They fill almost one third of vol. 4 of Kronecker’s Collected Papers.
171. [Kronecker 1895–1930], vol. 4, pp. 389–471, formula (64), p. 439. The letter n replaces

what was called q in the long quote above.
172. [Kronecker 1895–1930], vol. 4. This two-sidedness is one reason to reject the one-sided

interpretation of Kronecker’s Jugendtraum given in Hilbert’s 12th problem; see Helmut
Hasse’s Zusatz 35 in [Kronecker 1895–1930], vol. 5, pp. 510–515. Cf. [Schappacher
1998].

173. Looked at from the second half of the XXth century, the formula appears as an ancestor of
both the Shimura-Taniyama and the Eichler-Shimura congruence relations; see [Vlǎduţ
1991], part I, chaps. 3, 4. Shimura and Taniyama alluded explicitly to Kronecker’s
formula in [Shimura, Taniyama 1961], sec. 13, p. 110.

174. This is also a recurring thought in Kronecker’s lectures [Kronecker 1901]. At the same
time, as is well-known, Kronecker forcefully propagated a general arithmetic which
was to actually contain analysis, and a foundational view of mathematics where rigour
ultimately should be based only on natural integers, see chap. I.2 and §2.2 of B. Petri’s
and N. Schappacher’s chap. V.2 below. At least the technical parts of his papers on elliptic
functions seem unaffected by this creed.
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5.1. A Research Field

More specifically, we have called arithmetic algebraic analysis the domain of research
directly connected with the D.A. that knit together reciprocity laws, series with
arithmetical interpretations, elliptic functions and algebraic equations. We argue
that it constituted a (research) field, in the sense that “all the people who are engaged
in [this] field have in common a certain number of fundamental interests, viz., in
everything that is linked to the very existence of the field,” and that one can uncover
“the presence in the work of traces of objective relations … to other works, past or
present, [of the field].”175

As we have noticed, its main actors were indeed linked by a dense communica-
tion network, both personal and mathematical. Their published papers would meet
with prompt reactions; quite a number of these papers were in fact excerpts of letters
adressed to another mathematician working in the domain. An interesting character-
istic feature was the production of new proofs of the central results, a phenomenon
of which we have seen several instances.176

A main motto was that of the unity of this specific area and of the strive toward
unity of the mathematicians working in it. It is expressed for instance by Gauss
himself in his preface to Eisenstein’s Mathematische Abhandlungen in 1847:

The higher arithmetic presents us with an inexhaustible store of interesting truths,
of truths, too, which are not isolated, but stand in a close internal connexion, and
between which, as our knowledge increases, we are continually discovering new and
sometimes wholly unexpected ties.177

At Hermite’s jubilee in 1892, Poincaré, discussing how Hermite “illuminated
with a new light the admirable edifice raised by Gauss,” added that the merit of his
discoveries was increased by the “care that [Hermite] always took to make clearly
evident the mutual support that all these sciences, apparently so diverse, provide to
each other.”178 In the same way, Kummer emphasized that Dirichlet’s “mind [was]

175. [Bourdieu 1976/2002], p. 115: tous les gens qui sont engagés dans un champ ont en com-
mun un certain nombre d’intérêts fondamentaux, à savoir tout ce qui est lié à l’existence
même du champ, and p. 116: Un des indices les plus sûrs de la constitution d’un champ
est … la présence dans l’œuvre de traces de relations objectives … aux autres œuvres,
passées ou contemporaines [du champ].

176. This could go beyond a deliberate attempt to prove a statement published without proof,
as in the case of Jacobi’s paper discussed above, § 4, or to provide a new perspective
on a celebrated result such as the reciprocity law. Since similar results were elaborated
independently by different persons, the feeling of an unconscious convergence or repe-
tition of ideas was sometimes expressed: on April 6, 1853, Hermite wrote to Dirichlet
about the transformations of an indefinite ternary form into itself, a subject that he had
discussed in Berlin with both Eisenstein and Dirichlet: “[it seems] a law of my destiny
that all I do in arithmetic is to rediscover some of the discoveries that you have made a
long time ago” (Nachlass Dirichlet, Staatsbibliothek zu Berlin-Preussischer Kulturbesitz-
Handschriftenabteilung).

177. Quoted from the English translation offered by Smith at the beginning of his report,
[Smith 1859–1865], part I, p. 228.

178. [Hermite 1893], p. 6: vous éclairiez d’une lumière nouvelle l’admirable édifice élevé
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always striving toward unity.”179

This motto was supported by an actual circulation of concepts and methods; for
instance, Dirichlet’s analytic techniques were used by Kummer, ideal numbers by
Eisenstein and Kronecker, while the study of forms along the lines of the section 5 of
the D.A. was extended by Dirichlet and Hermite to forms with Gaussian integers as
coefficients; Liouville, Charles Joubert, and Hermite took up Kronecker’s relations
on the number of classes of quadratic forms. Yet another famous connection between
algebraic equations and elliptic functions was established in various ways by Hermite,
Kronecker, and Francesco Brioschi: the analytic solution of the general quintic
equation via suitable modular or multiplier equations.180 It was also reinforced by
translations and texts of a historical or biographical nature.181 An example of this
tight intertwinement is offered for instance by Jules Houël’s letter to Dirichlet of
April 30, 1857:

I just finished the translation of your beautiful memoir Vereinfachung der Theorie
der binären quadratischen Formen von positiver Determinante, the simplicity of
which I admire all the more as I am just studying for the first time section 5 of
the D.A. M. Lebesgue, who has volunteered to go over my translation, will send it
to M. Liouville in a few days. I also translated and submitted to M. Liouville your
obituary address on Jacobi which contains an interesting history of the contemporary
development of mathematics, a development of which a considerable part is due to
that great man.182

Specific media played an important role in this process: we have seen how that of

par Gauss.… Le prix de vos découvertes est encore rehaussé par le soin que vous avez
toujours eu de mettre en évidence l’appui mutuel que se prêtent les unes aux autres toutes
ces sciences en apparence si diverses. Poincaré specifically mentioned number theory,
algebraic forms, elliptic functions, and modular equations.

179. [Dirichlet 1889–1897], vol. 2, p. 327: In seinem überall zur Einheit strebenden Geiste
konnte er diese beiden Gedankensphären nicht neben einander bestehen lassen. The two
“spheres of thought” are analysis and number theory.

180. See [Petri, Schappacher 2004], §§ 3, 4, and the literature and sources cited there.
181. Cf. [Bourdieu 1976/2002], pp. 116–117: Un des indices les plus surs de la constitution

d’un champ est, avec la présence dans l’oeuvre de traces de relations objectives …
aux autres oeuvres, passées ou contemporaines [du champ], l’apparition d’un corps de
conservateurs de vies … ou des œuvres. … Et un autre indice du fonctionnement en tant
que champ est la trace de l’histoire du champ dans l’oeuvre. In the case at hand, the
mathematicians themselves served as their own historians and biographers.

182. Nachlass Dirichlet, Staatsbibliothek zu Berlin, Preussischer Kulturbesitz, Handschriften-
abteilung: Je viens de terminer la traduction de votre beau Mémoire, intitulé: “Verein-
fachung der Theorie der binären quadratischen Formen von positiver Determinante,”
dont j’admire d’autant plus la simplicité que je suis en train d’étudier pour la première
fois la section V des Disq. arithm. M. Lebesgue, qui veut bien se charger de revoir ma
traduction, l’enverra sous peu de jours à M. Liouville. J’ai également traduit et remis à
M. Liouville l’Eloge de Jacobi, qui renferme une histoire intéressante du développement
contemporain des mathématiques, développement dont une part bien considérable revient
à ce grand homme. Note that no more than 4 out of 26 pages of this obituary deal with
works by Jacobi which lie outside of arithmetic algebraic analysis.



54 I. A Book’s History

Crelle’s Journal was recognized by several mathematicians; Genocchi’s proof of
the reciprocity law published as a memoir of the Belgian Academy in 1852, on the
other hand, passed unnoticed until it was recalled in the Paris Comptes rendus de
l’Académie des sciences thirty years later.183

However, we think that it would be misleading to interpret this situation as the
establishment of a discipline based on the D.A., in the sense of an “object-oriented
system of scholarly activities.”184 Indeed, the developments of different parts of
the D.A. provided different key objects on which mathematicians could focus their
investigations: congruences for some, algebraic integrals for others; ideal numbers
or forms; integers or elliptic functions, etc. To each of them in turn divergent key
problems were associated, from reciprocity laws to classification issues. While most
references to the D.A. at that time would extol the quality of its proofs – their ancient
rigour, in Minding’s terms – and while some of these proofs constituted technical
models to emulate and even mimic, Gauss’s demonstrations were also criticized on
several grounds, sometimes for their length and complexity, on other occasions for
their synthetic nature. The very activity of proof analysis – reflecting on existing
proofs in order to fathom their mechanism and simplify their presentation – which
sometimes could effectively gather mathematicians of various orientations around
the same statement, was not central for all. According to Jacobi,

[Dirichlet] alone, not I, nor Cauchy, nor Gauss knows what a completely rigorous
mathematical proof is, but we know it only from him. When Gauss says he proved
something, I take it to be very likely, when Cauchy says it, one may bet as much
for or against, when Dirichlet says it, it is certain. For myself, I prefer not to get
involved in these subtleties.185

183. On Genocchi’s 1852 memoir and Kronecker’s interest in it, see A. Brigaglia’s chap. VII.1.
184. [Guntau, Laitko 1987], p. 26: gegenstandsorientiertes System wissenschaftlicher Tätig-

keiten. We owe this reference to Ralf Haubrich who, at the 2001 Oberwolfach Conference,
suggested characterizing a mathematical discipline by a list of internal elements such as
its subject matter, its core concepts and theorems, its systematization, its proof system,
the mathematical values advocated in evaluating its results, etc. A word of caution
may be appropriate here: Thomas Kuhn’s description of a “disciplinary matrix,” in the
Postscript to the second edition of The Structure of Scientific Revolutions, could appear
to be very similar; however, Kuhn’s conception is deliberately anchored in the analysis
of communities and groups of practitioners, which, by themselves and by their very
existence, delineate the characteristics of this “matrix.” For that matter, the cyclotomic
equation, with its links to circular functions on the one hand, and to primitive roots modulo
a prime on the other, is a perfect paradigm in Kuhn’s sense (that is, a shared key-example),
linking (although perhaps tacitly) the practitioners of arithmetic algebraic analysis. But
we want to use the word “discipline” here in the more restricted sense indicated above,
just as we have used above the sociologically better defined “field” (champ) instead of
Kuhn’s “community.”

185. See the letter of Jacobi to A.v. Humboldt, December 21, 1846, [Jacobi & Humboldt], p.
99: Er allein, nicht ich, nicht Cauchy, nicht Gauss weiß, was ein vollkommen strenger
mathematischer Beweis ist, sondern wir kennen es erst von ihm. Wenn Gauss sagt, er
habe etwas bewiesen, ist es mir sehr wahrscheinlich, wenn Cauchy es sagt, ist ebensoviel
pro als contra zu wetten, wenn Dirichlet es sagt, ist es gewiß. Ich lasse mich auf diese
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The close relation to the D.A. is of course a kind of trade-mark for all these works;
but, as we have pointed out on several occasions, different sections, or even articles
of the D.A., were privileged and pondered upon by different authors. We have also
indicated moves towards giving a more prominent profile and greater independence
to formerly amalgamated components of arithmetic algebraic analysis.

5.2. An Academic Discipline

Yet another perspective deserves consideration. The Disquisitiones Arithmeticae
is a research monograph, but during the first half of the XIXth century, research
results tended rather to be published in shorter papers, whereas the publication of
books would be increasingly associated to other genres like, for instance, textbooks
or syntheses. Following the thread of textbooks, say, from Minding’s treatise on,
rather convincingly reveals the constitution of a discipline based on the D.A. Two
works, conceived at the end of the 1850s, would incarnate it in the following decades,
serving as standard references for the numerous textbooks on number theory from
the end of the century:186 Henry John Smith’s Report on the Theory of Numbers and
Dedekind’s first edition of Dirichlet’s Vorlesungen über Zahlentheorie.

While Peacock in 1834 had integrated the D.A. in a report on analysis, twenty-
five years later number theory received an extensive and detailed report by itself
at the British Association for the Advancement of Science. Smith had begun to
tackle number-theoretical questions in the mid-1850s essentially in Legendre’s style.
However, his report, published between 1857 and 1865, covered very thoroughly the
research from Gauss to Kummer. Smith classified the material under two main
headings, following more or less Gauss’s table of contents:

There are two principal branches of the higher arithmetic:– the Theory of Congru-
ences, and the Theory of Homogeneous Forms. … It might, at first sight, appear
as if there was not sufficient foundation for the distinction. But in the present state
of our knowledge, the methods applicable to, and the researches suggested by these
two problems, are sufficiently distinct to justify their separation from one another.
… Those miscellaneous investigations, which do not properly come under either of
them, we shall place in a third division by themselves.187

Richard Dedekind adopted roughly the same presentation when in 1863 he edited
Dirichlet’s Göttingen lectures of 1857–58 for the first time:188 after a first chapter on
general properties of integers, as in Minding, two chapters are devoted to congruences
and two others to binary quadratic forms, while miscellanea, including results on the
cyclotomic equation, are exiled into several supplements.

Delicatessen lieber gar nicht ein. On the idea of proof analysis and Dirichlet’s importance
for this issue, see [Haubrich 1992], p. 14.

186. In his 1890 survey on number theory, for instance, Thomas Stieltjes would recognize his
debts to both of them and two years later George Mathews would write in his own book
that “he derived continual assistance” from them; for these examples and others, see the
following chap. I.2.

187. [Smith 1859–1865], pp. 39–40.

188. On the Vorlesungen über Zahlentheorie, see [Goldstein 2005].
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In both cases, novel developments were forced into this bipartite scheme, the
D.A. giving the lead to the whole text. Smith is explicit about it:

Instead of confining our attention exclusively to the most recent researches in the
Theory of Quadratic Forms, we propose … to give a brief but systematic résumé of
the theory itself, as it appears in the Disq. Arith., introducing in their proper places,
notices, … of the results obtained by later mathematicians. We adopt this method,
partly to render the later researches themselves more easily intelligible, by showing
their connexion with the whole theory; but partly also in the hope of facilitating to
some persons the study of the Fifth Section of the Disq. Arith.189

Similarly, Smith presented Kummer’s ideal numbers in the section on higher congru-
ences, in connection with reciprocity laws. Dirichlet’s chapters on quadratic forms
integrate his simplifications of the D.A. on this topic, as well as his class number
formula. But several analytic lemmas and his theorem on primes in arithmetical
progressions are relegated to the supplements, just as Smith relegated Jacobi’s theta
functions and their applications to quadratic forms to the end of his report.190

Gauss’s strong impact on shaping survey publications can be measured a con-
trario by two other books on number theory published around 1850. That of Eugène
Desmarest, a pharmacist and amateur number-theorist, [Desmarest 1852], is mostly
devoted to exhibiting effective, “practical” solutions to quadratic Diophantine equa-
tions. Despite its Legendre-like appearance, it was only with respect to Gauss’s D.A.
that Desmarest felt the need in 1852 to justify the “foolhardiness,” as he put it, of his
encompassing title Théorie des nombres. And although he rejected Gauss’s notation
for congruences, he did organize his treatise into a first part on the resolution of bi-
nary quadratic equations modulo a prime number, a second part on the representation
of numbers by binary quadratic forms (including proper and improper equivalence),
finally applying them in a third part to his main problem.

As for Pafnuti L. Čebyšev, who published in 1849 a treatise on the theory of

189. [Smith 1859–1865], p. 169.

190. It is interesting to contrast the situation of analytic methods here with what Kummer said
about them at the same time, in Dirichlet’s obituary of 1860: “that in those applications,
analysis would be made to serve number theory in such a way that it does not just yield
coincidentally some isolated results, but is bound to yield with necessity the solutions to
certain general types of problems of arithmetic as yet inaccessible in other ways,” and
thus that “these methods of Dirichlet’s … would have to be recognized as the creation of
a new mathematical discipline, if they extended not just to certain types of problems but
uniformly to all problems of number theory” ([Dirichlet 1889–1897], vol. 2, p. 327: in
ihnen die Analysis der Zahlentheorie in der Art dienstbar gemacht wird, dass sie nicht
mehr nur zufällig manche vereinzelte Resultate für dieselbe abwirft, sondern dass sie die
Lösungen gewisser allgemeiner Gattungen, auf anderen Wegen noch ganz unzugänglicher
Probleme der Arithmetik mit Notwendigkeit ergeben muss. … sie würden auch … als
Schöpfung einer neuen mathematischen Disciplin anerkannt werden müssen, wenn sie
sich nicht bloss auf gewisse Gattungen, sondern auf alle Probleme der Zahlentheorie
gleichmässig erstreckten.) A proper research discipline, centered around Dirichlet series,
but encompassing neither all number theory, nor arithmetic algebraic analysis, would
flourish in the second half of the century.
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congruences based on his Saint-Petersburg dissertation, he was of course no marginal
figure like Desmarest, but his keen regard for practical applications of mathematics
put his own papers mostly outside of arithmetic algebraic analysis. In his number-
theoretical papers from the 1850s,191 he refers to Dirichlet, but not to the Disquisi-
tiones Arithmeticae. At the same time, he was coediting Leonhard Euler’s number
theoretical memoirs with Viktor Yakovlevič Bunyakovski. In his own book, he
elected neither Diophantus, nor Fermat, nor Gauss, but Euler as the father of number
theory. He claimed in the preface not to follow Legendre or Gauss – implicitly,
however, he used the Disquisitiones Arithmeticae to restructure Euler’s results:

Among Euler’s numerous investigations in the domain of number theory, the memoirs
which had the most important influence on the success of this science are those on
the two following topics: (1) On the powers of numbers considered with respect to
their residues when divided by a given number. (2) On numbers that are represented
as a sum of two numbers, of which one is a square and the other is the product of a
square by a given number. The memoirs on the first topic provided the basis of the
theory of indices, of the theory of binomial congruences in general and of quadratic
residues in particular; the memoirs on the second topic built the beginning of the
theory of quadratic forms.192

His book focuses on the first part, congruences, quadratic forms appearing as a
subsection in the chapter on quadratic congruences, while his own analytic results
were put at the end and were eventually omitted from the German translation.

To summarize, the role of the Disquisitiones Arithmeticae in the constitution of
number theory fifty years after its publication was two-fold. On the one hand, the
D.A. provided number theory with the features of its self-organization193 as an aca-
demic discipline. It shaped what number theory194 was and ought to be: congruences

191. Where he proved Bertrand’s postulate, a result on the mean values of arithmetical func-
tions, and the fact that if π(x) · log x

x , where π(x) denotes the number of primes less than
x , has a limit as x tends to ∞, then this limit has to be 1.

192. From the preface of [Čebyšev 1849]: Meжdu mnogimi izyskani�mi Зĭlera v
teorii qisel naibolee imeli vli�ni� na uspeh зtoĭ nauki izyskani�
ego po sledu�wim dvum predmetam: 1) o stepen�h qisel v otnoxenii
ostatkov, poluqaemyh pri delenii ih na dannoe qislo, i 2) o qislah,
predstavl��wih summu dvuh qisel, iz kotoryh odno estь kvadrat, a
drugoe proizvedenie kvadrata na dannoe qislo. Pervye poloжili os-
novanie teorii ukazateleĭ, sravneniĭ dvuqlennyh voobwe i v osoben-
nosti teorii kvadratiqnyh vyqetov; vtorye byli naqalom teorii kva-
dratiqnyh form. Hearty thanks to Ilia Itenberg, Strasbourg, for finding this original
citation, and advising us on the translation.

193. Cf. Rudolf Stichweh, Zur Entstehung des modernen Systems wissenschaftlicher Diszi-
plinen. Physik in Deutschland 1740–1890. Frankfurt: Suhrkamp, 1984, chap. I: “The
differentiation of disciplines … is a mechanism of self-organization of the system.”

194. Ralf Haubrich has coined the expression “Gaussian Number Theory” to designate this
core. We would like to stress that in the middle of the century, as the titles of books
witness, it was intended to be seen as “Number Theory” per se. Even Diophantine
analysis bore its marks. “Gaussian” thus is meant to allude to the role of the D.A. to
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and forms with integer coefficients (with their possible generalizations). This image
informed advanced textbooks and helped to structure them, and it would, for an even
longer time, structure classifications of mathematics. On the other hand, the D.A.
had launched an active research field, with a firm grasp on number theory, algebra
and analysis, supported by close and varied readings of the book. It provided the field
with technical tools, and a stock of proofs to scrutinize and adapt. It also provided
concrete examples of the very links between different branches of mathematics that
created the field, often articulated around richly textured objects and formulae, such
as the cyclotomic equation or Gauss sums. The (meta)stability of the field was not
guaranteed by any unicity of purpose or concept (individual mathematicians might
have their own priorities, mix differently the resources available or disregard some
of them), nor by a merging into a larger domain,195 but by a constant circulation from
one branch to another, a recycling of results and innovations. How certain branches
emancipated themselves, and with which consequences for number theory and for
the role of the D.A., will be the subject of the next chapter.
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Fig. I.2A. Gauss’s theorema fundamentale of the D.A. becomes a popular German classic:
volume 122 of Ostwalds Klassiker der Exakten Wissenschaften

(Courtesy of the Bibliothèque de l’IRMA, Strasbourg)



I.2

Several Disciplines and a Book

(1860–1901)

CATHERINE GOLDSTEIN and NORBERT SCHAPPACHER

Carl Friedrich Gauss died on February 2, 1855. Jacobi had died almost exactly four
years earlier, and Eisenstein in 1852. Cauchy died in 1857. Dirichlet became Gauss’s
successor in Göttingen, and died in 1859.1 Kummer, for his part, was then turning
to geometry, publishing only an occasional number-theoretical paper. In France,
Hermite’s research was shifting to invariant theory and differential equations. Thus,
the erstwhile proud and active leading group of European researchers in the domain
opened up by the Disquisitiones Arithmeticae was decimated dramatically by the
1860s. Only Leopold Kronecker in Berlin represented a strong element of continuity
across these years.

After Gauss’s and Dirichlet’s deaths, the Göttingen scene was dominated by
non-arithmetical occupations with Gauss’s legacy. Among the brains of deceased
Göttingen colleagues that the physiologist Rudolf Wagner managed to collect and
examine were Gauss’s and Dirichlet’s. In an attempt to go beyond weighing and
superficial descriptions, he used in particular Gauss’s brain and that of the professor
of pathology Conrad Heinrich Fuchs to develop and calibrate new parameters. They
provided him with rankings: Göttingen university professors arrived on top and
orang-outangs at the bottom.2

1. Literary Activities

A more traditional approach to Gauss’s remains was the grand publication of his
collected works (Werke), including pieces from his Nachlass, his unpublished notes

1. Dirichlet’s successor was Bernhard Riemann who would die in 1866, the year that
Göttingen became a Prussian town. The chair was then offered to Kronecker, but he
preferred to stay in Berlin, with Kummer and Weierstrass. The position was finally given
to Alfred Clebsch.

2. [Hagner 2004], pp. 142–149.
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and correspondence. This major undertaking of the Königliche Gesellschaft der
Wissenschaften zu Göttingen was finally realized in two ventures, separated by some
twenty years. The first phase was directed by the mathematician-astronomer Ernst
Schering3 who actually did most of the work himself, editing in particular single-
handedly the first volume, a newly corrected printing of the Disquisitiones Arithme-
ticae, which appeared in 1861. For Gauss’s other arithmetic publications and some
related Nachlass material in vol. II (1863) – in particular, the early manuscript of
what may have been the planned and never published sec. 8 of the D.A. – Schering
enlisted the help of Richard Dedekind,4 who was also editing Dirichlet’s lectures on
number theory. Schering brought out six volumes by 1874;5 he died in 1897, at a
time when a renewed interest in Gauss’s Nachlass was growing, as Paul Stäckel’s
success in locating Gauss’s mathematical diary in 1898 shows. The subsequent six
volumes were published between 1900 and 1929, under Felix Klein’s supervision6

with the astronomer Martin Brendel as managing editor. Here the parts having to do
with arithmetic, as well as with elliptic and modular functions, were commented by
Paul Bachmann, Paul Stäckel, Ludwig Schlesinger, and Robert Fricke.7 We shall see
that this second phase of the Gauss edition coincided with a new boom in number
theory in which Göttingen played a central role.

In the middle of these editorial achievements, concerns arose about making
Gauss more readily accessible, in particular to students of mathematics.

The handsome complete editions which have been realized of the works of almost
all great mathematicians since Lagrange have a double significance. On the one
hand, they are to be a dignified monument for those illustrious minds; on the other
hand, they are to render their creations more accessible to a studious posterity than
the originals, of which some are scattered in periodicals, and others have become
rare. But there can be no doubt that this latter goal can only be imperfectly achieved.
For the volume and the layout of the complete editions imply that – most literally –
the means to ascend to these sources are rarely at the disposal of those who would
like to quench their thirst there.8

3. He became in a way Gauss’s successor when he was appointed head of the newly created
section of theoretical astronomy at the Göttingen observatory in 1867.

4. A personal conflict between the two resulted from this collaboration, see [Lipschitz 1986],
p. 90. Riemann died before delivering anything useful about Gauss’s Nachlass on elliptic
functions: see Schering’s grudging remark about him in [Gauss 1866], p. 492.

5. He also published (Gotha: F.A. Perthes, 1871) a new printing of Gauss’s 1809 Theoria
motus corporum coelestium in a format which looked like vol. 7, except that it was edited
by himself, “member of the Göttingen Society,” instead of “by the Society.” Furthermore,
Schering oversaw some “second printings” (Zweiter Abdruck) which for vol. 2, reedited
in 1876, contains additional Nachlass material with Schering’s comments.

6. Klein had obtained a chair in Göttingen in 1886.
7. Bachmann who had attended Dirichlet’s lectures in Göttingen obtained his doctorate under

Kummer in 1862, see § 3.1 below. The three others obtained theirs between 1885 and
1887, Stäckel and Schlesinger in Berlin, partly with Kronecker, Fricke with Klein.

8. From Heinrich Simon’s preface to his German edition of Gauss’s “Disquisitiones generales
circa seriem infinitam …” (Berlin: Springer, 1888): Die stattlichen Gesammt-Ausgaben,
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The problem with the D.A. for German students, besides its rarity or price,
was the Latin. A selection of Gauss’s texts in German (translated where applica-
ble) was in fact published in these decades, including several issues of the popular
low-budget series Ostwald’s Klassiker der exakten Naturwissenschaften.9 There was
also a project to convince Schering10 to translate the D.A. into German, as the fol-
lowing letter shows – incidentally reflecting the antagonism between Dedekind and
Kronecker to which we shall return below:

If you write once more to Professor Schering, would you please tell him roughly
this: There can be no doubt about the importance of Gauss’s Disquisitiones Arithme-
ticae for the development of mathematics. It is a work which holds in mathematics
approximately the same position as Kant’s Critique of Pure Reason holds in philoso-
phy. … In spite of this eminent importance, the work is hardly read. I am convinced
that a statistical investigation would show that not even 3% of all mathematicians
have read the work. Professor Schering is completely right: the majority of the stu-
dents get by on surrogates. It is in particular the Dirichlet-Dedekind lectures which
help satisfy the desire for arithmetical knowledge. But this is precisely the trouble.
Professor Kronecker, probably one of Dirichlet’s best students, thinks … that it is
not an advantage to see through the spectacles of commentators. The students have
to study such a work themselves. … However, … not all mathematicians have the
necessary linguistic faculties.11

die von den Werken fast aller grossen Mathematiker seit Lagrange veranstaltet worden
sind, haben eine zwiefache Bedeutung. Sie sollen einerseits ein würdiges Denkmal jener
erlauchten Geister sein, andererseits aber die Schöpfungen derselben der lernenden
Nachwelt zugänglicher machen, als dies bei den Originalen der Fall ist, die teils in
periodischen Schriften zerstreut, teils selten geworden sind. Nun ist nicht zu verkennen,
dass der letzere Zweck nur in beschränktem Massse erreicht werden kann. Denn Umfang
und Ausstattung der Gesammt-Ausgaben bringen es mit sich, dass – im prosaischsten
Sinne – die Mittel, durch die man zu diesen Quellen steigt, denen, die daselbst zu schöpfen
begehren, nur selten zu Gebote stehen.

9. In this series, the following numbers reproduced works by Gauss : 2, 5, 14, 19, 53, 55,
122, 153, 167, 177, 225, 256. The last is Gauss’s mathematical diary; the only strictly
arithmetical little volume is no. 122, published by Eugen Netto in 1901, which contains
Gauss’s six proofs of the quadratic reciprocity law.

10. Springer, who at that time was just starting to get into mathematics publishing, would
indeed publish such a translation four years later; but it was Hermann Maser who trans-
lated, not just the D.A., but also related texts by Gauss from vol. 2 of Gauss’s Werke, and
included Dedekind’s comments with the latter’s permission, [Gauss 1889]. One may note
that Maser dropped Gauss’s dedication of the D.A. to the archduke. Maser had published
a German translation of Adrien-Marie Legendre’s Théorie des nombres in 1886.

11. Letter of Carl Itzigsohn to Julius Springer, March 23, 1885 (Korrespondenzarchiv, Sprin-
ger-Verlag Heidelberg, Abteilung A, Weierstraß 23; Weierstraß/Itzigsohn): Wenn Sie
nochmals an Herrn Professor Scheering [sic] schreiben, so bitte ich dem Herrn etwa
Folgendes zu sagen: Welche Wichtigkeit Gauß: Disquisitiones Arithmeticae für die Ent-
wicklung der Mathematik gehabt haben, darüber existirt wohl kein Zweifel. Es ist ein
Werk, das ungefähr in der Mathematik dieselbe Stellung einnimmt, wie die Kritik der
reinen Vernunft von Kant in der Philosophie. … Trotz dieser eminenten Wichtigkeit wird
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The “surrogates” (in Itzigsohn’s words) included of course Dedekind’s edition
of Dirichlet’s Vorlesungen über Zahlentheorie, which, as explained in chap. I.1, sim-
plified and popularized the D.A., but also the various syntheses or textbooks which
integrated parts of the D.A. in the second half of the century; an example is Bach-
mann’s textbook on cyclotomy, [Bachmann 1872], which would finally become the
third of six volumes of his “attempt at a comprehensive presentation” of number
theory.12 They provided a uniform basic training in number theory,13 and their medi-
ating role is testified to from many quarters by the generation born in the 1860s. The
young Hermann Minkowski, for example, would read Dirichlet’s Vorlesungen über
Zahlentheorie first and then the Disquisitiones Arithmeticae.14 Edmond Maillet, an
engineer trained at the Ecole Polytechnique, who obtained the Grand Prix of the
French Academy of Sciences in 1896 for a memoir on finite groups and was one
of the rare French mathematicians to use Kummer’s ideal factors, characteristically
answered, when asked about his formative readings:

On M. Jordan’s advice, I read on the one hand Serret’s Algèbre supérieure, Dirichlet-
Dedekind’s Zahlentheorie, Bachmann’s Kreistheilung, probably some Gauss…15

But one may wonder if Carl Itzigsohn’s complaint about the very small readership
of the D.A. does not correspond to a deeper and larger phenomenon: a low point, or
at least a decline16 of the ebullient research field opened at the middle of the century,
as its most important contributors left it. This at any rate is the impression conveyed
by the contemporary mathematicians themselves.

das Werk fast gar nicht gelesen. Ich bin fest überzeugt, daß eine statistische Unter-
suchung ergeben würde, daß nicht 3% aller Mathematiker das Werk gelesen haben. Herr
Prof. Sch.[ering] hat vollkommen recht, ein großer Theil der Studirenden behilft sich mit
Surrogaten. Namentlich sind es die Dirichlet-Dedekindschen Vorlesungen, welche das
Bedürfnis nach arithmetischen Kenntnissen befriedigen helfen. Indeß hierin liegt eben
gerade der Fehler. Herr Prof. Kronecker, wohl einer der besten Schüler Dirichlet’s, ist der
Ansicht …, daß es kein Vorteil ist, durch die Brille von Commentatoren zu sehen. Die Stu-
denten müssen ein derartiges Orgina[le]s [sic] Werk selbst studiren. … Indeß, … stehen
nicht allen Mathematikern diejenigen philologischen Hilfsmittel zu Gebote. We heartily
thank Reinhard Siegmund-Schultze for having shared this letter and his transcription of
it with us. About Itzigsohn, see [Bölling 1994], pp. 11–20.

12. The whole series, mostly written after Bachmann’s early retirement from his Münster
chair in 1890, comprises 5 parts in 6 physical volumes. [Bachmann 1872] was reedited
posthumously in 1921 by Robert Haussner, as vol. 3 of the series. Bachmann also
published other number-theoretical books, for instance on Fermat’s Last Theorem.

13. Gaston Darboux, reviewing the third edition of Dirichlet’s Vorlesungen in the Bulletin
des sciences mathématiques et astronomiques 3 (1872), p. 168, stated that “the order
followed in the book is that adopted by all the professors.”

14. See [Strobl 1985], p. 144, and J. Schwermer’s chap. VIII.1 below.
15. This appears in a survey organized by the journal L’Enseignement mathématique 8 (1906),

p. 222: Sur le conseil de M. Jordan, je lus l’Algèbre supérieure de Serret, la Zahlentheorie
de Dirichlet-Dedekind, la Kreistheilung de Bachmann, du Gauss probablement…

16. Ralf Haubrich speaks of Niedergang as far as higher reciprocity laws were concerned,
[Haubrich 1992], p. 35.
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Dedekind published his own development of Kummer’s work on algebraic num-
bers – in particular his theory of ideals, to which we shall return – within the sup-
plements to his successive editions of Dirichlet’s Vorlesungen, as “the safest means
to win a larger circle of mathematicians to work in this field.”17 But his expecta-
tions were disappointed. On March 11, 1876, Rudolf Lipschitz proposed a French
translation of the relevant supplement, regretting at the same time that the theory it
contained was “not appreciated at its true value, even in Germany.” In his grateful
reply of April 29, Dedekind wrote that until now only one person, Heinrich Weber,
had expressed an active interest in his work.18

On the more classical topic of quadratic forms, Hermite wrote to Henry Smith
in 1882 about a prize posted by the Paris Academy on the representation of integers
as sums of five squares:

Until now, I do not know of any paper submitted. This is explained by the direction
of the mathematical trend which does not go now toward arithmetic. You are the
only one in England to follow the path opened by Eisenstein. M. Kronecker is the
only one in Germany; among us, M. Poincaré, after putting forward some good ideas
on what he calls arithmetical invariants, now seems to think only about Fuchsian
functions and differential equations.19

Dedekind’s and Hermite’s declarations seem to agree. But the fact that the names
mentioned in both are different points to another process: the dissociation of several
components of what we have called arithmetic algebraic analysis in chap. I.1. The
research work on the theory of forms, for instance, was more and more oriented
toward algebra, in particular invariant theory, with no concern for the nature of the
coefficients of the forms, as is witnessed by the works of Francesco Faà di Bruno,
Arthur Cayley, Alfred Clebsch, and others.20 Meanwhile, complex analytic functions
were developing into an independent topic. And the track from them to congruences
and reciprocity laws seemed progressively washed out.

2. Citation Networks

To go beyond such local testimonies and get a global view of the situation, historians
have at their disposal a new tool in the 1870s, the Jahrbuch über die Fortschritte

17. See [Dedekind 1930–1932], vol. 3, p. 464. Dedekind added his theory inside a new
supplement (the tenth) on the composition of forms, in the second edition in 1871; he
would later expand and rewrite it, rendering it autonomous as an eleventh supplement to
the editions of 1879 and 1894.

18. [Lipschitz 1986], pp. 47–49. Quote on p. 47: dabei selbst in Deutschland nicht nach
ihrer vollen Gebühr allgemein gewürdigt werden.

19. [Smith 1894], vol. 1, p. lxvii: Jusqu’ici je n’ai pas eu connaissance qu’aucune pièce
ait été envoyée, ce qui s’explique par la direction du courant mathématique qui ne se
porte plus maintenant vers l’arithmétique. Vous êtes seul en Angleterre à marcher dans
la voie ouverte par Eisenstein. M. Kronecker est seul en Allemagne, et chez nous,
M. Poincaré, qui a jeté en avant quelques idées heureuses sur ce qu’il appelle les in-
variants arithmétiques semble maintenant ne plus songer qu’aux fonctions fuchsiennes
et aux équations différentielles. On the prize, see J. Schwermer’s chap. VIII.1.

20. At least the latter two also integrated projective geometry into their agenda.
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der Mathematik. These yearly volumes edited in Berlin with the support of Bor-
chardt, Kronecker and Weierstrass, provided reviews of all mathematical publica-
tions. Number theory occupied the 3rd section, after a section on pedagogical and
historical questions, and one on algebra.21 It included elementary arithmetic (Niedere
Zahlentheorie, that is, here, school arithmetic); higher arithmetic, divided into gen-
eralities and the theory of forms; continued fractions.22 A quantitative analysis of
the Jahrbuch reveals that between 1870 and World War I, higher arithmetic filled
up 3.5% to 4% of the pages of the Jahrbuch, which gives some weight and some
perspective to Itzigsohn’s evaluation above, but still represents some 3500 papers of
all kinds, from short notes on a Diophantine question in the Educational Times to
book-length memoirs in the Journal für die reine und angewandte Mathematik.23

A finer structuring of this corpus of publications is of course necessary. It
can be obtained by pursuing the web of mutual references, implicit and explicit.24

This allows us to verify that higher arithmetic was parcelled out and to distinguish
several clusters of articles; inside each cluster, references to each other’s articles
and results are frequent, the papers are often close in terms of methods, points of
view, or objectives; at least an awareness of the works of others is indicated, while
the mathematical exchanges between two different clusters of articles are limited, in
some cases even tainted by technical misunderstanding or disapproval.25 For reasons
of space, we only delineate briefly here the (numerically) most important clusters

21. This place may seem natural to us. However, the Répertoire bibliographique des sciences
mathématiques, a parallel enterprise begun in the 1880s, would classify number theory
almost at the end of the analysis section (under the letter “I,” i.e., in the ninth place, as an
application of analysis). On the Répertoire, see [Rollet, Nabonnand 2002]. The history
of the Jahrbuch is discussed in [Siegmund-Schultze 1993].

22. During the first decade of the Jahrbuch, generalities, theory of forms, and continued
fractions were the three subsections of number theory. The separate section on continued
fractions reminds us of the numerical importance of the topic during the XIXth century,
where it was linked in particular to approximation; see [Brezynski 1991].

23. For more details, in particular on the distribution according to countries and on the
evolution through time, see [Goldstein 1994] and [Goldstein 1999].

24. Such an approach was advocated decades ago by several authors, in particular Eugène
Garfield, Derek Price, and Thomas Kuhn. To identify research groups, Kuhn suggested
“the recourse … above all to formal and informal communication networks including
those discovered in correspondence and in the linkage among citations,” [Kuhn 1970],
p. 178. See also [MacKenzie 1986]. However, applying this idea to XIXth century
mathematical texts like ours to study content-related issues is not straightforward, and
automatic quotation indexation would not be adequate; see [Goldstein 1999].

25. Examples involving Ernest de Jonquières and Rudolf Lipschitz, or James Sylvester and
Dedekind, are given in [Goldstein 1994]. We would like to stress here that our groupings
of texts do not usually coincide with the personal links between mathematicians, that is
with the “communication networks,” and thus of course have no bearing on their works
in other domains. For instance, Hermite entertained a friendly correspondence with
Sylvester and had many mathematical exchanges on invariant theory, but disagreed on
his number-theoretical choices for his students at Johns Hopkins, see [Parshall 1998],
p. 221 and chap. VI.1 below.
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and their respective relations to the D.A.
The largest group by far in the last decades of the XIXth century – we shall des-

ignate it as “cluster L-G” (for Legendre and Gauss) – attests to the interest in number
theory inside and outside the academic milieu, some contributors being engineers or
highschool teachers, others university professors. However, it also counts among the
authors of its papers renowned figures like James Sylvester, Angelo Genocchi, and
Edouard Lucas.26 As these names suggest, the group is quite international, though
German authors are underrepresented in it. These articles witness the vitality of re-
search themes dating back to the first decades of the XIXth century: primitive roots,
Legendre symbol and quadratic reciprocity, prime numbers, as well as cyclotomic
and Diophantine equations.27 Accordingly, they will find their sources in both Legen-
dre’s Théorie des nombres and the D.A., sometimes quoted through a “surrogate,” in
particular the first chapters of Dirichlet’s Vorlesungen. The most distinctive common
feature is negative: these papers avoid recourse to complex functions, sometimes
also to complex numbers, and some of the authors make their opposition to the use
of analysis in number theory quite explicit. Edouard Lucas for instance presented
his book project in these terms to Ernesto Cesàro:

My treatise is based on a scheme totally different from anything that exists; there is
no notion of continuity, exponential, logarithm, not even a

√
2.28

Several authors, like Genocchi or Lucas, were also involved in historical work,
retrieving and editing texts of medieval and early-modern algebraists, from Fibonacci
to Fermat, sometimes even promoting them as a source for mathematical inspiration.
From the D.A., they borrowed of course research topics, but also a taste for thorough
and precise explorations of their subject, with no external techniques. The lack of
advanced tools did not prevent these articles from being innovative and fruitful, like
Sylvester’s on cubic ternary equations or Lucas’s on primality.29 Indeed, this approach
was not only in favour among outsiders from the academic milieu, it was also a
privileged entrance door to number theory in places where no advanced academic
tradition existed in this domain and thus is important to take into account in an
international perspective.30 However, most of the authors of this group did not train
students in number theory31 and with time and the development of multi-country

26. On Sylvester, see [Parshall 2006]; on Genocchi, see [Conte, Giacardi 1991] and A.
Brigaglia’s chap. VII.1 below; on Lucas, see [Décaillot 1999] and chap. VI.2.

27. See [Dickson 1919–1923], vol. 1 and vol. 2.
28. Letter of October 4, 1890, quoted in [Décaillot 1999], vol. 1, p. 64 and p. 154: Mon

ouvrage repose sur un plan absolument différent de tout ce qui existe; on n’y trouve
aucune notion de continuité, d’exponentielle, de logarithme, pas même

√
2. We avoid

using the tempting word “elementary” to describe these papers, because this word had a
different use in the 1870s.

29. On Sylvester’s algebraico-geometric perspective, cf. [Schappacher 1991] and [Lavrinenko
2002]. On Lucas and his relation to the D.A., see A.-M. Décaillot’s chap. VI.2 below.

30. See on this question the issues raised concerning Leonard Dickson’s History of the Theory
of Numbers in D. Fenster’s chap. VII.3 below.

31. One of the rare exceptions is Sylvester, who launched a small cohort of mathematicians
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education,32 most of these papers tended to drift away from the research journals.
A second group of articles, say the cluster D (for Dirichlet), shares not only

interreferences but also citations to Dirichlet’s analytic work. Well represented until
the 1890s, it then first declined, but came back to the forefront in the first decade of
the XXth century with a more sophisticated, complex-analytic approach, inherited

from Riemann and centering around Dirichlet series, i.e., series of the type
∑

n

an

ns ,

for a complex variable s and (real or complex) coefficients an . In the 1870s and
1880s, a small industry also developed around arithmetical functions, i.e., functions
defined only on integers, such as the function giving the sum of divisors of an integer
or the function counting the number of prime factors. This topic is illustrated by
names such as Pafnuti Čebyšev, Ernesto Cesàro, Nicolai Bugaiev, but also Joseph
Liouville, James Glaisher, and Leopold Gegenbauer.33 Linked on the one hand to the
evaluation of mean properties and asymptotic values (and thus referring to Dirichlet’s
seminal articles on this topic), it connects on the other hand to the cluster L-G since
certain constructions allow one to dispense with advanced complex analysis. Direct
references to the relevant articles of the D.A. (arts. 302, 304, etc.) are rare, serving
merely to indicate the historical origin of some of the questions.

The papers of the third group – which we shall call H-K (for Hermite and Kro-
necker) – became sporadic during the period considered, which is compatible with
Hermite’s remark to Smith quoted above; they were, however, often seminal papers of
otherwise well-known mathematicians, with central academic positions: from Emile
Picard via Leo Königsberger to Aleksandr Nikolaevič Korkin, and Luigi Bianchi.
Thematically, they dealt with modular equations and above all with the arithmetic
theory of forms34 developing in particular the explicit theory of ternary, and then
quaternary, quadratic forms, as well as the concepts needed to adapt Gauss’s classi-
fication to general n-ary forms.35 The main common references here are Hermite’s
articles on continuous reduction and the work of Hermite and Kronecker which is
situated at the junction of the arithmetic of forms and elliptic functions. References
to the D.A. again read more and more like historical notes rather than mathematical
reference points, even though we have many testimonies that their authors read and
pondered Gauss’s book. This cluster of articles appears to continue the tradition of
arithmetic algebraic analysis for a few decades,36 but explicit connections to con-

working on partitions. Of course, again, we are taking into account here only Sylvester’s
articles which are reviewed under the label “number theory,” not his articles on algebraic
invariant theory for instance.

32. One can compare in this respect the two cases, separated by 40 years, of Angelo Genocchi
and Luigi Bianchi, in A. Brigaglia’s chap. VII.1 below.

33. For the work of Čebyšev and Bugaiev, see [Ozhigova, Yuškevič 1992], pp. 171–201.
34. But the papers belonging to this group do not coincide with those reviewed in the section on

forms of the Jahrbuch; for instance, some papers like those of Théophile Pépin reviewed
in this section refer only to the D.A. and clearly belong to the cluster L-G.

35. On these topics, see C. Houzel’s chap. IV.2, C. Goldstein’s chap. VI.1, A. Brigaglia’s
chap. VII.1, J. Schwermer’s chap. VIII.1.

36. Geometrical interpretations in them, in particular via lattices, follow Gauss’s 1831 com-
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gruences and reciprocity laws were generally abandoned.37 During the summer of
1844, when Kummer began his investigations, Eisenstein wrote to Moritz Stern:

The difficulty [of higher reciprocity laws] depends on the first elements of the com-
plex numbers about which not much is known now. … Also Jacobi agrees completely
with me that the theory of general complex numbers can only be accomplished by a
complete theory of higher forms.38

The study of decomposable forms – forms of higher degree which factor over a given
domain of algebraic (complex) numbers, and are expressible in terms of norms of
those numbers – appeared to the cluster H-K, as it did in Hermite’s programme, to
be a viable alternative to Kummers’s theory of ideal factors.39

3. Beyond Kummer and Back to Gauss

The reader familiar with the development of number theory during the XIXth century
as it is usually presented may be surprised by our survey and wonder what happened
to ideal factors and Kummer’s achievements after the 1860s. An early announcement
by Kummer himself in 1859, promoting a generalization of his theory to all algebraic
numbers about to be published by Kronecker, hinted again at decomposable forms:

Regarding … the general propositions which are common to all theories of complex
numbers, I may also refer to a work by Herr Kronecker which will appear soon, and
in which the theory of the most general complex numbers, in its connection with
the theory of decomposable forms of all degrees, is developed completely and in
magnificent simplicity.40

But Kronecker did not publish anything along these lines until the 1880s, and when
he did, his theory had to compete with Dedekind’s theory of ideals already alluded
to above. Together, these works are usually seen as paving the way from the D.A. to
the domain of number theory called “ algebraic number theory,” which blossomed in
the first decades of the XXth century. Algebraic number theory is often perceived as
a natural extension of the D.A., via Kummer’s work and that of Dedekind and Kro-
necker. The global description of number-theoretical publications presented above

ments on August Ludwig Seeber’s thesis. On this development towards Minkowski’s
geometry of numbers and beyond, see J. Schwermer’s chap. VIII.1 below.

37. One of the exceptions is the work of Kronecker discussed in chap. I.1, § 4.3. See also
[Dickson 1919–1923], vol. 3, chap. XIX.

38. [Eisenstein 1975], vol. 2, p. 793: aber die Schwierigkeit hängt hier von den ersten
Elementen der complexen Zahlen ab, über welche man noch gar nichts weiß. … Auch
Jacobi ist ganz meiner Ansicht, dass die Theorie der allgemeinen complexen Zahlen erst
durch eine vollständige Theorie der höheren Formen ihre Vollendung erhalten kann.

39. See [Haubrich 1992], p. 36–37, and the literature cited there which proves the continuing
activity in the field of decomposable forms all through the XIXth century.

40. [Kummer 1975], vol. 1, p. 737: Ich kann in Betreff … der allgemeinen Sätze, welche
allen Theorien complexer Zahlen gemein sind auch auf eine Arbeit von Hrn. Kronecker
verweisen, welche nächstens erscheinen wird, in welcher die Theorie der allgemeinsten
complexen Zahlen, in ihrer Verbindung mit der Theorie der zerlegbaren Formen aller
Grade, vollständig und in großartiger Einfachheit entwickelt wird.
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shows that there were alternative paths of development. We shall now reevaluate the
relation to the D.A. of these articles taking up and generalizing Kummer’s theory,
and more generally of algebraic number theory.

In the 1870s, a mere handful of papers41 – the small number confirms Dedekind’s
disillusion and the decline of interest in these questions at the time – were devoted
to generalizing Kummer’s theory of ideal numbers from the domain of complex
numbers generated by the λth roots of unity, to domains generated by the roots of
other equations.42 The difficulties of such a generalization included the right choice
of domain; e.g., if a and b vary over all integers, the domain of numbers of the form
a+b

√
−3 does not admit unique prime factorization, while the slightly larger domain

of numbers a + b
(−1+

√
−3

2

)

, which is generated by a 3rd root of 1, does. Another,
related, problem was to find a correct invariant to play the role of the discriminant of
the cyclotomic equation in Kummer’s setting, and to characterize the primes which
divide it.43

3.1. Early Attempts

Three mathematicians took up this task in the 1860s: Richard Dedekind (1831–
1916), Eduard Selling (1834–1920), and Paul Bachmann (1837–1920). They had
all attended Dirichlet’s lectures in Göttingen at the end of the 1850s, and had read
the D.A. early on. Kronecker played for them a role which bears some analogy
to Gauss’s mighty shadow hanging over Abel, Jacobi, and others some thirty years
before. Selling, for instance, admitted in his paper:

Both my timidity to touch the big questions connected with the theory of these num-
bers, and my knowing that Herr Kronecker has been pursuing these investigations
for a long time and has already overcome all the difficulties which had stopped me
at first, and the hope that the mathematical public would soon be gratified by an
extensive publication of his results, has so far kept me from publishing this study

41. Besides those named below, one might add Arnold Meyer’s dissertation. Born in 1844,
Meyer studied with Karl Weierstrass and Kummer in Berlin, then with Hermite in Paris,
before joining Ludwig Schäfli in Zürich. His dissertation written in 1870–1871 used
ideal factorization in domains generated by roots of a cubic equation as a means to study
certain decomposable ternary forms; however, his subsequent work on ternary forms
belongs strictly to our cluster H-K of papers and the dissertation itself was published
only in 1897.

42. While establishing his higher reciprocity laws, Kummer himself began the task for do-
mains generated by all λth roots of unity and a root of Xλ − a, where a itself is a
λ-cyclotomic number.

43. The two problems we are alluding to here are that of hitting on the notion of algebraic
integer, and that of correctly defining the discriminant of a number field (which in general
is a proper divisor of the greatest common divisor of the discriminants of all algebraic
integers of the field) and to relate it to ramification; see [Edwards 1980], pp. 330–337,
and [Haubrich 1992], pp. 57–59. Dedekind gave Q(α), where α3 − α2 − 2α− 8 = 0, as
an example of an extension where taking the g.c.d. of the discriminants of the minimal
polynomials of the elements leads to a parasitic factor, namely 2.



2. GOLDSTEIN, SCHAPPACHER: Several Disciplines and a Book 77

which I had elaborated in less generality already in the autumn of 1859.44

Selling’s goal was to handle the domain generated by all the roots of an arbitrary
irreducible polynomial f with integer coefficients. His work is most interesting as
an early courageous attempt45 to generalize Kummer directly, determining the ideal
prime decomposition of a rational prime p in this domain by reading f modulo
(powers of) p. Mathematically, his convoluted style makes difficult reading.46 Kurt
Hensel would later toil to understand it and, even though he did not like the expe-
rience, it is very likely that he received key insights from it for his introduction of
p-adic numbers.47

But after this attempt, Selling turned to the more convivial topic of ternary forms
in the Hermitian tradition and his few number-theoretical papers then belong to the
cluster H-K mentioned above.

As for Paul Bachmann, he returned from Göttingen to Berlin where he obtained
his dissertation on group theory under Kummer’s supervision in 1862 and prepared
for his Habilitation on complex units which he obtained at Breslau University in 1864.
In 1867, he published in the Journal für die reine und angewandte Mathematik a
short article on the arithmetic of complex numbers generated by two independent
square roots: he studied the prime ideal factors, the units, the class number. But
then, like Selling, he devoted his subsequent number-theoretical papers to ternary
forms, reproving and completing some of Hermite’s results.48

44. [Selling 1865], p. 17: Sowohl die Scheu, die grossen mit der Theorie dieser Zahlen
zusammenhängenden Fragen zu berühren, als die Kenntniss davon, dass Herr Kronecker
dieselben Untersuchungen seit lange [sic] pflege und bereits alle Schwierigkeiten, die mir
zunächst ein Ziel gesetzt hatten, überwunden habe und die Hoffnung, dass das mathe-
matische Publikum sich bald einer ausgedehnten Veröffentlichung seiner Resultate zu
erfreuen habe, hatte mich bisher abgehalten, diese in geringerer Allgemeinheit schon im
Herbste 1859 … ausgearbeitete Untersuchung zu veröffentlichen. Dedekind would also
cautiously refer to Kronecker’s announced, und still unpublished, theory in the prefaces
to his second and third editions of Dirichlet’s Vorlesungen, in 1871 and 1879, where he
explained his own theory. To be fair, one has to add that the Bavarian Ministry appointed
Selling Extraordinarius at Würzburg in 1860, against the vote of the faculty, on the
strength of a letter from Kronecker.

45. Partly anticipated by unpublished work of Dedekind; see [Haubrich 1992], p. 164–165.
46. Indeed, it seems to have fooled most commentators, even Bourbaki (Weil) who wrote that

Selling’s boldness could only lead to nonsense; see the historical note on commutative
algebra and algebraic number theory in their Eléments d’histoire des mathématiques.
One crucial problem for a modern reader is Selling’s misleading notation – for instance
[Selling 1865], p. 23: “ f ( j) ≡ 0 (mod p)” – which suggests that he worked over a
finite field Fpr , while he meant a higher congruence modulo p which he could later refine
modulo powers of p.

47. We are indebted to Hans-Joachim Vollrath and Birgit Petri for all our information about
Selling; see B. Petri’s forthcoming thesis on Kurt Hensel for more details.

48. A good testimony of the links expected inside our cluster H-K in the 1870s (here centred
around ternary quadratic forms) is provided by a letter of Georg Cantor to Richard
Dedekind of November 1873, see [Dugac 1976], p. 226. Having received a copy of
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3.2. Dedekind’s Ideals

Richard Dedekind had been a kind of mentor for Selling and Bachmann – they
attended his Göttingen lectures – and he was to be the most influential of the three.49

According to his friend, Hans Zincke, Dedekind had studied the D.A. already
when he was a pupil at the Braunschweig Collegium Carolinum in 1849–1850.50 In
Göttingen, however, Dedekind was above all influenced by Dirichlet and Riemann
with whom he shared a predilection for conceptual definitions. He would explain to
Rudolf Lipschitz in 1876 how, in his number-theoretical work, he had tried to “build
research not on accidental forms of presentation but on simple basic concepts.”51

Twenty years later, he would still put forward the same point, this time in his memories
of the D.A.:

I first recall a beautiful passage from the Disquisitiones Arithmeticae which had made
the deepest impression on me already in my youth: “But in our judgment, such truths
ought to be extracted from notions rather than notations.” These last words, when
taken in the most general sense, express a great scientific idea, a preference for the
intrinsic against the extrinsic. This antithesis repeats itself in mathematics in almost
all fields; for instance Riemann’s definition of functions via intrinsic characteristic
properties from which the extrinsic forms of representations necessarily flow.52

Dedekind started his own investigations with an algebraic project, linked to the

Bachmann’s work on ternary forms and learning that Selling would publish on this
theme, Cantor reminded Dedekind of his own habilitation of 1869 on the same subject,
and wondered if they would quote Smith’s work of 1867.

49. Dedekind’s work has been extensively studied. We shall be very brief here, stressing
above all his relation to the D.A. See [Dugac 1976], [Edwards 1980], [Edwards 1983],
[Edwards 1992b], [Edwards, Neumann, Purkert 1981], [Neumann 1979–1980], and the
very thorough thesis [Haubrich 1992] which regrettably remains unpublished.

50. [Dugac 1976], p. 14, citing Zincke’s 1916 “Reminiscences of Richard Dedekind.” Hans
(Zincke) Sommer was to become both a musicologist and a specialist of optics at Braun-
schweig. Dedekind had also studied, before 1855, H. Seeger’s notes of Dirichlet’s lectures
on the applications of calculus to number theory and on number theory.

51. Letter of June 10, 1876, in [Lipschitz 1986], p. 60, quoted in [Haubrich 1992, p. 12]: die
Forschung nicht auf zufällige Darstellungsformen der Ausdrücke sondern auf einfache
Grundbegriffe zu stützen. In [Dugac 1976], p. 71, it is recalled that substituting concepts
for computations was for Dirichlet a hallmark of modern analysis, as he wrote in his
obituary of Jacobi.

52. [Dedekind 1930–1932], vol. 2, pp. 54–55, with a reference to D.A., art. 76: Ich erinnere
zunächst an eine schöne Stelle der Disquisitiones Arithmeticae, die schon in meiner
Jugend den tiefsten Eindruck auf mich gemacht hat: At nostro quidem judicio huiusmodi
veritates ex notionibus potius quam ex notationibus hauriri debebant. In diesen letzten
Worten liegt, wenn sie im allgemeinsten Sinne genommen werden, der Ausspruch eines
großen wissenschaftlichen Gedankens, die Entscheidung für das Innerliche im Gegensatz
zu dem Äußerlichen. Dieser Gegensatz wiederholt sich auch in der Mathematik auf fast
allen Gebieten; man denke nur an die Funktionentheorie, an Riemanns Definition der
Funktionen durch innerliche charakteristiche Eigenschaften, aus welchen die äußerlichen
Darstellungsformen mit Notwendigkeit entspringen.
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elaboration of a theory of higher congruences.53 He studied Gauss’s cyclotomy in
depth, read Abel and Galois, and taught this topic at Göttingen. This led him first to
reshape Gauss’s presentation which failed to meet his main criterion:

In Gauss’s synthetic presentation the aim to be brief won out over the principle of
deducing everything from a unified algebraic idea. When I first thoroughly studied
cyclotomy over the Whitsun holidays in 1855, I had to fight for a long time, even
though I understood all the details, to recognize irreducibility as the principle which
would drive me with necessity to all the details once I asked simple, natural questions
about it.54

In this perspective, the auxiliary (irreducible) equation, whose roots are the e so-
called periods of f terms (e f = λ−1, λ a prime number) associated to the cyclotomic
equation in Gauss’s sec. 7, corresponds to the subgroup of order f of the Galois group
(Z/λZ)∗. From there Dedekind turned to Kummer’s theory in December 1855 trying
to find an algebraic core in Kummer’s computational arguments.55 This first stage of
Dedekind’s theory, which he never published, suffered according to his own account
from an unsatisfactory concept of the discriminant and from a number of exceptions
requiring specific treatments.

The second stage, delayed by his editorial activities for the collected works of
Gauss, Dirichlet, and later Riemann, was finally written up, as mentioned above, in
Supplement X of the 2nd edition of Dirichlet’s Vorlesungen in 1871, and completed
and reformulated in Supplement XI of the subsequent editions (1879 and 1894).56

Although the supplement as a whole is devoted to Gauss’s theory of composition of
binary quadratic forms, Dedekind passed quickly from Gauss and Dirichlet to Kum-
mer’s theory of ideal numbers, and then to his own “higher standpoint,” introducing
a concept

53. See [Scharlau 1982]. Dedekind’s paper was surely written before he saw Gauss’s
manuscript of the Caput octavum which he would edit in vol. 2 of Gauss’s Werke; see
[Haubrich 1992], pp. 139–145, and G. Frei’s chap. II.4, § 3.2.1 below.

54. [Dedekind 1930–1932], vol. 3, pp. 414–415, quoted in [Haubrich 1992], p. 94: … daß
in der synthetischen Darstellung von Gauß das Streben nach Kürze den Sieg über die
Forderung davongetragen hat, alles aus einem einheitlichen algebraischen Gedanken
abzuleiten. Bei meinem ersten gründlichen Studium der Kreisteilung in den Pfingstferien
1855 hatte ich, obgleich ich das Einzelne wohl verstand, doch lange zu kämpfen, bis ich
in der Irreduktibilität das Prinzip erkannte, an welches ich nur einfache, naturgemäße
Fragen zu richten brauchte, um zu allen Einzelheiten mit Notwendigkeit getrieben zu
werden. Cf. O. Neumann’s chap. II.1 below.

55. He actually found an error in it in 1857, as did Cauchy and other French mathematicians
who were scrutinizing Kummer’s articles in the context of Fermat’s Last Theorem, the
topic of the 1857 prize of the Paris Academy; see [Edwards 1975]. Dedekind’s notes on
the gap were communicated by Dirichlet to Liouville; they are reproduced in [Haubrich
1992], appendix 2, pp. 192–194.

56. Our topic being the history of the D.A., we do not go into the differences between the
successive versions of Dedekind’s theory. We refer instead to [Dedekind 1930–1932],
vol. 1, pp. 202–203, and to the two studies [Edwards 1980] and [Haubrich 1992], chap. IX,
which look at this evolution from opposite angles.



80 I. A Book’s History

that seems well adapted to serve as a foundation for higher algebra and the parts of
number theory linked with it,57

that of a field (Körper), i.e., for him, a system of real or complex numbers stable
under the four usual operations. He mostly concentrated on those generated over the
rationals by a finite number of algebraic numbers. An algebraic integer in a given
field is defined as a number of the field satisfying a polynomial equation with leading
coefficient 1 and (ordinary) integer coefficients. Dedekind also introduced “ideals,”
i.e., systems of numbers stable under addition, subtraction and multiplication by the
integers of the field; the name alludes of course to Kummer’s ideal numbers. As
is well known, he defined a concept of primality for these ideals and obtained a
complete theory of unique prime factorization, at the level of ideals.58 A few years
later, in collaboration with Heinrich Weber, he successfully transposed the same
ideas to the theory of algebraic functions. The fully fledged theory of ideals would
in turn serve as a model for so-called modern algebra after World War I, in particular
in the works of Emmy Noether.

While most authors before the 1860s had been happy to explore families of
explicitly given complex numbers, in order to prove new cases of the reciprocity
laws, Dedekind on the contrary, wanted to

deflect attention from the integers and thus to let the concept of a finite field [i.e.
here, a field of finite degree over the rationals] � come to the fore more clearly.59

This emphasis should be appreciated with respect to Dedekind’s global view of
the structure of mathematics. His brand of logicism, developed in parallel with
his theory of ideals and fields, would base pure mathematics on numbers, and thus
ultimately on set-theoretical concepts inherited from them, such as the notion of field.
According to Dedekind’s view, they alone provided the theory with both unity and
rigour.60 For Dedekind, pure mathematics was arithmetic, but an arithmetic which
amalgamated number theory and algebra. He would thus describe the theory of
equations itself as the “science of the relationship between fields” (die Wissenschaft
von der Verwandtschaft der Körper); in turn, he would perceive the concept of field
arithmetically, describing the inclusion of fields, for instance, as a division.61 The

57. [Dedekind 1930–1932], vol. 3, p. 224: … welcher wohl geeignet scheint, als Grundlage
für die höhere Algebra und die mit ihr zusammenhängenden Teile der Zahlentheorie zu
dienen.

58. He also saw in 1873 how Gauss’s theory of cyclotomy could be presented in terms of
fields and “substitutions,” i.e., field homomorphisms; see [Dedekind 1930–1932], vol. 3,
pp. 414–416.

59. Letter to Lipschitz on June 10, 1876, [Lipschitz 1986], p. 61: … um zunächst die Aufmerk-
samkeit von den ganzen Zahlen abzulenken und dadurch den Begriff eines endlichen
Körpers � deutlicher hervortreten zu lassen.

60. See Dedekind’s Was sind und was sollen die Zahlen?, [Dedekind 1930–1932], vol. III,
pp. 335–391. On Dedekind and arithmetization, see [Dugac 1976], [Ferreirós 1999], as
well as B. Petri’s and N. Schappacher’s chap. V.2 below.

61. [Dedekind 1930–1932], vol. 3, p. 409. Cf. [Haubrich 1992], pp. 106–107, and [Corry
1996/2004], Part One, chap. 2.



2. GOLDSTEIN, SCHAPPACHER: Several Disciplines and a Book 81

theory of number fields and their ideals incarnates Dedekind’s whole programme.

3.3. Zolotarev’s Theory of Algebraic Numbers

Another successful generalization of Kummer’s theory was proposed in the same
decade by Egor Ivanovič Zolotarev. A student of Čebyšev’s at Saint-Petersburg,
Zolotarev was led to this question as an auxiliary problem for treating certain in-
tegrals; see for instance [Zolotarev 1880], p. 51. Using a mixture of elementary
arithmetic and Jacobi’s theory of transformations, he had proved in [Zolotarev 1872]
the validity of an algorithm proposed by Čebyšev to determine the reducibility of inte-

grals of the form
∫

(x + A)dx
√

x4 + αx3 + βx2 + γ x + δ
for rational coefficients α, β, γ, δ;

he now wanted to generalize these results to arbitrary algebraic coefficients.
Just as Selling and Dedekind had initially set out, Zolotarev followed Kummer

and tried to describe the (ideal) factorization of the prime number p in a domain
generated by a root α of the algebraic equation F(x) = 0 by factoring F modulo
p and then defining the divisibility of an element of the domain by a corresponding
“ideal factor” of p via higher congruences, modulo powers of p and F(x). Treating
one p at a time and looking at what we would describe now as the semi-local situation
above p, he finally arrived at a complete theory which was, however, only published
after his untimely death in 1878.62

Zolotarev also collaborated with Korkin on the theory of quadratic forms, in
Hermite’s lineage. For n = 2, 3, 4, 5, they gave precise bounds for the minima of
n-ary quadratic forms evaluated on integers.63 Connecting approximations, elliptic
integrals, quadratic forms, higher congruences and algebraic numbers, Zolotarev’s is
one of the very rare works to incarnate the survival of arithmetic algebraic analysis.
However, while Kronecker and Eisenstein used Kummer’s theory of ideal numbers to
give arithmetic interpretations of results in the theory of elliptic functions, Zolotarev
emphasized the other direction; he developed ideal factorization in order to get new
results in integral calculus. This order of things was probably better received around
Čebyšev, and it also found a positive echo in Smith’s Presidential Address to the
London Mathematical Society in 1876, where Smith relied on such applications of
number theory to advocate its development in Great-Britain; see [Smith 1894], vol. 2,
pp. 175–176.

3.4. General Arithmetic According to Kronecker

Leopold Kronecker considered himself a faithful follower of Gauss in general, and
of the Disquisitiones Arithmeticae in particular. He liked to present findings of his as
observations that brought out the true, general essence of an idea which occured in

62. Zolotarev’s theory is described in P. Piazza’s chap. VII.2 below. Further references
and developments are indicated in [Haubrich 1992], pp. 163–164. This case shows the
problems of communities, in particular linguistic ones, as late as 1880: Dedekind and
his followers would criticize Zolotarev’s work on the basis of an incomplete version of
his theories, the only part available to them.

63. These papers, as opposed to those on algebraic numbers, fully belong to our cluster H-K.
See also J. Schwermer’s chap. VIII.1 below.
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the D.A. in a specific context. For instance, before the Berlin Academy in December
1870, he took the final articles 305, 306 of D.A., sec. 5 – where Gauss discussed
the cyclicity of the classes of quadratic forms in the principal genus – as the starting
point for a showcase application of his approach:

The exceedingly simple principles on which the Gaussian method rests can be applied
not only at the indicated place, but also in the most elementary parts of number
theory. This indicates, as it is easy to convince oneself, that those principles belong
to a more general and abstract sphere of ideas. It therefore seems adequate to rid
their presentation of all inessential restrictions, so that one no longer has to repeat
the same deductions in the various cases where they are used.64

The abstract result that Kronecker thus developed amounts to what is called today
the structure theorem of finitely generated abelian groups.65

We saw above that Kummer announced Kronecker’s theory of algebraic numbers
as forthcoming already in 1859. It seems impossible to say what this original theory
would have looked like had it been published in a timely manner and how it would
have then been tied to the D.A.66

Kronecker offered the most important publication on his theory, the Grundzüge
einer arithmetischen Theorie der algebraischen Grössen (Foundations of an arith-
metical theory of algebraic magnitudes), to his teacher and friend Kummer in 1881,
for the 50th anniversary of Kummer’s doctorate.67 Over the domain of rational num-
bers, a genus domain (Gattungsbereich) is obtained by adjoining a root λ of an

64. [Kronecker 1895–1931], vol. 1, pp. 274–275: Die überaus einfachen Principien, auf de-
nen die Gauss’sche Methode beruht, finden nicht blos an der bezeichneten Stelle, sondern
auch sonst vielfach und zwar schon in den elementarsten Theilen der Zahlentheorie An-
wendung. Dieser Umstand deutet darauf hin, und es ist leicht sich davon zu überzeugen,
dass die erwähnten Principien einer allgemeineren, abstrakteren Ideensphäre angehören.
Deshalb erscheint es angemessen die Entwickelung derselben von allen unwesentlichen
Beschränkungen zu befreien, sodass man alsdann einer Wiederholung derselben Schluss-
weise in den verschiedenen Fällen des Gebrauchs überhoben wird.

65. Cf. [Wussing 1969], pp. 44–48. In art. 306, Gauss himself had stressed the analogy
between various structures encountered in different parts of the D.A.; see chap. I.1, § 1.4
above. Kronecker first applied his observations to a system of ideal numbers.

66. In his publications of the 1880s, Kronecker would take pains to convince his readers of the
early conception of his work, emphasizing its connection with Dirichlet’s and Eisenstein’s
work, and even with his own 1845 dissertation. But he also mentioned Weierstrass’s
influence which made him extend his programme to include algebraic functions with
complex coefficients along with algebraic numbers. See [Kronecker 1895–1931], vol. 2,
pp. 324–326; also pp. 195–200. In the preface of this latter article, which was published
in 1881, but presented as an 1862 communication to the Berlin Academy, Kronecker,
apparently to fix priorities, mentioned his Berlin courses on related topics from the 1850s
and 1860s, listing colleagues who had attended them, as well as his exchanges with
Weierstrass, Dedekind, and Weber. But we are not aware of any reliable source for
Kronecker’s theory of algebraic numbers from before the 1870s.

67. [Kronecker 1895–1931], vol. 2, pp. 239–387. For a very readable first introduction to
this theory in the case of algebraic numbers, see [Edwards 1980], pp. 353–368.
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irreducible polynomial f .68 A crucial difference with Selling and Zolotarev is that
Kronecker, instead of reading the (minimal) equation f itself modulo primes p,
passed to the “fundamental form” of the domain, ω = ω1u1 + . . .+ωnun , where ui
are indeterminates andωi a system of elements of the domain such that any algebraic
integer of the domain is a linear combination of theωi with integral coefficients. This
ω satisfies an algebraic equation F(ω) = 0 whose coefficients are functions of the
indeterminates ui (with integral coefficients). Taking this “fundamental equation”
F modulo a prime p yields the ideal decomposition of p in the domain.69

Forms are a pillar of Kronecker’s late theory; in the Grundzüge, they are in
general just polynomials in arbitrarily many variables, with no homogeneity required.
Another pillar is the concept of “module systems” (Modulsysteme): an element m of
the genus domain is said to be divisible by a system of elements m1, . . . ,mk of the
domain if one has m = a1m1 +a2m2 + . . . akmk , where the ai belong to the domain.
This is also expressed as a (generalized) congruence m ≡ 0 (modd.m1,…,mk). The
system m1, . . . ,mk is called a module system; studying it comes down to studying
the form u1m1 + u2m2 + . . . ukmk , with indeterminates ui . Module systems can be
composed, and thus decomposed into products of other, eventually indecomposable,
module systems. They are used by Kronecker to give a concrete definition of the
greatest common divisor of several algebraic integers, and more generally to provide
a theory of divisibility in genus domains.70

There are frequent allusions and references to Gauss in Kronecker’s late exposi-
tions of his theory. The algebraic basis Kronecker relied upon owed much to Gauss’s
work on the fundamental theorem of algebra. When introducing the term “rational-
ity domain” (Rationalitätsbereich), Kronecker recalls “Gauss’s classical model of
borrowing terminology from the classification of the descriptive natural sciences.”71

The introduction of indeterminates into the theory of numbers is attributed to Gauss

68. That is, for us, a number field. We translate “Gattung” by “genus” since Kronecker
himself indicated genus as the Latin equivalent of his term; see [Kronecker 1895–1931],
vol. 2, p. 251. Kronecker developed his theory not only over the “absolute rationality
domain,” i.e., Q, but also over any rationality domain (Rationalitätsbereich) obtained
from Q by the adjunction of finitely many indeterminates. Thus algebraic functions and
algebraico-geometric applications are included; see [Edwards 1992b] for more details
and a comparison with the theory of Dedekind and Weber.

69. Using such ωi to represent all algebraic integers of the domain solves the first problem
mentioned before in § 3.1 above. As for the second, the discriminant of F is equal to
dU 2(u1, . . . , un), where U is a form in the indeterminates with coprime coefficients and
the integer d is the correct discriminant of the domain. It may happen that for all integral
values of the ui , the values of U have a common divisor. This accounts for the parasitic
factors of the discriminant occurring in theories which deal directly with the discriminants
of the (minimal) equations of algebraic integers of the domain.

70. Module systems correspond more or less to Dedekind’s ideals, but Kronecker’s main
notions are independent of the ambient domain. Moreover, the operations available on
their respective objects are not completely equivalent. See in particular [Edwards 1980],
pp. 355–364, [Edwards 1992a], pp. 9–17, and his chap. II.2 below, and [Neumann 2002].

71. [Kronecker 1895–1931], vol. 2, p. 249: durchweg nach Gauss’ klassischem Muster der
Systematik der beschreibenden Naturwissenschaften entlehnten Bezeichnungen. Other
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and module systems are presented as a simultaneous generalization of Gauss’s con-
gruences and of the equivalence of quadratic forms.72 Like their Gaussian analogues,
module systems allow one to avoid any recourse to infinite sets and they are adapted
to explicit computations; the principles of their composition, as well as that of forms,
find their obvious sources in the D.A.73 This selection from the resources offered
by the D.A. fits well Kronecker’s wish to take “refuge in the safe haven of actual
mathematics”:

I recognize a true scientific value – in the field of mathematics – only in concrete
mathematical truths, or, to put it more pointedly, only in mathematical formulas.74

Kronecker also mentioned a particular reason for not publishing his theory in the
1860s, which indicates a difference of scope between him and Dedekind; Kronecker
had failed to obtain a general theory for what he called the “association of genera”
(Assoziation der Gattungen).75 This alludes to his work on complex multiplication
where he had seen how to use modular functions to realize with actual algebraic
numbers (in a bigger genus domain) the properties of the module systems belonging
to a given imaginary quadratic domain:

In fact, all deeper properties of the genus
√

−n pertaining to composition and par-
tition into classes [of the module systems in this genus] have, so to say, their image
in the elementary properties of the associated genus Ŵ.76

This is a strong reminder of the Kronecker we encountered in chap. I.1 above, through
his work on complex multiplication, as a champion of the integrated field which we
called arithmetic algebraic analysis. That aspect did continue to be very much present
in the minds of some of his contemporaries and in his own work.77 In his obituary of

parts of his terminology are closer to Dirichlet, but Gauss is still mentioned; see [Kro-
necker 1895–1931], p. 262–263. On mathematics as a science in Kronecker’s writings,
see J. Boniface’s chap. V.1 below.

72. [Kronecker 1895–1931], vol. 3.1, pp. 147–154, 211–213, 249–275.
73. [Kronecker 1895–1931], vol. 2, pp. 237–388, § 21, V, and § 22, V. Also seen in the Gaus-

sian vein was Kronecker’s theory of composition of abelian equations; see [Kronecker
1895–1931], vol. 4, pp. 115–121, which refers to D.A., art. 358, at the beginning.

74. Letter to Cantor from 1884, quoted (with English translation) from [Edwards 1995], pp.
45–46: Ich [habe] mich in den sicheren Hafen der wirklichen Mathematik geflüchtet.…
Einen wahren wissenschaftlichen Werth erkenne ich – auf dem Felde der Mathematik –
nur in concreten mathematischen Wahrheiten, oder schärfer ausgedrückt, ‘nur in mathe-
matischen Formeln.’ For a comparison with Gauss’s foundational views, see H. Edwards’s
chap. II.2 and J. Boniface’s chap. V.1 below.

75. [Kronecker 1895–1931], vol. 2, p. 321–324.
76. [Kronecker 1895–1931], vol. 2, p. 323: Es haben überhaupt alle tieferen, auf die Com-

position und Classenteintheilung bezüglichen Eigenschaften der Gattung
√

−n in den
elementaren Eigenschaften der associirten Gattung Ŵ, so zu sagen, ihr Abbild. In mod-
ern terms, this means that Kronecker hesitated to publish because he lacked an explicit
construction of what we call the Hilbert class field of an algebraic number field. See
[Edwards 1980], pp. 328–330.

77. Kronecker enthusiastically endorsed Dirichlet’s analytical methods in number theory,
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Kronecker, in 1892, Hermite did not even mention the Grundzüge, but commented:

M. Kronecker completely showed that the theory of quadratic forms of negative
determinant was an anticipation of the theory of elliptic functions, in such a way
that the concepts of classes and genus … could have been obtained by the analytical
study and the examination of the properties of the transcendental function.78

In Jules Tannery’s 1895 lectures on number theory, on the other hand, Kronecker’s
is the only theory of algebraic numbers mentioned, and it is presented as belonging
to the algebraic, not to the arithmetic part of the book, which allows the display of
links from arithmetic to algebra to analysis and back:

I have hardly taken up the question of the nature of algebraic numbers in these
lectures, … and I have scarcely indicated how Kronecker was able, using congruences
and module systems, to build his exposition of algebra on a purely arithmetical basis,
and how, from a completely different viewpoint, one could consider algebra not as
an extension of arithmetic but as part of analysis, an algebraic number being just
a special, well defined case of a general irrational number. … This study leads to
some of the results owed to Kronecker.79

However, during the last decade of his life, Kronecker’s arithmetization pro-
gramme increasingly determined his outlook on the theory of algebraic numbers and
functions. The ultimate goal then was to unify number theory, algebra, and analy-
sis on a new basis, with the rational integers as the only fundamental objects, and
such that the encompassing status of the theory was obtained by freely adjoining
indeterminates and working modulo congruences according to module systems:80

practiced elliptic and modular functions himself, and devoted numerous papers to the
analysis of the existing proofs of reciprocity laws. He likened the difference between
purely arithmetical and analytical methods to that between manual and machine work;
see A. Hurwitz, notes for a scientific biography of L. Kronecker, Archives of ETH Zürich,
Hs 582 : 142, sheet 3v: Der rein arithmetische Weg zur Lösung einer arithmetischen
Aufgabe, sagt Kronecker, verhält sich zu dem Wege, der die Analysis zu Hilfe nimmt, wie
Handarbeit zur Maschinenarbeit. Während jeder einzelne Schritt bei der Handarbeit
auch dem Nichtkenner plausibel ist, geschieht bei der Maschinenarbeit Vieles innerhalb
der Maschine, was dem Auge verborgen bleibt. See also C. Houzel’s chap. IV.2 below.

78. [Hermite 1905–1917], vol. 4, p. 341: M. Kronecker a mis en complète evidence que la
théorie des formes quadratiques, de déterminant négatif, a été une anticipation de la
théorie des fonctions elliptiques, de telle sorte que les notions de classes et de genres …
auraient pu s’obtenir par l’étude analytique et l’examen des propriétés de la transcen-
dante. See C. Goldstein’s chap. VI.1 below.

79. [Tannery 1895], pp. iii–iv: C’est à peine si dans les conférences, j’avais soulevé la
question de la nature des nombres algébriques, … c’est à peine si j’avais indiqué com-
ment, par l’emploi des congruences et des systèmes de modules, Kronecker avait pu
fonder l’exposition de l’Algèbre sur une base purement arithmétique, et comment à un
point de vue tout autre, on pouvait regarder l’Algèbre, non comme un prolongement de
l’Arithmétique, mais comme une partie de l’analyse, le nombre algébrique n’étant qu’un
cas particulier, nettement défini d’ailleurs, de l’irrationnelle générale. … Cette étude
conduit à quelques-uns des résultats que l’on doit à Kronecker.

80. See J. Boniface’s chap. V.1, and § 2 of B. Petri’s and N. Schappacher’s chap. V.2 below.



86 I. A Book’s History

With the systematic introduction of “indeterminates” which goes back to Gauss,
the special theory of integers has expanded into the general arithmetic theory of
polynomials in the indeterminates with integer coefficients. This general theory
allows one to avoid all concepts foreign to arithmetic proper, that of negative, of
fractional, of real and imaginary algebraic numbers. The concept of negative number
can be avoided when one replaces in the formulas the factor −1 by the indeterminate
x and the sign of equality by the Gaussian sign of congruence. Thus the equation
7−9 = 3−5 will be transformed into the congruence 7+9x ≡ 3+5x (mod x+1).81

This programme to restructure pure mathematics thus also took its cue from the
D.A. It has its historical counterpart in a specific reinterpretation of the lines of
development opened by Gauss in the D.A. Kronecker’s student Kurt Hensel wrote
in the introduction of his edition of Kronecker’s number-theoretical lectures:

In the introduction of his “Disquisitiones arithmeticae” Gauss fixes the domain of
the natural integers as the field of arithmetic, but he himself was forced to extend this
domain, as he added in the fifth section of this same work the realm of quadratic forms
with two variables, in the seventh the functions of x which, once set equal to zero,
produce the cyclotomic equation. Kronecker characterizes then the investigation of
rational numbers and rational functions of one and several variables to be the task
of general arithmetic a priori.82

3.5. Newcomers

Early in 1857, Dedekind had written to his sister that Kronecker and he were the only
readers of each other’s work, because of its great abstraction. However, they were

Kronecker’s presentations grew increasingly explicit in this respect; compare for instance
the Grundzüge, [Kronecker 1895–1931], vol. 2, pp. 237–388, § 13, where the existence
of a real zero of polynomials of odd degree is assumed, to the 1897 article on the concept
of number [Kronecker 1895–1931], vol. 3.1, pp. 271–272.

81. [Kronecker 1895–1931], vol. 3.1, p. 260: mit der principiellen Einführung von “Unbe-
stimmten” (indeterminatae), welche von Gauss herrührt, hat sich die specielle Theorie
der ganzen Zahlen zu der allgemeinen arithmetischen Theorie der ganzen ganzzahli-
gen Functionen von Unbestimmten eweitert. Diese allgemeine Theorie gestattet alle
der eigentlichen Arithmetik fremden Begriffe, den der negativen, der gebrochenen, der
reellen und der imaginären algebraischen Zahlen, auszuscheiden. Der Begriff der neg-
ativen Zahlen kann vermieden werden, indem in den Formeln der Factor −1 durch eine
Unbestimmte x und das Gleichheitszeichen durch das Gauss’sche Congruenzzeichen
modulo x + 1 ersetzt wird. So wird die Gleichung 7 − 9 = 3 − 5 in die Congruenz
7 + 9x ≡ 3 + 5x (mod x + 1) transformirt. Cf. also [Kronecker 1895–1931], vol. 2,
p. 355.

82. [Kronecker 1901], p. VI: Gauss bestimmt in der Einleitung zu seinen “Disquisitiones
arithmeticae” das Gebiet der natürlichen ganzen Zahlen als das Feld der Arithmetik,
aber er selbst war gezwungen, dieses Gebiet dadurch zu erweitern, daß er in der fünften
Sektion desselben Werkes das Reich der quadratischen Formen von zwei Variablen, in der
siebenten die Funktionen von x hinzunahm, welche gleich null gesetzt die Kreisteilungs-
gleichungen ergeben. Kronecker bezeichnet nun von vorn herein die Untersuchung der
rationalen Zahlen und der rationalen Funktionen von einer und von mehreren Variablen
als die Aufgabe der allgemeinen Arithmetik.
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not satisfied with each other’s final approach. Kronecker would criticize Dedekind’s
theory of ideals for its use of completed infinites, and its invention of unnecessary new
concepts, and Dedekind would find holes in the Grundzüge and consider polynomials
a device foreign to the matter in question.83

In the last decades of the century, several younger people – born between 1859
and 1864 – entered this field, announcing the blossoming of the early XXth century;
Kronecker’s student Kurt Hensel in Berlin whose 1884 dissertation concerned the
delicate issue of the divisors of the discriminant,84 Adolf Hurwitz in Leipzig who had
just written a dissertation on elliptic modular functions under Felix Klein’s super-
vision, as well as Hermann Minkowski and David Hilbert in Königsberg. Whereas
Hensel was closely associated with Kronecker’s programme, the latter three, who be-
came acquainted when Hurwitz obtained a position in Königsberg,85 cared little about
the preferences of either Dedekind or Kronecker. An anecdote describes how Hilbert
and Hurwitz went for a walk during which one of them presented Dedekind’s proof
for the unique decomposition into prime ideals, the other Kronecker’s analogue, and
they found both awful.86 More positively, Minkowski – whose prize-winning 1882
memoir on quadratic forms referred only to Gauss, Dirichlet, Eisenstein, and (for
a small technical point) Weber, who had discovered his talent87 – would devote his
Bonn Habilitationschrift to a question raised by Kronecker’s Grundzüge, about the
concept of equivalence of forms, but would later express some of his results in terms
of Dedekind’s number fields. In several papers of the mid 1890s, while also using
Dedekind’s notions of (number) field and ideal, Hurwitz defined ideals via finite sets

83. See [Kronecker 1895–1931], vol. 3.1, p. 156, footnote; [Dedekind 1930–1932], vol. 2,
p. 53; [Edwards 1980], [Edwards, Neumann, Purkert 1982], [Haubrich 1992], pp. 128–
130. On February 17, 1882, Dedekind wrote to Cantor that Kronecker’s “way would, I
believe, please me more if he had completely separated the theory of numbers from that
of functions;” see [Dugac 1976], p. 254. Of course, function fields and number fields
would both be subsumed later into the concept of global field, but for Kronecker and
Dedekind, and for their own historians, two different projects for algebraic numbers (and
functions), and eventually for pure mathematics, were available to students in Germany
in the 1880s.

84. His reflections about the analogy between algebraic numbers and functions eventually
led him to the creation of a new arithmetic-algebraic-analytic object, the p-adic numbers,
which in turn would drive the abstract algebraic study of general fields; see [Purkert
1971–1973], [Ullrich 1998] and the forthcoming thesis by B. Petri. Doctoral students
of Kronecker in the 1880s include Adolf Kneser, who turned to other topics, Mathias
Lerch, whose number-theoretical articles pursued Dirichlet’s analytical tradition, and
Paul Stäckel, the discoverer of Gauss’s mathematical diary and collaborator in the edition
of the Gauss’s Werke.

85. D. Fenster’s and J. Schwermer’s chap. II.3 below throws light on Hurwitz’s further work
on quadratic forms which we do not touch upon here.

86. [Blumenthal 1935], p. 397. Cf. Hilbert’s letter to Hurwitz criticizing the fourth edition
of Dirichlet-Dedekind, [Dugac 1976], p. 270.

87. This memoir, the laudatory letter sent by Weber to Dedekind about Minkowski, and
Minkowski’s relation to Gauss’s D.A. are discussed in J. Schwermer’s chap. VIII.1.
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of generators, and used a basically Kroneckerian approach based on polynomials in
several unknowns to derive the unique decomposition of ideals into prime ideals.88

3.6. Hilbert’s Zahlbericht

In 1897, Hilbert published for the recently created Deutsche Mathematiker-Verei-
nigung a report on algebraic numbers, Die Theorie der algebraischen Zahlkörper,
which would become known as the Zahlbericht.89 Hilbert thoroughly read the litera-
ture in the preparation of it, and although he complained about Kummer’s computa-
tions (Rechnereien), he quoted his papers abundantly. The Zahlbericht presents the
arithmetic theory of a general (number) field K : integers, discriminant, units, ideals,
ideal classes; it studies in detail the decomposition of the prime ideals of K in a
Galois extension of K ,90 as well as particular cases, such as quadratic or cyclotomic
fields. Moreover, Hilbert again gave a central position to higher reciprocity laws,
dear to Gauss and Kummer, albeit in a new framework of number fields.91

Throughout the report, Hilbert placed number fields at the centre of attention
and also defined ideals in Dedekind’s style as sets of algebraic integers which are
closed under linear combinations with algebraic integer coefficients. But for several
proofs, in particular for the uniqueness of decomposition into prime ideals in arbi-
trary number fields and for the divisors of the discriminant, he adopted essentially
the Kronecker-Hurwitz method. However, this methodological syncretism progres-
sively fell into oblivion as Dedekind’s conceptual heritage increasingly won the day;
in Hilbert’s own summary of his report for the Enyclopädie der mathematischen Wis-
senschaften mit Einschluß ihrer Anwendungen, published in 1900, proofs are mostly
omitted so that Dedekind’s concepts come out prominently, a tendency which would
be amplified in the following century with the success of modern algebra.

Gauss and the D.A. have almost vanished from the main text of Hilbert’s
Zahlbericht,92 but they do figure prominently in Hilbert’s imposing preface. This
preface is a manifesto for the incipient discipline that Hilbert presented in the main
text, and whose position within pure mathematics is defined here. First, Hilbert
appealed to “our master Gauss” to celebrate through well-chosen (and oft-repeated
since) quotes “the charms of the investigations” in this “divine science” of number
theory. Like Dedekind and Kronecker, Hilbert reserved for arithmetic, “the Queen

88. Much to Dedekind’s chagrin, who criticized this approach as lacking methodological
purity and conceptual unity; see [Dedekind 1930–1932], vol. 2, pp. 50–58, and [Hurwitz
1895], p. 198: … in der Meinung, dass meine Arbeit keine Verteidigung verdient, wenn
sie nicht für sich selbst spricht. See also [Dugac 1976], p. 266.

89. See [Schappacher 2005] for an introduction to the writing and content of this report.
90. That is an extension of K generated by all the roots of an irreducible polynomial. Thus,

Hilbert considered relative situations where the base field was no longer the field of
rationals but an arbitrary number field K .

91. He shifted the emphasis from ℓth powers to norms of elements in an extension generated
by the root of a polynomial of degree ℓ.

92. There are 7 references to Gauss among which 5 are to the D.A., against 52 references to
Kummer. Hilbert made it clear that he offered a new synthesis, not a historical report; all
references are technical.
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of mathematics” (another allusion to Gauss), a key position inside pure mathematics.
But with Hilbert this “royalty claim”93 is no longer restricted to the unification of
number theory and algebra, or even analysis:

Thus we see how arithmetic, the “Queen” of the mathematical sciences, conquers
large areas in algebra and function theory, and takes the leading role in them …
Finally, there is the additional fact that, if I am not mistaken, the modern development
of pure mathematics takes place chiefly under the sign of number: Dedekind’s and
Weierstrass’s definitions of fundamental concepts of arithmetic and Cantor’s general
construction of the concept of number lead to an arithmetization of function theory.
… The arithmetization of geometry is accomplished by the modern investigations
of non-Euclidean geometry.94

Thus Hilbert endowed number theory with two different roles. On the one hand, the
Zahlbericht itself presents a model for what should be a fully developed discipline,
here number theory:95 it defines its proper subject matter,96 algebraic number fields;
it has its key problems, that will be made explicit in Hilbert’s subsequent papers, like
prime decomposition in a field extension, relative reciprocity laws and the construc-
tion of class fields; it has a rigorous system of proofs. Moreover, as a closed, mature
system, number theory, as described by Hilbert, integrates its own development:

Instead of that erratic progress characteristic of the youngest age of a science, a sure
and continuous development occurs now thanks to the systematic construction of
the theory of number fields.97

93. Erhard Scholz coined this expression at our 1999 Oberwolfach workshop.
94. [Hilbert 1932–1935], vol. 1, pp. 65–66: So sehen wir, wie die Arithmetik, die “Königin”

der mathematischen Wissenschaft, weite algebraische und funktionentheoretische Ge-
biete erobert und in ihnen die Führerrolle übernimmt … Es kommt endlich hinzu, daß,
wenn ich nicht irre, überhaupt die moderne Entwicklung der reinen Mathematik vornehm-
lich unter dem Zeichen der Zahl geschieht: Dedekinds und Weierstrass’ Definitionen der
arithmetischen Grundbegriffe und Cantors allgemeine Zahlgebilde führen zu einer Arith-
metisierung der Funktionentheorie … Die Arithmetisierung der Geometrie vollzieht sich
durch die modernen Untersuchungen über Nicht-Euklidische Geometrie. On arithmeti-
zation at the beginning and at the end of the XIXth century, cf. J. Ferreiròs’s chap. III.2,
and B. Petri’s and N. Schappacher’s chap. V.2 below.

95. See chap. I.1, § 5, in particular footnote 184.
96. Ralf Haubrich pointed out to us that the very concept of “the subject matter of a discipline”

changed during the century: while it was a thing “already there” at the beginning and
had the status of a natural object, like a star, the subject matter of a discipline at the end
of the century was defined within the discipline. On the related simultaneous change in
the ontology of mathematical objects, see [Gray 1992].

97. [Hilbert 1932–1935], vol. 1, pp. 65–66: An Stelle eines solchen für das früheste Alter
einer Wissenschaft charakteristischen, sprunghaften Fortschrittes ist heute durch den
systematischen Aufbau der Theorie der Zahlkörper eine sichere und stetige Entwicklung
getreten.The allusion is to Gauss’s difficult determination of the sign of Gauss sums. The
allusion is all the more fitting in that Gauss’s presentation of this episode, on the contrary,
reveals the Romantic values of the early XIXth century, see S. Patterson’s chap. VIII.2.
Similarly, one can contrast the idea of system present in Hilbert’s preface to that in the
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This development includes a representation of the past as well as one of the future,
and the D.A. again is used here both as a prestigious origin and as a foil:

As to the position of number theory inside the whole of mathematical science, Gauss
presents number theory in the preface of the Disquisitiones Arithmeticae still only as
a theory of the natural integers with the explicit exclusion of all imaginary numbers.
… [Now] the theory of number fields … has become the most essential part of
modern number theory.98 The service, of laying down the first germ of the theory
of number fields is again due to Gauss. Gauss recognized the natural source for the
laws of biquadratic residues in an “extension of the domain of arithmetic.” 99

On the other hand, this internal reorganization is completed by an external one,
positing number theory in the foundational enterprise of the turn of the century
to which Hilbert would soon contribute his new Grundlagen der Geometrie (1899).
Comforted by the fact that both in Dedekind’s (algebraico-set-theoretical) and in Kro-
necker’s (arithmetized) programmes, reflections on numbers in general and number-
theoretical results are elaborated side by side, what may almost appear as a play on
the expression “theory of numbers”100 allows Hilbert to link number theory to the
recent movement of arithmetization of mathematics – in its Göttingen form, that is,
including geometry. Thus the idea of number theory as a royal discipline that was
taking the lead in all fields of mathematics, and the purposeful reference to the D.A.
and its author – the edition of whose Werke was just starting then afresh in Göttingen
under Felix Klein’s supervision – fit well with Hilbert’s – and Göttingen’s – most
far-reaching projects at the time.101

4. Long Shadows

At the turn of the century, both Gauss’s D.A. and number theory in general had thus
found quite a stable and prestigious place inside mathematics. Or, more precisely,

D.A., see chap. I.1, § 2.4.

98. In view of the papers really published in number theory at that moment, such a statement
is a coup de force. It serves in fact as a normative definition of what ought to be “modern”
number theory.

99. [Hilbert 1932–1935], vol. 1, p. 64: Was die Stellung der Zahlentheorie innerhalb der
gesamten mathematischen Wissenschaft betrifft, so faßt Gauss in der Vorrede zu den Dis-
quisitiones Arithmeticae die Zahlentheorie noch lediglich als eine Theorie der ganzen
natürlichen Zahlen auf mit ausdrücklicher Ausschließung aller imaginären Zahlen. … Die
Theorie der Zahlkörper insbesondere ist … der wesentlichste Bestandteil der modernen
Zahlentheorie geworden. Das Verdienst, den ersten Keim für die Theorie der Zahlkörper
gelegt zu haben, gebührt wiederum Gauss. Gauss erkannte die natürliche Quelle für die
Gesetze der biquadratischen Reste in einer “Erweiterung des Feldes der Arithmetik.”
Here, Hilbert follows Dedekind’s point of view on the extension of arithmetic, see the
end of § 3.4.

100. This expression was used for number theory, but also for various theories of real numbers,
such as those of Dedekind and Cantor, mentioned in Hilbert’s preface.

101. See in particular [Rowe 1989].
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places, as neither the position of number theory, nor the uses of the D.A. were uniform
from country to country, or even within each country.102

In Germany, the Neo-Gaussian movement created by the commentaries on
Gauss’s Werke and the reedition of Gauss’s articles103 expanded after the Zahlbericht.
Around 1910, Bachmann was happy to announce that number theory was being taught
in twelve German universities, see [Bachmann 1921], p. viii. Theses and articles
on number-theoretical and related topics multiplied. The discipline initiated by the
Zahlbericht, which would soon be called “algebraic number theory,”104 blossomed
especially, although not exclusively,105 within the international area of Göttingen’s
influence:106 Rudolf Fueter, Philipp Furtwängler, Alexander Ostrowski,107 Legh
Wilber Reid, Luigi Bianchi, Andreas Speiser, Teiji Takagi figured among its young
authors. A harvest of textbooks in several languages framed and reinforced this de-
velopment, all the way from Julius Sommer’s 1907 Vorlesungen über Zahlentheorie.
Einführung in die Theorie der algebraischen Zahlkörper, or Reid’s 1910 The Ele-
ments of the Theory of Algebraic Numbers which were both supported by Hilbert and
focused on quadratic number fields, to the Lezioni sulla teoria dei numeri algebrici
by Bianchi in 1924.108

But the situation was not uniform. We have seen above that Smith in 1876 had

102. Detailed examples illustrating this variety of research groups, inside a country or on
the contrary beyond frontiers, are given in parts VI and VII below, centered on France,
Italy, Russia, and the United States. For global comparative data between the number-
theoretical production of members of the Deutsche Mathematiker-Vereinigung and of the
Société mathématique de France between 1897 and WW1, see [Gispert, Tobies 1996], in
particular p. 430.

103. To those should be added the various celebrations organized in Germany around Gauss’s
hundredth anniversary in 1877: for instance, Dedekind’s contribution to the Gauss Fest-
schrift organized in Braunschweig is a display of his familiarity with the D.A., see
[Dedekind 1930–1932], vol. 1, pp. 105–158.

104. Edmund Landau used Algebraische Zahlentheorie as the heading of the corresponding
part of his Vorlesungen in 1927.

105. Heinrich Weber also continued to play a key role in this development, as did some
young Berliners like Robert Remak and Edmund Landau (who then joined the Göttingen
staff), also Hensel’s students, most notably Adolf Fraenkel and Helmut Hasse. Gauss’s
editors included the older generation (Bachmann), and people who had defended their
theses in the middle of the 1880s, either with Klein (Fricke), or with Kronecker (Stäckel,
Schlesinger).

106. Although the name of Klein is rarely associated with number theory, he not only took
charge of the Gauss edition and related projects (editing in particular Gauss’s diary in
1901), fostering what we call the Neo-Gaussian movement, but himself taught number
theory at Göttingen. Geometrical insights, like those provided by Minkowski’s geometry
of numbers, particularly appealed to him, both because they connected number theory to
other fields and because they were supposed to mitigate its overly abstruse aspects; see
[Klein 1894] and [Klein 1926/1967], pp. 26–27, in perfect harmony with the preface of
the Zahlbericht, and presumably comforting his opposition to Berlin trends.

107. Ostrowski worked first with Hensel in Marburg before joining Göttingen during WW I.
108. See A. Brigaglia’s chap. VII.1.
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tried to promote the study of number theory in Great Britain on the strength of its
applications to more indigenous topics:

It is worthy of remembrance that some of the most fruitful conceptions of modern
algebra had their origin in arithmetic, and not in geometry or even in the theory
of equations. The characteristic properties of an invariant, and of a contravariant,
appear with distinctness for the first time in the Disquisitiones Arithmeticae.109

Besides Zolotarev’s applications of his theory of algebraic numbers to integral calcu-
lus, Smith also emphasized asymptotic results110 and the possible bridges to analysis
provided by the approximation processes used by Jacobi and Hermite.

Analysis, indeed, and not algebraic structures nor the general arithmetic of
polynomials, appeared to many as the greatest unifying force. In his well-known
1951 “The Queen of Mathematics,” Eric Temple Bell – after first declaring that
“[Gauss’s] work is as vital as it was in 1801, when he published his Disquisitiones
Arithmeticae,” stated:

There was remarkable progress since the time of Gauss, and especially since 1914,
when modern analysis was applied to problems in the theory of numbers that had
withstood the strongest efforts of Gauss’s successors for over a century.111

“Modern analysis” referred in particular to the achievements of Godfrey H. Hardy,
John E. Littlewood, and Edmund Landau (all belonging to our cluster D above). The
royalty claim for arithmetic was challenged by no less a figure than Henri Poincaré
in his lecture at the First International Congress of Mathematicians in 1897:

Analysis unfolds for us infinite perspectives that arithmetic has not dreamed of; it
shows us at a glance a grandiose composition, whose arrangement is simple and
symmetric. Against this, in number theory, where the unforeseen reigns, the view is
so to speak blocked at every step.112

Poincaré’s own number-theoretical contributions mostly belong to our group H-K
and this commentary, when compared to Hilbert’s preface, underlines the nature

109. [Smith 1894], vol. 2, pp. 166–190. Smith mentions specifically arts. 157, 267, 268.

110. Again referring to the D.A. as their origin: “the first asymptotic results that were obtained
are due to Gauss and are given without demonstration in the Disquisitiones arithmeticae,”
(arts. 302, 304, additamenta to 306.X).

111. [Bell 1951/1956], pp. 498–499 for the quotes, and p. 508 for details along the same lines
as Smith.

112. [Poincaré 1897/1991], p. 26: L’analyse nous déroule des perspectives infinies que l’arith-
métique ne soupçonne pas: elle nous montre d’un coup d’œil un ensemble grandiose dont
l’ordonnance est simple et symétrique; au contraire, dans la théorie des nombres où règne
l’imprévu, la vue est pour ainsi dire arrêtée à chaque pas. The quote and its context
are discussed in C. Goldstein’s chap. VI.1 below. The increasing international tension
of the time could render statements more political: in the Revue du Mois, a cultural
journal created by Emile Borel, a comment on a result of Hilbert and Landau concerning
the expression of a definite polynomial as a sum of squares ends with the remark that
there is no need to regret that “the young French mathematical school has forsaken these
arithmetical studies, favoured in Germany, to attach themselves to the immense field of
investigations linked with differential and integral calculus,” see the motto, part VI below.
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of the dissociation already mentioned of the research field built on the D.A. in the
1850s. Although both Hilbert and Poincaré shared the same diagnosis on past number
theory, the domain of the “erratic,” “where the unforeseen reigns,” and although both
extolled a majestic layout, they put forward opposed remedies.

It would be misleading to summarize this dissociation by opposing algebraic
trends to analytic ones, or France to Germany, for instance. The promotors of an
“algebraic theory of numbers” at the end of the XIXth century included projects as
different as those of Lucas and Hilbert, mathematicians for whom algebra meant
a classical theory of equations or, on the contrary, group theory, those for whom
analysis should be avoided at all costs, or assimilated, or even used faute de mieux.

As our global picture of number theory has stressed, contrasted views coexisted
inside a single country. We have seen that, when Hilbert and Hensel affirmed the
necessity of extending number theory beyond ordinary integers, they meant different
extensions, they referred to different parts of Gauss’s corpus to sustain their views,
and they even interpreted differently that part of the Disquisitiones Arithmeticae (sec.
7 on cyclotomy) which they both claimed. On a larger scale, Genocchi, Cesàro, and
Bianchi in Italy, Lucas, Hadamard, and Picard in France, provide representatives of
our three main groups in each country. Contra Reid, Leonard Dickson, a prominent
proponent of number theory in the United States, devoted his textbooks on this topic
to forms, not to algebraic numbers.113 A few years after Poincaré’s statement, Albert
Châtelet proposed his own syncretism, in his Leçons sur la théorie des nombres,
based on Hermite’s approach, but integrating Minkowski’s work on the geometry of
numbers, as well as “the first elements of the theory of the complex integers of a
field and of their arithmetic.”114 Distinct networks of mathematical solidarities cut
across national boundaries.115

While the chapter entitled “Forms” of the Jahrbuch über die Fortschritte der
Mathematik regularly displayed a few articles at the beginning of the XXth century,
its chapter “Generalities,” hosting papers on the distribution of primes or laws of
reciprocity in number fields, besides those on congruences or Diophantine prob-
lems, tended to explose. It was a reclassification that was used to register the new
views on number theory at the beginning of the XXth century. The Jahrbuch first
gathered number theory and algebra under the same section, then identified algebraic
numbers and analytic methods as incipient topics, gathering them together in a sep-
arate subsection, and finally, in the 1930s, recognized both as autonomous branches
in this section, under specific headings, Idealtheorie and Analytische Zahlentheorie.

113. See resp. chap. VII.1, part VI, and chap. VII.3.
114. [Châtelet 1913], p. viii: Les Chapitres IV, V et VII, plus spécialement consacrés aux

nombres algébriques, constituent les premiers éléments de la théorie des entiers com-
plexes d’un corps et de son arithmétique. Châtelet mentioned that he did not want to tie
himself to a specific school and he borrowed procedures indifferently from Dedekind and
Kronecker, as well as from Minkowski and Hurwitz.

115. We have underlined several times the role of lectures and students to provide mathematical
continuities. It has been a crucial element in German countries, see a contrario the case
of Italy in chap. VII.1.
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This Jahrbuch classification was compatible with that adopted by Bachmann for his
presentation of number theory in different branches (each discussed in a specific
volume), and also with the one used in the Encyclopädie der mathematischen Wis-
senschaften. This new order of topics defined a different place for the main content
of the D.A.: congruences, quadratic reciprocity, and also binary quadratic forms –
equivalence, classes, reduction, but usually not genus theory nor the composition
of forms – were now seen as elementary number theory.116 The other parts117 of
number theory at that time – namely the theory of forms, algebraic number fields,
and analytic number theory – entertained varied relations with the D.A.: all of them
could be seen in some respects as stemming from Gauss’s book, while none of them
could claim Gauss’s disciplinary heritage for itself alone.118

However, the structure of the Disquisitiones Arithmeticae and its history did
inform other classifications of number theory.119 The Subject Index of the Catalogue
of Scientific Papers 1800–1900 classifies number theory following an order which,
after some introductory sections on divisibility and Diophantine equations, reminds
one of Smith’s Report on the Theory of Numbers, see chap. I.1, § 5.2: congruences
and forms are handled consecutively and the list concludes with a number of mis-
cellanea on cyclotomy, presented as the application of circular functions to number
theory, and on other analytical aspects. Of particular interest is the fact that the Cat-
alogue distinguishes between “forms of higher degree which cannot be considered
as products of linear factors,” and “forms of higher degree which can be considered
as products of linear factors.” The last are classified with “algebraic numbers” and
“ideals” – thus joining together the various programmes proposed for the arithmeti-
cal study of algebraic numbers, an amusing testimony of the historical crossroads
we have already met.

The shadow of the table of contents of the D.A. does not haunt only such retro-
spective catalogues surveying the mathematical literature of the past. In his famous
Paris lecture, in 1900, Hilbert dedicated to number theory 6 out of 23 problems
(nos. 7–12).120

116. What Gauss called “elementary” in the preface of the D.A. was the part of arithmetic
dealing with the writing of integers and the usual operations. On the other hand, books
on the elements of the theory of number fields, like Reid’s, would soon restructure the
arithmetic study of Z on the model of the Zahlbericht or propose a detailed presentation
of the simplest case, that of quadratic fields.

117. Probably because of the expansion of advanced teaching, the links between the academic
disciplines and the research fields seem at this time closer than what we described in
chap. I.1 for the 1850s.

118. At the 2001 Oberwolfach meeting, Ralf Haubrich proposed seven criteria to characterize
a mathematical discipline (subject matter, key concepts and results, systematization,
proofs,…) and showed that algebraic number theory and Gaussian number theory (see
chap. I.1, § 5.2) differ on all accounts. Alain Herreman has semiotically opposed Gauss’s
sec. 5 with set-theoretical formulations in “Vers une analyse sémiotique de la théorie des
ensembles: hiérarchies et réflexivité,” http://perso.univ-rennes1.fr/alain.herreman/.

119. See also Dickson’s History discussed in D. Fenster’s chap. VII.3 below.
120. We can compare this to the mere 4% of publications that this field represented at the time.
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Fig. I.2B. The Theory of Numbers in the Catalogue of Scientific Papers
(Courtesy of the Bibliothèque Mathématiques-Recherche Jussieu, Paris)
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Of these, the first two lie outside the scope of the D.A.: nos. 7, 8, which concern
irrationality and the distribution of primes. But the three121 problems 9, 11, 12
correspond neatly, and in the order of Hilbert’s list, to the Disquisitiones, although
presented from Hilbert’s point of view, i.e., centered around the notion of number
field: no. 9 asks for the generalization to number fields of the general reciprocity
law; no. 11 for a theory of forms over such fields; and no. 12 concerns complex
multiplication and is thus at the junction of number theory, algebra, and function
theory, just like Gauss’s famous sec. 7. In problem 11, for instance, Hilbert wrote:

Our present knowledge of the theory of quadratic number fields puts us in a position
to successfully attack the theory of quadratic forms with any number of variables and
with any algebraic numerical coefficients. This leads in particular to the interesting
problem: to solve a given quadratic equation with algebraic numerical coefficients in
any number of variables by integral or fractional numbers belonging to the algebraic
realm of rationality determined by the coefficients.122

The Disquisitiones Arithmeticae survived at the beginning of the XXth century
as a cultural icon, as a historical source, as a frame for number theory. But this did
not mean that its role as a mathematical resource had come to an end. On various
occasions in this book, the authors allude to the way in which relatively recent
results by André Weil, Kurt Heegner, John Tate, and – even more recently – Manjul
Bhargava, and others, connect to specific articles or techniques of the D.A.123

We find it fitting to mention as a final example an article which puts us precisely
one century after the publication of the Disquisitiones Arithmeticae, and links it,
unexpectedly, to perhaps the single important branch of number theory which has
only fully blossomed in the XXth century, Diophantine geometry,124 and which,
moreover, is related to precisely that part of number theory which Gauss essentially
excluded from the D.A.: Diophantine analysis. In his 1901 article on the arithmetic
of algebraic curves, Henri Poincaré proposed to interpret Diophantine questions
geometrically125 and to classify them up to birational equivalence: he not only

121. The remaining problem, the tenth, is about Diophantine equations, and, here as in Dick-
son’s History of the Theory of Numbers, is squeezed between divisibility and the theory
of forms.

122. [Hilbert 1932–1935], vol. 3, pp. 310–311: Unsere jetzige Kenntnis der Theorie der
quadratischen Zahlkörper setzt uns in den Stand, die Theorie der quadratischen For-
men mit beliebig vielen Variablen und beliebigen algebraischen Zahlkoeffizienten erfol-
greich in Angriff zu nehmen. Damit gelangen wir insbesondere zu der interessanten
Aufgabe, eine vorgelegte quadratische Gleichung beliebig vieler Variablen mit alge-
braischen Zahlkoeffizienten in solchen ganzen oder gebrochenen Zahlen zu lösen, die
in dem durch die Koeffizienten bestimmten algebraischen Rationalitätsbereiche gelegen
sind.

123. See chap. I.1, footnotes 21, 37, 79; part II and part VIII below.
124. Cf. the volumes on number theory in the Encyclopaedia of Mathematical Sciences, pub-

lished in the 1990s.
125. Interesting new links between geometry and number theory have been created during the

last decades of the XXth century. Only a few hints have been given here, see J. Schwermer’s
chap. VIII.1 on Minkowski and [Schappacher 1991].
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alluded to Gauss’s equivalence of quadratic forms in the introduction, as a model for
this birational equivalence of curves, but he also proposed as a point of departure of
his work a fresh look at a specific article of the D.A.:

To recognize when a conic has a rational point is a problem that Gauss has taught us
how to solve in the chapter of his Disquisitiones Arithmeticae entitled Repraesentatio
ciffrae. The conics without a rational point are arranged in several classes and the
conditions of this arrangement follow immediately from the principles of the same
chapter in Gauss.126

5. Paradises Lost

That the Disquisitiones Arithmeticae is both a mathematical work and a historical
event does not mean that it is an obvious object for the history of mathematics. Im-
mediately after its publication, concepts, results, themes, were detached, reintegrated
in other points of views, and grew to have each their own story to tell.127 The way
they could be isolated or amalgamated depends, as we have seen, on many factors,
some of which stem from the D.A., some from other publications; some are the
result of generational shifts among the readers or of the ambient scientific priorities.
Different parts of the D.A. have been activated at different times, then left aside for
a while and reactivated again, with completely different research horizons in mind.

Even if we could follow each of these fragments, we would still miss our tar-
get. The Disquisitiones Arithmeticae had several functions: a mythical model for
number-theoretical activities, a technical reference, a familiar companion of every-
day mathematical experience. The content of the book has at times defined number
theory, and at others has been cut and reshaped to fit new disciplinary views. All these
different scales matter for the history of the book. They require the reconstitution of
relevant strata of textual organization and of the contexts which have allowed these
strata to be interpreted and used efficiently for doing mathematics. Our choice here
to stick to explicit mentions of the D.A. has already led us to historical evidence of all
kinds, from personal correspondence to lectures, from treatises of cultural history to
political gazettes, from catalogues to research papers. And these mentions have been
of all sorts: one article of the D.A., a notation, a whole section, a way of thinking.

Our main goal in this part has been to reshape the global representation of the
history of the D.A. – this will help, we hope, to situate more accurately the results
of the following chapters. We were not satisfied with the usual summary – a period
of latency and awe, then a succession of a small number of brilliant contributors,
one or two per generation,who were deeply involved with the book, and finally the
blossoming of algebraic number theory at the turn of the twentieth century. What we

126. [Poincaré 1901], p. 485: Reconnaître si une conique admet un point rationnel, c’est un
problème que Gauss nous a enseigné à résoudre, dans son chapitre des Disquisitiones, in-
titulé Repraesentatio ciffrae. Les coniques qui n’ont pas de point rationnel se répartissent
en plusieurs classes et les conditions de cette répartition se déduisent immédiatement des
principes de ce même chapitre de Gauss. The reference is to D.A., art. 299, on ternary
forms; a plane conic is the zero set of a ternary quadratic form.

127. Specific examples are traced in part II, part IV, and part VIII below.
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wanted was to pay more attention to the relations among mathematicians (and among
their results), and to the actual mechanisms of knowledge transfer, in particular from
one generation to another,128 that is, to understand some part of the dynamics in the
changing role of the D.A. and of number theory.

What we have seen here is, first, that a serious study of a limited part of the
book (all that touching the theory of equations) took place quite quickly, and that it
nourished a vast expansion of algebra.129 For a while, it tended to relegate congru-
ences to a supporting role – the topic which, in what survives of Gauss’s original
plans, secured the coherence of the whole – and it pointed toward an assimilation of
arithmetic and algebra.

Then, from the mid 1820s on, new types of readers of the D.A. appeared: they
immersed themselves in the D.A., often on their own, early in their mathematical life;
and they made it the arithmetical seed of a large international area of research, this
time mixing number theory, algebra, and analysis. The mixture operated in many
ways: using analytical techniques to prove statements left open in the D.A.; encapsu-
lating links between properties of integers and continuous functions in an algebraic
formula; and creating algebraic analytic concepts by means of those introduced in
the D.A. Here we find the well-known names of Jacobi, Dirichlet, Kummer, Eisen-
stein, Hermite, Kronecker, and others. But we want to stress that they intervened in
an essentially unique network, precipitated out by intense exchanges among these
mathematicians, accompanied by a characteristic discourse concerning the value of
unity, even when their work displayed different mathematical agendas.

The mechanisms at work in the 1860s are still unclear for us.130 During the
following decades, textbooks in various languages gave ready access to large parts of
the D.A. The edition of Gauss’s Werke and related publications also set up, specially
in Germany, a “usable” Gauss,131 a classic, of whom set pieces were made accessible
to a larger audience. But in the last quarter century, components of research that
were closely linked in the preceding period seem to drift apart: number theory now
encompasses several rather well-established disciplines, each with its own privileged
problems and relations to the D.A.

Because of its status in the standard history, we have revisited the development
of one component, that of Kummer’s ideal numbers. It presents several intriguing
features: first of all, unlike other components, such as forms or modular equations,

128. We think that this issue, which ought to take into account teaching, available techniques
and problems, and cultural agendas, is important for the understanding of scientific
development and has not yet been sufficiently studied in the history of mathematics.

129. This stage has already been identified in [Neumann 1979–1980].
130. This puzzlement is due partly to the increased size of the mathematical scene, but es-

pecially to the discontinuity in our sources, due in turn to the almost simultaneous dis-
appearance, for various reasons, of the main contributors of the preceding period. The
Jahrbuch, on the other hand, only appeared at the end of the 1860s.

131. We mean by this something of public utility, contributing to the self-understanding and to
the action of a community, here mathematical; see William J. Bouwsma, A Usable Past.
Essays in European Cultural History. Berkeley: University of California Press, 1990.
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it concerns a mere handful of articles and appears to be mainly a German affair.132

Then, it makes evident the paradoxical nature of Dedekind’s activities. The most
important influences on him were those of Dirichlet and Riemann; unlike most of
his German colleagues, he had virtually no research students.133 But he mediated
in three different and important ways the number-theoretical work of the first half
century for the generation coming to (mathematical) age in the 1880s. He edited
Dirichlet’s Vorlesungen über Zahlentheorie, one of the most influential “surrogates”
for the D.A.; he annotated and wrote commentaries on Gauss’s writings for the Werke,
thus imprinting his mark on the interpretation of Gauss for decades to come; and
finally, in his own mathematical work, he synthetized various threads coming from
the D.A.; in particular Galois (group) theory, higher congruences, and Kummer’s
ideal numbers. However the continuity running from his work to the new generation
is really a product of the latter.

Indeed a decisive event at the end of the century was the meeting of Hilbert,
Minkowski, and Hurwitz,134 soon connected to Klein’s Göttingen. Besides their
syncretic approach – which nonetheless privileged Dedekind’s ideals and number
fields as key objects – their skill in evocative presentation and their numerous stu-
dents around the world were instrumental in establishing within a few years a new
subdiscipline within number theory, algebraic number theory – one which put reci-
procity laws back at center stage.135

This group produced not only influential mathematics but equally influential
views of the development of mathematics, such as Klein’s Vorlesungen über die
Entwicklung der Mathematik in XIXten Jahrhundert and the preface to Hilbert’s
Zahlbericht. Indeed historical representations are often created by mathematicians
themselves; they seem all the more natural because they stem from mathematical
practice and are coherent with it.136 However, as seen above, a multitude of practices
stem from the D.A. (with, perhaps, still more to come). As opposed to a person, a
book like the D.A. has several identities.

Some of these identities, some of the works and memories linked to them, have
been transmitted to the present. But only some. Those which have been lost for a
while may well serve to give a more concrete meaning to the present:

132. It is still difficult to properly evaluate the impact of Zolotarev’s theory.
133. An evocative, if incomplete, information is contained in the Mathematics Genealogy

Project, which lists no descendent at all for Dedekind, but, for instance, 3867 for his
Berlin contemporary Lazarus Fuchs.

134. It is remarkable that Minkowski began with the theory of forms, Hilbert with invariant
algebra, and Hurwitz with modular elliptic functions, each incarnating key components
of arithmetic algebraic analysis originating from the D.A.

135. See the interesting list of books given in [Lemmermeyer 2000], p. xii, note 6, which are
all linked to this milieu.

136. In this respect, it is interesting to contrast the various types of historical activities in some of
the number theorists we have looked at: Lucas’s involvement with Fermat’s manuscripts,
Hilbert’s rational reconstruction of the evolution of number theory, Dickson’s topical
History of the Theory of Numbers.
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Yes, if a memory, thanks to forgetfulness, has been unable to contract any tie, to
forge any link between itself and the present, if it has remained in its own place, of
its own date, if it has kept its distance, its isolation in the hollow of a valley or on
the peak of a mountain, it makes us suddenly breathe an air new to us just because
it is an air we have formerly breathed, an air purer than that the poets have vainly
called Paradisiacal, which offers that deep sense of renewal only because it has been
breathed before, inasmuch as the true paradises are paradises we have lost.137
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et appliquées 3e ser. 6, 51–94, 129–166. Repr. in Polnoe Sobranie Sochineny Egora
Ivanovicha Zolotareva (Collected Papers of Egor lvanovich Zolotarev), vol. 1, pp. 72–
179. Leningrad: V.A. Steklov Institute of Physics and Mathematics.


	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 1
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 2
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 3
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 4
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 5
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 6
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 7
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 8
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 9
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 10
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 11
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 12
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 13
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 14
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 15
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 16
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 17
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 18
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 19
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 20
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 21
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 22
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 23
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 24
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 25
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 26
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 27
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 28
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 29
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 30
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 31
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 32
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 33
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 34
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 35
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 36
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 37
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 38
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 39
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 40
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 41
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 42
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 43
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 44
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 45
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 46
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 47
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 48
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 49
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 50
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 51
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 52
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 53
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 54
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 55
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 56
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 57
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 58
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 59
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 60
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 61
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 62
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 63
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 64
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 65
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 66
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 67
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 68
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 69
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 70
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 71
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 72
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 73
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 74
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 75
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 76
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 77
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 78
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 79
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 80
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 81
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 82
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 83
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 84
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 85
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 86
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 87
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 88
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 89
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 90
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 91
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 92
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 93
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 94
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 95
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 96
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 97
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 98
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 99
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 100
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 101
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 102
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 103
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 104
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 105
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 106
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 107
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 108
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 109
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 110
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 111
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 112
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 113
	Goldstein_C_2007_&al_The Shapi Disquisitiones Arithmeticae_S 114

