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Abstract

We study the problem of determining all connected Lie groups G which have the following property
(hlp): every sub-Laplacian L on G is of holomorphic Lp-type for 1 � p < ∞, p �= 2. First we show that
semi-simple non-compact Lie groups with finite center have this property, by using holomorphic families of
representations in the class one principal series of G and the Kunze–Stein phenomenon. We then apply an
Lp-transference principle, essentially due to Anker, to show that every connected Lie group G whose semi-
simple quotient by its radical is non-compact has property (hlp). For the convenience of the reader, we give
a self-contained proof of this transference principle, which generalizes the well-known Coifman–Weiss
principle. One is thus reduced to studying those groups for which the semi-simple quotient is compact,
i.e. to compact extensions of solvable Lie groups. In this article, we consider semi-direct extensions of
exponential solvable Lie groups by connected compact Lie groups. It had been proved in joint work by
W. Hebisch and the two first named authors that every exponential solvable Lie group S, which has a non-∗
regular co-adjoint orbit whose restriction to the nilradical is closed, has property (hlp), and we show here
that (hlp) remains valid for compact extensions of these groups.
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1. Introduction

A comprehensive discussion of the problem studied in this article, background information
and references to further literature can be found in [14]. We shall therefore content ourselves in
this introduction by recalling some notation and results from [14].

Let (X,dμ) be a σ -finite measure space. If A is a self-adjoint linear operator on the L2-
space L2(X,dμ), with spectral resolution A = ∫

R
λdEλ, and if F is a bounded Borel function

on R, then we call F an Lp-multiplier for A (1 � p < ∞), if F(A) := ∫
R

F(λ)dEλ extends
from Lp ∩ L2(X,dμ) to a bounded linear operator on Lp(X,dμ). We shall denote by Mp(A)

the space of all Lp-multipliers for A, and by σp(A) the Lp-spectrum of A. We say that A is
of holomorphic Lp-type, if there exist some non-isolated point λ0 in the L2-spectrum σ2(A)

and an open complex neighborhood U of λ0 in C, such that every F ∈Mp(A)∩C∞(R) extends
holomorphically to U . Here, C∞(R) denotes the space of all continuous functions on R vanishing
at infinity.

Assume in addition that −A generates a symmetric diffusion semigroup (as in the case of the
sub-Laplacians that we shall examine later). Then, if A is of holomorphic Lp-type, one can show
that

σ2(A) �= σp(A).

Moreover, if this semigroup is hypercontractive (as, for instance, in the case where A is a sub-
Laplacian on a unimodular Lie group), then the set U belongs to the Lp-spectrum of A, i.e.
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U ⊂ σp(A), (1.1)

and

σ2(A) � σp(A) (1.2)

(see [8]).
Throughout this article, G will denote a connected Lie group.
Let dg be a left-invariant Haar measure on G. If (π,Hπ ) is a unitary representation of G on

the Hilbert space H = Hπ , then we denote the integrated representation of L1(G) = L1(G,dg)

again by π , i.e. π(f )ξ := ∫
G

f (g)π(g)ξ dg for every f ∈ L1(G), ξ ∈ H. For X ∈ g, we de-
note by dπ(X) the infinitesimal generator of the one-parameter group of unitary operators
t �→ π(exp tX). Moreover, we shall often identify X with the corresponding right-invariant vec-
tor field Xrf (g) := limt→0

1
t
[f ((exp tX)g) − f (g)] on G and write X = Xr .

Let X1, . . . ,Xk be elements of g which generate g as a Lie algebra, which just means that the
corresponding right-invariant vector fields satisfy Hörmander’s condition. The corresponding
sub-Laplacian L := −∑k

j=1 X2
j is then essentially self-adjoint on D(G) ⊂ L2(G) and hypoel-

liptic.
As has been pointed out to us by W. Hebisch, if such a right-invariant sub-Laplacian L is of

holomorphic Lp-type, then properties (1.1) and (1.2) hold true for A := L, even if the group G

is non-unimodular.
This is due to the existence of approximations to the identity by convolution from the right by

smooth functions with compact support (cf. Lemma A.2 in Appendix A).
Denote by {e−tL}t>0 the heat semigroup generated by L. Since L is right G-invariant, for

every t > 0, e−tL admits a convolution kernel ht such that

e−tLf = ht ∗ f,

where ∗ denotes the usual convolution product in L1(G). The function (t, g) �→ ht (g) is smooth
on R>0 × G, since the differential operator ∂

∂t
+ L is hypoelliptic. Moreover, by [19, The-

orems VIII.4.3 and V.4.2], the heat kernel ht as well as its right-invariant derivatives admit
Gaussian type estimates in terms of the Carnot–Carathéodory distance δ associated to the Hör-
mander system X1, . . . ,Xk .

In particular, for every right-invariant differential operator D on G, there exist constants
cD,t ,CD,t > 0, such that, for all g ∈ G, t > 0,

∣∣Dht(g)
∣∣ � CD,t e

−cD,t δ(g,e)2
. (1.3)

Let now F0 ∈ Mp(L). By duality, we may assume that 1 � p � 2. With F0, also the function
λ �→ F(λ) := e−λF0(λ) lies in Mp(L), since F(L) = e−LF0(L), where the heat operator e−L is
bounded on every Lp(G) (1 � p < ∞). Now by [14, Lemma 6.1], the operator F0(L) is bounded
also on all the spaces Lq(G), p � q � p′. Hence for every test function f on G,

F(L)(f ) = F0(L)
(
e−L(f )

) = F0(L)(h1 ∗ f )

= F0(L)(h1/2 ∗ h1/2 ∗ f ) = (
F0(L)h1/2

) ∗ h1/2 ∗ f,
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by the right-invariance of the operator F0(L). Since h1/2 is contained in every Lq(G), 1 �
q � ∞, in particular in L1(G), we see that the operator F(L) acts by convolution from the left
with the function (F0(L)h1/2) ∗ h1/2 which is contained in every Lq(G), p � q � p′, and so are
all its derivatives from the right. We can thus identify the operator F(L) with the C∞-function
F(L)δ := (F0(L)h1/2) ∗ h1/2, i.e.

F(L)(f ) = (
F(L)δ

) ∗ f, f ∈
⋃

p�q�p′
Lq(G).

Recall that the modular function ΔG on G is defined by the equation∫
G

f (xg)dx = ΔG(g)−1
∫
G

f (x)dx, g ∈ G.

Put, for g ∈ G:

f̌ (g) := f
(
g−1),

f ∗(g) := Δ−1
G (g)f

(
g−1

)
.

Then f �→ f ∗ is an isometric involution on L1(G), and for any unitary representation π of G,
we have

π(f )∗ = π(f ∗). (1.4)

The group G is said to be symmetric, if the associated group algebra L1(G) is symmetric, i.e. if
every element f ∈ L1(G) with f ∗ = f has a real spectrum with respect to the involutive Banach
algebra L1(G).

In this paper we consider connected Lie groups for which every sub-Laplacian is of holo-
morphic Lp-type. First, in Section 2, we consider connected semi-simple Lie groups G with
finite center. We construct a holomorphic family of representations π(z) of G on mixed Lp-
spaces (see Section 2.2). Applying these representations to h1, we obtain a holomorphic family
of compact operators on these spaces (see Section 2.3). Using the Kunze–Stein phenomenon on
semi-simple Lie groups (see Section 2.4), the eigenvectors of the operators π(z)(h1) allow us
to construct a holomorphic family of Lp-functions on G which are eigenvectors for F(L), if
F ∈Mp(T ) ∩ C∞(R). From the corresponding holomorphic family of eigenvalues we can read
off that F admits a holomorphic extension in a neighborhood of some element in the spectrum
of L (see Section 2.5). This gives us:

Theorem 1.1. Let G be a non-compact connected semi-simple Lie group with finite center. Then
every sub-Laplacian on G is of holomorphic Lp-type, for 1 � p < ∞, p �= 2.

Remark 1. Even if at the end of the proof, we consider only ordinary Lp-spaces, we need repre-
sentations on mixed Lp-spaces. They are used to get some isometry property and then to apply
the Kunze–Stein phenomenon.
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In Sections 3.1 and 3.2, we discuss respectively p-induced representations and a generaliza-
tion of the Coifman–Weiss transference principle [5]. We consider a separable locally compact
group G, and an isometric representation ρ of a closed subgroup S of G on spaces of Lp-type,
e.g. Lp-spaces Lp(Ω). Denote by πp := indG

p,S ρ the p-induced representation of ρ. We prove,

among other results, that, for any function f ∈ L1(G), the operator norm of πp(f ) is bounded by
the norm of the convolution operator λG(f ) on Lp(G), provided the group S is amenable. Here,
λG denotes the left-regular representation. It should be noted that we do not require the group G

to be amenable. As an application we obtain the Lp-transference of a convolution operator on G

to a convolution operator on the quotient group G/S, in the case where S is an amenable closed,
normal subgroup.

When preparing this article, we were not aware of J.-Ph. Anker’s article [1] which, to a large
extent, contains these transference results, and which we also recommend for further references
to this topic. We are indebted to N. Lohoué for informing us on Anker’s work [1] as well as on
the influence of C. Herz on the development of this field (compare [9]). For the convenience of
the reader, we have nevertheless decided to include our approach to these transference results,
since it differs from Anker’s by the use of a suitable cross section for G/S, which we feel makes
the arguments a bit easier.

Applying this transference principle, we obtain the following generalization of Theorem 1.1
in Section 4.

Theorem 1.2. Let G = expg be a connected Lie group, and denote by S = exp s its radical. If
G/S is not compact, then every sub-Laplacian on G is of holomorphic Lp-type, for any 1 �
p < ∞, p �= 2.

It then suffices to study connected Lie groups for which G/S is compact. In Section 5, we shall
consider groups G which are the semi-direct product of a compact group K with a non-symmetric
exponential solvable group S from a certain class. The exponential solvable non-symmetric Lie
groups have been completely classified by Poguntke [17] (with previous contributions by Lep-
tin, Ludwig and Boidol) in terms of a purely Lie-algebraic condition (B). Let us describe this
condition, which had been first introduced by Boidol in a different context [3].

Recall that the unitary dual of S is in one to one correspondence with the space of coadjoint
orbits in the dual space s∗ of s via the Kirillov map, which associates with a given point � ∈ s∗
an irreducible unitary representation π� (see e.g. [8, Section 1]).

If � is an element of s∗, denote by

s(�) := {
X ∈ s | �([X,Y ]) = 0, for all Y ∈ s

}
the stabilizer of � under the coadjoint action ad∗. Moreover, if m is any Lie algebra, denote by

m = m1 ⊃ m2 ⊃ · · ·

the descending central series of m, i.e. m2 = [m,m], and mk+1 = [m,mk]. Put

m∞ =
⋂

mk.
k
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Then m∞ is the smallest ideal k in m such that m/k is nilpotent. Put

m(�) := s(�) + [s, s].

Then we say that �, respectively the associated coadjoint orbit Ω(�) := Ad∗(G)�, satisfies
Boidol’s condition (B), if

� |m(�)∞ �= 0. (B)

According to [17], the group S is non-symmetric if and only if there exists a coadjoint orbit
satisfying Boidol’s condition.

If Ω is a coadjoint orbit, and if n is the nilradical of s, then

Ω|n := {�|n | � ∈ Ω} ⊂ n∗

will denote the restriction of Ω to n.
We show that the methods developed in [8] can also be applied to the case of a compact

extension of an exponential solvable group and thus obtain:

Theorem 1.3. Let G = K � S be a semi-direct product of a compact Lie group K with an
exponential solvable Lie group S, and assume that there exists a coadjoint orbit Ω(�) ⊂ s∗
satisfying Boidol’s condition, whose restriction to the nilradical n is closed in n∗. Then every
sub-Laplacian on G is of holomorphic Lp-type, for 1 � p < ∞, p �= 2.

Remarks. (a) A sub-Laplacian L on G is of holomorphic Lp-type if and only if every continuous
bounded multiplier F ∈ Mp(L) extends holomorphically to an open neighborhood of a non-
isolated point in σ2(L).

(b) If the restriction of a coadjoint orbit to the nilradical is closed, then the orbit itself is closed
(see [8, Theorem 2.2]).

(c) What we really use in the proof is the following property of the orbit Ω :

Ω is closed, and for every real character ν of s which does not vanish on s(�), there exists a
sequence {τn}n of real numbers such that limn→∞(Ω + τnν) = ∞ in the orbit space.

This property is a consequence of the closedness of Ω|n. There are, however, many examples
where the condition above is satisfied, so that the conclusion of the theorem still holds, even
though the restriction of Ω to the nilradical is not closed (see e.g. [8, Section 7]). We do not
know whether the condition above automatically holds whenever the orbit Ω is closed.

Observe that, contrary to the semisimple case, we need to consider representations on mixed
Lp-spaces till the end of the proof.

2. The semi-simple case

2.1. Preliminaries

In the following, if M is a topological space, C0(M) will mean the space of compactly sup-
ported continuous functions on M .
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As usual, if S is a Lie group, s will denote its Lie algebra.
If E is a vector space, denote by E∗ its algebraic dual. If it is real, EC denotes its complexi-

fication. Let F be a vector subspace of E. We identify the restriction λ|F of λ ∈ E∗ or E∗
C

with
an element of respectively F ∗ or F ∗

C
.

Let G be a connected semisimple real Lie group with finite center and g its Lie algebra. Fix a
Cartan involution θ of G and denote by K the fixed point group for θ . The Cartan decomposition
of the Lie algebra g of G with respect to θ is given by

g = k ⊕ p,

where k is the Lie algebra of K and p the −1-eigenspace in g for the differential of θ , denoted
again by θ . We fix a subspace a of p which is maximal with respect to the condition that it is an
abelian subalgebra of g. It is endowed with the scalar product (·,·) given by the Killing form B ,
which is positive definite on p. By duality, we endow a∗ with the corresponding, induced scalar
product, which we also denote by (·,·). Let | · | be the associated norm on p and a∗.

For any root α ∈ a∗, we denote by gα the corresponding root space, i.e. gα := {X ∈ g |
[H,X] = α(X), H ∈ a}. We fix a set R+ of positive roots of a in g. Let P denote the corre-
sponding minimal parabolic subgroup of G, containing A := expa, and P = MAN its Langlands
decomposition.

Denote by ρ the linear form on a given by

ρ(X) := 1

2
tr(adX|n), X ∈ a,

where n is the Lie algebra of N .
Let ‖ · ‖ denote the “norm” on G defined in [2, §2]. Recall that, for g ∈ G, ‖g‖ is the operator

norm of Adg considered as an operator on g, endowed with the real Hilbert structure, (X,Y ) �→
−B(X,θY ) as scalar product. This norm is K-biinvariant and, according to [2, Lemma 2.1], and
satisfies the following properties:

‖ · ‖ is a continuous and proper function on G,

‖g‖ = ∥∥θ(g)
∥∥ = ∥∥g−1

∥∥ � 1;
‖xy‖ � ‖x‖‖y‖;
there exists c1, c2 > 0 such that,

for Y ∈ p, then ec1|Y | � ‖ expY‖ � ec2|Y |;
for all a ∈ A, n ∈ N, ‖a‖ � ‖an‖. (2.1)

We choose a basis for a∗, following, for example, [6, p. 220].
Let α1, . . . , αr denote the simple roots in R+. By the Gram–Schmidt process, one constructs

from the basis {α1, . . . , αr} of a∗ an orthonormal basis {β1, . . . , βr} of a∗ in a such way that,
for every j = 1, . . . , r , the vector space Vect{β1, . . . , βj } spanned by {β1, . . . , βj } agrees with
Vect{α1, . . . , αj }, and, for every 1 � k < j � r , (βj ,αk) = 0. Define Hj (j = 1, . . . , r) as the
element of a given by βk(Hj ) = δjk (k = 1, . . . , r), and put:
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aj := RHj, aj :=
j∑

k=1

ak;

Rj := Rj \ Rj−1, with R0 := ∅, Rj := R+ ∩ Vect{α1, . . . , αj };
nj :=

∑
α∈Rj

gα, nj :=
∑
α∈Rj

gα.

We define, for j = 1, . . . , r , the reductive Lie subalgebra mj of g by setting:

mj := θ
(
nj

) + m + aj + nj .

In this way, we obtain a finite sequence of reductive Lie subalgebras of g,

m =: m0 ⊂ m1 ⊂ · · · ⊂ mr = g,

such that

mj = θ(nj ) + mj−1 + aj + nj (j = 1, . . . , r).

Then mj−1 ⊕ aj ⊕ nj is a parabolic subalgebra of mj .
Observe that G is a real reductive Lie group in the Harish-Chandra class (see e.g. [7, p. 58], for

the definition of this class of reductive Lie groups). We can then inductively define a decreasing
sequence of reductive real Lie groups Mj in the Harish-Chandra class, starting from Mr = G, in
the following way.

Let Pj denote the parabolic subgroup of Mj corresponding to the parabolic subalgebra
mj−1 ⊕ aj ⊕ nj , and Pj = Mj−1AjNj its Langlands decomposition. Here Aj (respectively Nj )
is the analytic subgroup of Mj with Lie algebra aj (respectively nj ), Mj−1Aj is the centralizer
in Mj of Aj , and

Mj−1 :=
⋂

χ∈Hom(Mj−1Aj ,R×+)

Kerχ

(see e.g. [7, Theorem 2.3.1]).
Moreover, Mj−1Aj normalizes Nj and θ(Nj ), and Mj−1 is a reductive Lie subgroup of Mj ,

in the Harish-Chandra class, with Lie algebra mj−1 (see [7, Proposition 2.1.5]).
Put Kj := Mj ∩ K (j = 1, . . . , r). Then Kj is the maximal compact subgroup of Mj related

to the Cartan involution θ|Mj of Mj (see e.g. [7, Theorem 2.3.2, p. 68]). Hence, Mj is the product

KjPj = KjMj−1AjNj .

Fix invariant measures dk, dm, da, dn, dmj , dkj , daj , dnj for respectively K , M , A, N , Mj ,
Kj , Aj , Nj .

Choose an invariant measure dx on G such that∫
G

ϕ(x)dx =
∫

K×A×N

a2ρϕ(kan)dk da dn, for all ϕ ∈ C0(G) (2.2)

(see e.g. [7, Proposition 2.4.2]).
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We shall next recall an integral formula. Let S be a reductive Lie group in the Harish-Chandra
class, and let S = K expp be its Cartan decomposition, where K is a maximal compact subgroup
of S. Let Q be a parabolic subgroup of S related to the above Cartan decomposition, and let
Q = MQAQNQ be its Langlands decomposition.

Let KQ := K ∩ Q = K ∩ MQ, and put, for k ∈ K , [k] := kKQ in K/KQ. We extend this
notation to S by putting, for s = kman, (k,m,a,n) ∈ K × MQ × AQ × NQ, [s] := [k]. This is
still well defined even though the representation of s in KMQAQNQ is not unique. In fact,

s = kman = k′m′a′n′

if and only if a′ = a, n′ = n, and k′ = kkQ, m′ = k−1
Q m for some kQ ∈ KQ (see e.g. [7, Theo-

rem 2.3.3]). From this we see that the decomposition above becomes unique, if we require m to
be in exp(mQ ∩ p).

Every s ∈ S thus admits a unique decomposition s = kman, with (k,m,a,n) ∈ K ×exp(mQ ∩
p) × AQ × NQ. We then write kQ(s) := k, mQ(s) := m, aQ(s) := a and nQ(s) := n, i.e.

s = kQ(s)mQ(s)aQ(s)nQ(s).

In particular, [s] = kQ(s)KQ.
For y ∈ S and k ∈ K , we define y[k] ∈ K/KQ as follows:

y[k] := [yk].

Moreover, for any γ ∈ a∗
C

and Y ∈ a, we put (expY)γ := eγ (Y ).
One can deduce, for example from [20, Lemma 2.4.1], the following lemma.

Lemma 2.1. Fix an invariant measure dk on K and let d[k] denote the corresponding left-
invariant measure on K/KQ. For any y ∈ S, we then have

d
(
y[k]) = aQ(yk)−2ρQd[k],

where ρQ ∈ a∗
Q is given by ρQ(X) = 1

2 tr(adX|nQ
) (X ∈ aQ); that is, for any f ∈ C(K/KQ),

∫
K/KQ

f
([k])d[k] =

∫
K/KQ

aQ(yk)−2ρQf
(
y[k])d[k].

We return now to our semisimple Lie group G. In the following, we shall use another basis
of a∗, given as follows. For j = 1, . . . , r , let ρj denote the element of a∗

j defined by

ρj (X) := 1

2
tr(adX|nj

) for all X ∈ aj .

Notice that we can identify ρj with the restriction ρ|a of ρ to aj .

j
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By [6, Lemma 4.1], ρj and βj are scalar multiples of each other. In particular, the family
{ρj } is an orthogonal basis of a∗, and therefore of a∗

C
. For every ν ∈ a∗ (respectively ν ∈ a∗

C
) and

j = 1, . . . , r , we define νj ∈ R (respectively C) by the following:

ν =
r∑

j=1

νjρj .

Recall that, for j = 1, . . . , r , Pj is a parabolic subgroup of the real reductive Lie group in the
Harish-Chandra class, Mj . Therefore, by taking (S,K,Q) := (Mj ,Kj ,Pj ) in the discussion
above, put kj := kPj

, mj−1 := mPj
, aj := aPj

and nj := nPj
. Thus, any g ∈ Mj has a unique

decomposition g = kj (g)mj−1(g)aj (g)nj (g), with kj (g) ∈ Kj , mj−1(g) ∈ exp(mj−1 ∩ p),
aj (g) ∈ Aj and nj (g) ∈ Nj . Notice that m0 ∩ p = {0}, i.e. m0(g) = e.

Lemma 2.2. Denote by ry the right multiplication with y ∈ G. Let j ∈ {1, . . . , r}, g ∈ Mj and
kl ∈ Kl (l = 1, . . . , j).

We define recursively the element gl of Ml , l = 1, . . . , j , starting from l = j , by putting gj :=
g and gl−1 := ml−1(glkl), i.e.

gl = ml ◦ (rkl+1 ◦ ml+1) ◦ · · · ◦ (rkj
◦ mj)(g), 1 � l � j − 1.

Then, the following estimate holds: ∥∥∥∥∥
1∏

l=j

al

(
glk

l
)∥∥∥∥∥ � ‖g‖.

Proof. We first show that, for 1 � p � j ,

‖g‖ =
∥∥∥∥∥

p∏
l=j

al(glkl) · mp−1(gpkp) ·
j∏

l=p

nl(glkl)k
−1
l

∥∥∥∥∥. (2.3)

(Here the products are non-commutative products, in which the order of the factors is indicated
by the order of indices.) We use an induction, starting from p = j . If p = j and g ∈ Mj , then

‖g‖ = ∥∥gkj k
−1
j

∥∥ = ∥∥kj (gkj )mj−1(gkj )aj (gkj )nj (gkj )k
−1
j

∥∥.

Using the left K-invariance of the norm and the fact that aj (gkj ) ∈ Aj and mj−1(gkj ) ∈ Mj−1

commute, we find that

‖g‖ = ∥∥aj (gkj )mj−1(gkj )nj (gkj )k
−1
j

∥∥,

so that (2.3) holds for p = j . Assume now, by induction, that (2.3) is true for p + 1 in place of p,
i.e.

‖g‖ =
∥∥∥∥∥

p+1∏
al(glkl) · mp(gp+1kp+1) ·

j∏
nl(glkl)k

−1
l

∥∥∥∥∥.
l=j l=p+1
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We then decompose:

mp(gp+1kp+1)kp = gpkp = kp(gpkp)mp−1(gpkp)ap(gpkp)np(gpkp).

Since kp(gpkp) ∈ Kp ⊂ Ml , for p � l � j , it commutes with al(glkl), for l = p + 1, . . . , j , and
therefore, because of the K-invariance of ‖ · ‖, we have:

‖g‖ =
∥∥∥∥∥

p+1∏
l=j

al(glkl) · mp−1(gpkp)ap(gpkp)np(gpkp)k−1
p ·

j∏
l=p+1

nl(glkl)k
−1
l

∥∥∥∥∥.

Moreover, ap(gpkp) commutes with mp−1(gpkp), and so (2.3) follows.
Applying now (2.3) for p = 1, we obtain∥∥∥∥∥

1∏
l=j

al(glkl)

j∏
l=1

nl(glkl)k
−1
l

∥∥∥∥∥ = ‖g‖. (2.4)

By right K-invariance of the norm, the left-hand side of this equation is equal to∥∥∥∥∥
1∏

l=j

al(glkl)

j∏
l=1

nl(glkl)k
−1
l

1∏
l′=j

kl′

∥∥∥∥∥.

Notice that we can write
∏j

l=1 nl(glkl)k
−1
l

∏1
l′=j kl′ as follows:

n1(g1k1)
(
k−1

1 n2(g2k2)k1
)(

(k2k1)
−1n3(g3k3)k2k1

)
· · ·

((
1∏

l=j−1

kl

)−1

nj (gj kj )

1∏
l′=j−1

kl′

)
.

For 2 � p � j , (
∏1

l′=p−1 kl′)−1 lies in Kp−1 ⊂ Mp−1 and thus normalizes Np . Hence, we get
that

j∏
l=1

nl(glkl)k
−1
l

1∏
l′=j

kl′ ∈ N.

Using the last property of the norm given in (2.1), the left-hand side of (2.4) is then greater or
equal to ‖∏1

l=j al(glkl)‖, which proves the lemma. �
2.2. A holomorphic family of representations of G on mixed Lp-spaces

For ν ∈ a∗
C

, let M(G,P, ν) denote the space of complex-valued measurable functions f on
G satisfying the following covariance property:

f (gman) = a−(ν+ρ)f (g) for all g ∈ G, m ∈ M, a ∈ A, n ∈ N.
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The space M(G,P, ν) is endowed with the left regular action of G, denoted by π̃ν , i.e.
[π̃ν(g)f ](g′) = f (g−1g′). The representations π̃ν form the class-one principal series.

Let M(K/M) be the space of right M-invariant measurable functions on K .
The restriction to K of functions on G gives us a linear isomorphism from M(G,P, ν) onto

M(K/M). Denote by Iν :f �→ fν the inverse mapping. Then fν ∈ M(G,P, ν) is given by

fν(kan) := a−(ν+ρ)f (k) for all k ∈ K, a ∈ A, n ∈ N,

if G = KAN denotes the Iwasawa decomposition of G.
If we intertwine the representation π̃ν with Iν , we obtain a representation πν of G on

M(K/M), given by (
πν(g)f

)
ν
= π̃ν(g)fν, if f ∈M(K/M), g ∈ G.

For j = 1, . . . , r , denote by dk̇j the quotient measure on Kj/Kj−1 coming from dkj . It is
invariant by left translations. Notice that Kj−1 = Kj ∩ Mj−1.

We choose a left-invariant measure dk̇ on K/M such that, for any f ∈ C(K/M),∫
K/M

f (k) dk̇ =
∫

Kr/Kr−1

. . .

∫
K1/M

f (kr · · ·k1) dk̇1 . . . dk̇r . (2.5)

Let p = (p1, . . . , pr) ∈ [1,+∞[r . One can easily see that, for every f ∈ M(K/M), k′ ∈ K , the

function on Kj given by

k �→
( ∫

Kj−1/Kj−2

. . .

( ∫
K1/M

∣∣f (k′kkj−1 . . . k1)
∣∣p1 dk̇1

)p2/p1

. . . dk̇j−1

)1/pj−1

,

is right Kj−1-invariant.
We can thus define the mixed Lp-space, Lp(K/M), as the space of all (equivalent classes of)

functions f in M(K/M) whose mixed Lp-norm:

‖f ‖p :=
( ∫

Kr/Kr−1

. . .

( ∫
K1/M

∣∣f (kr . . . k1)
∣∣p1 dk̇1

)p2/p1

. . . dk̇r

)1/pr

is finite, endowed with this norm. This definition extends to the case where some of the pj are
infinite, by the usual modifications.

Let d denote the right G- and left K-invariant metric on G, given by

d(g, g′) := 1

c1
log

∥∥g′g−1
∥∥ (g, g′ ∈ G),

where c1 is the positive constant appearing in (2.1). Notice that d(g, e) = 0 if and only if g lies
in the center of G. In particular, d is not separating.
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Then, for a = expY , with Y ∈ a ⊂ p, and γ ∈ a∗, we have, in view of the fourth property of
‖ · ‖ in (2.1), that

aγ = ∣∣eγ (Y )
∣∣ � e|γ ||Y | = (

ec1|Y |)|γ |/c1 � ‖a‖
|γ |
c1 = e|γ |d(a,e). (2.6)

Proposition 2.1. For every f ∈ Lp(K/M) and g ∈ G, we have:

∥∥πν(g)f
∥∥

p
� e

|∑j ( 2
pj

−Reνj −1)ρj |d(g,e)‖f ‖p.

Thus πν defines a representation πν,p of G on Lp(K/M). Furthermore, this gives an analytic
family (πν,p)ν∈a∗

C
of representations of G on Lp(K/M).

Before giving the proof, we show the following statement. We keep the same notations as in
Lemma 2.2.

Lemma 2.3. Let g ∈ Mj,k ∈ K and fν ∈M(G,P, ν). Then:

( ∫
Kj /Kj−1

. . .

( ∫
K1/M

∣∣fν(kgkj . . . k1)
∣∣p1 dk̇1

)p2/p1
. . . dk̇j

)1/pj

=
( ∫

Kj /Kj−1

. . .

( ∫
K1/M

∣∣∣∣∣
1∏

l=j

al (glkl )
−(Re νl+1)ρl fν

(
k

1∏
l=j

kl(glkl )

)∣∣∣∣∣
p1

dk̇1

)p2/p1

. . . dk̇j

)1/pj

.

Proof. We use induction on j . For j = 0, one has, by right M-invariance of f and since g ∈
M0 = M , that

∣∣fν(kg)
∣∣ = ∣∣fν(k)

∣∣.
Assume that the statement is true for j − 1. Observe that aj (gkj ) commutes with kj−1 . . . k1 ∈
Mj−1, and that (kj−1 . . . k1)

−1nj (gkj )kj−1 . . . k1 ∈ N . Therefore, the covariance property of fν

applied to the integration over Kj/Kj−1, implies:

( ∫
Kj /Kj−1

. . .

( ∫
K1/M

∣∣fν(kgkj . . . k1)
∣∣p1 dk̇1

)p2/p1
. . . dk̇j

)1/pj

=
( ∫

Kj /Kj−1

. . .

( ∫
K1/M

∣∣aj (gkj )
−(Reνj +1)ρj fν

(
kkj (gkj )mj−1(gkj )kj−1 . . . k1

)∣∣p1 dk̇1

)p2/p1
. . . dk̇j

)1/pj

.

Since g = gj and mj−1(gkj ) = gj−1 ∈ Mj−1, the statement holds, using the induction hypothe-
sis. �



1310 J. Ludwig et al. / Journal of Functional Analysis 255 (2008) 1297–1338
Proof of Proposition 2.1. If we apply (2.6) to γ := ∑r
j=1(

2
pj

− Re νj − 1)ρj and notice that
the al’s are pairwise orthogonal with respect to (·,·), we get, in view of Lemma 2.2:

sup
kj ∈Kj , j=1,...,r

r∏
j=1

aj (gj kj )
( 2

pj
−Reνj −1)ρj � ‖g‖

|γ |
c1 = e|γ |d(g,e).

On the other hand, according to the above lemma and Lemma 2.1, applied successively to the
integrations over Kj/Kj−1, j = 1, . . . , r , we have:

∥∥πν

(
g−1)f ∥∥

p
� sup

kj ∈Kj , j=1,...,r

(
1∏

j=r

aj (gj kj )
( 2

pj
−Reνj −1)ρj

)
‖f ‖p.

Since d(g−1, e) = d(g, e), the first assertion of the proposition follows.
In order to prove the analyticity of the family of representations πν,p , choose p =

(p1, . . . , pr) ∈ [1,∞[r and denote by p′ = (p′
1, . . . , p

′
r ) ∈ ]1,∞]r the tuple of conjugate ex-

ponents, i.e., 1/pj + 1/p′
j = 1. Then, for f ∈ Lp(K/M), u ∈ Lp′

(K/M) = (Lp(K/M))′ and
g ∈ G, we have:

〈
πν,p(g)f,u

〉 = ∫
K/M

(
πν,p(g)f

)
(k)u(k) dk̇

=
∫

K/M

a
(
g−1k

)−(ν+ρ)
f

(
κ
(
g−1k

))
u(k) dk̇.

Here, the functions κ(·), a(·), n(·) on G are given by the unique factorization g = κ(g)a(g)n(g)

of g, according to the Iwasawa decomposition G = KAN .
Obviously, the expression above is analytic in ν ∈ a∗

C
, which finishes the proof. �

For t = (t1, . . . , tr ) ∈ ]0,+∞[r , let

Ωt := {
ν ∈ a∗

C

∣∣ |Reνj | < tj , j = 1, . . . , r
}
.

Moreover, for p � 0, let

p := (p, . . . ,p) ∈ Rr .

According to our choice of measure on K/M (cf. (2.5)), notice that

Lp(K/M) = Lp(K/M), ‖ · ‖p = ‖ · ‖Lp(K/M).

Proposition 2.2.

(i) For all p ∈ [1,+∞[r , f ∈ Lp(K/M), ν ∈ Ωt , g ∈ G, we have∥∥πν,p(g)f
∥∥

p
� e

∑
j (tj +1)|ρj |d(g,e)‖f ‖p.
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(ii) Let ν ∈ a∗
C

, and let q be an element of [1,+∞[r satisfying

Reνj = 2

qj

− 1, j = 1, . . . , r.

Then, for all g ∈ G, f ∈ Lq(K/M),∥∥πν,q(g)f
∥∥

q
= ‖f ‖q .

Furthermore, for ν ∈ ia∗, πν,2 is a unitary representation of G.

Proof. (i) results immediately from the estimate given in Proposition 2.1 and (ii) from Lem-
mas 2.3 and 2.1, since, for such q , we have a−(Reνl+1)ρl = a−2ρl/ql , if a ∈ Al . �
2.3. A holomorphic family of compact operators

Let L = −∑k
1 X2

j be a fixed sub-Laplacian on G. The estimate (1.3), in combination with the
estimate in Proposition 2.2 (i), easily implies that the operator

πν,p(h1)f :=
∫
G

h1(x)πν,p(x)f dx, f ∈ Lp(K/M),

is well defined and bounded on Lp(K/M). In fact, these operators are even compact. To see this,
let us put, for ν ∈ Ω1, k1, k2 ∈ K ,

Kν(k1, k2) := cG

∫
M×A×N

a−ν+ρh1
(
k1(man)−1k−1

2

)
dmda dn, (2.7)

where cG is the positive constant given by d(x−1) = cG dx (which exists, since G is unimodular).

Lemma 2.4. The integral in (2.7) is absolutely convergent and defines a continuous, right
M-invariant kernel function on K × K , in the sense that Kν(k1m

′, k2m
′) = Kν(k1, k2) for every

m′ ∈ M .

Proof. In order to prove that the integral in (2.7) is absolutely convergent, we put

I :=
∫

M×A×N

∣∣a−ν+ρh1
(
k1(man)−1k−1

2

)∣∣dmda dn.

Then, in view of (1.3), we have

I � C

∫
a−Reν+ρe−cd(k1(man)−1k−1

2 ,e)2
dmda dn.
M×A×N
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Using the K-bi-invariance of the norm ‖ · ‖ on G and the inclusion M ⊂ K , we get, for any
k ∈ K , that

d
(
k1(man)−1k−1

2 , e
) = d(kan, e).

Moreover, by (2.6) and (2.1),

a−2ρa−Reν+ρ = a−Reν−ρ � e|Reν+ρ|d(kan,e).

Since |Reν + ρ| � 2
∑

j |ρj | for ν ∈ Ω1, we obtain:

I � C

∫
K×A×N

a2ρe
2
∑

j |ρj |d(kan,e)
e−cd(kan,e)2

dk da dn,

which is in fact equal to

C

∫
G

e
2
∑

j |ρj |d(x,e)
e−cd(x,e)2

dx.

Since G is unimodular and has exponential volume growth, it is easy to see that this integral is
finite. Moreover, since the integrand in (2.7) depends continuously on k1 and k2, we see that Kν

is continuous.
In order to prove the right M-invariance of Kν , let m′ ∈ M . One has, for any (m,a,n) ∈

M × A × N :

(man)m
′ = mm′

anm′
.

According to the invariance of dm, we then have, for any k1, k2 ∈ K :

Kν(k1m
′, k2m

′) = cG

∫
M×A×N

a−ν+ρh1
(
k1(manm′

)−1k−1
2

)
dmda dn.

Furthermore, it is easy to check that, for any ϕ ∈ C0(N),∫
N

ϕ
(
nm′)

dn =
∫
N

ϕ(n)dn.

Indeed, since G = KAN , there exists φ ∈ C0(G) such that

ϕ(n) =
∫

K×A

a2ρφ(kan)dk da.

According to our choice of the Haar measure dx on G (cf. (2.2)), we have:∫
φ(x)dx =

∫
a2ρφ(kan)dk da dn =

∫
ϕ(n)dn.
G K×A×N N
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Using the invariance of dx and dk, in combination with the commutation and normalization
properties of m′ ∈ M , we see that∫

N

ϕ(n)dn =
∫
G

φ
(
xm′)

dx =
∫

K×A×N

a2ρφ
(
kanm′)

dk da dn =
∫
N

ϕ
(
nm′)

dn.

We thus conclude that Kν is right M-invariant. �
Put, for ν ∈ Ω1 := Ω1,

T (ν) := πν(h1).

Proposition 2.3. For any ν ∈ Ω1, T (ν) is a kernel operator with kernel Kν , and induces, for any
p ∈ [1,+∞[r , a compact operator Tp(ν) on Lp(K/M), given by πν,p(h1).

The family ν �→ Tp(ν) of compact operators is analytic (in the sense of Kato [10]) on Ω1.

Furthermore, for ν ∈ ia∗, T2(ν) is a self-adjoint operator on L2(K/M).

Proof. Let ν ∈ Ω1, f ∈ L1(K/M) and k1 ∈ K . By definition,

(
T (ν)f

)
(k1) =

∫
G

h1(x)
(
πν(x)f

)
(k1) dx.

By invariance of dx, this is equal to

cG

∫
G

h1
(
k1x

−1)fν(x) dx.

According to our choice of dx and using the covariance property of fν , we obtain

(
T (ν)f

)
(k1) = cG

∫
K×A×N

a2ρa−(ν+ρ)h1
(
k1(an)−1k−1)fν(k) dk da dn.

Using the right M-invariance of fν , and since dk is invariant and M ⊂ K , this can be written as
follows: (

T (ν)f
)
(k1) = cG

∫
K×M×A×N

a−ν+ρh1
(
k1(man)−1k−1)fν(k) dk dmda dn.

But, fν = f on K . According to Fubini’s theorem, this shows that T (ν) is a kernel operator with
kernel Kν .

Since Kν is continuous on the compact space K × K , it follows from Lemma 2.4 that Tp(ν)

defines a compact operator on Lp(K/M), and the analytic dependence of Kν , which is evident
by (2.7), implies that, for any p ∈ [1,+∞[r , the family of operators Tp(ν) is analytic on Ω1.

Finally, if ν ∈ ia∗, then πν,2 is unitary, and since h1(x) = h1(x−1), we see (by (1.4)) that the
operator πν,2(h1) is self-adjoint. �
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2.4. Some consequences of the Kunze–Stein phenomenon

Observe that, by Hölder’s inequality, for any p ∈ [1,2]r and any q ∈ [p,p′], we have

‖f ‖q � ‖f ‖p′ , for all f ∈ Lp′
(K/M), (2.8)

since the compact space K/M has normalized measure 1. Therefore, Lp′
(K/M) is a subspace

of Lq(K/M).
As a consequence of the Kunze–Stein phenomenon (see [12] and [6]), we shall prove:

Proposition 2.4. Let 1 < p0 < 2 and ν0 ∈ a∗ \ {0}. There exist ε > 0 and C > 0, such that, for
any ξ, η ∈ Lp0(K/M) and z ∈ C with |Re z| < ε,∥∥〈

πzν0(·)ξ, η
〉∥∥

L
p′

0 (G)
� C‖ξ‖p′

0
‖η‖p′

0
. (2.9)

Proof. Observe that, for every ν ∈ ia∗, the representation πν is unitarily equivalent to π̃ν .
Therefore, given δ > 0, we obtain from [6], that there is a constant Cδ > 0, such that, for any
2 + δ � r ′ � ∞ and ξ, η ∈ L2(K/M), we have∥∥〈

πν(·)ξ, η
〉∥∥

Lr′ (G)
� Cδ‖ξ‖2‖η‖2, provided Reν = 0. (2.10)

Indeed, in [6], this is only stated for ν = 0, but the proof easily extends to arbitrary ν ∈ ia∗.
On the other hand, since πν,q is isometric, we have, as an immediate consequence of Propo-

sition 2.2(ii), the estimate∥∥〈
πν(·)ξ, η

〉∥∥
L∞(G)

� ‖ξ‖q‖η‖q ′ , q ∈ [1,+∞[r , (2.11)

for any ξ ∈ Lq(K/M), η ∈ Lq ′
(K/M), provided that

Reνj = 2

qj

− 1, j = 1, . . . , r. (2.12)

Let θ0 ∈ ]0,1[ be given by 2
p0

= 1 + θ0. If q satisfies (2.12) and |Reνj | � θ0 for any j =
1, . . . , r , q ∈ [p0,p

′
0]. Thus, since 2 ∈ [p0,p

′
0], we can unify (2.10) and (2.11), using (2.8), as

follows.
Given δ > 0, there exists a constant Cδ � 1 such that, for any ξ ∈ Lp0(K/M), η ∈ Lp′

0(K/M):

if Reν = 0, for all r ′ ∈ [2 + δ,+∞], then ‖〈πν(·)ξ, η〉‖
Lr′ (G)

� Cδ‖ξ‖p′
0
‖η‖p′

0
,

and

if |Reνj | � θ0, j = 1, . . . , r , then ‖〈πν(·)ξ, η〉‖L∞(G) � ‖ξ‖p′
0
‖η‖p′

0
.

If we choose ν = zν0, and put, for ξ, η ∈ Lp′
0(K/M) fixed, Ψz := 〈πzν0(·)ξ, η〉, we obtain that

‖Ψiy‖ r′ � Cδ‖ξ‖p′ ‖η‖p′ , for all r ′ ∈ [2 + δ,+∞] and y ∈ R,

L (G) 0 0
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and

‖Ψ±θ1+iy‖L∞(G) � Cδ‖ξ‖p′
0
‖η‖p′

0
, for all y ∈ R,

with θ1 := θ0/maxj=1,...,r |Reν0,j |.
Since Ψz depends analytically on z, we can apply Stein’s interpolation theorem (cf. [18, The-

orem 4.1]), and obtain, for every r ′ � 2 + δ, that

if |Re z| � θ1 and q ′ := r ′

1 − |Re z|/θ1
, then ‖Ψz‖Lq′

(G)
� Cδ‖ξ‖p′

0
‖η‖p′

0
. (2.13)

But p′
0 > 2. Hence we can choose δ > 0 and ε > 0 so small that (1 − ε

θ1
)p′

0 � 2 + δ. Then, for

|Re z| � ε, if we take r ′ = p′
0(1 − |Re z|

θ1
) in (2.13), we have r ′ � 2 + δ, and hence

‖Ψz‖
L

p′
0 (G)

� Cδ‖ξ‖p′
0
‖η‖p′

0
. �

2.5. Proof of Theorem 1.1

Let p ∈ [1,∞[, p �= 2. The aim is to find a non-isolated point λ0 in the L2-spectrum σ2(L)

of L and an open neighborhood U of λ0 in C such that, if F0 ∈ C∞(R) is an Lp-multiplier
for L, then F0 extends holomorphically to U . Recall that C∞(R) denotes the space of continuous
functions on R vanishing at infinity.

Since the L2-spectrum of L is contained in [0,+∞[, we may assume that F0 ∈ C∞([0,+∞[).
Moreover, according to [8, Lemma 6.1], it suffices to consider the case where 2 < p′ < ∞.

As in Section 1, we can replace F0 by the function F = F0e
−·, so that F(L) acts on the spaces

Lq(G), q ∈ [p,p′], by convolution with the function F(L)δ ∈ ⋂p′
q=p Lq(G). The Kunze–Stein

phenomenon implies now that every Lp function defines a bounded operator on L2(G) and also
on every Hilbert space H of any unitary representation π of G, which is weakly contained in the
left regular representation. Indeed, we know that for any coefficient x �→ cπ

ξ,η(x) := 〈π(x)ξ, η〉
of π , we have, for some constant Cp > 0, that∥∥cπ

ξ,η

∥∥
p′ � Cp‖ξ‖‖η‖, ξ, η ∈ H.

Hence for f ∈ Lp(G),∣∣∣∣ ∫
G

f (x)cπ
ξ,η(x) dx

∣∣∣∣ � ‖f ‖p

∥∥cπ
ξ,η

∥∥
p′ � Cp‖f ‖p‖ξ‖‖η‖.

Hence there exists a unique bounded operator π(f ) on H, such that ‖π(f )‖op � Cp‖f ‖p and

〈
π(f )ξ, η

〉 = ∫
G

f (x)cπ
ξ,η(x) dx, ξ, η ∈H.

Choosing now a sequence (fν)ν of continuous functions with compact support, which converges
in the Lp-norm to F(L)δ, we see that the operators λ(fν) converge in the operator norm to
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λ(F (L)) = F(λ(L)), and thus for any unitary representation (π,H) of G which is weakly con-
tained in the left regular representation λ, we have that∫

G

(
F(L)δ

)
(x)cπ

ξ,η(x) dx = lim
ν→∞

∫
G

fν(x)cπ
ξ,η(x) dx = lim

ν→∞
〈
π(fν)ξ, η

〉
= 〈

π
(
F(L)

)
ξ, η

〉 = 〈
F

(
π(L)

)
ξ, η

〉
, ξ, η ∈H.

In particular,

(
F(L)δ

) ∗ (
cπ
ξ,η

)̌
(x) =

∫
G

(
F(L)δ

)
(y)

〈
π(y)ξ,π(x)η

〉
dy

= 〈
F

(
π(L)

)
ξ,π(x)η

〉
, x ∈ G, ξ,η ∈H. (2.14)

In a first step, in order to find λ0 ∈ R and its neighborhood U , we choose a suitable direction
ν0 in a∗. To this end, let ω be the Casimir operator of G, and ν ∈ ia∗. The representation πν is
then unitary, and we can define the operator dπν(ω) on the space of smooth vectors in L2(K/M)

with respect to πν . Moreover, πν is irreducible (see [11, Theorem 1]), and therefore

dπν(ω) = χ(ν) Id,

where χ is a polynomial function on a∗, given by the Harish-Chandra isomorphism. Thus, χ is
in fact a quadratic form.

Choose ν0 ∈ a∗, ν0 �= 0, such that χ(ν0) �= 0. Then, clearly,∣∣χ(iyν0)
∣∣ → +∞ as y → +∞ in R. (2.15)

Put p0 := p′. According to Proposition 2.4, there exist ε > 0 and C > 0 such that (2.9) holds for
every z ∈ U1 := {z ∈ C | |Re z| < ε}. Put:

π(z) := πzν0 and T̃ (z) := T (zν0).

From Proposition 2.3, (T̃ (z))z∈U1 is an analytic family of compact operators on Lp0(K/M). And,
by an obvious analogue to [8, Proposition 5.4], there exist an open connected neighborhood Uy0

of some point iy0 in U1, with y0 ∈ R, and two holomorphic mappings

λ :Uy0 → C and ξ :Uy0 → Lp′
0(K/M)

such that, for some constant C > 0, we have, for all z ∈ Uy0 :

T̃ (z)ξ(z) = λ(z)ξ(z);
ξ(z) �= 0 and

∥∥ξ(z)
∥∥

p′
0
� C. (2.16)

Since π(iy) is unitary for every y ∈ R, λ is real-valued on Uy ∩ iR.
0
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Fix a non-trivial function η in C∞(K/M). Let z ∈ Uy0 and Φz denote the function on G given
by

Φz(g) := 〈
π(z)

(
g−1)ξ(z), η

〉
.

We have that Φz(g) depends continuously on z and g. Moreover, by (2.9) and (2.16), there exists
a constant C0 > 0, such that

for all z ∈ Uy0 , ‖Φz‖
L

p′
0 (G)

� C0. (2.17)

Thus, for any z ∈ Uy0 , Φz ∈ Lp′
0(G), and consequently, since F is an Lp′

0 -multiplier for L,
F(L)Φz ∈ Lp′

0(G) is well defined.
Put, for z ∈ Uy0 , μ(z) := − logλ(z), where log denotes the principal branch of the logarithm.

For z ∈ Uy0 , ξ(z) is an eigenvector of T̃ (z) = π(z)(h1) associated to the eigenvalue λ(z), where
h1 is the convolution kernel of e−L. Thus, one has by (2.14), for all z ∈ Uy0 ∩ iR, g ∈ G,(

F(L)Φz

)
(g) = 〈

F
(
π(z)(L)

)
ξ(z),π(z)η

〉
= F

(
μ(z)

)〈
π(z)

(
g−1)ξ(z), η

〉
. (2.18)

Let ψ be a fixed element of C0(G) such that∫
G

Φiy0(x)ψ(x)dx �= 0.

By shrinking Uy0 , if necessary, we may assume that
∫
G

Φz(x)ψ(x)dx �= 0 for all z ∈ Uy0 .
Then, (2.18) implies that

(F ◦ μ)(z) =
∫
G
(F(L)Φz)(x)ψ(x)dx∫

G
Φz(x)ψ(x)dx

, for z ∈ Uy0 ∩ iR. (2.19)

Observe that the numerator and the denominator in the right-hand side of (2.19) are holomorphic
functions in z ∈ Uy0 . Indeed, F(L)∗ψ ∈ Lp0 , and, by (2.17), ‖Φz‖

L
p′

0
� C. Moreover

〈
F(L)Φz,ψ

〉 = 〈
Φz,F (L)∗ψ

〉
.

This implies that the mapping z �→ 〈F(L)Φz,ψ〉 is continuous, and the holomorphy of this
mapping then follows easily from Fubini’s and Morera’s theorems.

Therefore, F ◦ μ has a holomorphic extension to Uy0 .
Moreover, since ωh1 ∈ L1(G), in view of Proposition 2.2, for y ∈ R, the norm∥∥π(iy)(ωh1)

∥∥
op � ‖ωh1‖L1(G)

is uniformly bounded. On the other hand,

π(iy)(ωh1) = dπ(iy)(ω)π(iy)(h1) = χ(iyν0)π(iy)(h1),
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and so (2.15) implies that

lim
y→+∞

∥∥T̃ (iy)
∥∥ = lim

y→+∞
∥∥π(iy)(h1)

∥∥ = 0.

This shows that λ is not constant, and hence, varying y0 slightly, if necessary, we may assume that
μ′(iy0) �= 0. It follows that μ is a local bi-holomorphism near iy0. In combination with (2.19),
this implies that F has a holomorphic extension to a complex neighborhood of λ0 := μ(iy0) ∈ R.

3. Transference for p-induced representations

3.1. p-Induced representations

Let G be a separable locally compact group and S < G a closed subgroup. By [15], there
exists a Borel measurable cross-section σ : G/S → G for the homogeneous space H := G/S

(i.e. σ(x) ∈ x for every x ∈ G/S) such that σ(K) is relatively compact for any compact subset
K of H . Then, every g ∈ G can be uniquely decomposed as

g = σ(x)s, with x ∈ H, s ∈ S.

We put Φ :H × S → G, Φ(x, s) := σ(x)s. Then Φ is a Borel isomorphism, and we write:

Φ−1(g) =: (η(g), τ (g)
)
.

Thus

g = σ ◦ η(g)τ(g), g ∈ G.

For later use, we also define:

τ(g, x) := τ
(
g−1σ(x)

)
, η(g, x) := η

(
g−1σ(x)

)
,

g ∈ G, x ∈ H.

Let dg denote the left-invariant Haar measure on G, and ΔG the modular function on G, i.e.∫
G

f (gh)dg = ΔG(h)−1
∫
G

f (g)dg, h ∈ G.

Similarly, ds denotes the left-invariant Haar measure on S, and ΔS its modular function.
On a locally compact measure space Z, we denote by Mb(Z) the space of all essentially

bounded measurable functions from M to C, and by M0(Z) the subspace of all functions which
have compact support, in the sense that they vanish a.e. outside a compact subset of Z. For
f ∈ M0(G), let f̃ be the function on G given by

f̃ (g) :=
∫

f (gs)ΔG,S(s) ds, g ∈ G,
S
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where we have put ΔG,S(s) := ΔG(s)/ΔS(s), s ∈ S. Then f̃ lies in the space

E(G,S) := {
h̃ ∈Mb(G) | h̃ has compact support modulo S, and

h̃(gs) = (
ΔG,S(s)

)−1
h̃(g) for all g ∈ G, s ∈ S

}
.

In fact, one can show that E(G,S) = {f̃ | f ∈ M0(G)}. Moreover, one checks easily, by
means of the use of a Bruhat function, that f̃ = 0 implies

∫
G

f (g)dg = 0.
From here it follows that there exists a unique positive linear functional, denoted by

∫
G/S

dġ,
on the space E(G,S), which is left-invariant under G, such that∫

G

f (g)dg =
∫

G/S

f̃ (g) dġ =
∫

G/S

∫
S

f (gs)ΔG,S(s) ds dġ. (3.1)

By means of the cross-section σ , we can next identify the function h̃ ∈ E(G,S) with the measur-
able function h ∈M0(H), given by

h(x) := Rh̃(x) := h̃
(
σ(x)

)
, x ∈ H.

Notice that, given h ∈ M0(H), the corresponding function h̃ =: R−1h ∈ E(G,S) is given by

h̃
(
σ(x)s

) = h(x)ΔG,S(s)−1.

The mapping h �→ ∫
G/S

h̃(g) dġ is then a positive Radon measure on C0(H), so that there exists
a unique regular Borel measure dx on H = G/S, such that∫

G/S

h̃(g) dġ =
∫
H

h(x)dx, h ∈ C0(H). (3.2)

Formula (3.1) can then be re-written as∫
G

f (g)dg =
∫
H

∫
S

f
(
σ(x)s

)
ΔG,S(s) ds dx. (3.3)

Notice that the left-invariance of
∫
G/S

dġ then translates into the following quasi-invariance prop-
erty of the measure dx on H :∫

H

h
(
η(g, x)

)
ΔG,S

(
τ(g, x)

)−1
dx =

∫
H

h(x)dx for every g ∈ G. (3.4)

Formula (3.3) remains valid for all f ∈ L1(G).
Next, let ρ be a strongly continuous isometric representation of S on a complex Banach space

(X,‖ · ‖X), so that in particular,∥∥ρ(s)v
∥∥ = ‖v‖X for every s ∈ S, v ∈ X.
X
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Fix 1 � p < ∞, and let Lp(G,X;ρ) denote the Banach space of all Borel measurable functions
ξ̃ :G → X, which satisfy the covariance condition

ξ̃ (gs) = ΔG,S(s)−1/pρ
(
s−1)[ξ̃ (g)

]
for all g ∈ G, s ∈ S,

and have finite Lp-norm ‖ξ̃‖p := (
∫
G/S

‖ξ̃ (g)‖p
X dġ)1/p .

Notice that the function g �→ ‖ξ̃ (g)‖p
X satisfies the covariance property of functions in

E(G,S), so that the integral
∫
G/S

‖ξ̃ (g)‖p
X dġ is well defined.

The p-induced representation πp = indG
p,Sρ is then the left-regular representation λG = λ of

G acting on Lp(G,X;ρ), i.e.,[
πp(g)ξ̃

]
(g′) := ξ̃

(
g−1g′), g, g′ ∈ G, ξ̃ ∈ Lp(G,X;ρ).

By means of the cross-section σ , one can realize πp on the Lp-space Lp(H,X).
To this end, given ξ̃ ∈ Lp(G,X;ρ), we define ξ ∈ Lp(H,X) by

ξ(x) := T ξ̃ (x) := ξ̃
(
σ(x)

)
, x ∈ H.

Because of (3.2), T :Lp(G,X;ρ) → Lp(H,X) is a linear isometry, with inverse

T −1ξ
(
σ(x)s

) := ξ̃
(
σ(x)s

) = ΔG,S(s)−1/pρ
(
s−1)[ξ(x)

]
.

Since, for g ∈ G, y ∈ H and ξ̃ ∈ Lp(G,X;ρ),

ξ̃
(
g−1σ(y)

) = ξ̃
(
σ ◦ η

(
g−1σ(y)

)
τ
(
g−1σ(y)

))
= ξ̃

(
σ
(
η(g, y)

)
τ(g, y)

)
= ΔG,S

(
τ(g, y)

)−1/p
ρ
(
τ(g, y)−1)[ξ̃(

σ
(
η(g, y)

))]
,

we see that the induced representation πp can also be realized on Lp(H,X), by[
πp(g)ξ

]
(y) = ΔG,S

(
τ(g, y)

)−1/p
ρ
(
τ(g, y)−1)[ξ(

η(g, y)
)]

, (3.5)

for g ∈ G, y ∈ H , ξ ∈ Lp(H,X).
Observe that πp(g) acts isometrically on Lp(H,X), for every g ∈ G. This is immediate from

the original realization of πp on Lp(G,X;ρ), but follows also from (3.4), in the second realiza-
tion given by (3.5).

Examples 3.1. (a) If S � G is a closed, normal subgroup, then H = G/S is again a group, and
one finds that, for a suitable normalization of the left-invariant Haar measure dx on H , we have∫

G

f (g)dg =
∫
H

∫
S

f
(
σ(x)s

)
ds dx, f ∈ L1(G).

In particular, ΔG|S = ΔS , so that ΔG,S = 1 and dx in (3.3) agrees with the left-invariant Haar
measure on H .
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Furthermore, there exists a measurable mapping q :H × H → S, such that

σ(x)−1σ(y) = σ
(
x−1y

)
q(x, y), x, y ∈ H,

since σ(x)−1σ(y) ≡ σ(x−1y) modulo S. Thus, if g = σ(x)s, then

g−1σ(y) = s−1σ(x)−1σ(y) = s−1σ
(
x−1y

)
q(x, y)

= σ
(
x−1y

)((
s−1)σ(x−1y)−1

q(x, y)
)
.

(Here we use the notation sg := gsg−1, s ∈ S, g ∈ G.)
This shows that τ(g, y) = (s−1)σ(x−1y)−1

q(x, y) and η(g, y) = x−1y. Hence πp is given as
follows: [

πp

(
σ(x)s

)
ξ
]
(y) = ρ

(
q(x, y)−1sσ(x−1y)−1)[

ξ
(
x−1y

)]
, (3.6)

for (x, s) ∈ H × S, y ∈ H, ξ ∈ Lp(H,X).
We remark that it is easy to check that

q(x, y)−1sσ(x−1y)−1 = sσ(y)−1σ(x)q(x, y)−1.

Notice that (3.6) does not depend on p.
(b) In the special case where ρ = 1 and S is normal, the induced representation ι = indG

S 1 is
given by [

ι
(
σ(x)s

)
ξ
]
(y) = ξ

(
x−1y

)
.

For the integrated representation, we then have:

[
ι(f )ξ

]
(y) =

∫
H

∫
S

f
(
σ(x)s

)
ξ
(
x−1y

)
ds dx

=
∫
H

f̃ (x)ξ
(
x−1y

)
dx

= [
λH (f̃ )ξ

]
(y),

i.e.

ι(f ) = λH (f̃ ), where f̃ (x) :=
∫
S

f
(
σ(x)s

)
ds,

i.e. f̃ is the image of f under the quotient map from G onto G/S.
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3.2. A transference principle

If ξ ∈ Lp(H,X), and if φ :S → C, we define the ρ-twisted tensor product

ξ ⊗p
ρ φ :G → X by[

ξ ⊗p
ρ φ

](
σ(x)s

) := φ(s)ΔG,S(s)−1/pρ
(
s−1)[ξ(x)

]
, (x, s) ∈ H × S.

Let us denote by X∗ the dual space of X. For any complex vector space Y , we denote by Y its
complex conjugate, which, as an additive group, is the space Y , but with scalar multiplication
given by λy, for λ ∈ C and y ∈ Y . In the following, we assume that X contains a dense, ρ-
invariant subspace X0, which embeds via an anti-linear mapping i :X0 ↪→ X∗ into the complex
conjugate of the dual space of X, in such a way that, for every x ∈ X,

‖x‖ = sup
{v∈X0: ‖i(v)‖X∗=1}

∣∣〈x, v〉∣∣. (3.7)

Here, we have put

〈x, v〉 := i(v)(x), v ∈ X0, x ∈ X.

Moreover, we assume that∥∥i
(
ρ(s)v

)∥∥
X∗ = ∥∥i(v)

∥∥
X∗ for every v ∈ X0, s ∈ S, (3.8)

and 〈
ρ(s)x,ρ(s)v

〉 = 〈x, v〉 for every x ∈ X, v ∈ X0, s ∈ S. (3.9)

The most important example for us will be an Lp-space X = Lp(Ω), 1 � p < ∞, on a measure
space (Ω,dω), and a representation ρ of G which acts isometrically on Lp(Ω) as well as on its
dual space Lp′

(Ω) (i.e. 1
p

+ 1
p′ = 1). In this case, by interpolation, we have ‖ρ(g)ξ‖r � ‖ξ‖r ,

for | 1
r

− 1
2 | � | 1

p
− 1

2 |, g ∈ G, which implies that indeed ρ(g) acts isometrically on Lr(Ω), for

| 1
r

− 1
2 | � | 1

p
− 1

2 |. In particular, ρ is a unitary representation on L2(Ω). We can then choose

X0 := Lp′
(Ω) ∩ Lp(Ω) ⊂ L2(Ω), and put

i(η)(ξ) :=
∫
Ω

ξ(ω)η(ω)dω, η ∈ Lp′
(Ω) ∩ Lp(Ω), ξ ∈ Lp(Ω).

Notice that, if ρ is a unitary character, (3.8) and (3.9) are always satisfied.

Lemma 3.1. Let φ ∈ Lp(S),ψ ∈ Lp′
(S), ξ ∈ Lp(H,X0) and η ∈ Lp′

(H,X0), where 1
p

+ 1
p′ = 1.

Then, for every g ∈ G,

〈
λG(g)

(
ξ ⊗p

ρ φ
)
, η ⊗p′

ρ ψ
〉 = ∫

H

φ ∗
�
ψ

(
τ(g, x)

)〈[
πp(g)ξ

]
(x), η(x)

〉
dx. (3.10)
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Proof. By (3.3), we have:〈
λG(g)

(
ξ ⊗p

ρ φ
)
, η ⊗p′

ρ ψ
〉

=
∫
H

∫
S

〈
ξ ⊗p

ρ φ
(
g−1σ(x)s

)
, η ⊗p′

ρ ψ
(
σ(x)s

)〉
ΔG,S(s) ds dx

=
∫
H

∫
S

〈
ξ ⊗p

ρ φ
(
σ
(
η(g, x)

)
τ(g, x)s

)
, η ⊗p′

ρ ψ
(
σ(x)s

)〉
ΔG,S(s) ds dx

=
∫
H

∫
S

ΔG,S

(
τ(g, x)s

)− 1
p ΔG,S(s)

− 1
p′ φ

(
τ(g, x)s

)
ψ(s)

〈
ρ
(
s−1τ(g, x)−1)[ξ(

η(g, x)
)]

, ρ
(
s−1)[η(x)

]〉
ΔG,S(s) ds dx

=
∫
H

∫
S

ΔG,S

(
τ(g, x)

)− 1
p φ

(
τ(g, x)s

)
ψ(s) ds

〈
ρ
(
τ(g, x)−1)[ξ(

η(g, x)
)]

, η(x)
〉
dx.

Here, we have used that, by (3.9), 〈ρ(s−1)v1, ρ(s−1)v2〉 = 〈v1, v2〉 for all v1, v2 ∈ X0.
But, ∫

S

φ
(
τ(g, x)s

)
ψ(s) ds =

∫
S

φ(s)ψ
(
τ(g, x)−1s

)
ds = φ ∗

�
ψ

(
τ(g, x)

)
,

and

ΔG,H

(
τ(g, x)

)− 1
p
〈
ρ
(
τ(g, x)−1)[ξ(

η(g, x)
)]

, η(x)
〉 = 〈[

πp(g)ξ
]
(x), η(x)

〉
,

and thus (3.10) follows. �
From now on, we shall assume that the group S is amenable.
Since G is separable, we can then choose an increasing sequence (Aj )j of compacta in S such

that A−1
j = Aj and S = ⋃

j Aj , and put

φj = φ
p
j := χAj

|Aj |1/p
, ψj = ψ

p′
j := χAj

|Aj |1/p′ ,

where χA denotes the characteristic function of the subset A. Then
�
ψj= ψj , ‖φj‖p =

‖ψj‖p′ = 1, and, because of the amenability of S (see [16]), we have:

χj := φj ∗ ψj tends to 1, uniformly on compacta in S. (3.11)

Proposition 3.1. Let πp = indG
p,S ρ be as before, where S is amenable, and let ξ, η ∈ C0(H,X0).

Then 〈
πp(g)ξ, η

〉 = lim
j→∞

〈
λG(g)

(
ξ ⊗p

ρ φj

)
, η ⊗p′

ρ ψj

〉
,

uniformly on compacta in G.
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Proof. By Lemma 3.1,

〈
λG(g)

(
ξ ⊗p

ρ φj

)
, η ⊗p′

ρ ψj

〉 = ∫
H

χj

(
τ(g, x)

)〈[
πp(g)ξ

]
(x), η(x)

〉
dx.

Fix a compact set K = K−1 ⊂ H containing the supports of ξ and η, and let Q ⊂ G be any
compact set. We want to prove that {τ(g, x) | g ∈ Q, x ∈ K} is relatively compact, for then,
by (3.11), we immediately see that

lim
j→∞

〈
λG(g)

(
ξ ⊗p

ρ φj

)
, η ⊗p′

ρ ψj

〉 = ∫
H

〈[
πp(g)ξ

]
(x), η(x)

〉
dx = 〈

πp(g)ξ, η
〉
,

uniformly for g ∈ Q.
Recall that τ(g, x) = τ(g−1σ(x)). Therefore, since σ(K) is relatively compact, it suffices to

prove that τ maps compact subsets of G into relatively compact sets in S. So, let again Q denote
a compact subset of G, and put M := Q mod S ⊂ H = G/S. Then M is compact, so that σ(M)

is compact in S. And, since τ(σ (x)s) = s for every x ∈ H , s ∈ S, we have:

τ(Q) = {
s ∈ S | σ(x)s ∈ Q for some x ∈ M

} = σ(M)−1Q,

which shows that τ(Q) is indeed relatively compact. �
Theorem 3.1. For every bounded measure μ ∈ M1(G), we have:∥∥πp(μ)

∥∥
Lp(H,X)→Lp(H,X)

�
∥∥λG(μ)

∥∥
Lp(G,X)→Lp(G,X)

.

Proof. Let ξ, η ∈ C0(H,X0). Observe first that, for g ∈ G,∣∣〈λG(g)
(
ξ ⊗p

ρ φj

)
, η ⊗p′

ρ ψj

〉∣∣
�

∥∥λG(g)
(
ξ ⊗p

ρ φj

)∥∥
Lp(G,X)

∥∥i ◦ (
η ⊗p′

ρ ψj

)∥∥
Lp′

(G,X∗)

= ∥∥ξ ⊗p
ρ φj

∥∥
Lp(G,X)

∥∥i ◦ (
η ⊗p′

ρ ψj

)∥∥
Lp′

(G,X∗).

On the other hand,

∥∥ξ ⊗p
ρ φj

∥∥p

Lp(G,X)
=

∫
H

∫
S

∣∣φj (s)
∣∣pΔG,S(s)−1

∥∥ρ
(
s−1)[ξ(x)

]∥∥p

X
ΔG,S(s) ds dx

=
∫
S

∣∣φj (s)
∣∣p ds

∫
H

∥∥ξ(x)
∥∥p

X
dx

= ‖ξ‖p

Lp(H,X),

since ρ(s−1) is isometric on X, so that∥∥ξ ⊗p
ρ φj

∥∥
p = ‖ξ‖Lp(H,X). (3.12)
L (G,X)
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Similarly, because of (3.8),∥∥i ◦ (
η ⊗p′

ρ ψj

)∥∥
Lp′

(G,X∗) = ‖i ◦ η‖
Lp′

(H,X∗). (3.13)

This implies ∣∣〈λG(g)
(
ξ ⊗p

ρ φj

)
, η ⊗p′

ρ ψj

〉∣∣ � ‖ξ‖Lp(H,X)‖i ◦ η‖
Lp′

(H,X∗).

Therefore, if μ ∈ M1(G), Proposition 3.1 implies, by the dominated convergence theorem, that〈
πp(μ)ξ, η

〉 = lim
j→∞

〈
λG(μ)

(
ξ ⊗p

ρ φj

)
, η ⊗p′

ρ ψj

〉
. (3.14)

Moreover, by (3.12) and (3.13),∣∣〈λG(μ)
(
ξ ⊗p

ρ φj

)
, η ⊗p′

ρ ψj

〉∣∣
=

∣∣∣∣ ∫
G

〈
λG(μ)

(
ξ ⊗p

ρ φj

)
, η ⊗p′

ρ ψj

〉
dg

∣∣∣∣
�

∥∥λG(μ)
∥∥

Lp(G,X)→Lp(G,X)
‖ξ‖Lp(H,X)‖i ◦ η‖

Lp′
(H,X∗).

By (3.14), we therefore obtain:∣∣〈πp(μ)ξ, η
〉∣∣ �

∥∥λG(μ)
∥∥

Lp(G,X)→Lp(G,X)
‖ξ‖Lp(H,X)‖i ◦ η‖

Lp′
(H,X∗). (3.15)

In view of (3.7) and since C0(H,X0) lies dense in Lp(H,X), this implies the theorem. �
Corollary 1 (Transference). Let X = Lp(Ω). Then, for every μ ∈ M1(G), we have∥∥πp(μ)

∥∥
Lp(H,Lp(Ω))→Lp(H,Lp(Ω)))

�
∥∥λG(μ)

∥∥
Lp(G)→Lp(G)

.

Proof. If X = Lp(Ω) and h ∈ Lp(G,X), then, by Fubini’s theorem,

∥∥λG(μ)h
∥∥p

Lp(G,X)
=

∫
Ω

∥∥μ ∗ h(·,ω)
∥∥p

Lp(G)
dω �

∥∥λG(μ)
∥∥p

Lp(G)→Lp(G)
‖h‖Lp(G,X).

Hence, ∥∥λG(μ)
∥∥

Lp(G,X)→Lp(G,X)
�

∥∥λG(μ)
∥∥

Lp(G)→Lp(G)
.

In combination with (3.15), we obtain the desired estimate. �
Remark 2. We call a Banach space X to be of Lp-type, 1 � p < ∞, if there exists an embedding
ι :X ↪→ Lp(Ω) into an Lp-space and a constant C � 1 such that, for every x ∈ X,

1 ‖x‖X �
∥∥ι(x)

∥∥
Lp(Ω)

� C‖x‖X.

C
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For instance, any separable Hilbert space H is of Lp-type, for 1 � p < ∞, or, more generally,
any space Lp(Y,H). This follows easily from Khintchin’s inequality. By an obvious modification
of the proof, Corollary 1 remains valid for spaces X of Lp-type.

Denote by C∗
r (G) the reduced C∗-algebra of G. If p = 2, we can extend (3.14) to C∗

r (G).

Proposition 3.2. If p = 2 and X = L2(Ω), then the unitary representation π2 is weakly con-
tained in the left-regular representation λG. In particular, for any K ∈ C∗

r (G), the operator
π2(K) ∈ B(L2(H,L2(Ω))) is well defined.

Moreover, for all ξ, η ∈ C0(H,L2(Ω)), we have〈
π2(K)ξ, η

〉 = lim
j→∞

〈
λG(K)

(
ξ ⊗2

ρ φj

)
, η ⊗2

ρ φj ,
〉
. (3.16)

Proof. If K ∈ C∗
r (G), then we can find a sequence (fk)k in L1(G), such that λG(K) =

limk→∞λG(fk) in the operator norm ‖ · ‖ on L2(G). But, (3.15) implies, for all f ∈ L1(G)

that ∥∥π2(f )
∥∥ �

∥∥λG(f )
∥∥. (3.17)

Here ‖ · ‖ denotes the operator norm on B(L2(H,L2(Ω))) and B(L2(G)), respectively. There-
fore, the (π2(fk))k form a Cauchy sequence in B(L2(H,L2(Ω))), whose limit we denote
by π2(K).

It does not depend on the approximating sequence {fk}k . Moreover, from (3.17) we then
deduce that, for all K ∈ C∗

r (G),∥∥π2(K)
∥∥ �

∥∥λG(K)
∥∥ = ‖K‖C∗

r (G). (3.18)

In particular, we see that π2 is weakly contained in λG. It remains to show (3.16).
Given ε > 0, we choose f ∈ C0(G) such that ‖K − f ‖C∗

r (G) < ε/4. Next, by (3.15), we can
find j0 such that, for all j � j0,∣∣〈π2(f )ξ, η

〉 − 〈
λG(f )

(
ξ ⊗2

ρ φj

)
, η ⊗2

ρ φj

〉∣∣ < ε/4.

Assume without loss of generality that ‖ξ‖2 = ‖η‖2 = 1. Then, by (3.18),∣∣〈π2(K)ξ, η
〉 − 〈

π2(f )ξ, η
〉∣∣ � ‖K − f ‖C∗

r (G)‖ξ‖2‖η‖2 < ε/4,

and furthermore ∣∣〈λG(K)
(
ξ ⊗2

ρ φj

)
, η ⊗2

ρ φj

〉 − 〈
λG(f )

(
ξ ⊗2

ρ φj

)
, η ⊗2

ρ φj

〉∣∣
� ‖K − f ‖C∗

r (G)

∥∥ξ ⊗2
ρ φj

∥∥
2

∥∥η ⊗2
ρ φj

∥∥
2

<
ε

4
‖ξ‖2‖η‖2 = ε/4.

Combining these estimates, we find that, for all j � j0,∣∣〈π2(K)ξ, η
〉 − 〈

λG(K)
(
ξ ⊗2

ρ φj

)
, η ⊗2

ρ φj

〉∣∣ <
ε + ε + ε

< ε. �

4 4 4
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Corollary 3. Assume that ρ is a unitary representation on a separable Hilbert space X, for
instance a unitary character of S, and that ΔG,S = 1. Let K ∈ C∗

r (G), and assume that λG(K)

extends from L2(G) ∩ Lp(G) to a bounded linear operator on Lp(G), where 1 � p < ∞.
Then π2(K) extends from L2(G/S,X) ∩ Lp(G/S,X) to a bounded linear operator on

Lp(G/S,X), and ∥∥π2(K)
∥∥

Lp(G/S,X)→Lp(G/S,X)
�

∥∥λG(K)
∥∥

Lp(G)→Lp(G)
. (3.19)

Moreover, for f ∈ L1(G), we have πp(f ) = π2(f ) on C0(G/S,X).

Proof. If ξ, η ∈ C0(H,X), then, since ΔG,S = 1,〈
π2(K)ξ, η

〉 = lim
j→∞

〈
λG(K)

(
ξ ⊗2

ρ φ2
j

)
, η ⊗2

ρ ψ2
j

〉 = lim
j→∞

〈
λG(K)

(
ξ ⊗p

ρ φ
p
j

)
, η ⊗p′

ρ ψ
p′
j

〉
and, ∣∣〈λG(K)

(
ξ ⊗p

ρ φ
p
j

)
, η ⊗p′

ρ ψ
p′
j

〉∣∣
�

∥∥λG(K)
∥∥

Lp(G)→Lp(G)

∥∥ξ ⊗p
ρ φ

p
j

∥∥
Lp(G)

∥∥η ⊗p′
ρ ψ

p′
j

∥∥
Lp′

(G)

�
∥∥λG(K)

∥∥
Lp(G)→Lp(G)

‖ξ‖Lp(H,X)‖η‖
Lp′

(H,X)
.

Estimate (3.19) follows.
That πp(f ) = π2(f ) on C0(H,X), if f ∈ L1(G), is evident, since ΔG,S = 1. �

4. The case of a non-compact semi-simple factor

In this section, we shall give our proof of Theorem 1.2. Let us first notice the following
consequence of Corollary 3.

Assume that S is a closed, normal and amenable subgroup of G, and let L = −∑
j X2

j be a

sub-Laplacian on G. Denote by ι2 := indG
S 1 the representation of G induced by the trivial char-

acter of S (compare Example 3.1), and let L̃ = −∑
j (Xj mod s)2 = dι2(L) be the corresponding

sub-Laplacian on the quotient group H := G/S. Then

Mp(L) ∩ C∞(R) ⊂ Mp(L̃) ∩ C∞(R). (4.1)

In particular, if L̃ is of holomorphic Lp-type, then so is L.
In order to prove (4.1), assume that F is an Lp-multiplier for L contained in C∞(R). Then

F(L) lies in C∗
r (G), and by Corollary 3 the operator ι2(F (L)) = F(dι2(L)) = F(L̃) extends

from L2(H) ∩ Lp(H) to a bounded operator on Lp(H), so that F ∈Mp(L̃) ∩ C∞(R).
Let now G be a connected Lie group, with radical S = exp s. Then there exists a connected,

simply connected semi-simple Lie group H such that G is the semi-direct product of H and S,
and this Levi factor H has a discrete center Z (see [4]). Let L be a sub-Laplacian on G, and

denote by L̃ the corresponding sub-Laplacian on G/S � H and by ˜̃
L the sub-Laplacian on H/Z

corresponding to L̃ on H . We have that Z and S are amenable groups, and H/Z has finite center.

From Theorem 1.1, we thus find, if we assume H to be non-compact, that ˜̃
L is of holomorphic
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Lp-type for every p �= 2, and (4.1) then allows us to conclude that the same is true of L̃, and then
also of L.

5. Compact extensions of exponential solvable Lie groups

5.1. Compact operators arising in induced representations

Let now K = exp k be a connected compact Lie group acting continuously on an exponential
solvable Lie group S = exp s by automorphisms σ(k) ∈ Aut(S), k ∈ K . We form the semi-direct
product G = K � S with the multiplication given by

(k, s) · (k′, s′) = (
kk′, σ

(
k′−1)ss′), k, k′ ∈ K, s, s′ ∈ S.

The left Haar measure dg is the product of the Haar measure of K and the left Haar measure
of S. Let us choose a K-invariant scalar product 〈·,·〉 on the Lie algebra s of S. Denote by n

the nil-radical of s. Since every derivation d of s maps the vector space s into the nil-radical, it
follows that the orthogonal complement b of n in s is in the kernel of dσ(X) for every X ∈ k.
The following decomposition of the solvable Lie algebra s has been given in [3]. Choose an
element X ∈ b, which is in general position for the roots of s, i.e., for which λ(X) �= μ(X) for
all roots μ �= λ of s. Let s0 = {Y ∈ s; adl (X)Y = 0 for some l ∈ N∗}. Then s0 is a nilpotent
subalgebra of s, which is K-invariant (since [X, k] = {0}) and s = s0 +n. Let a be the orthogonal
complement of n ∩ s0 in s0. Then a is also a K-invariant subspace of s (but not in general a
subalgebra) and s = a ⊕ n. Let N = expn ⊂ S be the nil-radical of the group S. Then S is the
topological product of A = expa and N . Finally our group G is the topological product of K,A

and N . Hence every element g of G has the unique decomposition

g = kg · ag · ng, where kg ∈ K, ag ∈ A and ng ∈ N.

We shall use the notations and constructions of [8] in the following but we have to replace there
the symbol G with the letter S.

Let h :G → C be a function. For every x ∈ G, we denote by h̃(x) the function on S defined
by

h̃(x)(s) = h(xs), s ∈ S.

Also, for a function r :S → C and for x ∈ G, let xr :S → C be defined by

xr(s) := r
(
xsx−1).

We say that a Borel measurable function ω :G → R+ is a weight, if 1 � ω(x) = ω(x−1) and
ω(xy) � ω(x)ω(y), for every x, y ∈ G. Then the space

Lp(G,ω) = {
f ∈ Lp(G)

∣∣ ‖f ‖ω,p := ∥∥f ω1/p
∥∥

p
< ∞}

,

for 1 � p � ∞, is a subspace of Lp(G). For p = 1, it is even a Banach algebra for the norm
‖ · ‖ω,1.
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Proposition 5.1. Let G be a locally compact group and let S be a closed normal subgroup of G.
Let ω be a continuous weight on G such that the inverse of its restriction to S is integrable with
respect to the Haar measure on S. Let f,g :G → C be two continuous functions on G, such that
ω · g is uniformly bounded and such that f ∈ L1(G,ω). Let h := f ∗ g ∈ L1(G,ω). Then for
every t ∈ G, the function h̃(t) is in L1(S) and the mapping (t, u) �→ uh̃(t) from G × G to L1(S)

is continuous.

Proof. Since ω is a weight, we have that ω(s) � ω(u)ω(u−1s), i.e. 1
ω(u−1s)

� ω(u)
ω(s)

, s, u ∈ G.
Hence, for t ∈ G, s ∈ S,

∣∣h̃(t)(s)
∣∣ =

∣∣∣∣∫
G

f (u)g
(
u−1ts

)
du

∣∣∣∣ =
∣∣∣∣∫
G

f (tu)g
(
u−1s

)
du

∣∣∣∣
�

∫
G

∣∣f (tu)
∣∣∣∣g(

u−1s
)∣∣ω(u−1s)

ω(u−1s)
du �

∫
G

∣∣f (tu)
∣∣ω(u)

∣∣g(
u−1s

)∣∣ω(u−1s)

ω(s)
du,

and so

∥∥h̃(t)
∥∥

1 �
∫
S

∫
G

∣∣f (tu)
∣∣ω(u)

∣∣g(
u−1s

)∣∣ω(u−1s)

ω(s)
duds

�
∫
S

∫
G

∣∣f (tu)
∣∣ω(u)

‖gω‖∞
ω(s)

duds

�
∫
S

∫
G

ω
(
t−1)∣∣f (tu)

∣∣ω(tu)
‖gω‖∞
ω(s)

duds

= ω(t)‖f ‖ω,1‖gω‖∞
∥∥∥∥(

1

ω

)
|S

∥∥∥∥
1
. (5.1)

Thus, for every t ∈ G, the function h̃(t) is in L1(S). Furthermore, by (5.1), for t, t ′ ∈ G,

∥∥h(t) − h(t ′)
∥∥

1 �
∫
S

∫
G

∣∣f (tu) − f (t ′u)
∣∣ω(u)

‖gω‖∞
ω(s)

duds

�
∥∥(

λ
(
t−1)f − λ

(
t ′−1)f )∥∥

ω,1‖gω‖∞
∥∥∥∥(

1

ω

)
|S

∥∥∥∥
1
,

where λ denotes left translation by elements of G. Since left translation in L1(G,ω) and conju-
gation in L1(S) are continuous, it follows that the mapping (t, u) �→ uh̃(t) from G×G to L1(S)

is continuous too. �
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Let, as in (1.3), δ denote the Carathéodory distance associated to our sub-Laplacian L on G

and (ht )t>0 its heat kernel. Then the function ωd(g) := edδ(x,e), g ∈ G, d ∈ R+, defines a weight
on G. Since we have the Gaussian estimate∣∣ht (g)

∣∣ � Cte
−ct δ(g,e)2

, for all g ∈ G, t > 0,

it follows that

ht ∈ L1(G,ωd) ∩ L∞(G,ωd) for every t > 0 and d > 0. (5.2)

Proposition 5.2. Let G be the semidirect product of a connected compact Lie group K acting
on an exponential solvable Lie group S. Then there exists a constant d > 0, such that 1

ωd
|S is in

L1(S).

Proof. Let U be a compact symmetric neighborhood of e in G containing K . Since S is con-
nected, we know that G = ⋃

k∈N
Uk . This allows us to define τU = τ :G → N by

τ(x) = min
{
k ∈ N | x ∈ Uk

}
.

Then τ is sub-additive and thus defines a distance on G, which is bounded on compact sets. Since
τ is clearly connected in the sense of [19], it follows that τ and the Carathéodory distance δ are
equivalent at infinity, i.e.

1 + τ(x) � D
(
1 + δ(x)

)
� D′(1 + τ(x)

)
, x ∈ G.

We choose now a special compact neighborhood of e in the following way. We take our K-
invariant scalar-product on s, the unit-ball Ba in a and the unit-ball Bn ∈ n. Both balls are
K-invariant. Let Ua = expBa and Un = expBn. Then U = KUaUn ∩ UnUaK is a compact
symmetric neighborhood of e. Let us give a rough estimate of the radii of the “balls” Ul , l ∈ N.
For simplicity of notation, we shall denote all the positive constants which will appear in the
following arguments (and which will be assumed to be integers, if necessary) by C.

Let kiaini ∈ KUaUn, i = 1, . . . , l, and g := ∏l
i=1 kiaini . We have:

g =
l∏

i=1

kiaini =
(

l∏
i=1

kiai

)(
(k2a2 · · ·klal)

−1n1(k2a2 · · ·klal) · · · (klal)nl−1(klal)nl

)
.

Since Ua is K-invariant, it follows that

g =
l∏

i=1

kiaini = k′a′
l∏

i=1

(
a′′
i k′′

i

)
ni

(
a′′
i k′′

i

)−1
,

where k′, k′′
1 , . . . , k′′

l ∈ K , a′ ∈ Ul
a, a′′

1 ∈ Ul−1
a , . . . , a′′

l−1 ∈ Ua . Hence there exists X1, . . . ,Xl ∈
Ba, such that

a′ = expX1 · · · expXl = exp (X1 + · · · + Xl) expql(X1, . . . ,Xl)
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for some element ql(X1, . . . ,Xl) ∈ n ∩ s0. Since s0 is a nilpotent Lie algebra we have that
‖ql(X1, · · · ,Xl)‖ � C(1 + l)C, l ∈ N. Hence

a′ ∈ exp(lBa) exp
[
C(1 + l)CBn

] ⊂ exp(lBa)UC(1+l)C

n .

Furthermore, because Ua is compact, supa∈Ua
‖Ad(a)‖op � C < ∞ and so, for i = 1, . . . , l,

(a′′
i k′′

i )ni(a
′′
i k′′

i )−1 ∈ expC(l−i)Bn ⊂ UCl−i

n . Finally, for some integer constants C,

g = k′a′
l∏

i=1

(
a′′
i k′′

i

)
ni

(
a′′
i k′′

i

)−1 ∈ K exp lUaU
C(1+l)C

n

(
l−1∏
i=1

UCl−i

n

)
Un

⊂ K exp lUaU
C(1+l)C+∑l−1

i=1 Cl−i+1
n

⊂ K exp lUaU
Cl

n

⊂ K exp lUa expClBn. (5.3)

Hence, for any g ∈ G, for τU (g) = l, we have that g ∈ (KUaUn)l . Thus, denoting by Log :S → s

the inverse map of exp : s → S, we get that g = kgagng , with kg ∈ K , ag ∈ expa, ‖Log(ag)‖ �
l = τU (g) and ng ∈ N with ‖Log(ng)‖ � Cl , i.e. log(1 + ‖Log(ng)‖) � Cl = CτG(g). Whence
for our weight ωd , (d ∈ R+), we have that

ωd(g) = edδ(g) � CedCτU (g) � CedC(‖Log(ag)‖+log(1+‖Log(ng)‖))

= CedC‖Log(ag)‖(1 + ∥∥Log(ng)
∥∥)dC

.

Therefore, for d big enough,∫
S

1

ωd(s)
ds =

∫
a

∫
s

1

ωd(expX expY)
dY dX

� C

∫
a

∫
s

e−dC‖X‖ 1

(1 + ‖Y‖)dC
dY dX < ∞. �

Proposition 5.3. Let T be a compact topological space and let k :T × T → K(H) be a con-
tinuous mapping into the space of compact operators on a Hilbert space H. Let μ be a Borel
probability measure on T . Then the linear mapping K from L2(T ,H) to L2(T ,H) given by

Kξ(t) :=
∫
T

k(t, u)ξ(u)du, t ∈ T , ξ ∈ L2(T ,H),

is compact too.

Proof. We show that K is the norm-limit of a sequence of operators of finite rank. Let ε > 0.
Since T is compact and k is continuous, there exists a finite partition of unity of T ×T consisting
of continuous non-negative functions (ϕi)

N
i=1, such that ‖k(t, t ′) − k(u,u′)‖op < ε

2 for every
(t, t ′), (u,u′) contained in the support ϕi . Choose, for i = 1, . . . ,N an element (ti , t

′) in suppϕi .
i
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Since k(ti , t
′
i ) is a compact operator, we can find a bounded endomorphism Fi of H of finite

rank, such that ‖k(ti , t
′
i ) − Fi‖op < ε

2 , hence ‖k(t, t ′) − Fi‖op < ε for every (t, t ′) ∈ suppϕi ,

i = 1, . . . ,N . The finite rank operator Fi has the expression Fi = ∑Ni

k=1 Pηi,k,η
′
i,k

, where, for

η,η′ ∈H, Pη,η′ denotes the rank one operator Pη,η′(η′′) = 〈η′′, η′〉η, η′′ ∈H.

We approximate, by tensors ψi = ∑Mi

j=1 ϕi,j ⊗ ϕ′
i,j ∈ C(T ,R+) ⊗ C(T ,R+), the continuous

functions ϕi uniformly on T × T up to an error of at most ε
R

for some R > 0 to be determined
later on. Let Kε be the finite rank operator

Kε =
N∑

i=1

Mi∑
j=1

Ni∑
k=1

Pϕi,j ⊗ηi,k,ϕ
′
i,j ⊗η′

i,k
.

In order to estimate the difference K − Kε , we let first Kε,1 be the kernel operator with kernel
kε,1(s, t) = ∑N

i=1 ϕi(s, t)Fi . Then, for ξ ∈ L2(T ,H),

‖Kε,1ξ − Kξ‖2
2 =

∫
T

∥∥∥∥∥
N∑

i=1

∫
T

ϕi(s, t)
(
k(s, t) − Fi

)
ξ(t) dt

∥∥∥∥∥
2

ds

�
∫
T

(
N∑

i=1

∫
T

ϕi(s, t)ε
∥∥ξ(t)

∥∥dt

)2

ds =
∫
T

( ∫
T

ε
∥∥ξ(t)

∥∥dt

)2

ds � ε2‖ξ‖2.

Hence ‖K − Kε,1‖op � ε. Moreover,

∥∥(Kε,1 − Kε)ξ
∥∥2 =

∫
T

∥∥∥∥∥
∫
T

N∑
i=1

(
ϕi(s, t) −

Mi∑
j=1

ϕi,j (s)ϕ
′
i,k(t)

)
Fiξ(t) dt

∥∥∥∥∥
2

ds

�
∫
T

( ∫
T

N∑
i=1

ε

R
‖Fi‖op

∥∥ξ(t)
∥∥dt

)2

ds � ε2

R2

(
N∑

i=1

‖Fi‖op

)2

‖ξ‖2.

So, if we let R = 1
1+∑N

i=1 ‖Fi‖op
, then

‖K − Kε‖op � ‖K − Kε,1‖op + ‖Kε,1 − Kε‖op � 2ε. �
Let now π be an isometric representation of the group S on a Banach space X and denote

by ρp := indG
S π be the corresponding induced representation of G on Lp(G,X;π). Here we

follow the notation of Section 3.1.
Let h be in L1(G), and assume furthermore that h̃(g) ∈ L1(S) for all g ∈ G and that the

mapping h̃ :G → L1(S) is continuous. Then the operator ρp(h) is a kernel operator, whose
kernel k(t, u), t, u ∈ G, is given by

k(t, u) = ΔG

(
u−1)π(

uh̃
(
tu−1)) (5.4)

(in the notations of Proposition 5.1). Indeed, for ξ ∈ Lp(G,X;π), t ∈ G,
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[
ρp(h)ξ

]
(t) =

∫
G

h(g)ξ
(
g−1t

)
dg =

∫
G

ΔG

(
g−1)h(

tg−1)ξ(g) dg

=
∫

G/S

∫
S

ΔG

(
s−1g−1)h(

ts−1g−1)ξ(gs) ds dg

=
∫

G/S

∫
S

ΔG

(
g−1)ΔS

(
s−1)h(

ts−1g−1)ξ(gs) ds dg

=
∫

G/S

∫
S

ΔG

(
g−1)h(

tg−1(gsg−1))π(s)ξ(g) ds dg

=
∫

G/S

ΔG

(
g−1)π(

gh̃(tg−1)
)
ξ(g) dg.

Moreover the kernel k satisfies the following covariance property under S:

k(ts, us′) = π
(
s−1)k(t, u)π(s′), t, u ∈ G, s, s′ ∈ S. (5.5)

Proposition 5.4. Let G be the semidirect product of a connected compact Lie group K acting on
an exponential solvable Lie group S. Let (π,H) be an irreducible unitary representation of the
normal closed subgroup S of G whose Kirillov orbit Ωπ = Ω ⊂ s∗ is closed. Let ρ = indG

S π .
Then the operator ρ(ht ) is compact for every t > 0.

Proof. Let t > 0. By the relation (5.2), for d > 0, the function ht is in L1(G,ωd) ∩ L∞(G,ωd).
Furthermore, we have that ht = ht/2 ∗ ht/2. Hence by Propositions 5.2 and 5.1 the mapping G ×
G → L1(S), (s, u) �→ uh̃t (su

−1), is continuous. Therefore, the operator valued kernel function
k(s, u) := ΔG(u−1)π(uh̃t (su

−1)) is continuous too. It follows from the preceding discussion that
k is just the integral kernel of the operator ρ(ht ). The fact that the Kirillov orbit of π ∈ Ŝ is closed
in s∗ implies that, for any ϕ ∈ L1(S), the operator π(ϕ) = ∫

S
f (s)π(s) ds is compact (see [13]

and [8]). Hence k(s, u) is compact for every (s, u) ∈ G × G and in particular for every (s, u) ∈
K × K . We apply Proposition 5.3 to the restriction of k to K × K . The related kernel operator
on L2(K,H) is then compact. Now, since π is unitary, the restriction map to K is an isometric
isomorphism from L2(G,H;π) onto L2(K,H). Thus we see that ρ(ht ) is compact. �
5.2. Proof of Theorem 1.3

We now turn to the proof of Theorem 1.3, which follows closely the notation and argumenta-
tion in [8]. In the following, we always make the

Assumption. � ∈ s∗ satisfies Boidol’s condition (B) and Ω(�)|n is closed.

Since � satisfies (B), the stabilizer s(l) is not contained in n. Let ν be the real character of s,
which has been defined in [8, Section 5], trivial on n and different from 0 on s(�). We denote by
π� = indS χ� the irreducible unitary representation of S associated to � by the Kirillov map. Here
P
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P = P(�) denotes a suitable polarizing subgroup for �, and χ� the character χ�(p) := ei�(Logp)

of P .
For any complex number z in the strip

Σ := {
ζ ∈ C | |Im ζ | < 1/2

}
,

let Δz be the complex character of S given by

Δz(expX) := e−izν(X), X ∈ s,

and χz the unitary character

χz(expX) := e−i Re zν(X), X ∈ s.

If we define p(z) ∈ ]1,∞[ by the equation

Im z = 1/2 − 1/p(z), (5.6)

it is shown in [8] that the representation πz
� , given by

πz
� (x) := Δz(x)π�(x) = χz(x)π

p(z)
� (x), x ∈ G, (5.7)

is an isometric representation on the mixed Lp-space Lp(z)(S/P, �). Here, π
p(z)
� denotes the

p(z)-induced representation of S on Lp(z)(S/P, �) defined in [8]. Here q is a multi-index of the
form (q, . . . , q,2, . . . ,2).

Observe that, for τ ∈ R, we have p(τ) = 2, and πτ
� = χτ ⊗ π� is a unitary representation on

L2(S/P, �). Moreover, since the mapping f �→ χτf intertwines the representations χτ ⊗π� and
π�−τν :

πτ
� � π�−τν . (5.8)

We take now, for z ∈ Σ , the p(z)-induced representation ρz
� := indG

p(z),S πz
� of G which acts on

the space:

Lp(z)(G/P, �) := Lp(z)
(
G,Lp(z)(S/P, �);πz

�

)
.

Let us shortly write:

Lq := Lq(G/P,�), 1 � q < ∞,

for the space of ρz
� .

We can extend the character Δz, z ∈ Σ , of S to a function on G by letting

Δz(kan) := Δz(an) = e−izν(Log(a)), k ∈ K, a ∈ A, n ∈ N.

Since ν is trivial on n and since, for all k ∈ K,a ∈ A, kak−1 ∈ aN , we have that

Δz(kank′) = Δz(an), k, k′ ∈ K, a ∈ A, n ∈ N,

and in particular Δz is a character of G.



J. Ludwig et al. / Journal of Functional Analysis 255 (2008) 1297–1338 1335
Define the operator T (z), z ∈ Σ , by

T (z) := ρz
�(h1).

Then, by the relations (5.4) and (5.7), for z ∈ Σ and ξ ∈ Lp(z) (since Δz is K-invariant)

T (z)ξ(k) =
∫
K

πz
�

(
k′
h̃1

(
kk′−1))ξ(k′) dk′

=
∫
K

π�

(
(Δz|S)k

′
h̃1

(
kk′−1))ξ(k′) dk′

=
∫
K

π�

(
k′
(̃Δzh1)

(
kk′−1))ξ(k′) dk′

= [
ρ�(Δzh1)

](
ξ(k)

)
.

Hence

T (z) = ρz
�(h1) = ρ�(Δzh1), z ∈ Σ. (5.9)

By (5.2), for every continuous character χ of G which is trivial on N , the function χh1 is
in L1(G). Then, it follows from [8, Corollary 5.2 and Proposition 3.1] that the operator T (z)

leaves Lq invariant for every 1 � q < ∞, and is bounded on all these spaces. Moreover, by
Proposition 5.4, T (τ) is compact for τ ∈ R. From here on we can proceed exactly as in the
proof of [8, Theorem 1], provided that we can prove a “Riemann–Lebesgue” type lemma like [8,
Theorem 2.2] in our present setting, since G = K � S is amenable.

We must show that T (τ) tends to 0 in the operator norm if τ tends to ∞ in R. The condition we
have imposed on the coadjoint orbit Ω of �, namely that the restriction of Ω to n is closed, tells
us that limτ→∞ Ω +τν = ∞ in the orbit space, which means that limτ→∞ ‖π�+τν(f )‖op = 0 for
every f ∈ L1(S). Now, by (5.4), the operator T (τ) = ρτ

� (h1) is a kernel operator whose kernel
Kτ has values in the bounded operators on H�. The kernel Kτ is given by

Kτ (k, k′) =
∫
S

Δτ (s)h1
(
k−1sk′−1)π�(s) ds = πτ

�

(
h1(k, k′)

)
,

where h1(k, k′) is the function on S defined by h1(k, k′)(s) := h1(ksk′−1
). Hence

lim
τ→∞

∥∥πτ
�

(
h1(k, k′)

)∥∥
op = 0

for every k, k′ ∈ K . Moreover for k, k′ ∈ K ,∥∥πτ
�

(
h1(k, k′)

)∥∥
op �

∥∥h1(k, k′)
∥∥

1 � sup
′′

∥∥h̃1(k
′′)

∥∥
1.
k ∈K
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We know from Proposition 5.1 that, for every k′′ ∈ K ,

∥∥h1(k
′′)

∥∥
1 � ‖ωd |K‖∞‖h1/2‖ωd,1‖h1/2‖ωd,∞

∥∥∥∥(
1

ωd

)∣∣∣∣
S

∥∥∥∥
1
,

which is finite by Proposition 5.2 and relation (5.2) (if d is big enough). Hence, by Lebesgue’s
dominated convergence theorem, we see that

lim
τ→∞

∫
K

∫
K

∥∥πτ
�

(
h1(k, k′)

)∥∥2
op dk dk′ = 0.

This shows that

lim
τ→∞

∥∥ρτ
� (h1)

∥∥
op = 0.
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Appendix A. On the spectra of sub-Laplacians of holomorphic Lp-type

In this section, we shall give a proof of Hebisch’s observation that (1.1) and (1.2) hold true
for sub-Laplacians on connected Lie groups. The key idea is the use of an approximation to
the identity by right convolution with smooth functions with compact support. We shall also
make use of the following lemma, which is of independent interest and which simplifies at the
same time the proof suggested originally to us by Hebisch.

Lemma A.1. Let (X,dμ) be a σ -finite measure space, and let 1 � p < ∞. Let A be a self-adjoint
operator generating a C0-semigroup {T2(t): t > 0} on L2(X). Assume further:

(i) There exist consistent C0-semigroups {Tq(t): t > 0}, q = p,p′ (if q ′ = ∞ we only require
the weak*-continuity of the semigroup), i.e., Tq1(t) = Tq2(t) on Lq1(X) ∩ Lq2(X) for all
q1, q2 ∈ {p,2,p′} and every t > 0.

(ii)
〈
Tp(t)f, g

〉 = 〈
f,Tp′(t)g

〉
, ∀t > 0, f ∈ Lp(X), g ∈ Lp′

(X)

(which holds automatically if 1 < p < ∞).
(iii) Tq(t) maps real-valued functions to real-valued functions for every q and t > 0.

We denote by Aq the generator of {Tq(t): t > 0}, and by σ(Aq) and ρ(Aq) the spectrum and
the resolvent set of Aq . Then

σ(Ap) = σ(Ap′). (A.1)

By Ap+q we denote the operator

Ap+q(f + g) := Apf + Aqg, f ∈D(Ap), g ∈D(Aq),
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defined on the sum D(Ap)+D(Aq) of the domains of Ap and Aq and taking values in Lp(X)+
Lq(X). Notice that Ap+q is well defined, since Ap and Aq agree on the intersections of their
domains.

Assume that z ∈ ρ(Ap)∩ρ(Aq), and that z−Ap+q is injective on D(Ap)+D(Aq). Then the
resolvents R(z,Ap) and R(z,Aq) are consistent, i.e.,

R(z,Ap) = R(z,Aq) on Lp(X) ∩ Lq(X). (A.2)

Proof. By Proposition 8.1 in [8], we know that (A.1) holds true. Assume next that h ∈ Lp(X) ∩
Lq(X), and put f := R(z,Ap)h ∈D(Ap), g := R(z,Aq)h ∈ D(Aq). Then

(z − Ap+q)(f − g) = (z − Ap)f − (z − Aq)g = h − h = 0,

so that by our assumption f = g. This proves (A.2). �
Lemma A.2. Let L be a right-invariant sub-Laplacian on the connected Lie group G, and let
1 � p < ∞. Then for z ∈ ρ(Lp) = ρ(Lp′), the resolvents R(z,Lp) and R(z,Lp′) are consistent.

As a consequence, if L is of holomorphic Lp-type, then (1.1) and (1.2) hold true for A = L.

Proof. Fix an approximation to the identity {ϕν}ν in D(G) such that the supports of the ϕν

shrink to the identity element as ν → ∞, and let us write q := p′. Let f ∈ D(Lp), g ∈ D(Lq),
and assume that z ∈ ρ(Lp) ∩ ρ(Lq) and

(z − Lp+q)(f + g) = 0.

Then, since convolution from the right commutes with L,

(z − Lp)(f ∗ ϕν) + (z − Lq)(g ∗ ϕν) = 0

for every ν. But, observe that f ∗ ϕν ∈ Lp(X) ∩ L∞(X) ⊂ Lp′
(X), so that (z − Lp)(f ∗ ϕν) =

(z − Lq)(f ∗ ϕν). Since z ∈ ρ(Lq), we thus see that f ∗ ϕν + g ∗ ϕν = 0 a.e., and passing to the
limit as ν → ∞, we obtain f + g = 0 a.e.

By Lemma A.1, the resolvents R(z,Lp) and R(z,Lp′) are thus consistent, and we can
from here on follow the proof of Proposition 8.1 in [8] in order to conclude the proof of
Lemma A.2. �
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