Algèbre linéaire

Chapitre I: Matrices

Table des matières

1	Définitions	1
2	Opérations sur les matrices	2
3	Matrice carrée inversible et son inverse	4
4	Transposée d'une matrice	5
5	Algorithme du pivot de Gauss - échelonnement	6
6	Rang d'une matrice	9
7	Algorithme du pivot de Gauss - inversion	9

1 Définitions

Dans la suite \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

Définition. Soient $n, p \in \mathbb{N}^*$. Une matrice de taille $n \times p$ à coefficients dans \mathbb{K} est un tableau A d'éléments de \mathbb{K} à n lignes et p colonnes :

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{12} & \cdots & a_{2p} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{pmatrix}$$

Pour simplifier, on notera $A = (a_{ij})_{i=1,\dots,j=1,\dots,p}$ ou $A = (a_{ij})$. On dit que a_{ij} est le coefficient à la *i*ème ligne et *j*-ème colonne de A.

On note $M_{n,p}(\mathbb{K})$ l'ensemble des matrices de taille $n \times p$ à coefficients dans \mathbb{K} .

On dit que deux matrices $A = (a_{ij})$ et $B = (b_{ij})$ sont égales si elles sont de même taille et si pour tout $i = 1, ..., n, j = 1, ..., p, a_{ij} = b_{ij}$.

Exemple. Par exemple
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \neq \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$$
.

Vocabulaire.

(i) Si n = p, on dit que A est une matrice carrée et dans ce cas, n est appelé l'ordre de la matrice A. Pour simplifier, on note $M_n(\mathbb{K})$ l'ensemble des matrices carrées d'ordre n à coefficients dans \mathbb{K} .

- (ii) Si $A = (a_{ij}) \in M_n(\mathbb{K})$, les coefficients $a_{11}, a_{22}, \ldots, a_{nn}$ sont appelés les coefficients diagonaux de A.
- (iii) On dit que $A \in M_n(\mathbb{K})$ est diagonale si $a_{ij} = 0$ pour tout $i \neq j$.
- (iv) On dit que $A \in M_n(\mathbb{K})$ est triangulaire supérieure si $a_{ij} = 0$ pour tout $i \ge j$.
- (v) On dit que $A \in M_n(\mathbb{K})$ est triangulaire inférieure si $a_{ij} = 0$ pour tout $i \leq j$.
- (vi) On dit que $A \in M_{n,p}(\mathbb{K})$ est une matrice ou vecteur ligne (resp. colonne) si n = 1 (resp. p = 1).

$$(\text{vii}) \ 0_{np} = \begin{pmatrix} 0 & \cdots & 0 \\ \vdots & \cdots & \vdots \\ 0 & \cdots & 0 \end{pmatrix} \in M_{n,p}(\mathbb{K}), \quad I_n = \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 \\ 0 & 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & 1 \end{pmatrix} \in M_n(\mathbb{K}), \text{ appelée}$$

matrice identité de $M_n(\mathbb{K})$.

Exemple.
$$(2) \in M_1(\mathbb{R}), \quad \begin{pmatrix} 3 & 2+i \\ -i & \sqrt{5} \end{pmatrix} \in M_2(\mathbb{C}), \quad \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \in M_{3,1}(\mathbb{R})$$

2 Opérations sur les matrices

Définition.

(i) Pour $\lambda \in \mathbb{K}$ (appelé scalaire) et $A \in M_{n,p}(\mathbb{K})$, on définit $\lambda A \in M_{n,p}(\mathbb{K})$ par

$$(\lambda A)_{ij} = \lambda a_{ij}.$$

(ii) Pour $A, B \in M_{n,p}(\mathbb{K})$, on définit $A + B \in M_{n,p}(\mathbb{K})$ par

$$(A+B)_{ij} = a_{ij} + b_{ij}.$$

Exemple.
$$\begin{pmatrix} 1 & 3 & -2 \\ 5 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 2 \end{pmatrix} = \dots$$

Remarque. Pour tout $A \in M_{n,p}(\mathbb{K})$, $A + 0_{np} = A$, $A + (-1)A = 0_{np}$.

Définition. Soient $A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1p} \end{pmatrix} \in M_{1,p}(\mathbb{K})$ (matrice ligne à p colonnes) et

$$B = \begin{pmatrix} b_{11} \\ b_{21} \\ \vdots \\ b_{p1} \end{pmatrix} \in M_{p,1}(\mathbb{K}) \text{ (matrice colonne à } p \text{ lignes)}. \text{ Alors } AB \in M_1(\mathbb{K}) = \mathbb{K} \text{ est défini par }$$

$$AB \text{ (ou } A \cdot B) = a_{11}b_{11} + a_{12}b_{21} + \cdots + a_{1p}b_{p1}.$$

Exemple.
$$(1 \ 0 \ -2 \ 5) \begin{pmatrix} 0 \ 3 \ -1 \ -2 \end{pmatrix} = 1.0 + 0.3 + (-2).(-1) + 5.(-2) = 8.$$

Définition. Soient $n, p, q \in \mathbb{N}^*$, $A \in M_{n,p}(\mathbb{K})$ et $B \in M_{p,q}(\mathbb{K})$. On définit la matrice $AB \in M_{n,q}(\mathbb{K})$ par

$$(AB)_{ij} = \sum_{l=1}^{p} a_{il}b_{lj} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{ip}b_{pj}, \quad i = 1, \dots, n, j = 1, \dots, q,$$

i.e. le coefficient à la ligne i et colonne j de AB est donné par le produit de la i-ème ligne de A avec la j-ème colonne de B.

On appelle AB le produit matriciel de A et B.

Exemple.

(1) Soient
$$A = \begin{pmatrix} 1 & 0 & 2 & 1 \\ 3 & 4 & 0 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 1 & 3 \\ 5 & 0 & 1 \\ -2 & 0 & -1 \\ 0 & 0 & -1 \end{pmatrix}$, $C = \begin{pmatrix} 1 \\ 0 \\ 3 \\ -2 \end{pmatrix}$. Calculer, si cela est possible, AB, BA, BC, CB, AC, CA .

(2) Soient
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} -2 & 5 & -1 \\ 0 & -3 & 1 \\ 1 & 2 & 0 \end{pmatrix}$, $C = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$. Calculer AB , BA , BC , CB , AC , CA , B^2 .

(3) Autres exemples avec des matrices triangulaire supérieures.

Remarque.

- (i) Le produit de deux matrices n'est pas toujours défini.
- (ii) Même si AB et BA existent et sont des matrices de même taille, on n'a pas nécessairement AB = BA. On dit que la multiplication matricielle est non commutative.
- (iii) Si A et B sont deux matrices carrées de même ordre et triangulaires supérieures, alors AB est aussi triangulaire supérieure.
- (iv) Si A et B sont deux matrices carrées de même ordre et diagonales, alors AB est diagonale et AB = BA.
- (v) Si $A = \lambda I_n$ et $B \in M_n(\mathbb{K})$, on a $AB = BA = \lambda B$.
- (vi) Pour tout $A \in M_{n,p}(\mathbb{K})$, $A.0_{pq} = 0_{nq}$.
- $\Lambda B = 0_{nq} \text{ n'implique pas } A = 0_{np} \text{ ou } B = 0_{pq}.$
- **2.1 Propriétés.** Soient $n, p, q, r \in \mathbb{N}^*$, $\lambda, \mu \in \mathbb{K}$, $A, B, C \in M_{n,p}(\mathbb{K})$, $D, E \in M_{p,q}(\mathbb{K})$, $F \in M_{q,r}(\mathbb{K})$.

(i)
$$(A+B)+C=A+(B+C)$$
.

(ii)
$$A + B = B + A$$
.

(iii)
$$(AD)F = A(DF)$$
.

(iv)
$$\lambda(A+B) = \lambda A + \lambda B$$
, $(\lambda + \mu)A = \lambda A + \mu A$.

(v)
$$\lambda(AD) = (\lambda A)D = A(\lambda D)$$
.

(vi)
$$(A + B)D = AD + BD$$
, $A(D + E) = AD + AE$.

Démonstration. Exercice.

3 Matrice carrée inversible et son inverse

3.1 Propriétés. On a

$$A \cdot I_n = I_n \cdot A = A \quad A \in M_n(\mathbb{K}).$$

On dit que I_n est l'élément neutre de $M_n(\mathbb{K})$ pour la multiplication matricielle.

Définition. Soit $A \in M_n(\mathbb{K})$. On dit que A est inversible s'il existe $B \in M_n(\mathbb{K})$ tel que

$$AB = I_n \text{ et } BA = I_n.$$

On note $GL_n(\mathbb{K})$ l'ensemble des éléments inversibles de $M_n(\mathbb{K})$.

3.2 Proposition.

- (i) Soit $A \in M_n(\mathbb{K})$. Si $B \in M_n(\mathbb{K})$ tel que $AB = I_n$, alors $BA = I_n$.
- (ii) Soit $A \in GL_n(\mathbb{K})$. Il existe une unique matrice $B \in M_n(\mathbb{K})$ telle que

$$AB = I_n$$
.

On note cette matrice A^{-1} et on l'appelle l'inverse de A. On a $A^{-1} \in GL_n(\mathbb{K})$.

Démonstration. Exercice.

Exemple.

(1)
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3 \end{pmatrix}; A^{-1} = \begin{pmatrix} 1/2 & 0 & 0 \\ 0 & 1/4 & 0 \\ 0 & 0 & 1/3 \end{pmatrix}$$

(2)
$$A = \begin{pmatrix} 1 & 2 \\ -1 & -1 \end{pmatrix}$$
; $A^{-1} = \begin{pmatrix} -1 & 0 - 2 \\ 1 & 1 \end{pmatrix}$

(3)
$$A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -2 \\ 2 & -1 & 1 \end{pmatrix}$$
; $A^{-1} = \begin{pmatrix} -1/3 & 1/3 & 2/3 \\ -4/3 & 1/3 & 2/3 \\ -2/3 & -1/3 & 1/3 \end{pmatrix}$

 \wedge

Les matrices carrées ne sont pas toutes inversibles.

(4) 0_n n'est pas inversible; $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ et $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ ne sont pas inversibles...

3.3 Proposition.

- (i) Supposons $A \in GL_n(\mathbb{K})$. Si $V \in M_{n,1}(\mathbb{K})$ tel que AV = 0, alors $V = 0_{n1}$
- (ii) Si $A \in GL_n(\mathbb{K})$, alors $(A^{-1})^{-1} = A$.
- (iii) Si $A, B \in GL_n(\mathbb{K})$, alors $AB \in GL_n(\mathbb{K})$ et $(AB)^{-1} = B^{-1}A^{-1}$.
- (iv) Si $A \in M_n(\mathbb{K})$ est diagonale, alors A est inversible si et seulement si, pour tout i = 1, ..., n, $a_{ii} \neq 0$. Dans ce cas, A^{-1} est inversible et, pour tout i, $(A^{-1})_{ii} = 1/a_{ii}$.

Démonstration. (i) Exercice.

- (ii) Exercice.
- (iii) Exercice.
- (iv) Pour montrer l'implication directe, on applique la contraposée du point (i) à A diagonale et les vecteurs colonnes $V_i \in M_{n,1}(\mathbb{K})$, avec des 0 sur toutes les lignes sauf un 1 à la ligne i.

Calcul de l'inverse pour $A \in GL_2(\mathbb{K})$.

Si
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 est inversible, alors $ad - bc \neq 0$ et

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

4 Transposée d'une matrice

Définition. Soit $A \in M_{n,p}(\mathbb{K})$. On définit $A^T \in M_{p,n}(\mathbb{K})$ par

$$(A^T)_{ij} = a_{ji}, \quad i = 1, \dots, p, j = 1, \dots, n.$$

On dit que A est symétrique (resp. anti-symétrique, orthogonale) si $A^T = A$ (resp. $A^T = -A$, A est inversible et $A^T = A^{-1}$). Remarquons que dans ce cas A est une matrice carrée et si A est anti-symétrique, on a $a_{ii} = 0$ pour tout i.

Exemple.
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}^T = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}$$
.

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}, \frac{1}{3} \begin{pmatrix} 2 & 2 & 1 \\ -2 & 1 & 2 \\ 1 & -2 & 2 \end{pmatrix}$$
sont des matrices orthogonales.

4.1 Propriétés. Soit $A \in M_{n,p}(\mathbb{K})$.

- (i) $(A^T)^T = A$.
- (ii) Pour tout $\lambda \in \mathbb{K}$, $(\lambda A)^T = \lambda A^T$.
- (iii) Pour tout $B \in M_{n,p}(\mathbb{K})$, $(A+B)^T = A^T + B^T$.
- (iv) Pour tout $B \in M_{p,q}(\mathbb{K})$, $(AB)^T = B^T A^T$.
- (v) Si n = p et A est inversible, A^T est aussi inversible et $(A^T)^{-1} = (A^{-1})^T$.

Supposons n = p.

- (v) A symétrique si et seulement si, pour tout $X, Y \in M_{n,1}(\mathbb{K}), Y^T A X = X^T A Y$.
- (v) A anti-symétrique si et seulement si, pour tout $X, Y \in M_{n,1}(\mathbb{K}), Y^T A X = -X^T A Y$ si et seulement si, pour tout $X \in M_{n,1}(\mathbb{K}), X^T A X = 0$.

Démonstration. Exercice.

5 Algorithme du pivot de Gauss - échelonnement

Définition. Une matrice $A \in M_{n,p}(\mathbb{K})$ est dite échelonnée si

- (i) chaque ligne non nulle de A a son premier coefficient non nul égal à 1;
- (ii) si une ligne de A est nulle, toutes les suivantes le sont aussi;
- (iii) si une ligne non nulle de A a son premier coefficient non nul à la colonne j, alors le premier coefficient non nul de la ligne suivante est à la colonne $\geq j+1$.

Le premier coefficient non nul d'une ligne non nulle d'une matrice échelonnée A, qui vaut nécessairement 1, est appelé un pivot de la matrice A.

Exemple.
$$\begin{pmatrix} 1 & * & * & * & * \\ 0 & 1 & * & * & * \\ 0 & 0 & 0 & 1 & * \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}, \qquad \begin{pmatrix} 0 & 1 & * & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \dots$$

But. Transformer une matrice $A \in M_{n,p}(\mathbb{K})$ en matrice échelonnée à l'aide des opérations suivantes.

Opérations élémentaires sur les lignes.

- (1) on permute des lignes entre elles : par exemple, on échange deux lignes ou bien on remplace la ligne L_i par la ligne L_j , la ligne L_j par la ligne L_k et la ligne L_k par la ligne L_i .
- (2) on multiplie une ligne L_i par un scalaire non nul λ .

(3) on remplace une ligne L_i par $L_i + \sum_{j \neq i} \lambda_j L_j$, où $\lambda_j \in \mathbb{K}$.

Algorithme du pivot - échelonnement. Soit $A \in M_{n,p}(\mathbb{K})$.

Étape 1. Si la colonne C_1 de A est nulle, on passe à l'Étape 2. Sinon, i.e. la colonne C_1 est

non nulle, on veut transformer C_1 en $\begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$.

- (i) Si a_{11} est non nul, alors on utilise l'opération (2) : on remplace L_1 par $\frac{1}{a_{11}}L_1$. Sinon, on utilise l'opération (1) : on échange L_1 avec une autre ligne pour laquelle le coefficient en première colonne est non nulle.
- (ii) On utilise l'opération (3) : on remplace chaque ligne L_i , $i \neq 1$, par $L_i a_{i1}L_1$.

On obtient ainsi une matrice dans $M_{n,p}(\mathbb{K})$ de la forme suivante

$$\begin{pmatrix} 0 \text{ ou } 1 & * & * & * & * \\ 0 & & & & \\ \vdots & & B & & \\ 0 & & & & \end{pmatrix},$$

où $B \in M_{n-1,p-1}(\mathbb{K})$.

Étape 2. On applique l'Étape 1 à B.

L'algorithme s'arrête étant donné que les matrices ont un nombre fini de colonnes.

Exemple. Appliquer l'algorithme à la matrice

$$A = \begin{pmatrix} 0 & 1 & -1 & 0 & 4 \\ 2 & 3 & -1 & 0 & 2 \\ -1 & 2 & -1 & 0 & -2 \\ 1 & 0 & 2 & 0 & 3 \end{pmatrix}.$$

Remarque.

- (i) Une même matrice possède plusieurs formes échelonnées, et il y a plusieurs manières d'échelonner. (exemple)
- (ii) Pour une matrice donnée, il y a plusieurs manières d'obtenir une même forme échelonnée.
- (iii) Le nombre de pivots, leurs positions, ainsi que les colonnes de zéros ne semblent pas dépendre de la forme échelonnée obtenue.

Définition. Une matrice $A \in M_{n,p}(\mathbb{K})$ est dite bien échelonnée, ou échelonnée réduite, si A est échelonnée et

(iv) sur chaque colonne de A contenant un pivot, le seul coefficient non nul est ce pivot.

7

Exemple. Finir l'échelonnement de la matrice

$$A = \begin{pmatrix} 0 & 1 & -1 & 0 & 4 \\ 2 & 3 & -1 & 0 & 2 \\ -1 & 2 & -1 & 0 & -2 \\ 1 & 0 & 2 & 0 & 3 \end{pmatrix}.$$

Définition. Une matrice élémentaire est une matrice carrée $M_n(\mathbb{K})$ d'un des trois types suivants :

- (1) P_{ij} matrice de permutation, obtenue à partir de I_n en permutant les lignes L_i et L_j
- (2) $D_i(\lambda)$ matrice obtenue à partir de I_n en remplaçant 1 par $\lambda \neq 0$ à la ligne L_i .
- (3) $T_{ij}(\lambda) = I_n + \lambda E_{ij}, i \neq j$, où $E_{ij} \in M_n(\mathbb{K})$ est la matrice avec $e_{kl} = 0$ si $k \neq i, l \neq j$ et $e_{ij} = 1$.
- 5.1 Proposition. Les matrices élémentaires sont inversibles. En particulier
- (1) $P_{ij}^{-1} = P_{ij}$;
- (2) pour $\lambda \neq 0$, $D_i(\lambda)^{-1} = D_i(1/\lambda)$;
- (3) pour $i \neq j$, $(T_{ij}(\lambda))^{-1} = T_{ij}(-\lambda)$.

Démonstration. Exercice.

- **5.2 Proposition.** Soit $A \in M_{n,p}(\mathbb{K})$.
- (1) $P_{ij}A$ est la matrice obtenue à partir de A en permutant les lignes L_i et L_j ;
- (2) pour $\lambda \neq 0$, $D_i(\lambda)A$ est la matrice obtenue à partir de A en remplaçant la ligne L_i par λL_i ;

(3) pour $i \neq j$, $T_{ij}(\lambda)A$ est la matrice obtenue à partir de A en remplaçant la ligne L_i par $L_i + \lambda L_j$.

 $D\acute{e}monstration$. Exercice.

- **5.3 Théorème** (admis). Pour toute matrice $A \in M_{n,p}(\mathbb{K})$, il existe des matrices élémentaires $E_1, \ldots, E_k, E_{k+1}, \ldots, E_l$ telles que
 - (i) $E_k \cdots E_1 A$ soit une matrice échelonnée;
- (ii) $E_l \cdots E_{k+1} E_k \cdots E_1 A$ soit une matrice bien échelonnée.

La première (resp. deuxième) matrice ainsi obtenue est appelée une forme échelonnée (resp. bien échelonnée) de A.

Une forme échelonnée de A n'est pas unique. Par contre il existe une unique forme bien échelonnée de A.

6 Rang d'une matrice

Définition. Soit $A \in M_{n,p}(\mathbb{K})$. Le rang de A est le nombre de pivots d'une forme (bien) échelonnée de A. Comme la forme bien échelonnée de A est unique, le rang de A l'est aussi. On le note rg(A)

Exemple. Déterminer le rang de $\begin{pmatrix} 1 & 2 & 1 & 0 \\ -1 & 0 & 1 & 1 \\ 2 & 3 & 1 & -1 \end{pmatrix}$.

- **6.1 Proposition.** Soit $A \in M_{n,p}(\mathbb{K})$
 - (i) $rg(A) \leq min\{n, p\}$.
- (ii) $\operatorname{rg}(A) = \operatorname{rg}(A^T)$.
- (iii) Supposons n = p. On a A inversible si et seulement si rg(A) = n.

Démonstration. (i) Exercice.

- (ii) Admis.
- (iii) Exercice.

7 Algorithme du pivot de Gauss - inversion

Soit $A \in GL_n(\mathbb{K})$ et soit $E \in M_n(\mathbb{K})$, produit de matrices élémentaires, tel que EA soit la forme bien échelonnée de A. Comme E est un produit de matrices inversibles, $E \in GL_n(\mathbb{K})$. Donc $EA \in GL_n(\mathbb{K})$. D'après la proposition précédente, on a alors $\operatorname{rg}(EA) = n$. Comm la seule matrice bien échelonnée dans $M_n(\mathbb{K})$ possédant cette propriété est I_n , on a $EA = I_n$ ce qui signifie, par unicité de l'inverse, que E est l'inverse de A.

Conclusion. Pour inverser la matrice A, étant donné que $A^{-1} = E$, on effectue l'algorithme d'un pivot afin de déterminer la forme bien échelonnée de A pour $(A|I_n)$. On obtient alors $(EA|EI_n)$, i.e. $(I_n|E)$.

Exemple. Inverser
$$A = \begin{pmatrix} -1 & 2 & 2 \\ 3 & 0 & -1 \\ -1 & 1 & 1 \end{pmatrix}$$
.

Remarque. Ce calcul permet aussi de déterminer si une matrice carrée est inversible ou pas. En effet, si à la fin de l'algorithme, on ne trouve pas la matrice identité à gauche de la barre verticale, cela signifie que la forme bien échelonnée de la matrice n'est pas la matrice identité, i.e. la matrice n'est pas inversible.