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Paley-Wiener theorem?

Describe the image of the Fourier transform

Let G be a real reductive Lie group of the Harish-Chandra class,
e.g. G semisimple, connected, with finite center.

Let K = Gθ, θ the associated Cartan involution.

Let g := Lie(G) and g= k⊕p, its Cartan decomposition w.r.t. θ.

Let a be a fixed maximal abelian subspace of p, A = exp(a).

For instance, if G = SL(n,R), then one can take K = SO(n), a'Rn−1.
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The classical Euclidean case

Consider the Euclidean space a, aC := a⊗C, a∗
C

dual of aC.

Paley-Wiener thm
(C∞

c (a))∧ = PW(a).

with
PW(a) := {ϕ ∈O (a∗

C
) : ∃R>0∀n>0∃Cn>0,

|ϕ(λ)| ≤ Cn(1+|λ|)−neR|Reλ|}

Fourier transform of f ∈ C∞
c (a): f̂ (λ) := ∫

a f (X)π1,λ(X)dX, λ ∈ a∗
C

where π1,λ 1-dim. rep-n of a (as an additive group): π1,λ(X) = e−λ(X)
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The (operator valued) Fourier transform

Let P be a fixed minimal parabolic subgroup, with P = MAN its Langlands
decomposition,

e.g., if G = SL(n,R), P is the upper triangular group with A block-diagonal, N
strictly upper triangular.

Let M∧ be the unitary dual of M.

Definition (Minimal principal series of G)

For (ξ,λ) ∈ M∧×a∗
C

, πξ,λ is the right regular rep-n of G on C∞(G : ξ⊗λ) where:

C∞(G : ξ⊗λ) := {ψ ∈ C∞(G,Vξ) : ψ(manx) = aλ+ρPξ(m)ψ(x)}
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Let M∧ be the unitary dual of M.

Definition (Minimal principal series of G)

For (ξ,λ) ∈ M∧×a∗
C

, πξ,λ is the rep-n of the compact realization of the smooth
minimal p-s of G on C∞(K : ξ), given by transport of structure from πξ,λ under
res-n to K :

C∞(G : ξ⊗λ)
'−→ C∞(K : ξ)
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Example

Consider G = SL(2,R). Here M̂ = {+,−}, N = {
(

1 y
0 1

)
} and a∗

C
'C. Under

restriction of functions on G to θ(N), the rep-n π±,λ is equiv-t to p±,λ

p±,λ

(
a b
c d

)
f (y) =

 |by +d |1+λ f
(

ay+c
by+d

)
if +

sgn(by +d)|by +d |1+λ f
(

ay+c
by+d

)
if − .

Definition (Fourier transform)

For f ∈ C∞
c (G), ξ ∈ M∧,

f̂ (ξ,λ) :=
∫

G
f (x)πξ,λ(x)d x, λ ∈ a∗

C
.

f 7→ f̂ maps C∞
c (G) into ⊕ξ∈M∧O (a∗

C
)⊗End(C∞(K : ξ)).



8/32

Example

Consider G = SL(2,R). Here M̂ = {+,−}, N = {
(

1 y
0 1

)
} and a∗

C
'C. Under

restriction of functions on G to θ(N), the rep-n π±,λ is equiv-t to p±,λ

p±,λ

(
a b
c d

)
f (y) =

 |by +d |1+λ f
(

ay+c
by+d

)
if +

sgn(by +d)|by +d |1+λ f
(

ay+c
by+d

)
if − .

Definition (Fourier transform)

For f ∈ C∞
c (G), ξ ∈ M∧,

f̂ (ξ,λ) :=
∫

G
f (x)πξ,λ(x)d x, λ ∈ a∗

C
.

f 7→ f̂ maps C∞
c (G) into ⊕ξ∈M∧O (a∗

C
)⊗End(C∞(K : ξ)).



9/32

The Paley-Wiener theorems
Let C∞

c (K\G/K) denote the subspace of bi-K-invariant elements in C∞
c (G).

Let W the Weyl group associated to (g,a).

Theorem (Helgason ’66, estimates by Gangolli ’71)

C∞
c (K\G/K)∧ = PW(a)W

Let C∞
c (G/K)K denote the subspace of right K-invariant and left K-finite

elements in C∞
c (G).

Theorem (Helgason ’73)

(C∞
c (G/K)K)∧ = PW(G/K)

with PW(G/K) = {ϕ ∈ PW(a)⊗L2(K/M) : ϕ(wλ) = Aw (λ)ϕ(λ)}

where Aw (λ) ∈ End(L2(K/M)K) normalized standard intertwining operator (with
rational coeff-s in λ).
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Let C∞
c (G,K) denote the space of bi-K-finite elements in C∞

c (G).
For ξ ∈ M∧, let

S (ξ) := End(C∞(K : ξ)K×K).

Theorem (Arthur ’82, Campoli ’80 for real rank one case)

C∞
c (G,K)∧ = PWArth(G,K)

with PWArth(G,K) = {ϕ ∈ PW(a)⊗ (⊕ξ∈M∧S (ξ)) : ϕ satisfies A-C}.

Theorem (Delorme ’06)

C∞
c (G,K)∧ = PWDel(G,K)

with PWDel(G,K) = {ϕ ∈ PW(a)⊗ (⊕ξ∈M∧S (ξ)) : ϕ satisfies intert. rel-ns}.

Without using the Paley-Wiener theorems, we want to show

PWArth(G,K) = PWDel(G,K)
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Some notation

For any η ∈ a∗
C

,Φ ∈O (a∗
C

), let define

Φ(λ;η) := d

d z

(
Φ(λ+ zη)

)
|z=0, λ ∈ a∗

C
.

The map
η 7→ [Φ 7→Φ(·;η)]

extends uniquely to an algebra hom of S(a∗
C

).

For any η ∈ a∗
C

and Φ ∈O (a∗
C

,End(V)) (V a F-space), let define
Φ(η) ∈O (a∗

C
,End(V ⊕V)) by

Φ(η)(λ) :=
(
Φ(λ) Φ(λ;η)

0 Φ(λ)

)
.

By iterating the process, one can generalize this definition to any finite sequence
in a∗

C
.
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Arthur-Campoli relations

An Arthur-Campoli sequence is a finite sequence (ξi ,ψi ,λi ,ui )i with ξi ∈ M∧,
ψ ∈S (ξi )∗K×K, λi ∈ a∗C and ui ∈ S(a∗

C
) s.t∑

i
〈πξi ,λi ;ui (x),ψi 〉 = 0, x ∈ G.

Let
F :=⊕ξ∈M∧O (a∗

C
)⊗S (ξ).

Definition
ϕ ∈F satisfies the Arthur-Campoli relations if∑

i
〈ϕ(ξi ,λi ;ui ),ψi 〉 = 0, for any (ξi ,ψi ,λi ,ui )i A-C sequence.
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Intertwining relations
Let δ= (ξ,λ,η) ∈D with ξ ∈ M∧, λ ∈ a∗

C
and η a finite sequence in a∗

C
.

Define the rep-n πδ of G in Vπδ := C∞(K : ξ)(η) by πδ :=π(η)
ξ,λ.

Similarly, define for ϕ ∈F , ϕδ ∈ End(C∞(K : ξ)(η)) by ϕδ :=ϕ(η)(ξ,λ).

Definition (Intertwining relations)
A function ϕ ∈F satisfies Delorme’s intertwining relations if

for every N ∈Z+ and each δ ∈DN, ϕδ preserves all closed inv-nt s-spaces
of πδ;

for all N1,N2 ∈Z+, all δ1 ∈DN1 and δ2 ∈DN2 , and any two sequences of
closed invariant subspaces U j ⊂ V j for πδ j ,

V1/U1 V2/U2

V1/U1 V2/U2

ϕδ1

T T

ϕδ2

The space of functions ϕ ∈F satisfying (a) and (b) is denoted by F (D).
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Some examples of rank one

where “non-classical” conditions occur already.

Example (PW for G = SU(2,1) on 2-dim-l K-types)
Besides growth and symmetric cond-ns, one has extra cond-ns related to
holomorphic families of intertwining op-rs between p. s. rep-ns.

Example (PW for G = SU(2,1) on 4-dim-l K-types)
Besides growth and symmetric cond-ns, one has extra cond-ns related to
derivatives of holomorphic families of intertwining op-rs between p. s. rep-ns.
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Paley-Wiener thm: C∞
c (G,K)∧ = PW(G,K)

besides growth cond-ns

Arthur-Campoli relations
on some families of rep-ns

Arth
ur

Intertwining relations
on some families of rep-ns

Delorme

Hecke algebra H (G,K)

Relations in terms of H (G,K)

π(G)⊥⊥ = End(V)#

π(G)⊥⊥ =π(H (G,K)) π(H (G,K)) = End(V)#



15/32

Paley-Wiener thm: C∞
c (G,K)∧ = PW(G,K)

besides growth cond-ns

Arthur-Campoli relations
on some families of rep-ns

Arth
ur

Intertwining relations
on some families of rep-ns

Delorme

Hecke algebra H (G,K)

Relations in terms of H (G,K)

π(G)⊥⊥ = End(V)#

π(G)⊥⊥ =π(H (G,K)) π(H (G,K)) = End(V)#



15/32

Paley-Wiener thm: C∞
c (G,K)∧ = PW(G,K)

besides growth cond-ns

Arthur-Campoli relations
on some families of rep-ns

Arth
ur

Intertwining relations
on some families of rep-ns

Delorme

Hecke algebra H (G,K)

Relations in terms of H (G,K)

π(G)⊥⊥ = End(V)#

π(G)⊥⊥ =π(H (G,K)) π(H (G,K)) = End(V)#



15/32

Paley-Wiener thm: C∞
c (G,K)∧ = PW(G,K)

besides growth cond-ns

Arthur-Campoli relations
on some families of rep-ns

Arth
ur

Intertwining relations
on some families of rep-ns

Delorme

Hecke algebra H (G,K)

Relations in terms of H (G,K)

π(G)⊥⊥ = End(V)#

π(G)⊥⊥ =π(H (G,K)) π(H (G,K)) = End(V)#



15/32

Paley-Wiener thm: C∞
c (G,K)∧ = PW(G,K)

besides growth cond-ns

Arthur-Campoli relations
on some families of rep-ns

Arth
ur

Intertwining relations
on some families of rep-ns

Delorme

Hecke algebra H (G,K)

Relations in terms of H (G,K)

π(G)⊥⊥ = End(V)#

π(G)⊥⊥ =π(H (G,K)) π(H (G,K)) = End(V)#



16/32

Outline

1 Introduction

2 The Paley-Wiener theorem(s) for G

3 Holomorphic families of representations and their successive derivatives

4 The generalized Hecke algebra for (G,K)

5 The Paley-Wiener theorem(s) for G and some reformulation

6 Application



17/32

Holomorphic families of representations

Definition (Holomorphic families of representations)

The pair (π,V) is a holomorphic family of smooth rep-ns of G over a∗
C

if

V is a Fréchet space

π : G →O (a∗
C

,End(V)) is a group homomorphism, continuous, with rest-n
to K constant on a∗

C
, and

g 7→π(g )(λ)v is C∞, for all (λ, v) ∈ a∗
C
×V.

g 7→π(g )(λ)v smooth.

Example (Minimal principal series of G)

∀ξ ∈ M∧, (πξ,λ)λ is a holomorphic family of smooth rep-ns of G.
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Tensoring with finite dimensional O0-module

Let O0 be the algebra of germs at 0 of holomorphic functions defined on a
neighborhood of 0 in a∗

C
and M its maximal ideal.

Definition (Successive derivatives)

For any finite dimensional O0-module E, any Φ ∈O (a∗
C

), define
Φ(E) ∈O (a∗

C
,End(E)) by:

E∀λ∈a∗
C
Φ(E)(λ) := the germ at 0 of Φ(·+λ)

Using canonical identification, we can extend this definition to hol. f-ies of rep-ns
(π,V) as follows: (π(E),V(E)) is the hol. f-y of rep-ns given by:

V(E) := E⊗V

π(E)(g ,λ) := (π(g ))(E)(λ), g ∈ G,λ ∈ a∗
C

.
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Some examples

For any u ∈ S(a∗
C

), one can canonically associate a f-dim O0-module E and
µ ∈ End(E)∗ s.t.

Φ(λ;u) =µ◦Φ(E)(λ), Φ ∈O (a∗
C

),λ ∈ a∗
C

.

For any η ∈ a∗
C
, let Iη := {ϕ ∈M : ∂(η)ϕ ∈M }. It is a cofinite ideal of O0.

Then
Φ(η) :=

(
Φ(·) Φ(·;η)

0 Φ(·)
)
=Φ(O0/Iη).
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Definition and general facts

Let H (G,K) be the (convolution) algebra of left K-finite distributions on G with
support contained in K.

Some properties
H (G,K) is an associative algebra and has an approximation of identity.

H (G,K) ' U(gC)⊗U(kC) H (K) (as linear spaces), given by:

∂(u)∗T 7→u ⊗T

equivariant for left U(gC)-action and right H (K)-action.

H (G,K) 'H (K)⊗U(kC) U(gC).

All elements of H (G,K) are bi-K-finite.
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H (G,K)-modules and Harish-Chandra modules

A Harish-Chandra module V is a (g,K)-module

Example (Underlying (g,K)-module of the principal series)

Let Vξ,λ be the underlying (g,K)-module C∞(K : ξ)K of πξ,λ.
Then, for any f. d. O0-modules E, V(E)

ξ,λ is a Harish-Chandra module.

Property

HC-mod f. g. adm. appr. unital H (G,K)-mod
'
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ξ,λ is a Harish-Chandra module.

Property

HC-mod f. g. adm. appr. unital H (G,K)-mod
'
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A bi-commutant theorem

Let π be an admissible Fréchet representation of G with finite composition series
and V its Harish-Chandra module.

Definition

π(G)⊥ := {ψ ∈ End(V)∗K×K : ∀g∈G,〈ψ,π(g )〉 = 0}

π(G)⊥⊥ := {ϕ ∈ End(V)K×K : ∀ψ∈π(G)⊥ ,〈ϕ,ψ〉 = 0}

End(V)# := {ϕ ∈ End(V)K×K : ∀n∀U<V⊕n ,ϕ⊕n(U) ⊂ U}.

Theorem (van den Ban & S.)
Let π and V as above. Then, as linear subspaces of End(V)K×K,

End(V)# =π(H (G,K))

π(G)⊥⊥ =π(H (G,K)).
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The Arthur Paley-Wiener theorem

C∞
c (G,K)∧ = PWArth(G,K)

besides growth cond-ns

Arthur-Campoli relations

Arth
ur

Reformulation

π(G)⊥⊥



26/32

Theorem (Arthur ’82)
The Fourier transform is a topological isomorphism from C∞

c (G,K) onto
PWArth(G,K) with

PWArth(G,K) = {ϕ ∈ PW(a)⊗ (⊕ξ∈M∧S (ξ)) : ϕ satisfies A-C}.

Lemma (“Algebraic” reformulation)
For any ϕ ∈F ,

ϕ satisfies A-C

⇐⇒ ∀(E,ξ,λ)∈O0−mod f d×M∧×a∗
C

,ϕ(E)(ξ,λ) ∈π(E)
ξ,λ(G)⊥⊥.
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The Delorme Paley-Wiener theorem

C∞
c (G,K)∧ = PWDel(G,K)

besides growth cond-ns

Intertwining relations

Delorme

Reformulation

End(V)#
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Theorem (Delorme ’06)
The Fourier transform is a topological isomorphism from C∞

c (G,K) onto
PWDel(G,K) with

PWDel(G,K) = {ϕ ∈ PW(a)⊗ (⊕ξ∈M∧S (ξ)) : ϕ ∈F (D)}.

Such a description was first obtained by Zelobenko ’75, in the complex
case.

Delorme uses all parabolic subgroups of G, and not only a minimal one, for
his description.

Lemma (“Algebraic” reformulation)
For any ϕ ∈F , we have:

ϕ ∈F (D)

⇐⇒ ∀(E,ξ,λ)∈O0−mod f d×M∧×a∗
C

,ϕ(E)(ξ,λ) ∈ End(V(E)
ξ,λ)#.
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Application

Recall that

ϕ satisfies A-C
⇐⇒ ∀(E,ξ,λ)∈O0−mod f d×M∧×a∗

C
,ϕ(E)(ξ,λ) ∈π(E)

ξ,λ(G)⊥⊥.

and
ϕ ∈F (D)

⇐⇒ ∀(E,ξ,λ)∈O0−mod f d×M∧×a∗
C

,ϕ(E)(ξ,λ) ∈ End(V(E)
ξ,λ)#.

Then, as a corollary of

End(V(E)
ξ,λ)# =π(E)

ξ,λ(H (G,K)) =π(E)
ξ,λ(G)⊥⊥,

we get

Corollary

PWDel(G,K) = PWArth(G,K).
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Comparison with Helgason’s theorem
Remark that

H (G,K)∧ ⊂ P(a∗
C

)⊗End(⊕ξ∈M∧C∞(K : ξ)K×K)

as a subalgebra.

Theorem (Reformulation of Arthur’s theorem)
Let ϕ ∈⊕ξ∈M∧PW(a)⊗S (ξ). One has

ϕ ∈ PWArth(G,K)

⇐⇒ ∀(ui ,ξi ,λi )⊂S(a∗
C

)×M∧×a∗
C

,∃p∈H (G,K)∧ ,∀i ϕ(ξi ,λi ;ui ) = p(ξi ,λi ;ui ).

Lemma
Let δK ∈H (G,K) denote the distribution on G given by 1K dk. Then

(pr1H (G,K)∗δK)∧ = P(a∗
C

)W

(H (G,K)∗δK)∧ = {ϕ ∈ P(a∗
C

)⊗L2(K/M)K : ∀w∈W ,ϕ(wλ) = Aw (λ)ϕ(λ)}
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Open problem

In 2007, van den Ban & Schlichtkrull proved a Paley-Wiener theorem for
reductive symmetric spaces of the non-compact type. Their description uses
some kind of Arthur-Campoli relations.

The Fourier transforms are meromorphic functions.

Question

Give another description in terms of intertwining cond-ns.

What will play the role of the Hecke algebra?
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