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@ Introduction



Paley-Wiener theorem?

Describe the image of the Fourier transform

Let G be a real reductive Lie group of the Harish-Chandra class,
e.g. G semisimple, connected, with finite center.

Let K = G?, 0 the associated Cartan involution.
Let g:=Lie(G) and g =t @ p, its Cartan decomposition w.r.t. 0.

Let a be a fixed maximal abelian subspace of p, A = exp (a).

For instance, if G = SL(n,R), then one can take K =SO(n), a =~ R"1,



The classical Euclidean case

Consider the Euclidean space a, a. := a®C, a’ dual of ac.

Paley-Wiener thm
(CZ(@)" = PW(a).
with
PW(a) :={pe@(a;): Ir>0Vrn>03c,>0,
lp(A\)| < Cp (1 +|A[) " eRIReA

Fourier transform of f € C°(a): foy:= JofXm A X) dX, Aea?
where 71 ) 1-dim. rep-n of a (as an additive group): m; A (X) = e *®)



The classical Euclidean case

Consider the Euclidean space a, a. := a®C, a’ dual of a.

Paley-Wiener thm
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PW(a)g:={pel(a;): VYus0dc,>0
|P(A)] < Cp(1 +|A[) " eRIREAD

Fourier transform of f € C(a): foy:= JofX)m A X) dX, A€ a?
where 71 ) 1-dim. rep-n of a (as an additive group): m; A (X) = e *®)
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e The Paley-Wiener theorem(s) for G



The (operator valued) Fourier transform

Let P be a fixed minimal parabolic subgroup, with P = MAN its Langlands
decomposition,

e.g., if G=SL(n,R), P is the upper triangular group with A block-diagonal, N
strictly upper triangular.

Let M" be the unitary dual of M.

Definition (Minimal principal series of G)
For (§,\) e M" x a}, T¢  is the right regular rep-n of G on C*°(G: £ ® A) where:

C®(G:E®N) :={yeC®(G,Vy) : w(manx) = a“PPE(m)y(x)}




The (operator valued) Fourier transform

Let P be a fixed minimal parabolic subgroup, with P = MAN its Langlands
decomposition,

e.g., if G=SL(n,R), P is the upper triangular group with A block-diagonal, N
strictly upper triangular.

Let M”" be the unitary dual of M.

Definition (Minimal principal series of G)

For (§,\) e M" x a}, ¢ is the rep-n of the compact realization of the smooth
minimal p-s of G on C*°(K: &), given by transport of structure from g x under

res-nto K: -
C®(G:E®\) — C®(K:¢§)




Example

Consider G = SL(2,R). Here M = {+, -}, N ={ J1/)} and a’ = C. Under
restriction of functions on G to 6(N), the rep-n 1. ) is equiv-t to p. )

(¢5)r0= by +dif (573) .
Pelc g )fW)= sgn(by + d)|by+ /" f (HS) i -




Example

Consider G = SL(2,R). Here M = {+, -}, N ={ J1/)} and a’ = C. Under
restriction of functions on G to 6(N), the rep-n 1. ) is equiv-t to p. )

pen (2 B) 1= by+dl' A f(55) .
w2\ ¢c a)f sgn(by + d)|by+ /" f (HS) i -

Definition (Fourier transform)
For f € CX(G), £ e M",

fEn I=fo(x)JTa,)\(x)dx, Aeal.

f— f maps C(G) into ®gepn @ (a) ® End(C® (K : §)).




The Paley-Wiener theorems
Let C2°(K\G/K) denote the subspace of bi-K-invariant elements in C°(G).

Let W the Weyl group associated to (g, a).
Theorem (Helgason ’66, estimates by Gangolli '71)

CX(K\G/K)" =PW (@)W




The Paley-Wiener theorems
Let C2°(K\G/K) denote the subspace of bi-K-invariant elements in C°(G).

Let W the Weyl group associated to (g, a).
Theorem (Helgason ’66, estimates by Gangolli '71)

CX(K\G/K)" =PW (@)W

Let C2°(G/K)x denote the subspace of right K-invariant and left K-finite
elements in C°(G).

Theorem (Helgason '73)
(CX(G/K))" = PW(G/K)
with PW(G/K) = {p € PW(a) ® L>(K/M) : @(wA) = A, (M@}

where A, (A) € End(L2 (K/M)x) normalized standard intertwining operator (with
rational coeff-s in A).




Let C2°(G,K) denote the space of bi-K-finite elements in C°(G).
For £ e M™, let
(&) := End(C®(K: kxK)-



Let C2°(G,K) denote the space of bi-K-finite elements in C°(G).
For £ e M™, let
(&) := End(C®(K: kxK)-

Theorem (Arthur °82, Campoli '80 for real rank one case)
CP(G, K" =PWy4(G,K)
with PW4,,(G,K) = {p € PW(a) ® (®cemnF (€)) 1 @ satisfies A-C}.
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Let C2°(G,K) denote the space of bi-K-finite elements in C°(G).
For £ e M™, let
(&) := End(C®(K: kxK)-

Theorem (Arthur °82, Campoli '80 for real rank one case)
CP(G, K" =PWy4(G,K)
with PW4,,(G,K) = {p € PW(a) ® (®cemnF (€)) 1 @ satisfies A-C}.

Theorem (Delorme ’06)

CX(G,K)" = PWpy(G,K)

with PWpg(G,K) = {p € PW(a) ® (®zemn S (§)) : @ satisfies intert. rel-ns}.

Without using the Paley-Wiener theorems, we want to show

PWarth (G, K) = PWpg (G, K)



Some notation
Forany nea’,® € G (a;), let define

d
DA;1) = (CD()\+ Zn) =g AE0C.

The map
n— [@— ®(;n)]

extends uniquely to an algebra hom of S(a;).

Forany nea’ and ® € ©(a’,End(V)) (V a F-space), let define
@™ e G (af,End(V & V)) by

oW := (0 WY ).

By iterating the process, one can generalize this definition to any finite sequence
inag.



Arthur-Campoli relations

An Arthur-Campoli sequence is a finite sequence (&;, Wi, A;, u;); with & € M”,
VeSS ik Ai €a; and u; €S(af) st

D (e, (), W) =0, x€G,
i



Arthur-Campoli relations

An Arthur-Campoli sequence is a finite sequence (&;, Wi, A;, u;); with & € M”,
VeSS ik Ai €a; and u; €S(af) st
Z(Hﬁi,)\i;ui(x);ufi> =07 XEG
i
Let
F =m0 (a)) ® F(E).

Definition
(p € F satisfies the Arthur-Campoli relations if

Y (@Ei, Aj;ui),wi) =0, forany (&;,y;,A;, ui); A-C sequence.
i




Intertwining relations

Let 8 = (§,A,n) € 2 with £ e M", A € a’ and n a finite sequence in a;.
Define the rep-n 15 of G in Vy, := C®°(K: &)™ by 115 := nén;\
Similarly, define for ¢ € &, @5 € End(C®(K: &)™) by @5 := @V (E,N).



Intertwining relations

Let 8 = (§,A,n) € 2 with £ e M", A € a’ and n a finite sequence in a;.
Define the rep-n 15 of G in Vy, := C®°(K: &)™ by 115 := né ))\
Similarly, define for ¢ € &, @5 € End(C®(K: &)™) by @5 := @V (E,N).

Definition (Intertwining relations)
A function ¢ € & satisfies Delorme’s intertwining relations if

o for every N€ Z, and each § € 2N, s preserves all closed inv-nt s-spaces
of 1g;

o forallNy,NyeZ,,all 8, € 2™ and §, € 22, and any two sequences of
closed invariant subspaces U < V; for 1t ,

Ps,
Vi/Uy ——— V5 /Uy

1| |1

Nt Vy/U,

Ps,

The space of functions ¢ € & satisfying (a) and (b) is denoted by & (2).




Some examples of rank one

where “non-classical” conditions occur already.

Example (PW for G=SU(2,1) on 2-dim-I K-types)

Besides growth and symmetric cond-ns, one has extra cond-ns related to
holomorphic families of intertwining op-rs between p. s. rep-ns.




Some examples of rank one

where “non-classical” conditions occur already.

Example (PW for G =SU(2,1) on 2-dim-| K-types)
Besides growth and symmetric cond-ns, one has extra cond-ns related to
holomorphic families of intertwining op-rs between p. s. rep-ns.

Example (PW for G=SU(2,1) on 4-dim-I K-types)
Besides growth and symmetric cond-ns, one has extra cond-ns related to
derivatives of holomorphic families of intertwining op-rs between p. s. rep-ns.
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Paley-Wiener thm: C‘C’O(G,K)A =PW(G,K)

S y
besides growth cond-ns Or,))
®

Arthur-Campoli relations Intertwining relations
on some families of rep-ns on some families of rep-ns

' Hecke algebra #(G,K) /
. n(G)** = End(V)* '

(G = n(A#(G,K)) (A (G,K)) = End(V)*

~ -

= &
Relations in terms of (G, K)
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Holomorphic families of representations

Definition (Holomorphic families of representations)
The pair (1, V) is a holomorphic family of smooth rep-ns of G over ag if
@ Vs a Fréchet space

e n:G— O(a’,End(V)) is a group homomorphism, continuous, with rest-n
to K constant on a;, and

g—m(g) (M) visC™, forall (A, v) €a’ x V.




Holomorphic families of representations

Definition (Holomorphic families of representations)
The pair (11, V) is a holomorphic family of smooth rep-ns of G over a; if
@ Vs a Fréchet space

@ n:G— O(a’,End(V)) is a group homomorphism, continuous, with rest-n
to K constant on a’, and g — m(g)(A)v smooth.

Example (Minimal principal series of G)

VEeM", (mg\)a is a holomorphic family of smooth rep-ns of G.




Tensoring with finite dimensional G,-module

Let @y be the algebra of germs at 0 of holomorphic functions defined on a
neighborhood of 0 in a® and .# its maximal ideal.



Tensoring with finite dimensional G,-module

Let @y be the algebra of germs at 0 of holomorphic functions defined on a
neighborhood of 0 in a® and .# its maximal ideal.

Definition (Successive derivatives)

For any finite dimensional @y-module E, any ® € 0'(a;), define
®® € G(a?, End(E)) by:

Vear ®® (\):= thegermat0of ®(-+A) . E




Tensoring with finite dimensional G,-module

Let O be the algebra of germs at 0 of holomorphic functions defined on a
neighborhood of 0 in a® and .# its maximal ideal.

Definition (Successive derivatives)

For any finite dimensional @y-module E, any ® € 0'(a;), define
®® € G(a?, End(E)) by:

Vear ®B (A):= thegermat0of ®(-+A) . E

Using canonical identification, we can extend this definition to hol. f-ies of rep-ns
(1, V) as follows: (1™, V®) is the hol. f-y of rep-ns given by:

o VB .=EeV
o ¥ (g,N):=m(@)®P M), geGAeal.



Some examples

@ Forany u e S(a;), one can canonically associate a f-dim Gy-module E and
pneEnd(E)* s.t.

O\ u)=po®® (), ®ed(a) Aeal.

@ Foranyneaf,let %, :={pe./: 0(nye ./} ltis a cofinite ideal of 0.

Then
) o [ PO) @) )| _ (00! F)
oM 1= (7 G ) = 0@,
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@ The generalized Hecke algebra for (G, K)



Definition and general facts

Let #(G,K) be the (convolution) algebra of left K-finite distributions on G with
support contained in K.



Definition and general facts

Let #(G,K) be the (convolution) algebra of left K-finite distributions on G with
support contained in K.

Some properties

e #(G,K) is an associative algebra and has an approximation of identity.
o #(G,K) = U(ge) ®u,) A (K) (as linear spaces), given by:

o) *T—uxT

equivariant for left U (g¢)-action and right #°(K)-action.
o S (G,K) = A#(K) @y Ulge).
@ All elements of #(G,K) are bi-K-finite.




(G, K)-modules and Harish-Chandra modules

A Harish-Chandra module V is a (g, K)-module



(G, K)-modules and Harish-Chandra modules

A Harish-Chandra module V is a (g, K)-module, i.e
@ Vis a complex vector space endowed with
@ compatible U(gc) and K-module structures: Vv eV, ke K, u e U(g.), X €t

k-(u-v)=Ad(Qu-k-v, & (exp(tX)-v),,_, =X V),

[t=0

@ all elements are K-finite



(G, K)-modules and Harish-Chandra modules

A Harish-Chandra module V is a (g,K)-module, s.t.
@ V is a finitely generated U (g.)-module

@ Vis admissible (each irreducible K-module occurs only finitely often in V).



(G, K)-modules and Harish-Chandra modules

A Harish-Chandra module V is a (g,K)-module, s.t.
@ V is a finitely generated U (g.)-module

@ Vis admissible (each irreducible K-module occurs only finitely often in V).

Example (Underlying (g, K)-module of the principal series)

Let Vg ) be the underlying (g, K)-module C*°(K: {)x of mg ).

Then, for any f. d. ©p-modules E, VéE)z is a Harish-Chandra module.




(G, K)-modules and Harish-Chandra modules

A Harish-Chandra module V is a (g,K)-module, s.t.
@ V is a finitely generated U (g.)-module

@ Vis admissible (each irreducible K-module occurs only finitely often in V).

Example (Underlying (g, K)-module of the principal series)

Let Vg ) be the underlying (g, K)-module C*°(K: {)x of mg ).

Then, for any f. d. ©p-modules E, VéE)z is a Harish-Chandra module.

Property

HC-mod«—— f- g adm. appr. unital #(G,K)-mod




A bi-commutant theorem

Let m be an admissible Fréchet representation of G with finite composition series
and V its Harish-Chandra module.



A bi-commutant theorem

Let m be an admissible Fréchet representation of G with finite composition series
and V its Harish-Chandra module.

Definition
o (G = (W eEnd(V), i & VgeG, (W, m(g)) =0}
o (G :={p € End(V)kxk : Yyen(GyLs (9, W) =0}
o End(V)* := {p € End(V)kxx : V5 Yu<venr, 9®"(U) c U}.




A bi-commutant theorem

Let m be an admissible Fréchet representation of G with finite composition series
and V its Harish-Chandra module.

Definition
o (G :={weEnd(V)§, x : Ygea, (W, T(g) = 0}
o (G :={p € End(V)kxk : Yyen(GyLs (9, W) =0}
o End(V)* := {p € End(V)kxx : V5 Yu<venr, 9®"(U) c U}.

Theorem (van den Ban & S.)

Letm and'V as above. Then, as linear subspaces of End(V)kxx,
e End(V)* = n(#(G,K))
o (G =n(#(G,K).
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e The Paley-Wiener theorem(s) for G and some reformulation



The Arthur Paley-Wiener theorem

CZ(G K" =PWarn (G,K)
&\0‘ besides growth cond-ns

Arthur-Campoli relations

T[(G)J_J_

A4
Reformulation



Theorem (Arthur ’82)

The Fourier transform is a topological isomorphism from C°(G,K) onto
PW 4:4,(G,K) with

PW 4,4 (G,K) = {p € PW(a) ® (&zemnr-F (€)) : @ satisfies A-C}.




Theorem (Arthur ’82)

The Fourier transform is a topological isomorphism from C°(G,K) onto
PW 4:4,(G,K) with

PW 4,4 (G,K) = {p € PW(a) ® (&zemnr-F (€)) : @ satisfies A-C}.

Lemma (“Algebraic” reformulation)
Forany ¢ € Z,

o satisfies A-C

K]
= Ve, modsam a9 €M) € 13 (G




The Delorme Paley-Wiener theorem

CZ(G,K)" =PWpe (G, K)

. 9
besides growth cond-ns %,
S

Intertwining relations
1
1
1
1

End(V)*

1
1
1

A

Reformulation



Theorem (Delorme ’06)

The Fourier transform is a topological isomorphism from C2°(G,K) onto
PWpe(G,K) with

PWpei(G,K) = {p € PW(a) ® (®en L) : @ € F (D)},




Theorem (Delorme ’06)

The Fourier transform is a topological isomorphism from C2°(G,K) onto
PWpe(G,K) with

PWpe(G,K) = {p € PW(a) ® (®gemn S (€)1 @ € F (D).

@ Such a description was first obtained by Zelobenko ’75, in the complex
case.

@ Delorme uses all parabolic subgroups of G, and not only a minimal one, for
his description.




Theorem (Delorme ’06)

The Fourier transform is a topological isomorphism from C2°(G,K) onto
PWpe(G,K) with

PWpe(G,K) = {p € PW(a) ® (®gemn S (€)1 @ € F (D).

@ Such a description was first obtained by Zelobenko ’75, in the complex
case.

@ Delorme uses all parabolic subgroups of G, and not only a minimal one, for
his description.

Lemma (“Algebraic” reformulation)
For any ¢ € &, we have:

9 EF (D)

E
— V(E,E,A)E@O—MOdfd x MA ><a1*j ) (P(E) (E» )\) € End(Vf(,,)z)#
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Application

Recall that

¢ satisfies A-C
- V(E,EJ\)(—:@O—modfd xM~” xaé» (P(E) (E» )\) € T[éE)z (G)lL-

»

and
PpeEF (D)
(E))#.

= Y(£ENed-modgxMrxaz, @ (€, N) € End(Vy 3



Application

Recall that

¢ satisfies A-C
= V(gENeGy-mod x M xaks e®E N € JTéE)z G,

and
PpeEF (D)
— V N (E)(E N €eE d(V(E))#
(E,EJ\)E@O—modfd XMAXQC)(p y N E,,)\ .

Then, as a corollary of

End(Ve})" = 1) (#(G,K) = 13 (G,

we get
Corollary

PWpei(G,K) = PW4,41,(G, K).




Comparison with Helgason’s theorem
Remark that

(G, K)A (e P(a;) ® End(ﬂBgeMA C®(K: Exxx)

as a subalgebra.



Comparison with Helgason’s theorem
Remark that

(G, K)A (e P(a;) ® End(ﬂBgeMA C®(K: Exxx)

as a subalgebra.

Theorem (Reformulation of Arthur’s theorem)
Let ¢ € ®gcmnPW(a) ® F (). One has

@ € PWarh(G,K)
= Yu,g,0)<S@:) xMAxa IpereG o Vi @& Aisui) = p(&i, Ais ui).




Comparison with Helgason’s theorem
Remark that

JC(G, K" c P(a;) ® End(eageMA C®(K: &kxK)
as a subalgebra.
Theorem (Reformulation of Arthur’s theorem)
Let ¢ € ®gcmnPW(a) ® F (). One has

@ € PWy,44(G,K)

= Yu,g,0)<S@:) xMAxa IpereG o Vi @& Aisui) = p(&i, Ais ui).

Lemma

Let 6 € #(G,K) denote the distribution on G given by 1x dk. Then
o (pr,.7(G,K) % )" =P(a*)W
o (A£(G,K) *dx)" ={peP(a)) @ L>(K/M)x : Y wew, @(wA) =A,NeA)} |
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In 2007, van den Ban & Schlichtkrull proved a Paley-Wiener theorem for
reductive symmetric spaces of the non-compact type. Their description uses
some kind of Arthur-Campoli relations.
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The Fourier transforms are meromorphic functions.




Open problem

In 2007, van den Ban & Schlichtkrull proved a Paley-Wiener theorem for
reductive symmetric spaces of the non-compact type. Their description uses
some kind of Arthur-Campoli relations.

The Fourier transforms are meromorphic functions.

Question
@ Give another description in terms of intertwining cond-ns.

@ What will play the role of the Hecke algebra?
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