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1 Motivation of this work: Plancherel formula for
the real spherical spaces

Try to get the Plancherel formula for real spherical spaces following the steps of
the work of Sakellaridis-Venkatesh (Bernstein maps). For this, one needs to get a
theory of the constant term. We are interested in some class of functions (namely
tempered) on a real spherical space Z = G/H which are eigen under the action of
the center of the universal enveloping algebra of gc.

To such a function, we want to associate functions of the same nature on the bound-
ary degenerations Z; of Z. Historically,

- Harish-Chandra did it for Z = H x H/Diag(H)
- Carmona did it for Z a symmetric space.

To obtain such a theory, the ideas we use are basically the same, modulo some not
only technical difficulties.
2 Real spherical spaces

1. G = G(R) where G is a connected reductive algebraic group defined over R
H closed connected subgroup of G
Z =G/H

2. Definition (Krotz-Sayag-Schlichtkrull, Brion for the complex case).
Z real spherical if:

3P,,i» minimal parabolic subgroup of G s.t. P,,;, H open in G.

3. Examples.



(a) Symmetric spaces: H = (G7)y with o rational involution of G, P,
minimal of-stable parabolic subgroup, with 6§ Cartan involution which

commutes with o
in particuliar H x H/Diag(H) ~ H, Py = P x 7(P), P minimal
parabolic subgroup of H, 7 Cartan involution of H.

(b) Non-symmetric spaces:

- triple spaces: H x H x H /Diag(H)

P,.;n, product of 3 minimal parabolics of H pairwise different.
- Z = G/N with N unipotent radical of a parabolic of G.
- others: see classification by Knop-Krotz-Schlichtkrull

3 Some properties

3.1 Local structure Theorem (Knop-Kro6tz-Schlichtkrull)
3!Q) = G parabolic sg with () = LU Levi decomposition s.t.:

P’rm’n < Q
L,c@QnHCcCL,

with L, product of non-abelian non-compact factors of L. One says that @) is Z-
adapted to P, (terminology of KKS).
Then

g=ho(nh) S,

with [ = Lie L, u = LieU and (I n )¢ is a supplementary of [ n b in [.
Let p denote the projection of g on ([ n h)° @ u parallel to h. Hence

X—-p(X)eh, Xeg.

3.2 Polar decomposition

1. One fixes

A maximal vector subgroup of the center of L

- A,in maximal vector subgroup of L containing Ay,

L = K A,,;n N, Iwasawa decomposition

K maximal compact subgroup of G s.t. K o K,
One has G = K A,,,;n Nonin Iwasawa decomposition

2. Set



Ap analytic subgroup of G s.t. ag = LieAg =a, n b
- Ay =AL/An

Y @ roots of a,,;, = Lie A,,;, in u = LieU.

S : spherical roots, i.e. irreducible elements (which cannot be expressed
as a sum of two) of the (additive with zero) monoid of Ny3J, generated
by:

a+ 8, aed, feX,u{0}, st.3X_,eg * with X,z5 # 0,

where X, € ([nh)¢ and X, 4 € g’ < u such that:

P(X_a) = Xap+ Y, Xap.
BEX,
Actually S < a%,.

- Example. Symmetric case. P,,;, minimal o6 stable parabolic.
For any a e Xp . and X_, € g™ °,

p(X_a) = 0(X_4) € g™
Hence S: irreducible elements the monoid generated by {2 : a € Xg}.

3. Polar decomposition (Knop-Krotz-Sayag-Schlichtkrull).
Let A, ={ae Ay : a® <1,a € S} (compression cone).
Then

1F, W < G finite s.t.:

7 = FKA;W - H,

Temperedness

1. Z(g) center of U(g), the universal enveloping algebra of gc.

2. Z-tempered continuous linear forms.
Assume that Z is unimodular. In particular, pg (half sum of the roots of
ar, = Lie Ay in u) defines a linear form on az.
Let (7, V) be a Harish-Chandra G-representation = smooth globalization of
moderate growth of a Harish-Chandra (g, K)-module. In particular of finite
length, which implies vectors are annihilated by a finite codimensional ideal
of Z(g).
Let n € V* be continuous, H-invariant, is Z-tempered if the associated matrix
coefficients m,,,,, v € V, and their derivatives satisfy a temperedness inequality
according to the polar decomposition. Namely

INeN,Vve V,VueU(g), sup a "2(1+|logal) ™ |(Lum,.)(waH)| < 0.

weFK,aeA,
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3. Aiemp(Z) = {m,, : n et v as above} = C*(Z)

5 The constant term

5.1 Boundary degenerations (Knop-Kroétz-Schlichtkrull)

LLIcS a={Xeaz: a(X)=0,acl},a;” ={Xea: a(X)<0,ae S\I}
e.g Ay =0z, 0z =d, , 05 =05 =[),qKera

2. One fixes X7 € a; . One sets by = limy_, €

tad(X1)f in the Grassmanian of g,

eg hs=bbg=Inhdu".
3. Hj analytic subgroup of G s.t. Lie H; = b;, Z; = G/H| real spherical.

4. Properties.

(a)

Local structure Theorem: () is Z;-adapted to P,,;,.
Polar decomposition of Z; (KKS):

Zr = FiK Ay, Wi - Hi, (5.1)

with F, Wy finite subsets of G and A, = {ae Az : a* < 1,a€el}.
E.g. when I = &, W; = {1}. Indeed AE@ = Az and G = KA,inNmin
imply that Zg = KAy - Hy as ApinNmin © AzHg.

Let us remark that there is a complicated (not very explicit) relation
between W and W;.

Hypothesis: Z wave-front
Z wave-front if a, = (a,,,, + ag)/ay

where X% : roots of @i, I Nyyp = Lie Ny, 2y < 2
Ain = AX € Qmin + a(X) <0, v simple roots in X7},
Examples: symmetric spaces, some triple spaces.
But G/N is not wave-front.

Property (KKS). One has

Z wave-front implies that 3Q); > @ parabolic of G s.t. (), interlaces
H[, ie.

Q1 has a Levi decomp. Q; = L;U;
s.t. (L] M H)OU[_ C H[ C QI_

e.g. one can take Qgz = @, Ly = L.

5. Example. If Z symmetric, Q; = L;U; o6-stable parabolic subgroup contain-
ing szn Then Z[ = G/(L] @ H)OU]_
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5.2 Main Theorem

To simplify the exposition, I will assume here:
W = {1}.

But getting the non-trivial VW case involves difficult techniques which actually oc-
cupies a big part of the paper.

Theorem (Delorme-S.). For any f € Aemp(Z), there exists a unique f; € C*(Zy)
s.t.
Vge G, X ea;

(i) limr_, o0 €777 (f(gexp(TX)) — fi(gexp(TX))) = 0.

(i) T > e~ TPeX) fi(gexp(T X)) is an exponential polynomial with unitary char-
acters, i.e. of the form Y, _, pr(T)e™*™ where the py’s are polynomial and the
v ’s are real numbers.

Let us assume Wy = {1}. Then one has fr € Atemp(Z1). Moreover the linear
map f — fr is a continuous G-morphism, and YC compact in a;~, 3¢ > 0 and a
continuous seminorm p on Awemp N(Z) tq :

(aexp TX) 2 (f(waexp(TX)) — fr(waexp(TX))),
<eTp(f)(1+ |logal)V, aeA,, XeCweFK,T>0.

Remark. Our work for W, non trivial is still in progress. There are some technical
issues we still have to deal with.

5.3 Uniform estimate

As Harish-Chandra, we get some uniform estimates of the rest (the difference be-
tween the function and its constant term) when the functions are Z(g)-eigenvectors
with infinitesimal character for which we have a certain control of the real part.
Would be useful to establish the Plancherel formula for Z.

5.4 Unicity of the constant term

It comes from the property (ii) of the constant term and the following fact :

If an exponential polynomial P(t) of one variable, with unitary charac-
ters, satisfies
lim P(t) =0,

t—+00

then P = 0.



6 Main steps of the proof of the existence (fol-
lowing Harish-Chandra)

We follow the arguments of Harish-Chandra. Contrary to his approach, one does
not need to restrict ourselves to the case of 7-spherical functions (7 finite dimen-
sional representation of K') thanks to the theory of moderate growth completions of
Harish-Chandra modules (Bernstein-Kré6tz).

To obtain the existence of a constant term for f tempered, annihilated by Z<1Z(g)
of finite codimension, one associates a vectorial function:

o f- Ay — E*a
which satisfies a linear differential equation, for any X € a;,
Lx®; =T%(X)®s + ¥y x,

where (I', W) is a finite dimensional a;-module, (I'*, W*) its contragredient module
and ¥, x having “fast decay at o0”.

6.1 Differential equation for I = J

Let v : Z(g) — Z(I) be the Harish-Chandra homomorphism.
Fix W < Z(l) containing 1 s.t.

V(Z(9)) @W =~ Z(1).

Fix Z < Z(g) of finite codimension and choose V' < ~(Z(g)) finite dimensional
subspace containing 1 s.t.

V=~ (Z(9))/7(2).
One sets W = VW. Then
Z(l) = Wer(DW.
One then defines the finite dimensional az-module (I', W) by:
['(X)v = projection of Xv on W, X eaz“c”Z(l),ve W.

For f € Ajemp(Z) annihilated by Z, let ®; be the function from Az into W* defined
by:
< ®f(a),v>=a""(L,f)(a), acAz,veW,

Then
LX(I)fZF*(X)(I)f-F\Ilﬁx, X eay,

where Uy x is a W*-valued function on Ay depending on f, satisfying
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34 function on az s.t. (YY) < 0 for any Y € a,~ and

| x(expY)| < ep(1+ [ Y])NePO.
The above model is close to the following one.

Let E be a finite dimensional complex vector space, A € End(FE), ¢ €
C*([0, +o[, E). Consider the linear differential equation on [0, +oo[:

¢ = Ap+ 4,
where 1) has an exponential decay at infinity, i.e.
3B <0, [w(t)| <e’, t=0. (6.1)

Fact. If ¢ is a bounded solution, then 3¢ an exponential polynomial with unitary
characters s.t.:

lim ¢(t) — ¢(t) = 0. (6.2)

t—00

To get such a ¢, one discusses the asymptotical behavior of a solution ¢ according
to the sign of Re (A) — 8 with A eigenvalue of A.

7 Application to the discrete series for Z

If we have the Theorem for any I < S, we will be able to say the following:

If we assume that Z is without center (i.e. a, n (—ay) = {0}) then, for

any f € Atemp(Z)a

fr=0forall I &5 ifandonlyif f issquareintegrable

8 Constant term of a Z-tempered continuous lin-
ear form

Let £ be a Z-tempered continuous linear form of a Harish-Chandra G-representation
(m, V). The constant term gives us a unique linear form &; on (7, V'), Z;-tempered
if W[ = {1}, s.t.:

(Myo)r =My, vEV.



Details on (6.2) : a raconter si le temps

1. By integration of the equation, one has, for a,t > 0,

t

dla+1t) = ep(a) + J e =D (a + ) ds.

0

2. Let ¢ be a bounded solution and A € C be an eigenvalue of A. Let ¢, be the
projection of ¢ on the generalized eigenspace of A for the eigenvalue \. For
Re A > 3, the limit:

Oro(a) == lim e’tAqﬁA(a +t)

t—00

exists and
o0

Proo(a) = ¢ala) + f (e™* 4 (a + ), ds.

0

(a) As ¢ bounded, if Re A > 0, one then has ¢ o (a) = 0. Indeed
le™ox(a + )] < e+ 1) F o (a)].

By change of variables, one deduces that:
a0
ora+1t) =— J (e D4 (a + s))x ds.
t
(b) If Re X = /2, then
w .
fonta-+ 0 < €2 [ (14 (5= ) Flu(a+ 5)] ds.
t
(c) If Re A < 3/2, then
o0
fon(ar0l < e (4 9 Flof@)] + [ e 214 s = e Eluta + s)] ds)
0
(d) If Re A = 0, then
o0
[éx(a+1t) — drwla+1)] < 6t6/2f e PR+ (s — )l (a + s)| ds.

0

(e) Set, for \ eigenvalue of A,

5. _ | e iReA=0
MO 70 0, otherwise



(f) Then (take in the following 6 = 1/2)

[ér(a+t) = drmla+ )| < (1 + )" F|o(a)]

o0
+ f 6_55/2(1 + |s — t|)dimEH@Z)(a + 5)| ds).
0

As 1) satisifes (6.1), one then has
~ . w .
for(at0)dalato) < e (08 Flofa) +c [ e+ - d)mEas ).
0

(g) Let

é = Z é)\,OO'

)\ eigenvalue of A

(h) Hence one obtains from above:

lim ¢(t) — ¢(t) = 0.

t—00
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