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Abstract

Let Z be a unimodular real spherical space. We develop a theory of constant terms
for tempered functions on Z which parallels the work of Harish-Chandra. The constant
terms fI of an eigenfunction f are parametrized by subsets I of the set S of spherical
roots which determine the fine geometry of Z at infinity. Constant terms are transitive
i.e., pfJqI “ fI for I Ă J , and our main result is a quantitative bound of the difference
f ´ fI , which is uniform in the parameter of the eigenfunction.
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Introduction

Real spherical spaces are the natural algebraic homogeneous geometries Z “ G{H attached
to a real reductive group G. Formally, one defines real spherical by the existence of a minimal
parabolic subgroup P Ă G with PH open in G. On a more informal level, one could define
real spherical spaces as the class of algebraic homogeneous spaces Z “ G{H which allow a
uniform treatment of spectral theory, i.e., admit explicit Fourier analysis for L2pZq.

Real spherical spaces provide an enormous class of algebraic homogeneous spaces. Im-
portant examples are the group G itself, viewed as a homogeneous space under its both sided
symmetries G » G ˆ G{ diagpGq, and, more generally, all symmetric spaces. In case H is
reductive, a classification of all infinitesimal real spherical pairs pLieG,LieHq was recently
obtained and we refer to [21, 22] for the tables.
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Harmonic analysis on spherical spaces was initiated by Sakellaridis and Venkatesh in
the context of p-adic absolutely spherical varieties of wavefront type [33]. In particular,
they developed a theory of asymptotics for smooth functions generalizing Harish-Chandra’s
concept of constant term for real reductive groups.

Harish-Chandra’s approach to the Plancherel formula for L2pGq, a corner stone of 20th
century’s mathematics (cf. [15]), was based on his theory of the constant term [13, 14] and his
epochal work on the determination of the discrete series [11, 12]. In more precision, constant
terms were introduced in [13] and then made uniform in the representation parameter in
[14] by using the strong results on the discrete series in [11, 12]. Also in Harish-Chandra’s
approach towards the Plancherel formula for p-adic reductive groups, the constant term
concept played an important role and we refer to Waldspurger’s work [34] for a complete
account (the constant term in [34] is called weak constant term). Likewise, the Plancherel
theory of Sakellaridis and Venkatesh for p-adic spherical spaces is founded on their more
general theory of asymptotics.

Carmona introduced a theory of constant term for real symmetric spaces [6] parallel to
[13, 14], with the uniformity in the representation parameter relying on the description of the
discrete series by Oshima-Matsuki [32]. This concept of constant term then crucially entered
the proofs of Delorme [8] and van den Ban–Schlichtkrull [2] of the Plancherel formula for
real symmetric spaces.

Motivated by [33], we develop in this paper a complete theory of constant term for real
spherical spaces generalizing the works of Harish-Chandra [13, 14] and Carmona [6]. Let us
point out that our results hold in full generality for all real spherical spaces, i.e., in contrast to
[33], we are not required to make any limiting geometric assumptions on Z such as absolutely
spherical or of wavefront type. Further, we do not need to make any assumptions on the
discrete spectrum as in [33]. This is because of the recently obtained spectral gap theorem
for the discrete series on a real spherical space [28], which then implies the uniformity of the
constant term approximation in the representation parameter. The results of this paper then
will be applied in the forthcoming paper [9], where we derive the Bernstein decomposition
of L2pZq, which is a major step towards the Plancherel formula for Z.

Let us describe the results more precisely. In this introduction, G is the group of real
points of a connected reductive algebraic group G defined over R, and H “ HpRq for an
algebraic subgroup H of G defined over R. Furthermore, we assume that Z is unimodular,
i.e., Z carries a positive G-invariant Radon measure. We will say that A is a split torus of
G if A “ ApRq, where A is a split R-torus of G.

Central to the geometric theory of real spherical spaces Z “ G{H is the local structure
theorem (cf. [25, Theorem 2.3] and Subsection 1.1), which associates a parabolic subgroup
Q Ą P , said Z-adapted to P , with Levi decomposition Q “ LU .

Let now A be a maximal split torus of L and set AH :“ A X H. We define AZ to be
the identity component of A{AH and recall the spherical roots S as defined in e.g., [26,
Section 3.2]. The spherical roots are linear forms on aZ “ LieAZ and give rise to the
co-simplicial compression cone a´Z :“ tX P aZ | αpXq ď 0, α P Su. Set A´Z :“ exppa´Zq Ă AZ .

We move on to boundary degenerations hI of h, which are parametrized by subsets I Ă S.
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These geometric objects show up naturally in the compactification theory of Z (see [23], [20]
and Section 2), which in turn is closely related to the polar decomposition (see (1) below).
In more detail, let aI “

Ş

αPI Ker α Ă aZ and pick X P a´´I “ tX P aI | αpXq ă 0, α P SzIu.
Let HI be the analytic subgroup of G with Lie algebra

LieHI “ lim
tÑ`8

et adXLieH ,

where the limit is taken in the Grassmannian Grpgq of g “ LieG and does not depend onX. If
we denote by z0 “ H the standard base point of Z, then one can view HI (up to components)
as the invariance group of the asymptotic directions γXptq :“ expptXq ¨ z0 for t Ñ 8 and
X P a´´I . Phrased more geometrically, ZI :“ G{HI is (up to cover) asymptotically tangent
to Z in direction of the curves γX , X P a´´I .

As a deformation of Z, the space ZI is real spherical. Further, one has AZI “ AZ
naturally, but the compression cone a´ZI “ tX P aZ | αpXq ď 0, α P Iu becomes larger. In
particular, aI is the edge of the cone a´ZI , which translates into the fact that AI “ exppaIq
acts on ZI from the right, commuting with the left action of G.

The general concept of “constant term” is to approximate functions f on Z in directions
γX , X P a´´I , by functions fI , called constant terms, on ZI . The notion “constant” then
refers to the fact that fI should transform finitely under the right action of AI .

The appropriate class of functions for which this works are tempered eigenfunctions on
Z. In order to define them, we need to recall the polar decomposition which asserts

Z “ ΩA´ZW ¨ z0 , (1)

for a compact subset Ω Ă G and a certain finite subsetW of G which parametrizes the open
P -orbits in Z (see Lemma 1.6 and Remark 1.8 below for more explicit expressions of the
elements of W).

Let ρQ be the half sum of the roots of a in LieU . Actually, as Z is unimodular, ρQ P a
˚
Z .

For f P C8pZq and N P N, we set

qNpfq “ sup
gPΩ,wPW,aPA´Z

a´ρQp1` } log a}q´N |fpgaw ¨ z0q|

and define C8temp,NpZq as the space of all f P C8pZq such that, for all u in the enveloping
algebra Upgq of the complexification gC of g,

qN,upfq :“ qNpLufq

is finite. The semi-norms qN,u induce a Fréchet structure on C8temp,NpZq for which the G-
action is smooth and of moderate growth (in [4], these are called SF -representations). We
define the space of tempered functions C8temppZq “

Ť

NPNC
8
temp,NpZq and endow it with the

inductive limit topology.
We denote by Zpgq the center of Upgq and define AtemppZq as the subspace of C8temppZq

consisting of Zpgq-finite functions.
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Remark A. Functions f P AtemppZq can be described suitably in terms of representation the-
ory. A variant of Frobenius reciprocity implies that elements f P AtemppZq can be expressed
as generalized matrix coefficients

fpgHq “ mη,vpgHq :“ ηpπpgq´1vq ,

for v P V 8, where pπ, V 8q is a Zpgq-finite SF -representation of G and η : V 8 Ñ C a H-
invariant continuous functional. If V ´8 denotes the continuous dual of V 8, then an element
η P pV ´8qH is called Z-tempered provided mη,v P AtemppZq for all v P V 8. We denote the
corresponding subspace by pV ´8qHtemp.

For I Ă S, we choose a set WI Ă G parametrizing the open P -orbits on ZI . Then it is
contents of Section 2 that there is a natural map m :WI ÑW which matches open P -orbits.
As ZI is a real spherical space, we can define C8temp,NpZIq and Atemp,NpZIq as before.

The main result of this paper is the following (cf. Remark 5.6 and Theorem 5.9 for (i) -
(iii) and Theorem 7.10 for (iv)).

Theorem B. Let J be a finite codimensional ideal of the center Zpgq of Upgq and let
Atemp,NpZ : J q be the space of elements of Atemp,NpZq annihilated by J . There exists
NJ P N such that, for all N P N, for each f P Atemp,NpZ : J q, there exists a unique
fI P Atemp,N`NJ pZI : J q such that, for all g P G, XI P a

´´
I :

(i) If we interpret f , resp. fI , as functions on G which are right invariant under H,
resp. HI , then

lim
tÑ`8

e´tρQpXIq pfpg expptXIqq ´ fIpg expptXIqqq “ 0 .

(ii) The assignment
R Q t ÞÑ e´tρQpXIqfIpg expptXIqq

defines an exponential polynomial with unitary characters, i.e., it is of the form
řn
j“1 pjptqe

iνjt, where the pj’s are polynomials and the νj’s are real numbers.

(iii) The linear map f ÞÑ fI is a continuous G-morphism. Moreover for each wI P WI

with w “ mpwIq P W and any compact subset CI in a´´I , there exists ε ą 0 and a
continuous semi-norm p on Atemp,NpZq with:

|paZ expptXIqq
´ρQ pfpgaZ expptXIqw ¨ z0q ´ fIpgaZ expptXIqwI ¨ z0,Iqq |

ď e´εtp1` } log aZ}q
Nppfq, aZ P A

´
Z , XI P CI , g P Ω, t ě 0 .

(iv) The bound in (iii) is uniform for all J of codimension 1, i.e., J “ kerχ for a character
χ of Zpgq.

Given f P AtemppZq and I Ă S, we call fI P AtemppZIq the constant term of f associated to
I. Note that properties (i) and (ii) in Theorem B determine fI uniquely as a smooth function
on ZI . Furthermore, we may interpret Theorem B(iii) in such a way that fI controls the
normal asymptotics of f in direction of a´´I emanating from the base points w ¨z0 for certain
w PW .
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Remark C. Theorem B can be phrased differently in the language of representation theory
and it is worthwhile to mention this reformulation. Let V be a Harish-Chandra module and
V 8 its unique SF -completion. The subgroups H,HI being real spherical implies that the
invariant spaces pV ´8qH and pV ´8qHI are both finite dimensional (cf. [30]). Inside, we find
the subspaces of tempered functionals pV ´8qHtemp and pV ´8qHItemp. Then Theorem B defines
a linear map

pV ´8qHtemp Ñ pV ´8qHItemp, η ÞÑ ηI

such that, for all v P V 8, the matrix coefficient f “ mη,v is approximated by fI “ mηI ,v in
the sense of Theorem B(iii). As AI normalizes HI , we obtain an action of aI on the finite
dimensional space pV ´8qHItemp. It is easy to see that temperedness implies that

SpecaI pV
´8
q
HI
temp Ă ρQ

ˇ

ˇ

aI
` ia˚I ,

which in turn translates into the behavior of fI as exponential polynomial as recorded in
Theorem B(ii).

Parts (i) - (iii) of Theorem B generalize the work of Harish-Chandra in the group case
(see [13, Sections 21 to 25], also the work of Wallach [36, Chapter 12], where the constant
term is called leading term) and the one of Carmona for symmetric spaces (see [6]). The
uniformity in (iv) generalizes the uniform results of Harish-Chandra in the group case (cf. [14,
Section 10]) and Carmona for symmetric spaces (cf. [6, Section 5]).

As a corollary of Theorem B, we obtain a characterization of tempered eigenfunctions f
in the discrete series by the vanishing of their constant terms fI , I Ĺ S (see Theorem 5.12
below). Again it is analogous to a result of Harish-Chandra. For this, we use in a crucial
manner some results on discrete series from [26, Section 8].

The proof of Theorem B is inspired by the work of Harish-Chandra for real reductive
groups G, [13, 14], who associates to a tempered eigenfunction f on G certain systems of
linear differential equations. The main technical difficulty here is to set up the correct first
order system (4.24) of differential equations on AI associated to a function f P AtemppZq.
This is based on novel insights on the algebra of invariant differential operators on Z. With
the solution formula for the first order differential system (4.24), one then obtains, as in [13],
for each f P AtemppZq, a unique smooth function fI P C

8pZIq with properties (i), (ii) in
Theorem B and also (iii) for wI “ w “ 1. A main difficulty in this paper was to show that
fI is in fact tempered, which translates into the assertions in (iii) for all wI PWI . This, we
deduce from Proposition 2.1 on geometric asymptotics related to the natural matching map
m :WI ÑW . Let us point out further that our treatment in Section 7 of the uniformity in
Theorem B(iv) constitutes a major technical simplification to the so far existing state of the
art in [36, Chapter 12].

Earlier versions of this article needed the assumption that Z is of wavefront type. This
was mainly due to the lack of a better understanding of the algebra DpZq of G-invariant
differential operators on Z and their behavior under boundary degenerations, i.e., overlooking
that there is a natural map DpZq Ñ DpZIq originating from Knop’s work [19]. This was
observed by Raphaël Beuzart-Plessis and is now recorded in Appendix C. With this insight,
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we could remove the wavefront assumption and make the paper valid in the full generality
of real spherical spaces.

Acknowledgement: We thank Raphaël Beuzart-Plessis and Friedrich Knop for their gen-
erous help on certain technicalities of the paper. Furthermore, we appreciate comments of
Yiannis Sakellaridis regarding the exposition of the paper.

1 Notation

In this paper, we will denote (real) Lie groups by upper case Latin letters and their Lie
algebras by lower case German letters. If R is a real Lie group, then R0 will denote its
identity component. Furthermore, if Z is an algebraic variety defined over R and k is any
field containing R, then we denote by Zpkq the k-points of Z.

Let G be a connected reductive algebraic group defined over R and let G :“ GpRq be its
group of real points.

Remark 1.1. More generally, we could define G as an open subgroup of the real Lie group
GpRq. The main analytic result of this paper (i.e., Theorem B) is not affected by this more
general assumption but we do not supply a complete proof here.

For an R-algebraic subgroup R of G, we set R :“ RpRq and note that R Ă G is a closed
subgroup.

Let now H Ă G be an R-algebraic subgroup. Having G and H, we form the homogeneous
variety Z “ G{H. We note that ZpCq “ GpCq{HpCq and denote by z0 “ HpCq the standard
base point of ZpCq. Set Z “ G{H and record the G-equivariant embedding

Z Ñ ZpCq, gH ÞÑ g ¨ z0 .

In the sequel, we consider Z as a submanifold of ZpCq and, in particular, identify z0 with
the standard base point H of Z “ G{H as well.

Remark 1.2. Note that Z is typically strictly smaller than ZpRq, which is a finite union of G-
orbits. An instructive example is the space of invertible symmetric matrices Z “ GLn{On,
which features ZpRq “

Ť

p`q“n GLpn,Rq{Opp, qq. In particular, ZpRq Ľ Z “ G{H “

GLpn,Rq{Opnq.

As a further piece of notation, we use, for an algebraic subgroup R Ă G defined over R,
the notation RH :“ RXH and, likewise, RH :“ RXH. In the sequel, we use the letter P to
denote a minimal R-parabolic subgroup of G. The unipotent radical of P is denoted by N .

1.1 The local structure theorem

From now on, we assume that Z is real spherical, that is, there is a choice of P such that
P ¨ z0 is open in Z.
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Remark 1.3. Notice that P pCqHpCq is Zariski open and hence dense in GpCq as G was
assumed to be connected. Thus, any other choice P 1 of P , with P 1 ¨ z0 open, is conjugate to
P under H.

We now recall the local structure theorem for real spherical varieties (cf. [25, Theorem 2.3]
or [20, Corollary 4.12]; see also [5, 18] for preceding versions in the complex case), which
asserts that there is a unique parabolic subgroup Q Ą P endowed with a Levi decomposition
Q “ L˙ U , defined over R, such that

QH “ PH, (1.1)

Q
H
“ LH , (1.2)

LH Ą Ln, (1.3)

where Ln denotes the connected normal subgroup of L generated by all unipotent elements
defined over R.

Remark 1.4. (a) The Lie algebra ln is the sum of all non-compact simple ideals of l.
(b) As mentioned above, Q is the unique parabolic subgroup above P with properties

(1.1) - (1.3). Slightly differently, we could have defined Q via [23, Lemma 3.7] which asserts

QpCq “ tg P GpCq | gP pCq ¨ z0 “ P pCq ¨ z0u .

The group LH is uniquely determined by Q and we recall from [20, Lemma 13.5] that LH
is an invariant of Z, i.e., its H-conjugacy class is defined over R. In contrast to LH , the
Levi subgroup L is only unique up to conjugation with elements from U which stabilize LH .
In this regard, we note that it is quite frequent that LH is trivial and then L could be an
arbitrary Levi of Q. For later purposes of compactifications, we will only use those choices
of L which are obtained from the constructive proof of the local structure theorem (cf. [25,
Subsection 2.1]). In case Z is quasi-affine, this means that l is defined as the centralizer of a
generic hyperbolic element of g˚ which is contained in ph ` nqK (see the constructive proof
of the local structure theorem in [26]).

Such a parabolic subgroup Q as above will be called Z-adapted to P .
Let AL be the maximal split torus of the center of L and A be a maximal split torus

of P X L. Note that AL Ă A. Define AZ :“ A{AH and let (by slight abuse of notation)
AZ :“ pA{AHq0 » A0{pAHq0. From the fact that Ln Ă LH and A “ ALpAX Lnq, we obtain
AZ » pALq0{pALq0 XH with aZ » aL{aL X h.

We choose a section s : AZ Ñ pALq0 of the projection pALq0 Ñ AZ , which is
a morphism of Lie groups. We will often use ã instead of spaq, ãZ instead of
spaZq etc.

(1.4)

Note that ZGpAq “ MA for the maximal anisotropic group M Ă P with this property.
Moreover, MA, as a Levi of P , is connected (recall that Levi subgroups of connected algebraic
groups are connected). Notice that M commutes with A and P “ MAN . Observe that
M X A equals the 2-torsion points A2 of A.
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From (1.1) - (1.2), we obtain PH{H “ QH{H » U ˆ L{LH , and, taking real points, we
get

rP ¨ z0spRq » U ˆ pL{LHqpRq .

Next, we collect some elementary facts about pL{LHqpRq. To begin with, we define

xMH :“ tm PM | m ¨ z0 Ă AZpRqu

and note that MH is a cofinite normal 2-subgroup of xMH , see Proposition B.2. We denote
by FM :“ xMH{MH this finite 2-group. Since the action of the P -Levi MA Ă L on L{LH is
transitive, we obtain for the real points, by Proposition B.2,

pL{LHqpRq “ rM{MHs ˆ
FM AZpRq . (1.5)

From that, we derive the local structure theorem in the form

rP ¨ z0spRq “ U ˆ
“

rM{MHs ˆ
FM AZpRq

‰

, (1.6)

which we will use later. Let us denote by AZpRq2 » t´1, 1ur the 2-torsion elements in
AZpRq » pRˆqr and note that AZpRq2 naturally parametrizes the connected components of
AZpRq, that is, the AZ-orbits in AZpRq. In particular, we record the natural isomorphism
of Lie groups

AZpRq » AZ ˆ AZpRq2 .

Observe that FM naturally acts on AZpRq2. Hence, if we denote by pP zZpRqqopen the set
of open P -orbits in ZpRq, then we obtain from (1.6) and Corollary B.3 that:

Lemma 1.5. The map

AZpRq2{FM Ñ pP zZpRqqopen, FMaZ ÞÑ PaZ

is a bijection.

If we intersect (1.6) with Z, we obtain

rP ¨ z0spRq X Z “ U ˆ
“

rM{MHs ˆ
FM AZ,R

‰

(1.7)

with AZ,R :“ AZpRq X Z. Observe that AZ,R might not be a group and is in general only a
AZ-set. With AZ,2 :“ AZpRq2 X AZ,R, we then obtain

AZ,R “ AZAZ,2 » AZ ˆ AZ,2 .

Note that FM acts on AZ,2 and thus we obtain, in analogy to Lemma 1.5, that the map

AZ,2{FM Ñ pP zZqopen, FMaZ ÞÑ PaZ
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is a bijection. Next, we wish to find suitable representatives of the open P -orbits of Z in G,
i.e., find, for each FMaZ with aZ P AZ,2, an element w P G such that PaZ “ Pw ¨ z0. For
that, we consider the exact sequence

1 Ñ AH Ñ AÑ AZ “ A{AH Ñ 1 .

Now, note that this sequence stays, in general, only left exact when taking real points

1 Ñ AHpRq Ñ ApRq Ñ AZpRq .

In particular, we typically do not find a preimage of a torsion element t P AZ,2 Ă AZpRq in
A “ ApRq. However, if we set T :“ exppiaq Ă ApCq and TZ :“ exppiaZq Ă AZpCq, then

T Ñ TZ is surjective. In particular, each t P AZ,2 has a lift t̃ P T , which can even be chosen
in exppiãZq Ă T . Thus, we have shown that

Lemma 1.6. There exists a setW Ă G of representatives of pP zZqopen such that any element
w PW has a factorization in GpCq of the form

w “ t̃h, where t̃ P exppiãZq and h P HpCq such that t :“ t̃ ¨ z0 P AZ,2.

In particular, if a P AH , aw ¨ z0 “ w ¨ z0.

In the sequel,W Ă G is a choice of representatives of pP zZqopen as in Lemma 1.6, assumed
to contain 1 as a representative of P ¨ z0.

1.2 Spherical roots and polar decomposition

Let K Ă G be a maximal compact subgroup associated to a Cartan involution θ of g with
θpXq “ ´X for all X P a. Furthermore, let κ be an AdG and θ-invariant bilinear form on
g such that the quadratic form X ÞÑ }X}2 “ ´κpX, θXq is positive definite. We will denote
by p ¨ , ¨ q the corresponding scalar product on g. It defines a quotient scalar product and a
quotient norm on aZ that we still denote by } ¨ }.

For later reference, we record that K is algebraic, i.e., K “ KpRq, and further, M Ă K
as we requested θ

ˇ

ˇ

a
“ ´ ida.

Let Σ be the set of roots of a in g. If α P Σ, let gα be the corresponding weight space for
a. We write Σu (resp. Σn) Ă Σ for the set of a-roots in u (resp. n) and set u´ “

ř

αPΣu
g´α,

i.e., the nilradical of the parabolic subalgebra q´ opposite to q with respect to a.
Let plXhqKl be the orthogonal of lXh in l with respect to the scalar product p ¨ , ¨ q. One

has:
g “ h‘ plX hqKl ‘ u . (1.8)

Let T be the restriction to u´ of minus the projection from g onto pl X hqKl ‘ u parallel to
h. Let α P Σu and X´α P g

´α. Then (cf. [26, equation (3.3)])

T pX´αq “
ÿ

βPΣuYt0u

Xα,β , (1.9)
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with Xα,β P g
β Ă u if β P Σu and Xα,0 P plX hqKl .

Let M Ă N0rΣus be the monoid generated by:

tα ` β | α P Σu, β P Σu Y t0u such that there exists X´α P g
´α with Xα,β ‰ 0u. (1.10)

The elements of M vanish on aH so M is identified with a subset of a˚Z . We define

a´´Z “ tX P aZ | αpXq ă 0, α PMu
and a´Z “ tX P aZ | αpXq ď 0, α PMu.

Following e.g., [26, Section 3.2], we recall that a´Z is a co-simplicial cone, and our choice
of spherical roots S consists of the irreducible elements ofM which are extremal in Rě0M.
Here, an element ofM is called irreducible if it cannot be expressed as a sum of two nonzero
elements in M. Later, we will also need the edge of aZ

aZ,E :“ a´Z X p´a
´
Zq “ tX P aZ | αpXq “ 0, α P Su .

Note that aZ,E (more precisely spaZ,Eq) normalizes h and, likewise, AZ,E :“ exppaZ,Eq Ă AZ .
We turn to the polar decomposition for Z. SetA´Z :“ exppa´Zq andA´Z,R “ AZ,2A

´
Z Ă AZ,R.

By the definition of W , we then record that

A´Z,R “ A´ZW ¨ z0 .

Lemma 1.7 (Polar decomposition). There exists a compact subset Ω Ă G such that

Z “ ΩA´Z,R . (1.11)

Proof. Recall the group of 2-torsion points AZpRq2 of AZpRq. According to [20, Theorem 13.2
with Remark 13.3(ii)] (building up on the earlier work [23, Theorem 5.13]), we have ZpRq “
Ω ¨ AZpRq2A´Z , for some compact subset Ω of G. Note that A´ZAZpRq2 X Z “ A´Z,R and the
assertion follows.

Remark 1.8 (Passage to H connected). An analytically more general setup would be to
work with connected H, i.e., with Z0 “ G{H0 instead of Z “ G{H. For that, only some
adjustments are needed. In detail, by right-enlarging W with a set FH of representatives
for H{H0pH XMq, we obtain with W0 :“ WFH a set which is in bijection with the set of
the open P ˆH0-double cosets in G. Similarly, one obtains a polar decomposition for Z0 as
Z0 “ ΩA´ZW0 ¨ z0 with z0 “ H0, now denoting the base point of Z0.

In order not to introduce further notation and maintain readability, the main text is kept
in the algebraic framework. At various places, we will comment on the necessary adjustments
needed for H connected.

The polar decomposition is closely related to compactification theory of Z, which we
summarize in the next section.
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2 Boundary degenerations and quantitative geometry

at infinity

For a real spherical subalgebra h Ă g and any subset I Ă S, there is natural deformation of
hI of h, see (2.1) below for the straightforward definition. We define HI “ xexpphIqy as the
analytic subgroup of G with Lie algebra hI and define the boundary degenerations of Z as
ZI :“ G{HI . Let us mention that ZI identifies (up to cover) with an open cone-subbundle
in the normal bundle of a certain G-boundary orbit in a smooth compactification of Z. This
more elaborate point of view will be taken in the forthcoming work [9], but is not the topic
of this paper.

The compactification theory is reviewed here shortly in Subsection 2.3, but only as a
tool to give a shorter proof of Proposition 2.1, which is the main result of this section. In
more detail, let WI be the set of open P -orbits in the deformed space ZI . We introduce a
natural matching map m :WI ÑW for open P -orbits. The definition of m involves certain
sequences and the contents of Proposition 2.1 is about the rapid (i.e., exponentially fast)
convergence of these sequences.

2.1 Boundary degenerations of Z

Let I be a subset of S and set:

aI “ tX P aZ | αpXq “ 0, α P Iu, AI “ exppaIq Ă AZ ,
a´´I “ tX P aI | αpXq ă 0, α P SzIu, A´´I “ exppa´´I q .

Then there exists an algebraic Lie subalgebra hI of g such that, for all X P a´´I , one has:

hI “ lim
tÑ`8

ead tXh (2.1)

in the Grassmannian Grdpgq of g, where d :“ dim phq (cf. [26, equation (3.9)]).
Notice that ãI normalizes hI , and hence

phI :“ hI ` ãI

defines a subalgebra of g that does not depend on the section s.
Let HI be the analytic subgroup of G with Lie algebra hI and set ZI “ G{HI . Then ZI

is a real spherical space for which:

(i) PHI is open,

(ii) Q is ZI-adapted to P ,

(iii) aZI “ aZ and a´ZI “ tX P aZ | αpXq ď 0, α P Iu contains a´Z
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(cf. [26, Proposition 3.2]). Similarly to (1.8), one has:

g “ hI ‘ plX hqKl ‘ uI .

Let TI : u´ Ñ pl X hqKl ‘ uI be the restriction to u´ of minus the projection of g onto
pl X hqKl ‘ uI parallel to hI . Furthermore, let xIy Ă N0rSs be the monoid generated by I.
Let XI

α,β “ Xα,β if α` β P xIy and zero otherwise. It follows from [26, equation (3.12)] that
X´α `

ř

βPΣuYt0u
XI
α,β P hI . This implies that, for α P Σu,

TIpX´αq “
ÿ

βPΣuYt0u

XI
α,β .

Let A´ZI “ exp a´ZI . Similarly to Z, the real spherical space ZI has a polar decomposition:

ZI “ ΩIA
´
ZI
WI ¨ z0,I , (2.2)

where z0,I “ HI , ΩI Ă G compact andWI Ă G finite (cf. Lemma 1.7 and Remark 1.8 for the
choice ofWI as HI is defined to be connected). In more detail, the Lie algebra hI is algebraic
and we let HI be the corresponding connected algebraic subgroup of G. Using Lemma 1.6
applied to the real spherical space GpRq{HIpRq, we can make, using Remark 1.8, a choice
for WI such that elements wI PWI are of the form

wI “ t̃IhI , for some t̃I P exppiãZq and hI P HIpCq . (2.3)

We fix such a choice in the following, requesting in addition that 1 PWI .

2.2 Quantitative escape to infinity

Let I Ă S. Let us pick XI P a
´´
I , i.e., XI P aI and αpXIq ă 0 for all α P SzI. For s P R, let

as :“ exppsXIq . (2.4)

Fix wI “ t̃IhI PWI . According to [26, Lemma 3.9], there exist w PW and s0 ą 0 with

PwI ãsH “ PwH, s ě s0 . (2.5)

Note that (cf. Lemma 1.6):

w “ t̃h, for some t̃ P exppiãZq and h P HpCq . (2.6)

A priori, w might depend on XI , say wpXIq. On the other hand, the limit (2.1) is locally
uniform in compact subsets of a´´I . In particular, the set of Y P a´´I such that wpY q “ wpXIq

is open and closed. Hence, w is independent of X. Given wI P WI and w P W such that
(2.5) holds, we say that w corresponds to wI and note that this correspondence sets up a
natural map m :WI ÑW .
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According to [26, Lemma 3.10], there exist elements us P U , bs P AZ and ms P M such
that:

wI ãs ¨ z0 “ usmsb̃sw ¨ z0 s ě s0 ,
lim
sÑ`8

pasb
´1
s q “ 1,

lim
sÑ`8

us “ 1 ,

lim
sÑ`8

ms “ mwI , for some mwI PM .

(2.7)

Notice that in case wI “ 1, one can take w “ 1 and then one has mwI “ 1.
The goal of this section is to give a quantitative version of the convergence in (2.7). For

that, we first refer to Appendix A for the definition and basic properties of rapid convergence.
Recall the finite 2-group FM “ xMH{MH defined before (1.6) and fix with ĂFM ĂM a set

of its representatives containing 1. Then we have the following result:

Proposition 2.1. The families pasb
´1
s q and pusq converge rapidly to 1 and one can choose

the family pmsq such that pmsq converges rapidly to mwI P
ĂFM .

Remark 2.2. (a) Proposition 2.1 allows us to change the representatives wI to m´1
wI
wI without

loosing the special form wI “ t̃IhI with t̃I P exp iãZ . This is because of FMAZ Ă AZ,R Ă
exppiãZqA ¨ z0 Hence, we may and will assume in the sequel that mwI “ 1 for all wI PWI .

(b) For H replaced by connected H0, Proposition 2.1 stays valid with ĂFM right-enlarged
by representatives of the component group MH{pM X H0q. However, this causes that we
possibly cannot take mwI “ 1 as in (a).

(c) In order to give a shorter proof of Proposition 2.1, we use the compactification theory
of ZpRq, which we review in the next paragraph. In particular, it yields the framework to
consider pz0,I :“ limsÑ8 ãs ¨ z0 as an appropriate rapid limit in a suitable smooth compactifi-
cation of Z.

Geometrically, compactification theory provides (up to cover) a first order approximation
of ZI to Z at the vertex pz0,I at infinity. This first order approximation then yields readily

us Ñ 1 rapidly and ms Ñ mwI P
ĂFM rapidly. However, first order approximation can only

give asb
´1
s Ñ 1 and to show that asb

´1
s Ñ 1 indeed rapidly, we need to use finer tools from

finite dimensional representation theory.

2.3 Smooth equivariant compactifications

By an equivariant compactification of ZpRq, we understand here a G-variety pZ, defined over

R, such that pZpRq is compact and contains ZpRq as an open dense subset. In this context,

we denote by BZ the boundary of Z in pZpRq.
Suitable (i.e., smooth and equivariant) compactifications exist:

Proposition 2.3. Let Z “ G{H be an algebraic real spherical space. Then there exists a

smooth equivariant compactification pZpRq of ZpRq with the following property: for all I Ă S
and X P a´´I , the limit zX :“ limsÑ8pexppsXq ¨z0q exists in BZ and the convergence is rapid.

If hX is the stabilizer Lie subalgebra of zX in g, then hI Ă hX Ă phI .
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The proof of this result is implicit in the proof of [20, Theorem 13.2]. Since the construc-
tive proof is of relevance for us, we allow ourselves to repeat the fairly short proof.

Proof. The starting point is the local structure theorem for the open P -orbit on Z as in (1.6)

pP ¨ z0qpRq “ U ˆ
“

rM{MHs ˆ
FM AZpRq

‰

. (2.8)

One of the main results in [20], see loc.cit., Theorem 7.1, was that the compactification
theory of Z which can be reduced, via the local structure theorem, to the partial toric
compactification theory of AZ . Let us be more precise and denote by Ξ the character group
of AZ . Note that Ξ » Zn with n “ dim AZ . If we denote by N the co-character group of AZ ,
then there is a natural identification of aZ with N bZ R. Further, the compression cone a´Z
identifies as a co-simplicial cone (in [20], one uses the rational valuation cone, denoted ZkpXq:
take k “ R and X “ Z. Then a´Z “ R bQ ZkpXq). The set of spherical roots S Ă Ξ are
then the primitive (in Ξ) extremal elements, co-spanning a´Z . Best possible compactifications
(a.k.a. wonderful compactifications) exist when #S “ dim aZ and S is a basis of the lattice
Ξ. In general, this is not satisfied and we proceed as follows: we choose a complete fan
F Ă aZ , supported in a´Z , which is generated by simple simplicial cones C1, . . . , CN , i.e.,

•
Ť

Ci “ a´Z ,

• Ci X Cj is a face of both Ci and Cj for all 1 ď i, j ď N ,

• Ci “ tX P aZ | dψijpXq ď 0, 1 ď j ď nu for pψijq1ďjďn a basis of the lattice Ξ.

For the existence of such a subdivision, we refer to [10, Chapter III]. Now, attached to
the fan F , we construct the toric variety AZpFq expanding AZ along F . Note that the toric
variety AZpFq is smooth, as the fan consists of simple cones (third bulleted property). Thus,
we obtain a smooth variety

Z0pFq :“ U ˆ
“

rM{MHs ˆ
FM AZpFq

‰

, (2.9)

which inflates to a smooth G-variety ZpFq :“ G¨Z0pFq, containing Z0pFq as an open subset.

This is the content of [20, Theorem 7.1]. Now, set pZpRq :“ ZpFqpRq and note that pZpRq is
compact by [20, Corollary 7.12] as F was assumed to be complete.

We now claim that the limit limsÑ8pexppsXq ¨ z0q exists in AZpFqpRq and that the
convergence is rapid. For that, we pick a cone Ci which contains X, and let Fi be the
complete fan supported in Ci, which is generated by Ci. Notice that AZpFiqpCq » Cn is
open in AZpFqpCq. More specifically, the embedding of AZpCq ãÑ Cn is obtained by

AZpCq Q a ÞÑ pψijpaqq1ďjďn P pC˚qn Ă Cn . (2.10)

Given the definition of Ci as the negative dual cone to the ψij’s, j “ 1, . . . , n, the claim now
follows.

Note that the stabilizer of zs :“ exppsXq ¨z0 in G is given by Hs :“ exppsXqH expp´sXq

with Lie algebra hs :“ es adXh. Since zs Ñ zX in the smooth manifold pZpRq, we obtain that
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the vector fields corresponding to elements of limsÑ8 hs “ hI vanish at zX . This shows that
hI Ă hX . Finally the property hX Ă phI is derived from [20, Theorem 7.3].

We end this subsection with further remarks and explanations of the construction in the
proof above.

Remark 2.4. (a) It is quite instructive to consider the special case of Z “ G “ A. Here
A´Z “ AZ “ A “ AZ,E with S “ H. Upon identifying aZ with Rn via the character lattice Ξ,
there are two standard choices for the complete fan F generated by the cones C1, . . . , CN . The
first one is for N “ 2n and the cones given by the orthants: Cσ “ σpRě0q

n for σ P t´1, 1un.
This fan leads to AZpFqpRq » P1pRqn, the n-fold copy of the projective line. The other
standard choice is obtained via the identification Rn » Rn`1{Re with e “ e1 ` . . . ` en`1,
where pe1, . . . , en`1q is the canonical basis of Rn`1, and has N “ n` 1 cones given by:

Ci “ rp
n`1
à

j“1 s.t. j‰i

Rě0ejq ` Res{Re , 1 ď i ď n` 1 .

This fan leads to the projective space AZpFqpRq » PnpRq.
(b) In the previous example, we have seen that there are exactly N fixed points for G

in the compactification pZpRq, paramatrized by the cones Ci and explicitly given by limits
pzH,i :“ limtÑ8pexpptXq ¨ z0q, for some X P intCi. This feature is not limited to this

specific example but general: the compactification pZpRq features exactly N closed GpRq-
orbits through the various pzH,i’s. This is in contrast to wonderful compactifications, where
one has exactly one closed orbit. For wonderful compactifications, one has aZ,E “ t0u and
S is a basis of the lattice Ξ. If one of these two conditions fails, one is in need of a further
subdivision of a´Z into simple simplicial cones Ci.

(c) Let X P a´´I and F P F be the smallest face in the fan which contains X. Then

spanR F Ă aI and hX “ hI ` spanR F . In particular, for X P a´´I generic, we have hX “ phI .
(d) (cf. [20, Section 11]) In case H “ NGpHq is self-normalizing, one obtains a wonderful

compactification pZpRq by closing up ZpRq in the Grassmannian Grdpgq of d :“ dim h-
dimensional subspaces of g. The embedding is given by g ¨ z0 ÞÑ Adpgqh and, given the

definition of hI as a limit (cf. (2.1)), one derives easily that the stabilizer pHI of pz0,I in G has

Lie algebra phI .

2.4 Proof of Proposition 2.1

We choose a smooth compactification pZpRq “ ZpFqpRq as constructed in the previous
section. To begin with, we note that the limit

pz0,I :“ lim
sÑ8

ãs ¨ z0 (2.11)

exists. Moreover, pz0,I P AZpFqpRq and the convergence is rapid. Further, we deduce from

the fact that pz0,I is fixed by HIpCq and wI “ t̃IhI that limsÑ8wI ãs ¨z0 “ t̃I ¨pz0,I P AZpFqpRq
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is rapid. On the other hand, wI ãs ¨z0 “ usmsb̃sw ¨z0 “ usmsb̃st̃ ¨z0 which, in local coordinates
as given by (2.9), translates into:

wI ãs ¨ z0 “ pus, rms, t̃b̃s ¨ z0sq P U ˆ
“

rM{MHs ˆ
FM AZpFqpRq

‰

. (2.12)

Since limsÑ8wI ãs ¨ z0 “ p1, r1, t̃ ¨ pz0,Isq is rapid, we thus deduce that limsÑ8 us “ 1 is rapid
as well. Next, we use the smooth projection rM{MHs ˆ

FM AZpFqpRq Ñ M{MHFM and

obtain that mspMHFMq
rapid
ÝÝÝÑ
sÑ8

1pMHFMq P M{MHFM . In particular, we may assume that

ms
rapid
ÝÝÝÑ
sÑ8

mwI PMHFM . Notice that we are free to replace ms by elements of the form msmH

with mH PMH as we have

msmH b̃sw ¨ z0 “ msmH b̃st̃ ¨ z0 “ msb̃st̃ ¨ z0 “ msb̃sw ¨ z0 .

Thus, we may even assume that m :“ mwI P
ĂFM (which was defined just before Proposition

2.1).

We remain with showing bsa
´1
s

rapid
ÝÝÝÑ
sÑ8

1. Using the techniques from above, it is immediate

that dpas, bsq Ñ 0 rapidly for any Riemannian metric d on pZpRq. However, the statement
a´1
s bs Ñ 1 rapidly is a considerably finer assertion and difficult to obtain working with

only one compactification. Thus, we change the strategy of proof and work with (varying)
finite dimensional spherical representations instead. The representations give us various
morphisms of Z into affine spaces.

We assume first that Z is quasi-affine. The representations we work with are finite
dimensional irreducible representations pπ, V q of GpCq featuring two properties:

• The representation is HpCq-spherical, that is, there exists a vector vH ‰ 0 such that
πphqvH “ vH for all h P HpCq.

• Each NpCq-fixed vector is fixed by MpCq.

The second property can be rephrased in order that the representation is KpCq-spherical
(Cartan–Helgason theorem). In particular, each of these representations is self-dual, its
highest weight λ is an element of a˚ and its lowest weight is given by ´λ. We write ΛZ for
the set of highest weights of all HpCq and KpCq-spherical irreducible representations.

Given λ P ΛZ , we let pπ, V q be such an irreducible representation of GpCq of highest
weight λ. Furthermore, we fix a highest weight vector v˚ in the dual representation V ˚ of
V . From the fact that PH is open in G, we then deduce v˚pvHq ‰ 0 and, in particular,
V H “ CvH is one-dimensional. Moreover, it follows that ΛZ Ă a˚Z .

We expand vH into a-weight vectors

vH “
ÿ

µPΛπ

v´λ`µ ,

with Λπ :“ tµ P a˚ | v´λ`µ ‰ 0u. As vH is aH-fixed, we have Λπ Ă a˚Z and, by [23, Lemma
5.3], we obtain:

µ
ˇ

ˇ

a´´Z
ă 0 , µ P Λπzt0u . (2.13)
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Set
vH,s :“ aλsπpãsqvH s ě 0

and note, as vH is H-invariant, that this expression is independent of the choice of the
particular section s. From the definition, we then get

vH,s “
ÿ

µPΛπ

aµsv´λ`µ . (2.14)

If we define
vH,I :“

ÿ

µPΛπ s.t. µpXIq“0

v´λ`µ ,

then it is immediate from (2.13) and (2.14) that

vH,s Ñ vH,I rapidly for sÑ 8 . (2.15)

Recall v˚ P V ˚, a highest weight vector in the dual representation. Then we obtain from
wI ãs ¨ z0 “ usmsb̃st̃ ¨ z0 that:

v˚pπpwIqvH,sq “ aλs

´

v˚pπpusmsb̃st̃qvHq
¯

“ pasb
´1
s q

λt´λ pv˚pvHqq . (2.16)

By (2.15), we thus obtain from (2.16) that:

pasb
´1
s q

λ
“ tλ

v˚pπpwIqvH,sq

v˚pvHq
Ñ tλ

v˚pπpwIqvH,Iq

v˚pvHq
rapidly for sÑ 8 . (2.17)

We now employ [26, Lemma 3.10] for the simple convergence asb
´1
s Ñ 1. Thus, (2.17)

implies tλ
v˚pπpwIqvH,Iq

v˚pvHq
“ 1 with

pasb
´1
s q

λ
Ñ 1 rapidly for sÑ 8, λ P ΛZ . (2.18)

In case Z is quasi-affine, the set ΛZ spans a˚Z as a consequence of [25, Lemma 3.4 and (3.2)]
and we get asb

´1
s Ñ 1 rapidly from (2.18).

If Z is not quasi-affine, then matters are reduced via the so-called cone construction
from algebraic geometry. We extend GpCq to G1pCq :“ GpCq ˆ C˚ and, for a character
ψ : HpCq Ñ C˚ defined over R, we set H 1

pCq :“ tph, ψphqq | h P HpCqu .
In this way, we obtain a real spherical space Z 1 :“ G1{H 1 which projects G1-equivariantly

onto Z. According to [20, Corollary 6.10], there is compatibility of compression cones:

a1´Z “ a´Z ‘ R . (2.19)

Furthermore, according to Chevalley’s quasiprojective embedding theorem for homogeneous
spaces, we find such a ψ such that Z 1 is quasi-affine and we complete the reduction to the
quasi-affine case as follows: we lift the identity (2.6) to Z 1 and obtain

wI ã1s ¨ z
1
0 “ usmsb̃1sw ¨ z

1
0 s ě s0 ,

with ã1s P ãsp1ˆRˆq P G1 and likewise for b̃1s P b̃sp1ˆRˆq P G1. Because of (2.19), we obtain
the rapid convergence b1spa

1
sq
´1 Ñ 1 in the quasi-affine environment of Z 1. Projecting to Z

then completes this final reduction step.
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3 Z-tempered H-fixed continuous linear forms and the

space AtemppZq
In this section, we introduce the function space AtemppZq of tempered Zpgq-eigenfunctions
on Z. Via Frobenius reciprocity, these functions can naturally be interpreted as matrix
coefficients of smooth representations ofG which are of moderate growth (SF -representations
for short). This section starts with a brief digression on SF -representations and then provides
the definition of AtemppZq.

3.1 SF -representations of G

Let us recall some definitions and results of [4].
A continuous representation pπ,Eq of a Lie group G on a locally convex topological vector

space E is a representation such that the map:

Gˆ E Ñ E, pg, vq ÞÑ πpgqv, is continuous.

If R is a compact subgroup of G and v P E, we say that v is R-finite if πpRqv generates a
finite dimensional subspace of E. Let VpRq denote the vector space of R-finite vectors in E.
Let η be a continuous linear form on E and v P E. Let us define the generalized matrix
coefficient associated to η and v by:

mη,vpgq :“ă η, πpg´1
qv ą, g P G .

Let G be a real reductive group and } ¨ } be a norm on G (cf. [35, Section 2.A.2] or [4,
Section 2.1.2]). We have the notion of a Fréchet representation with moderate growth. A
representation pπ,Eq of G is called a Fréchet representation with moderate growth if it is
continuous and if, for any continuous semi-norm p on E, there exist a continuous semi-norm
q on E and N P N such that:

ppπpgqvq ď qpvq}g}N , v P E, g P G. (3.1)

This notion coincides with the notion of F -representations given in [4, Definition 2.6] for
the large scale structure corresponding to the norm } ¨ }. We will adopt the terminology of
F -representations.

Let pπ,Eq be an F -representation. A smooth vector in E is a vector v such that g ÞÑ πpgqv
is smooth from G to E. The space E8 of smooth vectors in E is endowed with the Sobolev
semi-norms that we define now. Fix a basis X1, . . . , Xn of g and k P N. Let p be a continuous
semi-norm on E and set

pkpvq “

˜

ÿ

m1`¨¨¨`mnďk

ppπpXm1
1 ¨ ¨ ¨Xmn

n qvq2

¸1{2

, v P E8 . (3.2)

We endow E8 with the topology defined by the semi-norms pk, k P N, when p varies in the set
of continuous semi-norms of E, and denote by pπ8, E8q the corresponding sub-representation
of pπ,Eq.
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An SF -representation is an F -representation pπ,Eq which is smooth, i.e., such that
E “ E8 as topological vector spaces. Let us remark that if pπ,Eq is an F -representation,
then pπ8, E8q is an SF -representation (cf. [4, Corollary 2.16]).

Recall our fixed maximal compact subgroup K Ă G.
Following [4], we call an SF -representation E admissible provided that EpKq is a Harish-

Chandra module with respect to the pair pg, Kq, that is, a pg, Kq-module with finite K-
multiplicities which is finitely generated as a Upgq-module.

An admissible SF -representation will be called an SAF -representation of G.
It is a fundamental theorem of Casselman–Wallach (cf. [7], [36, Chapter 11] or [4])

that every Harish-Chandra module V admits a unique SF -completion V 8, i.e., an SF -
representation V 8 of G, unique up to isomorphism in the SF -category, such that:

V 8pKq »pg,Kq V .

In particular, all SAF -representations of G are of the form V 8 for a Harish-Chandra
module V .

3.2 The spaces C8temp,NpZq and Atemp,NpZq

From now on and for the remainder of this paper, we will assume that Z is unimodular. Let
ρQ be the half sum of the roots of a in u. Let us show that

ρQ is trivial on aH .

As lX h-modules,
g{h “ u‘ pl{lX hq .

But the action of aH “ aX h on pl{lX hq is trivial. Since Z is unimodular, the action of aH
has to be unimodular. Our claim follows.

Hence ρQ can be defined as a linear form on aZ .

We have the notion of weight functions on a homogeneous space X of a locally compact
group G (cf. [3, Section 3.1]). This is a function w : X Ñ Rą0 such that, for every ball B of
G (i.e., a compact symmetric neighborhood of 1 in G), there exists a constant c “ cpw,Bq
such that

wpg ¨ xq ď cwpxq, g P B, x P X . (3.3)

One sees easily that, if w is a weight function, then 1{w is also a weight function.
Let v and w be the weight functions on Z defined by

vpzq :“ volZpBzq and wpzq :“ sup
aPA´Z s.t. zPΩaW¨z0

} logpaq} ,

where B is some ball of G and } ¨ } refers to the quotient norm on aZ “ a{aH . It is then clear
that v is a weight function and w is a weight function by [24, Proposition 3.4]. Recall that
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the equivalence class of v does not depend on B (see loc.cit., Lemma 4.1 and beginning of
Section 3 for the definition of the equivalence relation).

For any N P N, we define a norm pN on CcpZq by

pNpfq :“ sup
zPZ

`

p1`wpzqq´Nvpzq1{2|fpzq|
˘

. (3.4)

From the polar decomposition of Z (cf. (1.11)), one has

pNpfq “ sup
gPΩ,aPA´Z ,wPW

`

p1`wpgaw ¨ z0qq
´Nvpgaw ¨ z0q

1{2
|fpgaw ¨ z0q|

˘

.

From the fact that v and w are weight functions on Z and from [24, Propositions 3.4(2)
and 4.3], one then sees that:

The norm pN is equivalent to the norm

f ÞÑ qNpfq :“ sup
gPΩ,aPA´Z ,wPW

`

a´ρQp1` } log a}q´N |fpgaw ¨ z0q|
˘

.
(3.5)

Moreover, due to the fact that v and 1{w are weight functions on Z, one gets that G acts
by left translations on pCcpZq, pNq and, for any compact subset C of G, by changing z into
z1 “ g´1 ¨ z in (3.4), one sees that:

There exists c ą 0 such that

pNpLgfq ď cpNpfq, g P C, f P CcpZq .
(3.6)

This is in essence what is needed to identify

C8temp,NpZq :“ tf P C8pZq | pN,kpfq ă 8, k P Nu (3.7)

as an SF -module for G. Here, the pN,k, k P N, are as in (3.2), with p replaced by pN and
pπ,Eq by the SF -representation pL,C8temp,NpZqq. Further, we endow the increasing union
C8temppZq :“

Ť

NPNC
8
temp,NpZq, with the inductive limit topology. We call C8temppZq the space

of smooth tempered functions on Z.
Inside of C8temppZq, we define AtemppZq as the subspace of Zpgq-finite functions. Likewise

we define Atemp,NpZq.

3.3 Z-tempered functionals

Let pπ,Eq be an SF -representation and E 1 its strong dual. An element η P pE 1qH will be
called Z-tempered provided

There exists N P N such that, for all v P E, one has mη,v P

C8temp,NpZq.
(3.8)
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The Z-tempered functionals then define a subspace pE 1qHtemp of pE 1qH . Frobenius reci-
procity then asserts for an SF -representation pπ,Eq that:

HompE,C8temppZqq » pE
1
q
H
temp , (3.9)

which can be established as in [31, Lemma 6.5] via the Grothendieck factorization theorem
for topological vector spaces.

In case E “ V 8 is an SAF -representation, we adopt the more common terminology
V ´8 :“ pV 8q1 and recall the finiteness result for real spherical spaces (cf. [30, Theorem 3.2]):

dim pV ´8qH ă 8 . (3.10)

For a finite codimensional ideal J of Zpgq, let

Atemp,NpZ : J q :“ tf P Atemp,NpZq | f is annihilated by J u (3.11)

and denote by AtemppZ : J q the subspace of AtemppZq annihilated by J .

Proposition 3.1. There exists an N0 P N such that AtemppZ : J q “ Atemp,N0pZ : J q. In
particular, AtemppZ : J q is an SAF -representation of G.

The proof of Proposition 3.1 is preceded by two lemmas.

Lemma 3.2. There exists a Harish-Chandra module VJ annihilated by J such that any
Harish-Chandra module annihilated by J is a quotient of a finite direct sum of copies of VJ .

Proof. According to Harish-Chandra, there exist only finitely many isomorphism classes
V1, . . . , Vn of irreducible Harish-Chandra modules that are annihilated by J . We can find a
finite set F Ď pK of isomorphism classes of irreducible K-representations such that, for each
1 ď i ď n, the pg, Kq-module Vi is generated by its δ-isotypic component for some δ P F .
Then every Harish-Chandra module which is annihilated by J is generated by the sum of
its δ-isotypic components for every δ P F . Let RpKq be the algebra (for convolution) of
K-finite functions on K and IF Ď RpKq the ideal of elements which acts by zero in δ for any
δ P F . Let Rpg, Kq be the “Hecke algebra” of Knapp–Vogan [17, Section I.4], i.e., the algebra
of K-finite distributions on G which are supported in K. Then Rpg, Kq is generated as a
Upgq-module (either on the left or on the right) by RpKq and moreover the category of pg, Kq-
module is naturally equivalent to the category of non-degenerate (also called approximately
unital by Knapp–Vogan) Rpg, Kq-modules. Setting VJ “ Rpg, Kq{pRpg, KqIF ` Rpg, KqJ q
we see that VJ is a pg, Kq-module which is generated by any supplement subspace of IF in
RpKq and annihilated by J . Hence, by another result of Harish-Chandra, VJ is in fact a
Harish-Chandra module. Moreover, it is clear that any Harish-Chandra module annihilated
by J is a quotient of a finite sum of copies of VJ .

Lemma 3.3. Let f P Atemp,NpZq be a K-finite element. Set Ef :“ spanC LpGqf , with the

closure taken in C8temp,NpZq. Then Ef is an SAF -representation, i.e., Ef
pKq is a Harish-

Chandra module.
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Proof. We consider the pg, Kq-module V f :“ Upgqf . Since f is Zpgq-finite, the same holds
for V f . Now, as a finitely generated and Zpgq-finite module, V f is a Harish-Chandra module
by a theorem of Harish-Chandra. Standard techniques (see [4]) then show that V f is dense
in Ef and thus V f »pg,Kq E

f
pKq.

Proof of Proposition 3.1. Let EJ “ V 8J be the SAF -globalization of VJ where VJ is as in
Lemma 3.2. We will actually show that AtemppZ : J q is precisely the image of

pE 1J q
H
temp b EJ Ñ AtemppZq (3.12)

η b v ÞÑ mη,v .

Indeed, since pE 1J q
H
temp is of finite dimension (cf. (3.10)), the image of (3.12) is contained

in Atemp,N0pZ : J q for some N0 ě 0 and, by unicity of the SAF -globalization, this image
is closed in Atemp,NpZ : J q for every N ě N0. Hence, it suffices to show that it is also
dense in Atemp,NpZ : J q for every N ě N0. But by Lemmas 3.2 and 3.3, every K-finite
function f P Atemp,NpZ : J q is in the image of (3.12). Since K-finite functions are dense in
Atemp,NpZ : J q, this completes the proof.

4 Ordinary differential equation for Zpgq-eigenfunctions

on Z

Let f P AtemppZq. The goal of this section is to show that f
ˇ

ˇ

AI
gives a certain system of

ordinary differential equations on AI . In more precision, f is by definition annihilated by an
ideal J Ă Zpgq of finite codimension. We construct out of f a certain vector valued function
Φf on AI with values in a finite dimensional vector space Uf with dimension bounded by
dim Zpgq{J . The function f

ˇ

ˇ

AI
is then recovered by contracting Φf with a vector in Uf .

The function Φf in turn satisfies a first order linear differential system recorded in (4.28).
This section starts with a basic estimate for functions f P C8temp,NpZq which will be crucial

in the sequel: in a nutshell, we show that derivatives in direction of hI have decreasing decay
in direction of A´I . After that, we have a short algebraic subsection on invariant differential
operators on Z, where we review in particular the contents of Appendix C. With these
preparatory subsections, we then derive the differential equation (4.28) for Φf . From the
solution formula for Φf in Lemma 4.6, we then derive a variety of basic growth estimates for
Φf .

4.1 Differentiating tempered functions in direction of hI

Recall the basic notions about boundary degenerations related to subsets I Ă S of spherical
roots. Let us fix I Ă S throughout this section. We define a piecewise linear functional on
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aI by
β̃IpXq “ max

αPSzI
αpXq, X P aI , (4.1)

and note that β̃IpXq ă 0 if X P a´´I . If a P AI with a “ expX, we set aβ̃I “ eβ̃IpXq.
We begin this section with a crucial estimate:

Lemma 4.1. Let Y P hI and N P N. There exists a continuous semi-norm on C8temp,NpZq,
p, such that

|pLY fqpaq| ď aρQ`β̃I p1` } log a}qNppfq, a P A´´I , f P C8temp,NpZq .

Proof. On one hand, if Y P lX h,

pLY fqpaq “ 0, a P AI .

Hence, the conclusion of the Lemma holds for Y P lX h.
On the other hand, from the definition of TI (cf. beginning of Section 2.1), lX h and the

elements
Y´α “ X´α ` TIpX´αq P hI ,

for α varying in Σu and X´α in g´α, generate hI as a vector space. By linearity, it then
remains to get the result for Y “ Y´α.

Let a P AI and ã “ spaq (cf. (1.4) for the definition of s). Then let us show that

AdpãqY´α “ ã´αY´α .

One has AdpãqX´α “ ã´αX´α and AdpãqXα,β “ ãβXα,β. But α ` β P xIy. Hence, ãα`β “ 1
as a P AI . Our claim follows.

Let us get the statement for pLY´αfqpaq, a P A
´´
I and f P Atemp,NpZq. One has:

pLY´αfqpaq “ pLã´1pLY´αfqqpz0q “ ãαpLY´αLã´1fqpz0q .

Recall that M is the monoid in N0rΣus defined in (1.10) and xIy denotes the monoid in
N0rSs generated by I. Let us notice that:

Y´α `
ÿ

βPΣuYt0u s.t.α`βRxIy

Xα,β P h .

Hence one has:

pLY´αfqpaq “ ´ãα
ř

βPΣuYt0u s.t.α`βRxIypLXα,βLã´1fqpz0q

“ ´
ř

βPΣuYt0u s.t.α`βRxIy ã
α`βpLã´1LXα,βfqpz0q .

But ãα`β “ aα`β as a P AI Ă AZ and α ` β P S. Then, as pLã´1LXα,βfqpz0q “ LXα,βfpaq,
one has:

pLY´αfqpaq “ ´
ÿ

βPΣuYt0u s.t.α`βRxIy

aα`βpLXα,βfqpaq . (4.2)
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If α ` β R xIy as above and LXα,βf ‰ 0, one has α ` β PMzxIy and, from the definition of
βI (cf. (4.21)):

aα`β ď aβ̃I , a P A´´I .

Then
|pLY´αfqpaq| ď aβ̃I

ÿ

βPΣuYt0u s.t.α`βRxIy

|pLXα,βfqpaq| .

Hence, we get the inequality of the Lemma for Y “ Y´α by taking

p “
ÿ

βPΣuYt0u s.t.α`βRxIy

qN,Xα,β ,

with qN,Xpfq :“ qNpLXfq.

4.2 Algebraic preliminaries

For a real spherical space Z “ G{H, we denote by DpZq the algebra of G-invariant differential
operators. We recall the deformations ZI “ G{HI of Z which were defined with HI to be
connected. In particular, we point out that HS “ H0 and that ZS Ñ Z is possibly a proper
covering. However, we have DpZq Ă DpZSq naturally by Remark C.1. Next we describe
DpZIq as in Appendix C.

Let R denote the right regular representation of G on C8pGq. Differentiating R yields
an algebra representation of the universal enveloping algebra Upgq of gC:

R : Upgq Ñ EndpC8pGqq, u ÞÑ Rpuq .

Set b :“ a`m` u and note that b Ă g is a subalgebra with g “ b` hI for all I Ď S. Note
that bX hI “ aH `mH for all I Ď S, where mH “ mX h. Let bH :“ aH `mH . With

UIpbq :“ tu P Upbq | Xu P UpgqhI , X P hIu , (4.3)

we obtain a subalgebra of Upbq which features UpbqbH as a two-sided ideal. Next, we explain
the natural isomorphism

DpZIq » UIpbq{UpbqbH (4.4)

from (C.1). For that, we denote for fI P C
8pZIq by f̃I P C

8pGq its natural lift to a right
HI-invariant function in G. Then, with regard to the quotient map π : Upbq Ñ Upbq{UpbqbH ,
we take ũ P Upbq to be any lift of u P UIpbq{UpbqbH Ă Upbq{UpbqbH . Then we can define

pRIpuqfIqpgHIq :“ pRpũqf̃Iqpgq, g P G ,

as the right hand side is independent of the particular choice of the lift ũ of u and the
representative g of the coset gHI . With this notion of RI , the isomorphism in (4.4) is
implemented by the assignment

UIpbq{UpbqbH Q uÑ RIpuq P DpZIq .
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For f P C8pZq Ă C8pZSq and u P DpZq Ă DpZSq, we use the abbreviated notation Rpuqf
without specifying any further index.

In the sequel, we consider DpZIq as a subspace of Upbq{UpbqbH for any I Ă S. Notice
that Upbq{UpbqbH is naturally a module for AZ under the adjoint action, which yields us a
notion of aZ-weights of elements u P Upbq{UpbqbH .

Recall the center aZ,E “ aS of Z, which has the property that AZ,E normalizes H and
as such acts on Z from the right, commuting with the left G-action on Z. In particular,
we obtain a natural embedding SpaZ,Eq ãÑ DpZq. When applied to the real spherical space
ZI “ G{HI , I Ď S, we note that aI “ aZI ,E and record the inclusion SpaIq ãÑ DpZIq.

We rephrase Theorem C.4 from Appendix C as:

Lemma 4.2. For I Ď S, the following assertions hold:

(i) For any u P DpZq Ă Upbq{UpbqbH and X P a´´I , the limit

µIpuq :“ lim
tÑ8

et adXu

exists and defines an injective algebra morphism µI : DpZq Ñ DpZIq, which does not
depend on X.

(ii) For any non-zero u P DpZq, the aZ-weights of µIpuq and u are non-positive on a´Z and
the aZ-weights of µIpuq ´ u are negative on a´´I .

This Lemma shows that we can view DpZIq as a subalgebra of DpZHq. Since hH “ lXh`ū
is of a particular simple shape, i.e., close to a parabolic, the algebra DpZHq can be described
easily. For that, let MH :“ exppmHq ăM and keep in mind the standard isomorphim

DpM{MHq » UpmqMH{pUpmqmH X UpmqMH q . (4.5)

Lemma 4.3. The natural map

Φ : SpaZq b
“

UpmqMH{pUpmqmH X UpmqMH q
‰

Ñ UHpbq{UpbqbH , ub v ÞÑ uv ` UpbqbH

is an isomorphism. In particular, via (4.4) and (4.5), we obtain a natural isomorphim of
algebras

DpZHq » SpaZq b DpM{MHq . (4.6)

Proof. In the absolutely spherical case, this is found in [19, Section 6] (what is called Xh, the
horospherical deformation of a G-variety X, would correspond to our ZH). The slightly more
general case is an easy adaptation. In the following proof, we replace from (4.7) onwards
HH by its algebraic closure, which is legitimate by Remark C.1(b).

Recall that
UHpbq “ tu P Upbq | rX, us P UpgqhH, X P hHu .

In particular, UHpbq is ad a-invariant and we obtain a spectral decomposition

UHpbq “
ÿ

λPa˚

UHpbqλ .
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For λ “ 0, we further have

UHpbq0 “ UHpbq X Upa`mq “ UpaqpUpmqMH ` UpmqmHq ,

from which we easily derive that Φ is injective.
It remains to be seen that Φ is surjective. For that, it suffices to show that

rUHpbq{UpbqbHsλ » DpZHqλ “ 0 for λ ‰ 0. To verify that, we pass to the graded level
and first note that the symbol map gives an embedding

grDpZHq ãÑ PolpT ˚ZHq
G , (4.7)

with PolpT ˚ZHq :“ CrT ˚ZHs the regular (polynomial) functions on the quasi-affine va-
riety T ˚ZH. We identify the cotangent bundle T ˚ZH with G ˆHH pg{hHq

˚ and obtain
PolpT ˚ZHq

G » Polppg{hHq
˚qHH . Thus we have grDpZHq Ă Polppg{hHq

˚qHH naturally. Re-
call the invariant non-degenerate bilinear form κ on g. This form yields a G-equivariant
identification of g with its dual g˚ and induces an HH-equivariant identification of pg{hHq

˚

with hKH :“ tX P g | κpX, Y q “ 0, Y P hHu. The proof of the Lemma will then be completed
by showing that the restriction map

PolphKHq
HH Ñ Polpb

Km`a

H q

is injective, where b
Km`a

H :“ tX P m` a | κpX, Y q “ 0, Y P bHu. This is now fairly standard.

Note that hKH “ b
Km`a

H ` ū. Next let X “ Xa`Xm P a`m with Xa P a and Xm P m. Suppose
further that αpXaq ą 0 for α P Σpa, uq. Then, by a slight modification of [25, Lemma 2.5],
we have

AdpŪqX “ X ` rX, ūs “ X ` ū. (4.8)

Now Ū Ă HH and the fact that Z (and hence ZH) is unimodular implies that there exists
an element Xa as above which lies in aKa

H (see Lemma 4.4 below). It follows then from (4.8)
that any f P PolphKHq

HH is constant in the ū-variable of hKH, i.e., the restriction map above
is injective. This completes the proof of the Lemma.

Lemma 4.4. Let Z be a unimodular real spherical space. Then the following assertions hold:

(i) Z is quasi-affine, i.e., ZpCq “ GpCq{HpCq is a quasi-affine algebraic variety.

(ii) There exists an X P aKa
H » aZ such that αpXq ą 0 for all α P Σu.

Proof. [9, Example 11.6 and Lemma 11.7].

Let us denote by ZpZHq the center of DpZHq. We then obtain from (4.6) that

ZpZHq » SpaZq b ZpM{MHq . (4.9)
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We wish to describe the image of the natural map Zpgq Ñ ZpZHq Ă DpZHq more closely,
i.e., derive a slight extension of [19, Lemma 6.4].

In order to do so, we have to recall first the construction of the Harish-Chandra homo-
morphism and then relate it to the Knop homomorphism for ZpM{MHq.

We begin with a short summary on the Harish-Chandra homomorphims. The natural
inclusion Zpgq Ă UpaqZpmq‘Upgqn yields, via projection to the first summand, an injective
algebra morphism

γ0,a`m : Zpgq Ñ Upaq b Zpmq .

With t Ă m a maximal torus (which will be specified more closely below), we obtain with
j :“ a ` t a Cartan subalgebra of g. We choose a positive system of roots Σ`pjCq of the
the root system of gC with respect to jC such that the nonzero restrictions to a yield the
root spaces of n. Note that all roots are real-valued on jR :“ a ` it and we denote by
ρj P j˚R the corresponding half sum. Then, similar to what was just explained, we obtain,
by projection along the negative mC-root spaces with respect to tC, an injective algebra
morphism γ0,m : Zpmq Ñ Uptq. Putting matters together, we obtain with

γ0 :“ pIdSpaq b γ0,mq ˝ γ0,a`m

an injective algebra morphism γ0 : Zpgq Ñ Upjq. If we identify Upjq “ Spjq with the poly-
nomials Crj˚Cs on j˚C, the Harish-Chandra isomorphism γ : Zpgq Ñ UpjqWj is then obtained
by twisting γ0 with the ρj-shift, i.e., γpzqp¨q “ γ0pzqp¨ ` ρjq as polynomials on j˚C. For
our purpose we are in fact more interested in the unnormalized Harish-Chandra morphism
γ0 : Zpgq Ñ Spjq » Upjq.

Next we recall the Knop homomorphism for ZpM{MHq. Set tH :“ t X h and tZ :“ t{tH .
Note that M{MH is affine, i.e., the complexification MC{pMHqC is an affine homogeneous
space. We will request, from our choice of t, that the complexification of tZ is a flat for
MC{pMHqC, i.e., compatible with the local structure theorem (cf. [20, Theorem 4.2] applied
to Y “ X “ MC{pMHqC and k “ C). Set ρm :“ ρj

ˇ

ˇ

it
and let WM be the little Weyl group

of the affine space MC{pMHqC. Then [19, Theorem in the Introduction part(a)] yields the
Knop isomorphism

k : ZpM{MHq Ñ Crt˚Z,C ` ρmsWM .

For our purpose it is easier to work with the unnormalized Knop homomorphism which yields
us an algebra monomorphism:

k0 : ZpM{MHq Ñ Sptq{SptqtH

The important thing to notice here is that the Knop homomorphism k0 is compatible with
the unnormalized Harish-Chandra homomorphism γ0,m : Zpmq Ñ Sptq in the sense that the
diagram

Zpmq
γ0,m

��

// ZpM{MHq

k0

��
Sptq // Sptq{SptqtH .

(4.10)
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is commutative, see [19, Lemma 6.4]. To summarize, we obtain from (4.6), the just explained
construction of the Harish-Chandra homomorphism and (4.10) an injective algebra morphism

j0 : ZpZHq Ñ Spjq{SpjqpaH ` tHq (4.11)

together with the following commutative diagram

Zpgq
γ0

��

// ZpZHq

j0
��

Spjq // Spjq{SpjqpaH ` tHq .

(4.12)

In this diagram, the upper lower horizontal arrow is obtained from the natural Zpgq-
module structure of ZpZHq and the lower horizontal arrow is the natural projection Spjq Ñ
Spjq{SpjqpaH ` tHq.

Note that DpZIq is naturally a module for Zpgq, the center of Upgq. We define by DpZIq
the commutative subalgebra of DpZq which is generated by SpaIq and the image of Zpgq in
DpZIq.

Lemma 4.5. The Zpgq-module ZpZHq is finitely generated. In particular, DpZIq is a finitely
generated Zpgq-module for all I Ă S.

Proof. Since Spjq is a module of finite rank over SpjqWj (Chevalley’s theorem), we obtain
from (4.12) and im γ “ SpjqWj that ZpZHq is a finitely generated Zpgq-module. Since DpZIq
is naturally a submodule of DpZHq via the injective algebra morphism µI of Lemma 4.2,
the second assertion follows from the fact that Zpgq » SpjqWj is a polynomial ring (again by
Chevalley) and hence noetherian.

Let us denote by D0pZq the image of Zpgq in DpZq Ă DpZq. As we will see later, some
aspects become simpler if we work with the slightly smaller algebra D0pZq. It follows from
Lemma 4.5 that DpZIq is a finitely generated µIpD0pZqq-module.

Fix now I Ď S. Since DpZIq is finitely generated over µIpD0pZqq, there exists a finite
dimensional vector subspace U of DpZIq containing 1 such that the map

µIpD0pZqq b U ÝÑ DpZIq
v b u ÞÝÑ vu

is a linear surjective map.

Let I be a finite codimensional ideal of D0pZq and let I 1 :“ µIpIq. Let C “ CpIq be a
finite dimensional vector subspace of µIpD0pZqq containing 1 such that µIpD0pZqq “ C`I 1.
Hence:

DpZIq “ pC ` I 1qU “ CU ` I 1U , (4.13)
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where I 1U (resp. CU) is the linear span of tvu | v P I 1, u P Uu (resp. tvu | v P C, u P Uu).
Since I 1 is an ideal on D0pZq, we obtain that:

I 1U “ I 1µIpD0pZqqU “ I 1DpZIq “ DpZIqI 1 . (4.14)

Hence, (4.13) implies that:
DpZIq “ CU `DpZIqI 1 . (4.15)

In case I is a one codimensional ideal of D0pZq, one may and will take C “ C1, and
then CU “ U .

In general, we choose a finite dimensional subspace UI Ă CU , possibly depending on I,
such that the sum in (4.15) becomes direct:

DpZIq “ UI ‘DpZIqI 1 . (4.16)

Let sI , resp. qI , be the linear map from DpZIq to UI , resp. DpZIqI 1, deduced from this
direct sum decomposition. The algebra DpZIq acts on UI by a representation ρI defined by:

ρIpvqu “ sIpvuq, v P DpZIq, u P UI . (4.17)

In fact:

The representation pρI , UIq is isomorphic to the natural representation of
DpZIq on DpZIq{DpZIqI 1.

We notice that, for v P DpZIq and u P UI ,

vu “ ρIpvqu` qIpvuq. (4.18)

If puiqi“1,...,n is a basis of U , then we obtain, from DpZIqI 1 “ µIpIqU “ UµIpIq (see (4.14)),
elements zi “ zipv, u, Iq P I, not necessarily unique, such that:

qIpvuq “
n
ÿ

i“1

uiµIpziq . (4.19)

Moreover, we record from Lemma 4.2(ii) that:

µIpziq ´ zi has aZ-weights non-positive on a´Z and negative on a´´I . (4.20)

In order to use it later, we denote by F “ FpIq the (finite) set of all these aZ-weights
which occur when v describes aI Ă DpZIq and u describes UI . Let us define a piecewise
linear functional on aZ by:

βIpXq :“ max
λPFYpSzIq

λpXq, X P aZ . (4.21)

Note that βI
ˇ

ˇ

a´Z
ď 0 and βI

ˇ

ˇ

a´´I
ă 0.
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4.3 The function Φf on AZ and related differential equations

Fix N P N and I a finite codimensional ideal in D0pZq. Recall the surjective morphism
Zpgq Ñ D0pZq and let J be the corresponding preimage of I. Set

AtemppZ : Iq :“ AtemppZ : J q ,

with AtemppZ : J q defined in (3.11).
Recall that we identified for any I Ď S the algebra DpZIq as a subspace of Upbq{UpbqbH .

Now given f P C8pZq, we denote by f̃ P C8pGq its lift to a right H-invariant smooth
function on G. For u P Upbq{UpbqbH we let further ũ P Upbq be any lift. Then, for all
aZ P AZ the notion

pRufqpaZq :“ pRpũqf̃qpãZq

is defined, i.e., independent of the lift ũ and the section s.
Recall that pρI , UIq is the finite dimensional DpZIq-module defined in (4.17) and in

particular UI Ă DpZIq Ă Upbq{UpbqbH . For any f P Atemp,NpZ : Iq, let us define a function
Φf : AZ Ñ U˚I by:

ă Φf paZq, u ą:“ pRufqpaZq, u P UI , aZ P AZ . (4.22)

Hence, for X P aI Ă DpZIq,

ă pRXΦf qpaZq, u ą“ pRXufqpaZq, aZ P AZ , u P UI . (4.23)

Hence, by using (4.18) and (4.19) for Xu, one gets

RXΦf “
tρIpXqΦf `Ψf,X , X P AI , (4.24)

where Ψf,X : AZ Ñ U˚I is given by:

ă Ψf,XpaZq, u ą:“
ÿ

i

pRuiµIpziqfqpaZq, aZ P AZ , u P UI , (4.25)

with zi “ zipX, u, Iq given by (4.19).
Since Rzif “ 0 as zi P I and f is annihilated by I, one then has:

ă Ψf,XpaZq, u ą“
ÿ

i

pRuipµIpziq´ziqfqpaZq, aZ P AZ , u P UI . (4.26)

One sets:
ΓIpXq “

tρIpXq, X P aI . (4.27)

Hence, we arrive at the fundamental first order ordinary differential equation:

RXΦf “ ΓIpXqΦf `Ψf,X , X P aI . (4.28)

Notice that ΓI is a representation of the abelian Lie algebra aI on U˚I .
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For λ P a˚I,C, one denotes by U˚I,λ the space of joint generalized eigenvectors of U˚I by
the endomorphisms ΓIpXq, X P aI , for the eigenvalue λ. Let QI be the (finite) subset of
λ P a˚I,C such that U˚I,λ ‰ t0u. One has:

U˚I “
à

λPQI

U˚I,λ . (4.29)

If λ P QI , let Eλ be the projector of U˚I onto U˚I,λ parallel to the sum of the other U˚I,µ’s.
Define, for λ P QI ,

Φf,λ :“ Eλ ˝ Φf .

We conclude this subsection with the solution formula for the system (4.28) (see the next
Lemma 4.6) and with two elementary estimates for Φf and Ψf,X in Lemma 4.7 below.

Lemma 4.6. Let f P AtemppZ : Iq. One has,

(i) for all aZ P AZ, t P R, X P aI ,

Φf paZ expptXqq “ etΓIpXqΦf paZq `

ż t

0

ept´sqΓIpXqΨf,XpaZ exppsXqq ds ,

(ii) for all aZ P AZ, t P R, X P aI , λ P QI,

Φf,λpaZ expptXqq “ etΓIpXqΦf,λpaZq `

ż t

0

Eλe
pt´sqΓIpXqΨf,XpaZ exppsXqq ds .

Proof. The equality (i) is an immediate consequence of (4.28). Indeed, we apply the el-
ementary result on first order linear differential equation to the function s ÞÑ F psq “
Φf paZ exppsXqq, whose derivative F 1psq “ pRXΦf qpaZ exppsXqq satisfies

F 1psq “ ΓIpXqF psq `Ψf,XpaZ exppsXqq .

The equality (ii) follows by applying Eλ to both sides of the equality of (i).

We recall the definition of βI from (4.21).

Lemma 4.7. Let N P N.

(i) There exists a continuous semi-norm on C8temp,NpZq, p, such that:

}Φf paZq} ď a
ρQ
Z p1` } log aZ}q

Nppfq

for aZ P A
´
Z and f P Atemp,NpZ : Iq.

32



(ii) There exists a continuous semi-norm q on C8temp,NpZq such that, for all compact subset
ΩA Ă AZ, there exists a constant C “ CpΩAq ą 0 such that:

}Ψf,XpaZq} ď Ca
ρQ`βI
Z p1` } log aZ}q

N
}X}qpfq

for aZ P ΩAA
´
Z , X P aI and f P Atemp,NpZ : Iq.

Proof. Let u ÞÑ ut denote the principal anti-automorphism of Upgq.
Let u P DpZIq Ă UpaZ `mZ ` uq. One has:

pRufqpaZq “ pLpAdpaZquqtfqpaZq .

Since Adpa´Zq contracts the aZ-weights of u (see Lemma 4.2(ii)), the assertion follows from
the continuity of the left regular action of Upgq on C8temp,NpZq.

Moving on (ii), we recall from (4.26) that:

ă Ψf,XpaZq, u ą“
ÿ

i

pRuipµIpziq´ziqfqpaZq, aZ P AZ , u P UI ,

with zi “ zipX, u, Iq.
Since the aZ-weights of ui are non-positive on a´Z (see Lemma 4.2(ii)), we obtain that

uipµIpziq ´ ziq decomposes into a finite sum over F ´ pa´Zq‹ of aZ-weight vectors:

uipµIpziq ´ ziq “
ÿ

λ

vi,λ .

Here, pa´Zq
‹ denotes the dual cone of a´Z . Then:

ă Ψf,XpaZq, u ą “
ř

i

ř

λpLpAdpaZqpvi,λqqtfqpaZq

“
ř

i

ř

λ a
λ
ZpLvti,λfqpaZq .

Let k :“ maxuPUI ,XPaI pdegpvi,λqq. Assume first that ΩA “ t1u and }X} “ 1. Then it follows
from the continuity of the left action of Upgq on C8temp,NpZq and the definition of βI that
there is an appropriate Sobolev norm q “ pN,k such that the bound in (ii) holds for C “ 1.
In general, if u P Upgq, a P ΩA and aZ P A

´
Z , one has:

pLufqpaaZq “ pLAdpa´1qufqpaZq

and the assertion follows from:

qpLafq ď Cqpfq, f P C8temp,NpZq, a P ΩA .
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4.4 The decomposition of Φf into eigenspaces

We recall the representation ΓI : aI Ñ EndpU˚I q of the abelian Lie algebra aI from (4.27)
and QI the set of its generalized aI-eigenvalues.

We endow U˚I with a scalar product and, if T P EndpU˚I q, we denote by }T } its Hilbert–
Schmidt norm. It is clear that, for any λ P QI , the projector Eλ defined just after (4.29)
commutes with the operators ΓIpXq, X P aI . For λ P QI , we set

EλpXq :“ e´λpXq
`

Eλ ˝ e
ΓIpXq

˘

, X P aI .

As Eλ ˝ rΓIpXq ´ λpXqIdU˚I s is nilpotent, one readily obtains that:

Lemma 4.8. Let λ P QI. We can choose c ě 0 such that:

}EλpXq} ď cp1` }X}qNI , X P aI ,

where NI is the dimension of UI.

Next, we decompose QI into three disjoints subsets Q`I , Q0
I and Q´I as follows:

(1) λ P Q`I if ReλpXIq ą ρQpXIq for some XI P a
´´
I ,

(2) λ P Q0
I if ReλpXIq “ ρQpXIq for all XI P a

´´
I ,

(3) λ P Q´I if λ R Q`I Y Q0
I , i.e., for all XI P a´´I , ReλpXIq ď ρQpXIq and

there exists XI P a
´´
I such that ReλpXIq ă ρQpXIq.

The next two propositions will be central for the definition of the constant term in the
next section. We first state the results and then provide the proofs in a sequence of lemmas.
The proofs of these results follow closely the work of Harish-Chandra (cf. [13, Section 22]):
to see the analogy replace M`

1 in [13] by A´Z and M1 by A´ZI .

Proposition 4.9. Let λ P Q0
I and f P AtemppZ : Iq. Then, for XI P a

´´
I , the following limit

lim
tÑ`8

e´tΓIpXIqΦf,λpaZ expptXIqq, aZ P AZ ,

exists and is independent of XI P a
´´
I .

For λ P Q0
I and f P AtemppZ : Iq, we now set

Φf,λ,8paZq :“ lim
tÑ`8

e´tΓIpXIqΦf,λpaZ expptXIqq, aZ P AZ . (4.30)

Further we define

Φf,λ,8paZq :“ 0, aZ P AZ , λ P Q`I YQ´I , f P AtemppZ : Iq . (4.31)

Proposition 4.10. Let λ P QI and f P AtemppZ : Iq. Then, for aZ P AZ, XI P a´´I and
t ě 0,

}Φf,λpaZ expptXIqq ´ Φf,λ,8paZ expptXIqq}

ď etpρQ`δβIqpXIq
´

}EλptXIq}}Φf paZq}

`

ż 8

0

e´spρQ`βI{2qpXIq}Eλppt´ sqXIq}}Ψf,XI paZ exppsXIqq} ds
¯

.
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4.4.1 Proof of Proposition 4.9

We say that an integral depending on a parameter converges uniformly if the absolute value
of the integrand is bounded by an integrable function independently of the parameter.

Lemma 4.11. Let λ P QI and XI P a
´´
I be such that ReλpXIq ą pρQ ` βIqpXIq. Then

(i) The integral
ż 8

0

Eλe
´sΓIpXIqΨf,XI paZ exppsXIqq ds

converges uniformly on any compact subset of AZ.

(ii) The assignment

aZ ÞÑ

ż 8

0

Eλe
´sΓIpXIqΨf,XI paZ exppsXIqq ds

is a well-defined map on AZ. Its derivative along u P SpaZq is given by derivation
under the integral sign.

Proof. One has

Eλe
´sΓIpXIq “ e´sλpXIqEλe

spλpXIq´ΓIpXIqq “ e´sλpXIqEλp´sXIq .

Hence, from Lemma 4.8, one has:

}Eλe
´sΓIpXIq} ď cp1` }sXI}q

NIe´sReλpXIq . (4.32)

Using Lemma 4.7(ii), (4.32) and the assumption ReλpXIq ą pρQ ` βIqpXIq, we obtain that
the integral in (i) converges uniformly on compact subsets of AZ .

The assertion (ii) follows from (i) and the theorem on derivatives of integrals depending
of a parameter.

Fix N P N such that f P Atemp,NpZ : Iq and λ P QI and put, for XI as in Lemma 4.11,
i.e., XI P a

´´
I such that Re λpXIq ą pρQ ` βIqpXIq:

Φf,λ,8paZ , XIq :“ lim
tÑ`8

e´tΓIpXIqΦf,λpaZ expptXIqq, aZ P AZ . (4.33)

It follows from Lemmas 4.6(ii) and 4.11 that this limit exists and is C8 on AZ . Moreover

Φf,λ,8paZ , XIq “ Φf,λpaZq `

ż 8

0

Eλe
´sΓIpXIqΨf,XI paZ exppsXIqq ds, aZ P AZ . (4.34)

Lemma 4.12. For XI P a
´´
I such that ReλpXIq ą ρQpXIq, one has:

Φf,λ,8paZ , XIq “ 0, aZ P AZ .
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Proof. One has

}e´tΓIpXIqΦf,λpaZ expptXIqq} ď e´tReλpXIq}Eλp´tXIq}}Φf paZ expptXIqq} .

From Lemmas 4.8 and 4.7(i), one then has

}e´tΓIpXIqΦf,λpaZ expptXIqq} ď Ca
ρQ
Z p1` } log aZ}q

N
p1` }tXI}q

N`NIetpρQ´ReλqpXIq .

The right hand side of the inequality tends to zero as t Ñ `8. Hence, the Lemma follows
from the definition (4.33) of Φf,λ,8paZ , XIq.

Lemma 4.13. Let X1, X2 P a
´´
I and suppose that

ReλpXiq ą pρQ ` βIqpXiq, i “ 1, 2 .

Then
Φf,λ,8paZ , X1q “ Φf,λ,8paZ , X2q, aZ P AZ .

Proof. Same as the proof of [13, Lemma 22.8]. We give it for sake of completeness. Let
aZ P AZ . Applying Lemma 4.6(ii) to aZ exppt1X1q instead of aZ , X2 instead of X and t2
instead of t, one gets:

e´ΓIpt1X1`t2X2qΦf,λpaZ exppt1X1q exppt2X2qq

“ e´t1ΓIpX1qΦf,λpaZ exppt1X1qq

`

ż t2

0

Eλe
´ΓIpt1X1`s2X2qΨf,X2paZ exppt1X1 ` s2X2qq ds2 ,

for t1, t2 ą 0. From Lemmas 4.8 and 4.7(ii) applied to X “ t1X1 ` s2X2 and pX, aZq “
pX2, aZ exppt1X1 ` s2X2qq respectively, one sees that:

ż 8

0

}Eλe
´ΓIpt1X1`s2X2q}}Ψf,X2paZ exppt1X1 ` s2X2qq} ds2

tends to 0 when t1 Ñ `8. Hence:

limt1,t2Ñ`8 e
´ΓIpt1X1`t2X2qΦf,λpaZ exppt1X1 ` t2X2qq

“ limt1Ñ`8 e
´ΓIpt1X1qΦf,λpaZ exppt1X1qq

“ Φf,λ,8paZ , X1q .

Since the first limit on the above equality is symmetrical in X1 and X2, one then deduces
that:

Φf,λ,8paZ , X1q “ Φf,λ,8paZ , X2q.

Proof of Proposition 4.9. If λ P Q0
I , the hypothesis of (4.33) is satisfied. Together with the

preceeding Lemma, it shows the proposition.
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4.4.2 Proof of Proposition 4.10

Lemma 4.14. Assume λ P Q`I and XI P a´´I such that ReλpXIq ą pρQ ` βIqpXIq. Then,
for any aZ P AZ,

Φf,λ,8paZ , XIq “ 0

and

Φf,λpaZ expptXIqq “ ´

ż 8

t

Eλe
pt´sqΓIpXIqΨf,XI paZ exppsXIqq ds , t P R .

Proof. Since λ P Q`I , there exists X0 P a´´I such that ReλpX0q ą ρQpX0q. Then, from
Lemma 4.12, Φf,λ,8paZ , X0q “ 0, and, from Lemma 4.13, as ReλpX0q ą ρQpX0q ą pρQ `
βIqpX0q, one has Φf,λ,8paZ , XIq “ Φf,λ,8paZ , X0q for any XI P a´´I such that ReλpXIq ą

pρQ`βIqpXIq. This proves the first part of the Lemma. The second part follows from (4.34)
by change of variables and when we replace aZ by aZ expptXIq.

Corollary 4.15. Let λ P Q`I and XI P a
´´
I be such that Re λpXIq ě pρQ`βI{2qpXIq. Then,

for aZ P AZ and t ě 0,

}Φf,λpaZ expptXIqq} ď

ż 8

t

ept´sqpρQ`βI{2qpXIq}Eλppt´ sqXIq}}Ψf,XI paZ exppsXIqq} ds .

Proof. Since βIpXIq ă 0 and Re λpXIq ě pρQ`βI{2qpXIq, one has, in particular, Re λpXIq ą

pρQ ` βIqpXIq. Then one can see, from Lemmas 4.14 and 4.11, that:

}Φf,λpaZ expptXIqq} ď

ż 8

t

ept´sqRe λpXIq}Eλppt´ sqXIq}}Ψf,XI paZ exppsXIqq} ds .

Our assertion follows, since Re λpXIq ě pρQ ` βI{2qpXIq implies that pt ´ sqRe λpXIq ď

pt´ sqpρQ ` βI{2qpXIq for s ě t.

Lemma 4.16. Let XI P a
´´
I be such that Re λpXIq ď pρQ ` βI{2qpXIq. Then

}Φf,λpaZ expptXIqq} ď etpρQ`βI{2qpXIq
´

}EλptXIq}}Φf paZq}

`

ż 8

0

e´spρQ`βI{2qpXIq}Eλppt´ sqXIq}}Ψf,XI paZ exppsXIqq} ds
¯

,

t ě 0, aZ P AZ .

Proof. We use Lemma 4.6(ii) and the inequality pt ´ sqReλpXIq ď pt ´ sqpρQ ` βI{2qpXIq

for s ď t in order to get an analogue of the inequality of the Lemma, where
ş8

0
is replaced

by
şt

0
. The Lemma follows.

Like in [13, after the proof of Lemma 22.8], one sees that one can choose 0 ă δ ď 1{2
such that:

ReλpXIq ď pρQ ` δβIqpXIq, XI P a
´´
I , λ P Q´I . (4.35)
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Lemma 4.17. Let λ P Q´I and XI P a
´´
I . Then, for aZ P AZ, t ě 0,

}Φf,λpaZ expptXIqq} ď etpρQ`δβIqpXIq
´

}EλptXIq}}Φf paZq}

`

ż 8

0

e´spρQ`βI{2qpXIq}Eλppt´ sqXIq}}Ψf,XI paZ exppsXIqq} ds
¯

.

Proof. This is proved like Lemma 4.16, using that ReλpXIq ď pρQ ` δβIqpXIq and 0 ă δ ď
1{2.

Notice now that, if λ P Q0
I , it follows from Lemma 4.13 and the definition of βI (cf. (4.21))

that:

For aZ P AZ , Φf,λ,8paZ , XIq is independent of XI P a
´´
I .

We will denote it by Φf,λ,8paZq.

Lemma 4.18. Assume λ P Q0
I and let XI P a

´´
I . Then one has, for t ě 0 and aZ P AZ,

}Φf,λpaZ expptXIqq ´ Φf,λ,8paZ expptXIqq}

ď etpρQ`δβIqpXIq
ż 8

0

e´spρQ`βI{2qpXIq}Eλppt´ sqXIq}}Ψf,XI paZ exppsXIqq} ds .

Proof. From (4.34), one deduces:

Φf,λ,8paZ expptXIqq “ Φf,λpaZ expptXIqq `

ż 8

t

Eλe
pt´sqΓIpXIqΨf,XI paZ exppsXIqq ds .

The Lemma now follows from the fact that pt´ sqβIpXIq ě 0 whenever s ě t.

We recall that we have defined:

Φf,λ,8paZq :“ 0, aZ P AZ , λ P Q`I YQ´I .

Proof of Proposition 4.10. If λ P Q0
IYQ´I , our assertion follows from Lemmas 4.17 and 4.18.

On the other hand, if λ P Q`I , we can apply Lemmas 4.14 and 4.16, and Corollary 4.15.

5 Definition and properties of the constant term

In this section, we define the constant term fI of a function f P AtemppZq in terms of the
Φf,λ,8 from the previous section. At first, fI is defined as a smooth function on AZ but
then will be extended to a smooth function on ZI “ G{HI . The main difficulty then is to
show that the function fI P C

8pZIq is indeed tempered. For that, we need to show certain
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consistency relations of fI with respect to the matching map m :WI ÑW , see Proposition
5.7. The consistency relations are immediate from our strong results of rapid convergence
in Proposition 2.1. As an application, we characterize the functions of the discrete series as
those with all constant terms vanishing, see Theorem 5.12.

Throughout this section, we fix a subset I of S and a finite codimensional ideal I in
D0pZq.

5.1 Definition of the constant term

Let N P N and f P Atemp,NpZ : Iq. Let us define fI as the function on AZ by:

fIpaZq :“
ÿ

λPQ0
I

ă Φf,λ,8paZq, 1 ą, aZ P AZ , (5.1)

where Φf,λ,8 has been defined in (4.30) and (4.31). From Lemma 5.2 and since the eigenvalues
of EλpΓIpXqq, for any X P aI , are contained in ρQpXq ` iR if λ P Q0

I , one has that:

For any X P aI , the map t ÞÑ e´tρQpXqfIpexpptXqq is an exponential
polynomial with unitary characters.

(5.2)

We will soon extend fI to a smooth function on G which is right invariant under HI , i.e.,
fI descends to a smooth function on ZI . This will be prepared with a few estimates in the
next subsection.

5.2 Some estimates

In this subsection, we establish some estimates analogous to the ones given in [13, Section 23].

Lemma 5.1. Let N P N. There exists a continuous semi-norm q on C8temp,NpZq such that,
for all λ P QI, aZ P A

´
Z , XI P a

´´
I , t ě 0 and f P Atemp,NpZ : Iq,

}Φf,λpaZ expptXIqq ´ Φf,λ,8paZ expptXIqq}

ď paZ expptXIqq
ρQetδβIpXIqp1` } log aZ}q

Np1` t}XI}q
dim UIqpfq .

Proof. The assertion of the Lemma follows from Proposition 4.10, Lemmas 4.7 and 4.8, and
the fact that aβIZ ď 1 for aZ P A

´
Z .

Lemma 5.2. Let N P N. One has:

Φf,λ,8paZ expXq “ eΓIpXqΦf,λ,8paZq, X P aI , aZ P AZ , λ P QI , f P Atemp,NpZ : Iq .
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Proof. According to (4.31), one may assume λ P Q0
I . From Lemma 4.6(ii) applied with t “ 1,

one has, for aZ P AZ , X P aI ,

e´ΓIpXqΦλpaZ expXq “ ΦλpaZq `

ż 1

0

Eλe
´sΓIpXqΨXpaZ exppsXqq ds .

Let Y P a´´I . Replacing aZ by aZ expptY q and multiplying by e´tΓIpY q, one gets:

e´ΓIpX`tY qΦλpaZ exppX ` tY qq “ e´ΓIptY qΦλpaZ expptY qq

`

ż 1

0

Eλe
´ΓIpsX`tY qΨXpaZ exppsX ` tY qq ds .

Since λ P Q0
I , we obtain, from (4.32) and Lemma 4.7(ii), that the integral in this equality

tends to 0 for tÑ 8. Recalling the definition of Φf,λ,8 (cf. (4.33)), one gets

e´ΓIpXqΦf,λ,8paZ expXq “ Φf,λ,8paZq, X P aI , aZ P AZ .

Lemma 5.3. Let N P N. There exists a continuous semi-norm p on C8temp,NpZq such that,
for all f P Atemp,NpZ : Iq, λ P Q0

I,

}Φf,λ,8paZI q} ď a
ρQ
ZI
p1` } log aZI}q

N`dim UIppfq, aZI P A
´
ZI
.

Proof. We fix X P a´´I . Let aZI P A´ZI . If t is large enough, aZI expptXq P A´Z . More
precisely, if aZI “ expY with Y P a´ZI , t has to be such that αpY ` tXq ď 0 for all α P SzI.

For this, it is enough that t ě |αpY q
αpXq

| for all α P SzI. But |αpY q
αpXq

| is bounded above by C}Y }
for some constant C ą 0. We will take:

t “ C}Y } (5.3)

and write aZI “ aZ expp´tXq with aZ “ aZI expptXq P A´Z . Since λ P Q0
I and expp´tXq “

a´1
Z aZI , one has, from Lemma 5.2,

}Φf,λ,8paZI q} “ }Eλe
´tΓIpXqΦf,λ,8paZq} “ a

ρQ
ZI
a
´ρQ
Z }Eλp´tXqΦf,λ,8paZq} . (5.4)

We know from Lemma 4.8 that }Eλp´tXq} is bounded by a constant times p1 ` t}X}qNI ,
where NI is the dimension of UI . Using (5.3) and as X is fixed, one concludes that there
exists C1 ą 0 such that:

}Eλp´tXq} ď C1p1` } log aZI}q
NI .

We remark that } log aZ} ď } log aZI} ` }tX} is bounded by some constant times } log aZI}
because t “ C}Y } and }X} is fixed. Then, using (5.4), the Lemma follows from Lemma 5.1
(applied with t “ 0) and Lemma 4.7(i).
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We recall that Φf,λ,8 “ 0 for λ P Q`I Y Q´I (cf. (4.31)). We obtain then, from Lemma
5.1, that:

Lemma 5.4. Let N P N. There exists a continuous semi-norm q on Atemp,NpZq such that,
for any f P Atemp,NpZ : Iq, aZ P A´Z , XI P a

´´
I and t ě 0,

|paZ expptXIqq
´ρQ rfpaZ expptXIqq ´ fIpaZ expptXIqqs |

ď etδβIpXIqp1` } log aZ}q
Np1` t}XI}q

dim UIqpfq .

Note that the Lemma implies that:

lim
tÑ8

paZ expptXIqq
´ρQrfpaZ expptXIqq ´ fIpaZ expptXIqqs “ 0, aZ P A

´
Z , XI P a

´´
I . (5.5)

5.3 The constant term as a smooth function on ZI

Let us first start by the following general remark:

If an exponential polynomial function of one variable, P ptq, with unitary char-
acters, satisfies:

lim
tÑ`8

P ptq “ 0 ,

then P ” 0.

(5.6)

We define some linear forms η and ηI on AtemppZ : Iq by:

ă η, f ą “ fpz0q,
ă ηI , f ą “ fIpz0,Iq, f P AtemppZ : Iq .

Let us remark that η is a continuous linear form on Atemp,NpZ : Iq for any N P N.
Note that we obtain from the definition that:

mηI ,f paZq “ fIpaZq, aZ P AZ .

Lemma 5.5. Let N P N. The linear form ηI is the unique linear form on Atemp,NpZ : Iq
such that:

(i) For any f P Atemp,NpZ : Iq and XI P a
´´
I ,

lim
tÑ8

e´tρQpXIqrmη,f pexpptXIqq ´mηI ,f pexpptXIqqs “ 0 .

(ii) For any f P Atemp,NpZ : Iq and X P aI , t ÞÑ e´tρQpXqmηI ,f pexpptXqq is an exponential
polynomial with unitary characters.

(iii) Moreover, ηI is continuous on Atemp,NpZ : Iq and HI-invariant.
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Proof. The assertion (i) is (5.5) and (ii) is (5.2).
To prove the unicity of such an ηI satisfying (i) and (ii), we use (5.6). If η1I is another

linear form satisfying (i) and (ii), then, for any f P Atemp,NpZ : Iq,

mηI ,f pexpptXIqq ´mη1I ,f
pexpptXIqq “ 0, XI P a

´´
I , t P R .

This equality applied to t “ 0 implies that ηI “ η1I .
Let us show the continuity of ηI . By taking aZ “ 1 in the inequality of Lemma 5.4, one

gets:
|fpz0q ´ fIpz0,Iq| ď Cqpfq, i.e., | ă η, f ą ´ ă ηI , f ą | ď Cqpfq .

Moreover η is a continuous map on Atemp,NpZ : Iq. This implies that ηI is continuous on
Atemp,NpZ : Iq.

It remains to get that ηI is HI-invariant. From (5.5), for any XI P a
´´
I ,

lim
tÑ8

e´tρQpXIqrfpexpptXIqq ´ fIpexpptXIqqs “ 0 .

One applies this to LY f , Y P hI and gets:

lim
tÑ8

e´tρQpXIq rpLY fqpexpptXIqq ´ pLY fqIpexpptXIqqs “ 0 . (5.7)

On the other hand, from Lemma 4.1, one has:

lim
tÑ8

e´tρQpXIqpLY fqpexpptXIqq “ 0 . (5.8)

Hence, one gets, from (5.7) and (5.8), that:

lim
tÑ8

e´tρQpXIqpLY fqIpexppXIqq “ 0 .

But t ÞÑ e´tρQpXIqpLY fqIpexpptXIqq is an exponential polynomial with unitary characters
(cf. (5.2)). Hence, from (5.6), it is identically equal to 0. This implies that:

ηIpLY fq “ 0 .

Then ηI is continuous and hI-invariant, and hence HI-invariant. This completes the proof
of (iii).

Let N P N be fixed. For f P Atemp,NpZ : Iq, since ηI is continuous, we obtain with

g ÞÑ fIpgq :“ mηI ,f pgq, g P G , (5.9)

a smooth extension of fI previously defined on AZ . Note that, as ηI is HI-invariant, fI defines
a smooth function on ZI denoted by the same symbol. Further, note that the assignment
f ÞÑ fI is G-equivariant, in symbols:

pLgfqI “ LgfI , g P G . (5.10)
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Remark 5.6. As a consequence of Lemma 5.5 and the above equivariance relation (5.10), for
all g P G and XI P a

´´
I ,

lim
tÑ8

e´tρQpXIqrfpg expptXIqq ´ fIpg expptXIqqs “ 0 .

and X ÞÑ e´ρQpXqfIpg expXq is an exponential polynomial on aI with unitary characters.
Moreover, fI is the unique smooth function on G with these two properties.

5.4 Consistency relations for the constant term

Let wI P WI and w P W . Set HI,wI “ wIHIw
´1
I and Hw “ wHw´1. Consider the real

spherical spaces Zw “ G{Hw and ZI,wI “ G{HI,wI , and put zw0 “ Hw P Zw and zwI0,I “

HI,wI P ZI,wI “ G{HI,wI . Then (cf. [26, Corollary 3.8]) Q is Zw-adapted to P and AZw “ AZ
with A´Zw “ A´Z .

For f P C8pZq, let us define fw by:

fwpg ¨ zw0 q “ fpgw ¨ z0q, g P G .

In the same way, one defines φwI for φ P C8pZIq. Then fw P C8pZwq and φwI P C8pZI,wI q.

Proposition 5.7 (Consistency relations for the constant term). Let wI P WI and w “

mpwq PW. Let f P Atemp,NpZ : Iq. Then fw P Atemp,NpZw : Iq and

pfIq
wI paZq “ pf

w
qIpaZq, aZ P AZ .

Here, fw P AtemppZw : Iq, pfwqI P C8pZw,Iq, fI P C8pZIq, fwII P C8pZI,wI q, and, from
[26, Proposition 3.2(5) and Corollary 3.8], one has:

AZw,I “ AZw “ AZ ,
AZI,wI “ AZI “ AZ .

Hence, both sides of the equality are well-defined on AZ .
The proof of Proposition 5.7 is prepared by a simple technical lemma. Recall the elements

as “ exppsXIq for XI P a
´´
I .

Lemma 5.8. Let pg1sq be a family in G which converges rapidly to g P G. Let f P Atemp,NpZq.
Then there exist C ą 0 and ε ą 0 such that:

|pLpg1sq´1fqpasq ´ pLg´1fqpasq| ď CaρQs e´εs, s ě s0 .

Proof. As pg1sq converges rapidly to g when s tends to `8, there exists s10, C 1, ε1 strictly
positive and pXsq Ă g such that, for all s ě s10,

g1s “ g expXs and }Xs} ď C 1e´ε
1s . (5.11)
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As Lg´1 preserves Atemp,NpZq, one is reduced to prove, for all f P Atemp,NpZq, that there
exist C, ε, s0 ą 0 such that:

|fpexppXsqasq ´ fpasq| ď CaρQs e´εs .

But, by the mean value theorem, if a P AZ and X P g,

|fpexppXqaq ´ fpaq| ď sup
tPr0,1s

|pL´XfqpexpptXqaq|}X} .

From (5.11), one then sees that it is enough to prove that, if }X} is bounded by a constant
C2 ą 0, there exists a constant C3 ą 0 such that:

sup
tPr0,1s

|pL´XfqpexpptXqaq| ď C3aρQp1` } log a}qN , a P A´Z . (5.12)

Decomposing ´X in a basis pXiq of g and using the continuity of the endomorphisms LXi
of Atemp,NpZq, one sees that there exists a continuous semi-norm such that:

|pL´Xfqpaq| ď aρQp1` } log a}qNqpfq, a P A´Z .

But f ÞÑ sup}X}ďC2 qpLexpp´tXqfq is a continuous semi-norm on Atemp,NpZq. Hence, as L´X
and Lexpp´tXq commute, (5.12) follows. This achieves to prove the Lemma.

Proof of Proposition 5.7. If a P A, one has:

rpLafq
w
sI “ rLapf

w
qsI as pLafq

w
“ Laf

w .

Hence, it is enough to prove the identity of the Proposition for aZ “ z0. Then, using (5.6)
and Remark 5.6, it is enough to prove that s ÞÑ pfIq

wI pasq is an exponential polynomial with
unitary characters satisfying:

lim
sÑ`8

a´ρQs rfwpasq ´ pfIq
wI pasqs “ 0 . (5.13)

But, from (2.7),

ãsw ¨ z0 “ pãsb̃
´1
s m´1

s u´1
s qpusmsb̃swq ¨ z0 “ gswI ãs ¨ z0 ,

for s ě s0, where gs “ ãsb̃
´1
s m´1

s u´1
s . Then one has:

fwpasq “ Lw´1
I g´1

s
fpasq .

On the other hand, from [26, Lemma 3.5] for Z “ ZI , as AZI ,E “ AI (cf. loc.cit., equa-
tion (3.13)), one has:

ãswI ¨ z0,I “ wI ãs ¨ z0,I , (5.14)
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which implies that:
pLw´1

I
fIqpãs ¨ z0,Iq “ pfIq

wI pasq . (5.15)

Now, according to Proposition 2.1 – this is the key ingredient! –, the sequence pgswIq
converges rapidly to wI . Hence, we can apply Lemma 5.8 with g1s “ gswI and find C 1, ε1, s10 ą
0 such that:

a´ρQs |pLw´1
I g´1

s
fqpasq ´ pLw´1

I
fqpasq| ď C 1e´ε

1s, s ě s10 . (5.16)

Using Lemma 5.4, one has, for some C2, ε1 ą 0,

a´ρQs |pLw´1
I
fqpasq ´ pLw´1

I
fIqpasq| ď C2e´ε

1s, s ě s10 .

Hence, from (5.15) and (5.16), one deduces (5.13). It remains to prove that:

s ÞÑ pfIq
wI pasq “ fIpaswI ¨ z0,Iq

is an exponential polynomial with unitary characters. But, from [26, Lemma 3.5] applied to
ZI ,

pfIq
wI pasq “ fIpwIasq .

Hence, our claim follows from (5.14). This achieves the proof of the Proposition.

5.5 Constant term approximation

Now we turn to the main Theorem of this section.

Theorem 5.9 (Constant term approximation). Let I Ď S and I be a finite codimensional
ideal of D0pZq.

(i) For all N P N, the map f ÞÑ fI is a continuous linear map from Atemp,NpZ : Iq to
Atemp,N`dim UIpZI : µIpIqq.

(ii) Let N P N and CI be a compact subset of a´´I . For wI P WI let w “ mpwIq P W.
Then there exist ε ą 0 and a continuous semi-norm p on C8temp,NpZq such that, for all
f P Atemp,NpZ : Iq,

|paZ expptXqq´ρQ pfpgaZ expptXIqw ¨ z0q ´ fIpgaZ expptXIqwI ¨ z0,Iqq |

ď e´εtp1` } log aZ}q
Nppfq, aZ P A

´
Z , XI P CI , g P Ω, wI PWI , t ě 0 .

Proof. We first show (i). In view of (3.5), it suffices to prove that, for any wI P WI , there
exists a continuous semi-norm p on Atemp,NpZ : Iq such that:

sup
gPΩ,aZI PA

´
ZI

|a
´ρQ
ZI
p1` } log aZI}q

´pN`dim UIqfIpgaZIwIq| ď ppfq, f P Atemp,NpZ : Iq .
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For wI “ 1, one has w “ mpwIq “ 1. Our claim then follows from (5.10), (5.1) and
Lemma 5.3 and the continuity of the left regular representation of G on C8temp,NpZq (see
(3.6)).

For general wI , one uses Proposition 5.7 to get fIpaZIwIq “ pfwqIpaZI q and the above
inequality for Hw instead of H. This shows (i).

Using Proposition 5.7, one is reduced to prove (ii) for wI “ w “ 1, by changing H into
Hw. Moreover, from (5.10) and (3.6), one is reduced to show (ii) for g “ 1. In that case, (ii)
follows from (4.22) (applied with u “ 1), (5.1) and Lemma 5.1 by choosing ε ą 0 and p in
the following way.

Set NI :“ dim UI . Let us consider the continuous function ϕ : pXI , tq ÞÑ etδβIpXIq{2p1 `
t}XI}q

NI on aI ˆR, which is smooth on the second variable and positive on aI ˆRě0. Recall
that δβIpXIq ă 0 for any XI P a´´I . Since CI is a compact subset of a´´I , by continuity,
C :“ maxXIPCI ϕpXI ,´2NI{δβIpXIq ´ 1{}XI}q and ε :“ ´δ{2rmaxXIPCI pβIpXIqqs exist and
ε ą 0. Moreover, ϕ has values ď C on CI ˆ R. Hence C ą 0 and, by Lemma 5.1, ε yields
the inequality in (ii) for t ě 0 by setting p :“ Cq.

Remark 5.10 (Statement for H0 connected). Theorem 5.9 remains valid for H replaced by
H0: exchange the expression fIpgaZ expptXqwI ¨ z0,Iq by fIpgm

´1
wI
aZ expptXqwI ¨ z0,Iq for

certain mwI PM , see Remark 1.8(b). Likewise, this will hold for Theorem 7.10 below, which
generalizes Theorem 5.9.

Remark 5.11 (Reformulation of Theorem 5.9 in terms of representation theory). Let pπ, V 8q
be an SAF -representation of G, for example V 8 “ AtemppZ : Iq (see Proposition 3.1). Then
Theorem 5.9(i) gives rise to a linear map

pV ´8qHtemp ÝÑ pV ´8qHItemp, η ÞÑ ηI

and correspondingly, for every v P V 8, an approximation of the matrix coefficient g ÞÑ
fpg ¨ z0q “ mη,vpgq by g ÞÑ fIpg ¨ z0,Iq “ mηI ,vpgq as in Theorem 5.9(ii). In this language, the
consistency relations from Proposition 5.7 then translate into

pw ¨ ηqI “ wI ¨ ηI wI PWI , w “ mpwIq ,

where, for an element ξ P V ´8 and g P G, we use the notation g ¨ ξ “ ξpg´1¨q for the dual
action.

5.6 Application to the relative discrete series for Z

Let χ be a normalized unitary character of AZ,E “ exppaZ,Eq, i.e., dχ|aZ,E “ ρQ|aZ,E .
We recall that, if a P AZ,E and w PW ,

ãwH “ waH (5.17)

(cf. [26, Lemma 3.5]).
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As rAZ,E normalizes H, there is a right action pa, zq ÞÑ z ¨ a of AZ,E on Z. Let C8pZ, χq
be the space of C8 functions on Z such that:

fpz ¨ aq “ χpaqfpzq, a P AZ,E, z P Z

and observe that
|a´ρQfpz ¨ aq| “ |fpzq|, a P AZ,E, z P Z , (5.18)

as χ was requested to be normalized unitary.
If f P C8pZ, χq, u P Upgq and N P N, then (5.17) and (5.18) allow us to define

rN,upfq “ sup
gPΩ,aPA´Z {AZ,E ,wPW

|a´ρQp1` } log a}qNpLufqpgaw ¨ z0q| ,

with } ¨ } refering to the quotient norm on aZ{aZ,E. Moreover, we set

CpZ, χq “ tf P C8pZ, χq | rN,upfq ă 8, N P N, u P Upgqu .

Since rAZ,E normalizes H, we obtain a closed subgroup pH :“ H rAZ,E (not depending on

the section s) and a real spherical space pZ “ G{ pH. We extend χ trivially to H and then

define a character of pH still denoted χ. Let us define L2p pZ;χq as in [26, Section 8.1].
Let w PW . We recall that Hw “ wHw´1 and Zw “ G{Hw. Let f be in C8pZ, χq. Recall

that fw defined by fwpgq “ fpgwHq, g P G, is right Hw-invariant and defines an element
of C8pZwq and even of C8pZw, χq by using the relation (5.17). This element will still be
denoted fw. Moreover, by “transport de structure”, if f is Z-tempered, fw is Zw-tempered.

Let η be a Z-tempered H-fixed linear form on V 8. Let w P W . Then aZw “ aZ and
w ¨ η is Hw-invariant and Zw-tempered by “transport de structure”. By [26, Corollary 3.8],
Q is Zw-adapted to P . Moreover, the set of spherical roots for Zw is equal to S (see [26,
equation (3.2), definition of S in the beginning of Section 3.2 and Lemma 3.7]). Hence, one
can define pw ¨ ηqI , w PW .

Theorem 5.12. Let pπ, V 8q be an SAF -representation of G, with V its associated Harish-
Chandra module, and η be a Z-tempered continuous linear form on V 8 which transforms
under a unitary character χ of AZ,E. Then the following assertions are equivalent:

(i) For all v P V , mη,v P L
2p pZ;χq.

(ii) For all proper subsets I of S and w PW, pw ¨ ηqI “ 0.

(iii) For all v P V 8, mη,v P CpZ, χq.

Proof. Let us assume (i). Let S “ tσ1, . . . , σsu and ω1, . . . , ωs P aZ be such that:

σipωjq “ δi,j, i, j “ 1, . . . , s
ωi K aZ,E, i “ 1, . . . , s .

47



Here we use the scalar product on aZ defined before (1.9). From [26, Theorem 8.5], the linear
form ΛV,η on aZ , defined in loc.cit., equation (6.20), satisfies

pΛV,η ´ ρQqpωjq ą 0, j “ 1, . . . , s . (5.19)

On the other hand, by uniqueness of the constant term approximation, the exponents of the
power series expansion of mηI ,v on A´Z (for v P V ) are given by the restriction to aI of the
exponents ξ P a˚Z,C of the power series expansion of mη,v satisfying Re ξ

ˇ

ˇ

aI
“ ρQ

ˇ

ˇ

aI
(cf. [26,

Section 9.1]).
By definition of ΛV,η, such exponents ξ of mη,v satisfy Re ξpωjq ě ΛV,ηpωjq, for any

1 ď j ď s and v P V . Then it results from (5.19) that ă ηI , v ą“ mηI ,,vp1q “ 0 for all v P V ,
and hence, by density, ηI “ 0. We just get (ii) for w “ 1.

For general w, (ii) is obtained by applying the same arguments to Zw. This achieves to
prove that (i) implies (ii).

Let us assume that (ii) holds. Let I be an ideal of Zpgq which annihilates V or V 8.
It is of finite codimension. Since η is Z-tempered, there exists N0 P N such that, for all
v P V 8, mη,v P Atemp,N0pZ : Iq (cf. (3.8)). Let v P V 8 and set f “ mη,v. Then one can apply
Theorem 5.9 to Zw and fw for wI equal to 1. Let I Ł S. Let C be a compact subset of a´´I ,
Ω1 be a compact subset of G and u P Upgq. Hence, there exists a continuous semi-norm p
on C8temp,N0

pZq, ε ą 0 such that:

|paZ expptXqq´ρQpLufqpgaZ expptXqw ¨ z0q|

ď e´εtp1` } log aZ}q
Nppfq, aZ P A

´
Z{AZ,E, X P C, g P Ω1, w PW , t ě 0 .

(5.20)

From this, we will deduce that f P CpZ, χq. Let S1 be the unit sphere on aZ{aZ,E and let
X0 P S1 X a´Z{aZ,E. Let Ω0 be an open neighborhood of X0 in S1 X a´Z{aZ,E such that, for
all X P Ω0, αpXq ď αpX0q{2, α P S. Let I be the set of α P S such that αpX0q “ 0. One
has I ‰ S. Then one has X0 P a´´I . Let Y P Ω0 and t ě 0. Then tpY ´ X0{2q P a´Z and
expptY q “ exp tpY ´X0{2q expptX0{2q. Using (5.20) for X “ X0{2, aZ “ exp tpY ´X0{2q
and T “ t, one gets:

|pexpptY qq´ρQpLufqpg expptY qw ¨ z0q|

ď e´εtp1` t}Y ´X0{2}q
N0ppfq ď cp1` tqN , Y P Ω0, g P Ω1, w PW , t ě 0 ,

for some c ą 0 and any N P N. One deduces easily from this that, for any u P Upgq and
N P N:

sup
gPΩ1,wPW,aPexppR`Ω0q

a´ρQp1` } log a}qN |pLufqpgaw ¨ z0q| ă `8 .

Using a finite covering of the compact set S1Xa
´
Z{aZ,E, one deduces from this that f P CpZ, χq.

This achieves to prove that (ii) implies (iii).
To prove that (iii) implies (i), one proceeds as in the proof that (ii) implies (i) in [26,

Theorem 8.5].
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6 Transitivity of the constant term

Proposition 6.1 (Transitivity of the constant term). Let I Ď J be two subsets of S. Then,
if f P AtemppZq,

fI “ pfJqI .

Proof. By G-equivariance of the maps:

AtemppZq Ñ AtemppZIq
f ÞÑ fI

and
AtemppZJq Ñ AtemppZIq

f ÞÑ fI
,

it is enough to show that, if f P AtemppZq, fIpz0,Iq “ pfJqIpz0,Iq. Recall that aZJ “ aZ and

a´´I “ tX P aI : αpXq ă 0, α P SzIu, a´´I,J “ tX P aI : αpXq ă 0, α P JzIu .

As aI “ tX P aZ : αpXq “ 0, α P Iu and aJ “ tX P aZ : αpXq “ 0, α P Ju, one has:

aJ Ă aI , a´´I Ă a´Z , a´´I,J Ă a´Z .

One remaks that a´´I Ă a´´I,J . Let X P a´´J and Y P a´´I . Then X ` Y P a´´I .
Using Theorem 5.9(ii) applied successively to pZ, I, f,X`Y, 1q, pZ, J, f,X, expptY qq and

pZJ , I, fJ , Y, expptXqq instead of pZ, I, f,X, aZq, one gets that there exist C ą 0 and ε ą 0
such that, for all t ě 0,

αt|fpexpptpX ` Y qqq ´ fIpexpptpX ` Y qqq| ď Ce´εt ,
αt|fpexpptY q expptXqq ´ fJpexpptY q expptXqq| ď Ce´εt ,
αt|fJpexpptXq expptY qq ´ pfJqIpexpptXq expptY qq| ď Ce´εt ,

where αt “ e´tρQpX`Y q. Hence, one concludes from the three inequalities above that:

αt|fIpexpptpX ` Y qqq ´ pfJqIpexpptpX ` Y qqq| ď 3Ce´εt, t ě 0 .

Hence, αtrfIpexpptpX`Y qqq´pfJqIpexpptpX`Y qqqs tends to zero when t goes to `8. But,
each term of this difference is an exponential polynomial in t with unitary characters. Hence,
according to (5.6), the difference of the two occurring exponential polynomials is identically
zero. It implies, taking t “ 0, that fIpz0,Iq “ pfJqIpz0,Iq.

7 Uniform estimates

The goal of this section is to obtain a parameter independent version of the main result
Theorem 5.9: the bounds become uniform if we restrict ourselves to ideals I of D0pZq of
codimension one. The crucial ingredient is a recent result that infinitesimal characters of
tempered representations have integral real parts (see [28] and summarized in Lemma 7.8
below).
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Recall the Cartan subalgebra j “ a ‘ t Ă g with real form jR “ a ‘ it Ă jC, associated
Weyl group Wj and half sum of roots ρj. Note that ρj

ˇ

ˇ

aH
“ ρ

ˇ

ˇ

aH
“ ρQ

ˇ

ˇ

aH
“ 0 as Z was

requested to be unimodular. In particular ρj
ˇ

ˇ

a
factors through aZ and coincides with ρQ.

If Λ P j˚C{Wj, let χΛ be the character of Zpgq corresponding to Λ via the Harish-Chandra
isomorphism γ : Zpgq Ñ SpjqWj . More precisely,

χΛpuq “ pγpuqqpΛq, u P Zpgq .

Further, we set JΛ :“ kerχΛ. We also recall the untwisted Harish-Chandra homomorphism
γ0 : Zpgq Ñ Spjq and set JΛ,0 :“ γ0pJΛq.

According to Chevalley’s theorem, Spjq is a free module of finite rank over SpjqWj »

γ0pZpgqq. Hence, we obtain a subspace U0 Ă Spjq such that the natural map:

γ0pZpgqq b U0 Ñ Spjq, v b u ÞÑ vu

is an isomorphism. Thus, for any Λ P j˚C{Wj, we obtain with γ0pZpgqq “ JΛ,0 ` C1 that
Spjq{SpjqJΛ,0 » U0 as vector spaces. The natural representation of Spjq on Spjq{SpjqJΛ,0 » U0

gives then rise to a Spjq-representation:

σΛ : Spjq Ñ EndpU0q .

For Λ P j˚C{Wj, let us fix a representative λ P j˚C such that Λ “ Wj ¨ λ.

Lemma 7.1. The following assertions hold:

(i) The representation pσΛ, U0q is polynomial in Λ, i.e., for all v P Spjq, the assignment
Λ ÞÑ σΛpvq is polynomial.

(ii) One has SpecpσΛq “ ρj `Wj ¨ λ.

Proof. We prove both assertions together. Consider the auxiliary Spjq-module Spjq{SpjqJΛ

and call the corresponding representation of Spjq by σ1Λ. We have Specpσ1Λq “ Wj ¨ λ. Recall
the complement U0 Ă Spjq and let U1 “ U0p¨ ` ρjq Ă Spjq obtained from ρj-shift. We model
σ1Λ on U1 and claim that v ÞÑ σ1Λpvq is polynomial in Λ. It suffices to verify the assertion for
v of the form v “ γpzqu with z P Zpgq and u P U1. Now

v “ upγpzq ´ χΛpzqq ` χΛpzqu

with the first sum in the ideal SpjqJΛ. The claim follows. It remains to relate the repre-
sentation σΛ to σ1Λ, which is given by σΛpvq “ σ1Λpvp¨ ` ρjqq via the algebra automorphism
Spjq Ñ Spjq, v ÞÑ vp¨ ` ρjq obtained by the ρj-shift upon identification Spjq » Crj˚Cs.

Recall that there is a surjective algebra morphism p : Zpgq Ñ D0pZq. Given a codimen-
sion one ideal I in D0pZq, its preimage J “ p´1pIq is of codimension one in Zpgq, hence, of
the form JΛ, for some Λ P j˚C{Wj.
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Denote by X Ď j˚C{Wj the set of Λ’s obtained that way. For Λ P X, we set IΛ :“ ppJΛq.
Next we wish to describe the set X more closely. Since D0pZq is a finitely generated

C-algebra without nilpotent elements, its maximal spectrum specmaxpD0pZqq is an affine
variety and naturally identifies with X. The surjective algebra morphism p : Zpgq Ñ D0pZq
gives rise to the closed embedding:

p˚ : X “ specmaxpD0pZqq ãÑ j˚C{Wj “ specmaxpZpgqq .

We recall our choice of t and tH before Lemma 4.5.

Lemma 7.2. The affine subvariety X Ă j˚C{Wj is given by

X “ tΛ P j˚C{Wj | Dµ P Λ “ Wj ¨ λ such that pρj ` µq
ˇ

ˇ

aH`tH
“ 0u (7.1)

To prepare the proof of this Lemma, we need to develop a little bit of general theory
which is used later on as well.

We recall that Lemma 4.5 implies that DpZIq is a finitely generated C-algebra without
nilpotent elements and thus corresponds to an affine variety YI “ specmaxpDpZIqq. It
follows from Lemma 4.2 that the algebra morphism µI : D0pZq Ñ DpZIq is injective, hence
µI,˚ : YI Ñ X is a dominant morphism of affine algebraic varieties. Moreover, since DpZIq
is a module of finite type over D0pZq, it follows in addition that µI,˚ is a finite surjective
morphism with uniformly bounded finite fibers (by the going up property in ring theory, see
[1, Theorem 5.10] or [27, Proposition 3.2.4]).

Define γ00 : Zpgq Ñ Spjq{SpjqpaH ` tHq, obtained from the composition of γ0 and the
projection Spjq Ñ Spjq{SpjqpaH ` tHq. We recall from (4.11) the injective algebra morphism

j0 : ZpZHq Ñ Spjq{SpjqpaH ` tHq .

Now j0 composed with the natural inclusion DpZHq ãÑ ZpZHq gives rise the injective mor-
phism

ιH : DpZHq Ñ Spjq{SpjqpaH ` tHq .

Next, we recall that DpZIq is naturally a subalgebra of DpZHq via the monomorphism
DpZIq ãÑ DpZHq of Lemma 4.2 applied to Z “ ZI . Composing this injection with ιH we
obtain a monomorphism

ιI : DpZIq Ñ Spjq{SpjqpaH ` tHq .

With (4.12), we thus arrive at the following commutative diagram of finite module extensions

Spjq // Spjq{SpjqpaH ` tHq Spjq{SpjqpaH ` tHq

Zpgq

γ0

OO

p //D0pZq

ι0

OO

µI //DpZIq ,

ιI

OO
(7.2)
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with the middle vertical arrow ι0 uniquely determined by the injectivity of µI . In particular,
ι0 is injective. On the level of affine varieties, this corresponds to the commutative diagram

j˚C

γ0,˚

��

paH ` tHq
Koo

ι0,˚

��

paH ` tHq
K

ιI,˚

��
j˚C{Wj Xp˚oo YI ,

µI,˚oo

(7.3)

where paH ` tHq
K Ă j˚C. Since all vertical arrows in (7.2) are injective and represent finite

module extensions, it follows that all vertical arrows in (7.3) are surjective (by application
of the going down property as above).

Proof of Lemma 7.2. Immediate from the surjectivity of the vertical maps in the commuta-
tive diagram (7.3).

Recall the decomposition
DpZIq “ UΛ ‘DpZIqI 1Λ ,

from (4.16), with UΛ :“ UIΛ
and I 1Λ :“ µIpIΛq.

Recall that UΛ Ă U and thus n :“ maxΛPX dim UΛ ă 8. For every 0 ď j ď n, we now
set

Xj :“ tΛ P X | dim UΛ “ ju

and get X “
šn

j“0 Xj. Now, for every Λ P Xj, the set

XΛ :“ tx P X | UΛ ‘DpZIqI 1x “ DpZIqu

is a subset of Xj.

Lemma 7.3. The following assertions hold:

(i) For any 1 ď j ď n, the set
Ť

kďj Xk is Zariski-open in X. In particular, Xj is locally
closed in X.

(ii) For Λ P Xj, the set XΛ is Zariski-open in Xj.

Proof. Note that D0pZq “ OpXq is the coordinate ring of the affine variety X. For any
x P X, we denote by mx Ă OpXq the corresponding maximal ideal. Since OpYq “ DpZIq is
a finite module of OpXq, we find a finite dimensional subspace U “ Ux Ă OpYq such that
OpYq “ U ‘ OpYqmx. The Nakayama lemma implies that there exists an f P OpXq with
fpxq ‰ 0 such that OpYqf “ OpXqfU . In particular, we have, for all z P X with fpzq ‰ 0,
that OpYq “ U `OpYqmz. This implies that:

XÑ N0, x ÞÑ dim OpYq{OpYqmx

is upper semi-continuous and, in particular, for any 1 ď j ď n, we have that
Ť

kďj Xk is
Zariski-open in X and (i) follows.

52



For (ii), we just saw that, for Λ P Xj, we have, for z P XΛ, that there exists f P OpXq
such that fpzq ‰ 0 and ty P Xj | fpyq ‰ 0u Ă XΛ. Hence, XΛ is Zariski-open in Xj.

As quasi-affine varieties are quasi-compact for the Zariski topology, it follows that there
exists finitely many Λ P X, say Λ1, . . . ,Λs, such that:

X “
s
ď

j“1

XΛj .

For any 1 ď j ď s, we define a fixed finite dimensional vector space Uj :“ UΛj as above.
This gives us a direct sum decomposition

DpZIq “ Uj ‘DpZIqI 1Λ, Λ P XΛj , (7.4)

and, upon the identification Uj » DpZIq{I 1Λ, a representation

ρΛ : DpZIq Ñ EndpUjq .

Lemma 7.4. The following assertions hold:

(i) Fix 1 ď j ď s. For any v P DpZIq, the map

XΛj Ñ EndpUjq, Λ ÞÑ ρΛpvq

is regular, i.e., locally the restriction of a rational function on X to XΛj . In particular,
there exists an open covering X “

Ťs
j“0 Xj with Xj Ă XΛj such that, for all v P DpZIq,

there exists a constant Cv ą 0 such that

}ρΛpvq} ď Cvp1` }Λ}q
N

pΛ P Xjq , (7.5)

for an N P N independent of v. Here, } ¨ } on the left hand side of (7.5) refers to the
operator norm of EndpUjq.

(ii) With SpaIq Ă DpZIq, one has:

SpecaI pρΛq Ď pρQ `Wj ¨ Λq|aI .

Proof. Recall the terminology we introduced in the proof of Lemma 7.3. Since the assertion
is local, we may assume that X “ XΛj , for some j and U “ Uj, is such that OpYq “ OpXqU “
U ‘OpYqmx for all x P X. This decomposition defines a projection px : OpYq Ñ U for any
x P X. Moreover, note that the natural map

OpXq b U Ñ OpYq, g b u ÞÑ gu

53



is an isomorphism. Accordingly, every f P OpYq can be expressed uniquely as f “
ř

i gibui
for a fixed basis puiq of U . Then

pxpfq “
ÿ

i

gipxqui

is regular in x P X. This proves the first assertion of (i) and the second assertion in (i) is an
immediate consequence thereof.

(ii) Geometrically, it might happen that the fiber of the morphism µI,˚ : YI Ñ X over
Λ P X is not reduced, i.e., DpZIqI 1Λ is not a radical ideal in DpZIq. However, the set of Λ’s,
with reduced fibers, is open dense in X. In view of the continuity showed in (i), it suffices
to show that SpecaI pρΛq Ă pρj `W ¨ λq

ˇ

ˇ

aI
for generic Λ, i.e., Λ reduced.

Next, we recall the diagram (7.3) with all vertical arrows surjective and all fibers being
finite. Now, as the fiber µ´1

I,˚pΛq was assumed to be reduced, it has dim pUΛq elements as
the corresponding affine algebra to this finite variety is just the aI-module DpZIq{I 1Λ. In
particular, µ´1

I,˚pΛq consists of the aI-weights of UΛ » DpZIq{I 1Λ.
From (7.3), we obtain the the fiber diagram:

ρj `Wj ¨ λ

��

pρj `Wj ¨ λq X paH ` tHq
K? _oo

��

ι´1
I,˚pµ

´1
I,˚pΛqq

? _oo

����
Wj ¨ λ “ Λ Λ µ´1

I,˚pΛq .
oooo

(7.6)

Hence (ii) follows from the aI-equivariance of ιI,˚.

The section s we use in the sequel is the one where we identify aZ with the subspace

a
KaL
H Ă aL, the orthogonal being taken with respect to the form κ introduced at the beginning

of Subsection 1.2. Let JpCq Ă GpCq be the Cartan subgroup with Lie algebra jC and
L :“ HompJpCq,C˚q be its character group. In the sequel, we identify L with a lattice in j˚.
We call a subspace U Ă j˚ rational provided that U “ RpU XLq. Likewise, we call a discrete
subgroup Γ Ă pj˚,`q rational if Γ “ Γ X QL. Using the dual lattice L_ Ă j, we obtain a
notion of rationality for subspaces and discrete subgroups of j as well.

Finally, we may and will request that κ
ˇ

ˇ

jˆj
is rational, i.e., with respect to a basis of j

which lies in L_, the matrix entries are rational.

Lemma 7.5. The following subspaces of j are all rational: aH , aZ and aI for I Ă S.

Proof. The subspace aH is rational as it corresponds to the Lie algebra of the subtorus
pAL X Hq0 Ă J . Since the form κ

ˇ

ˇ

jˆj
is rational, we obtain that aZ Ă a Ă j is rational as

well. Finally, we recall that S Ă QL and this gives us the rationality of aI for any I Ă S.

We recall that QΛ denotes the set of aI-weights of ρΛ and (cf. Lemma 7.4)

QΛ Ď tpρQ ` wΛq
ˇ

ˇ

aI
| w P Wju , (7.7)
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where we identify aI as a subspace of a as above. For λ P QΛ, we recall the projectors
Eλ : U˚Λ Ñ U˚Λ,λ to the generalized common eigenspace along the supplementary generalized
eigenspaces.

In the sequel, we abbreviate and write AtemppZ : Λq instead of AtemppZ : JΛq.

The key to obtain uniform estimates for the constant term approximation is at the core
related to polynomial bounds for the truncating spectral projections Eλ.

Proposition 7.6. Let 1 ď j ď s. There exist constants C,N ą 0 such that, for all Λ P Xj

with AtemppZ : Λq ‰ t0u, one has

}Eλ} ď Cp1` }Λ}qN , λ P QΛ ,

with }Eλ} the operator norm on the fixed finite dimensional vector space EndpUjq.

The proof of the Proposition is preceded by two lemmas:

Lemma 7.7. Let 0 ă ν ď 1, N P N and A P MatNpCq with SpecpAq “ tλ1, . . . , λru such
that Reλ1 ď . . . ď Reλr. For every 1 ď j ď r, let Vj Ă Cn be the generalized eigenspace

of A associated to the eigenvalue λj. For every 1 ď k ď r, we let Ek “
Àk

j“1 Vj and

Pk : CN Ñ Ek be the projection along
Àr

j“k`1 Vj. Suppose, for some 1 ď k ď r ´ 1, that
Reλk`1 ´ Reλk ě ν. Then there exists a constant C “ Cpν,Nq ą 0 such that

}Pk} ď Cp1` }A}qN .

Proof. [29, Lemma 6.4].

Lemma 7.8. There exists a Wj-stable rational lattice ΞZ in the vector space j˚ such that

Re Λ P ΞZ (7.8)

for all Λ P j˚C with AtemppZ : Λq ‰ t0u.

Proof. Let 0 ‰ f P AtemppZ : Λq be a K-finite element which generates an irreducible Harish-
Chandra module, say V . According to [26, Theorem 9.11], V embeds into a twisted discrete
series of some L2pG{HIq. Now, we apply [28, Theorem 1.1] and obtain a Wj-invariant lattice
ΞZ , called ΛZ in [28], with property (7.8). The lattice is indeed rational by [28, Theorem 8.3]
combined with [28, Lemma 3.4].

Proof of Proposition 7.6. According to Lemma 7.5, aI is a rational subspace of a Ă j. Now,
we keep in mind the following general fact: if U Ă j is a rational subspace and Ξ Ă j˚ is a
rational lattice, then Ξ

ˇ

ˇ

U
is a rational lattice in U˚. In particular, it follows that ΞZ,I :“ ΞZ

ˇ

ˇ

aI

is a rational lattice in a˚I . Next, observe that Lemma 7.8 combined with (7.7) implies that
ReQΛ Ď ρQ

ˇ

ˇ

aI
` ΞZ,I for all tempered infinitesimal characters Λ. Denote by Ξ_Z,I Ă aI the
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dual lattice of ρQ
ˇ

ˇ

aI
` ΞZ,I . Since a´I is a rational cone, we find elements X1, . . . , Xk of

a´I X Ξ_Z,I such that:

a´I “
k
ÿ

j“1

Rě0Xj .

We identify Uj with CN and define matrices Ai :“ ΓΛpXiq “
tρΛpXiq. Let λ P QΛ. Write

Eλ,i for the spectral projection to the generalized eigenspace of Ai with eigenvalue λpXiq.
Since the matrices Ai commute with each other and the Xi span aI , we obtain that:

Eλ “ Eλ,1 ˝ . . . ˝ Eλ,k . (7.9)

Hence, we are reduced to prove a polynomial bound for each Eλ,i. As

SpecpAiq Ď pρQ `Wj ¨ ΛqpXiq ,

we get Re SpecpAiq Ă Z. Hence, we can apply Lemma 7.7 to the matrices Ai, with ν “ 1,
and obtain }Eλ,i} ď Cp1` }Ai}q

N . Now, we recall from (7.5) that

}ΓΛpXq} ď C}X}p1` }Λ}qN ,

after possible enlargement of C and N . This gives the asserted norm bound for }EΛ,i} and
then for Eλ via (7.9).

For λ P QΛ, we recall the notation

EλpXq “ e´λpXqEλpe
ΓΛpXqq, X P aI ,

and recall, from Lemma 4.6(ii), the starting identity:

Φf,λpaZ expptXIqq “ etΓΛpXIqΦf,λpaZq

`

ż t

0

Eλe
pt´sqΓΛpXIqΨf,XI paZ exppsXIqq ds ,

aZ P AZ , XI P aI , t P R .

Lemma 7.9. There exist a continuous semi-norm q on C8temp,NpZq and m P N such that,
for all compact subset ΩA Ă AZ, there exists a constant C “ CpΩAq ą 0 such that, for all
f P Atemp,NpZ : Λq and Λ P j˚C{Wj,

}Ψf,XpaZq} ď Ca
ρQ`βI
Z p1` } log aZ}q

N
p1` }Λ}qm}X}qpfq, aZ P ΩAA

´
Z , X P aI .

Proof. The proof is the same than the proof of Lemma 4.7(ii), the factor p1` }Λ}qm coming
from Proposition 7.6.
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Having said all that, it is now clear that all bounds from Sections 4 and 5.1 become
uniform at the cost of an extra polynomial factor in }Λ}. Polynomial behavior in }Λ} can be
subsumed in raising the Sobolev order of the corresponding semi-norms. In more detail, if p
is a continuous semi-norm on an SF -module V 8 with infinitesimal character Λ, then there
exists C ą 0, k P N independent of p and V such that p1` }Λ}qppvq ď Cpkpvq for all v P V ,
where pk denotes the k-th Sobolev norm of p with respect to a fixed basis of g. This simply
follows from the fact that

|χΛpzq|ppvq “ ppzvq ď Czpdeg zpvq, v P V 8 ,

for all z P Zpgq and constants Cz ą 0. We only have to test against finitely many z, namely
a choice of Chevalley generators of the polynomial algebra Zpgq » SpjqWj , and the maximal
degree of such a generator will serve as k.

The preceding reasoning now implies the following parameter independent version of
Theorem 5.9:

Theorem 7.10 (Uniform constant term approximation). Let N P N, I Ď S and CI be a
compact subset of a´´I . Let wI P WI and w “ mpwIq P W. Then there exist ε ą 0 and a
continuous semi-norm p on C8temp,NpZq such that, for all f P Atemp,NpZ : Λq, Λ P j˚C{Wj:

paZ expptXqq´ρQ |fpgaZ expptXqw ¨ z0q ´ fIpgaZ expptXqwI ¨ z0,Iq|

ď e´εtp1` } log aZ}q
Nppfq, aZ P A

´
Z , X P CI , g P Ω, t ě 0 .

Moreover, let q be a continuous semi-norm on C8temp,N`NΛ
pZIq, where NΛ “

dim pDpZIq{DpZIqµIpIΛqq. Then there exists a continuous semi-norm p on C8temp,NpZq such
that:

qpfIq ď ppfq, f P Atemp,NpZ : Λq,Λ P j˚C{Wj .

A Rapid convergence

Definition A.1. Let a ě 0 and pxsq be a family of elements of a normed vector space with
s P ra,`8r. One says that pxsq converges rapidly to l if

there exist ε ą 0, C ą 0, s0 P ra,`8r such that, for any s ě s0,
}xs ´ l} ď Ce´εs.

To shorten, we will write xs
rapid
ÝÝÝÑ
sÑ8

l.

Lemma A.2. Let a ě 0, E, F be two Euclidean spaces and l P E. Let φ be an F -valued map
of class C1 on a neighborhood U of l and such that the differential φ1plq of φ at l is injective.

If pxsqsPra,`8r is a family of elements of E such that φpxsq
rapid
ÝÝÝÑ
sÑ8

φplq and pxsq converges to

l when s tends to `8, then

xs
rapid
ÝÝÝÑ
sÑ8

l .
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Proof. Let G be a complementary of the image of φ1plq in F and consider the map:

Φ : U ˆG Ñ F
px, zq ÞÑ φpxq ` z .

As φ1plq is injective, Φ1pl, zq is injective and dimpEˆGq “ dimpF q. Hence, Φ1pl, zq is invertible
for any z P G. From the local inversion theorem, Φ is then bijective on its image and of class
C1 on a neighborhood V ˆW of pl, zq contained in U ˆG. Consider the restriction rΦ of Φ

to V ˆW . Then rΦ is well-defined and of class C1. Applying the Taylor expansion of rΦ´1 at
Φpl, 0q “ φplq, one has for s large enough such that xs P V :

}xs ´ l} “ }rΦ´1pφpxsqq ´ rΦ´1pφplqq}

ď }prΦ´1q1pφplqq} }φpxsq ´ φplq} ` op}φpxsq ´ φplq}q .

Our claim follows from the rapid convergence of pφpxsqq.

Definition A.3. Let a ě 0, X be a d-dimensional smooth manifold and pxsqsPra,`8r be a
family of elements of X. One says that pxsq converges rapidly in X if there exist l P X and
a chart pU, φq around l such that:

pφpxsqq converges rapidly to φplq .

Remark A.4. This notion is independent of the choice of the chart pU, φq. Indeed, let pŨ , φ̃q
be another chart around l. Then, from Lemma A.2, ppφ˝ φ̃´1q´1pφpxsqqq converges rapidly to
φ̃plq which means that pφ̃pxsqq converges rapidly to φ̃plq. Also if Ψ : X Ñ Y is a differentiable
map between C8 manifolds and pxsq converges rapidly to x in X, then Ψppxsqq converges
rapidly to Ψpxq in Y .

B Real points of elementary group actions

We assume that G is a reductive group defined over R and let H be an R-algebraic subgroup
of G. We form the homogeneous space Z “ G{H and our concern is to what extent ZpRq
coincides with GpRq{HpRq.

We say that G is anisotropic provided GpRq is compact and recall from [20, Proposi-
tion 13.1] the following fact:

Lemma B.1. If G is anisotropic, then ZpRq “ GpRq{HpRq.

In the sequel, we assume that G is a connected elementary group (defined over R), that
is:

• G “MA for normal R-subgroups A and M ,

• M is anisotropic,
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• A is a split torus, i.e., ApRq » pRˆqn.

Consider now Z “ G{H, with G elementary. We set MH :“ M X H and, likewise,
AH :“ A X H. Furthermore, we set AZ :“ A{AH and MZ :“ M{MH , which we view
as subvarieties of Z. From Lemma B.1, we already know that MZpRq “ MpRq{MHpRq.
Consider now the fiber bundle

AZ Ñ Z Ñ G{HA

and take real points
AZpRq Ñ ZpRq Ñ pG{HAqpRq . (B.1)

We claim that the natural map

MZpRq ˆ AZpRq Ñ ZpRq (B.2)

is surjective. In fact, observe that G{HA » M{pM X pHAqq is homogeneous for the
anisotropic group M . Hence, pG{HAqpRq » MpRq{pM X pHAqqpRq and our claim follows
from (B.1).

We remain with the determination of the fiber of the map (B.2). SinceM and A commute,
we obtain with

xMH :“ tm PM | mH P AZ Ă Zu

a closed R-subgroup of M , which acts on AZ by morphisms (translations). The kernel of

this action is MH and this identifies MH as a normal subgroup of xMH . In particular, we

obtain an embedding xMH{MH Ñ AZ and, taking real points, we obtain, as M is anisotropic

and xMH is closed in M , a closed embedding

FMpRq :“ xMHpRq{MHpRq Ñ AZpRq .

The image of FMpRq is compact, hence, a 2-group of AZpRq » pRˆqk. In summary, we have
shown:

Proposition B.2. Let Z “ G{H be a homogeneous space for an elementary group G “MA
with respect to an R-algebraic subgroup H. Then FMpRq is a finite 2-group and the map

rMpRq{MHpRqs ˆFMpRq AZpRq Ñ ZpRq, rmMHpRq, aZs ÞÑ maZ

is an isomorphism of real manifolds.

Corollary B.3. Under the assumptions of Proposition B.2, the GpRq-orbits in ZpRq are in
bijection with AZpRq2{FMpRq, where AZpRq2 is the group of 2-torsion points in AZpRq. The
isomorphism is given explicitly by:

AZpRq2{FMpRq Ñ GpRqzZpRq, FMpRqaZ ÞÑ GpRqaZ .
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C Invariant differential operators on Z and ZI (by

Raphaël Beuzart-Plessis)

To begin with, we let Z “ G{H be a general homogeneous space attached to a Lie group G
and a closed subgroup H Ă G. Our concern is with the algebra of G-invariant differential
operators DpZq and we start with a recall of the standard description of DpZq in terms of the
universal enveloping algebra Upgq of gC. As usual, we denote the right regular representation
of G on C8pGq by R and, by slight abuse of notation, the induced action of the enveloping
algebra Upgq by the same letter; in symbols:

R : Upgq Ñ EndpC8pGqq .

Now, for an element u P Upgq, the operator Rpuq descends to a differential operator on Z if
and only if u P UHpgq, where

UHpgq :“ tu P Upgq | Adphqu´ u P Upgqh, h P Hu .

Notice that UHpgq Ă Upgq is a subalgebra of Upgq which features Upgqh Ă UHpgq as a
two-sided ideal. We recall the natural isomorphism

DpZq » UHpgq{Upgqh , (C.1)

induced from the right regular action. For u P UHpgq{Upgqh, we denote by RHpuq P DpZq the
correponding invariant differential operator. Suppose furthermore that there is a subalgebra
b Ă g such that g “ b ` h (not necessarily direct). Then Poincaré-Birkhoff-Witt (PBW)
implies that Upgq “ Upbq ` Upgqh and setting UHpbq “ Upbq X UHpgq, we obtain from (C.1)
an isomorphism

DpZq » UHpbq{UpbqphX bq . (C.2)

Remark C.1. (a) Recall that we expressed by H0 the identity component of H. It is then
clear that UHpgq Ă UH0pgq. Hence, we obtain from LieH “ LieH0 and (C.1) that

DpZq Ă DpG{H0q

naturally. Moreover, we record that

UH0pgq “ tu P Upgq | rX, us P Upgqh, X P hu

“ tu P Upgq | Xu P Upgqh, X P hu .

(b) Assume that G “ GpRq is the group of R-points of a linear algebraic group G over
R. Let Halg be the Zariski closure of H in G and assume that Halg and H have the same
Lie algebra (this happens, e.g., if H has finite index in the group of R-points of an algebraic
subgroup of G). Then, by (C.2),

DpZq “ DpG{Halgq .
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We now return to the spherical setup and request from now that Z “ G{H is real
spherical and unimodular where as in the main body of the text, G “ GpRq is the group of
R-points of a connected real reductive group and H is open in the R-points of an algebraic
subgroup of G. The topic of this section is then to study the relationship of DpZq to DpZIq
for I Ď S. Recall that the authors of this paper have defined HI to be connected. We
abbreviate notation and write RI for RHI and UIpgq “ UHI pgq etc. With

b :“ a`m` u ,

we obtain a subalgebra of g such that g “ b ` hI for all I Ď S. Further, we have b X hI “
aH `mH “: bH . In particular, we obtain an algebra isomorphism

pI : UIpbq{UpbqbH Ñ DpZIq, u ÞÑ RIpuq . (C.3)

Via this algebra isomorphism, we identify from now on DpZIq with UIpbq{UpbqbH . Re-
mark that, as AI normalizes HI , we obtain a natural inclusion SpaIq ãÑ DpZIq induced from
the right action of AI on ZI . Note that ZS “ G{H0 and aS “ aZ,E.

Lemma C.2. The symmetric algebra SpaSq embeds in the center of DpZSq.

Proof. By slight abuse of notation, let us denote by H the algebraic closure of H0 in G and
let H “ HpRq. In view of Remark C.1(b), we may replace H0 by H in the following.

Let ZpCq “ GpCq{HpCq. Since Z is unimodular, ZpCq is a quasi-affine algebraic variety
(see Lemma 4.4) and there is a natural embedding

DpZq ãÑ EndGpCrZpCqsq »
à

V

EndpV H
q ,

where the direct sum runs over all isomorphism classes of algebraic finite dimensional irre-
ducible G-modules. Moreover, the image of SpaSq in EndpV Hq by this morphism corresponds
to the natural action of aS on V H . Therefore, we only need to show that this action is scalar
for every finite dimensional irreducible G-module V . Set V pUq “ uV . Then V pUq is a proper
Q-submodule of V and the quotient V {V pUq is an irreducible L-module on which the split
center aL acts by a certain weight µ P a˚L. Identify aS with a subspace of aL through the
choice of a splitting of aZ in aL. Then the claim would follow if we can show that the only
weight of aS in V H is the restriction of µ. We have

V H
X V pUq “ 0. (C.4)

Indeed, if v P V H X V pUq then QpCqHpCq.v Ă V pUq and, as QpCqHpCq is Zariski dense
in GpCq, this implies that the GpCq-invariant subspace generated by v is included in V pUq
hence v “ 0 since V is irreducible and V pUq ‰ V . By (C.4), the restriction of the projection
V Ñ V {V pUq yields an injective aS-equivariant morphism V H ãÑ V {V pUq. The result
follows.
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In the sequel, we view UIpbq{UpbqbH as a subspace of Upbq{UpbqbH , which is naturally a
module for A{AH , hence for AZ . In particular, we can speak of the aZ-weights of an element
in UIpbq{UpbqbH . Recall that aS “ aZ,E Ă aI for all I Ă S.

Let I Ď S and pa˚I q
` be the cone of elements λ P a˚I such that

λpXq ď 0, X P a´I .

Let uS P USpbq{UpbqbH and uS “
ÿ

λPa˚I

uS,λ be its decomposition (in Upbq{UpbqbH) into aI-

eigenvectors. Let WIpuSq be the set of λ P a˚I such that uS,λ ‰ 0. Then there exists a unique
minimal subset WIpuSqmax of WIpuSq such that

convpWIpuSqmax ` pa
˚
I q
`
q “ convpWIpuSq ` pa

˚
I q
`
q ,

where convpDq denotes the convex hull of a subset D Ď a˚I (indeed, WIpuSqmax is just the set
of extremal points of convpWIpuSq`pa

˚
I q
`q; this follows from a version of the Krein–Milman

theorem for convex subsets invariant by a cone, see, e.g., [16]).

Lemma C.3. Let λmax P WIpuSqmax. Then uS,λmax P UIpbq{UpbqbH .

Proof. Choose, for every λ P a˚I , a lift ruS,λ P USpbq of uS,λ, which is again an aI-eigenvector
of weight λ and with ruS,λ “ 0 if uS,λ “ 0. Set

ruS “
ÿ

λPa˚I

ruS,λ

(a lift of uS). Then we want to show that ruS,λmax P UIpbq. By the choice of λmax, there
exists X P a´´I such that λpXq ă λmaxpXq for every λ P a˚I with ruS,λ ‰ 0 and λ ‰ λmax.
Therefore, we have

lim
tÑ8

e´tλmaxpXqet adX
ruS “ ruS,λmax .

Since lim
tÑ8

et adXh “ hI in the Grassmannian Grpgq, we easily check that for every n ě 0 the

limit lim
tÑ8

et adXUSpgqďn in the Grassmannian GrpUpgqďnq (which always exists) is a subspace

of UIpgqďn. Since ruS P USpgq, this shows that ruS,λmax P UIpgq X Upbq “ UIpbq.

Notice that, for every I Ď S, we have a morphism Zpgq Ñ DpZIq induced by the “right”
action of Zpgq on smooth functions on ZI . We can now state the main theorem of this
appendix.

Theorem C.4. For every uS P USpbq{UpbqbH , the limit

uI “ lim
tÑ8

et adXuS (C.5)

exists in Upbq{UpbqbH for every X P a´´I and is independent of X. The map u ÞÑ uI induces
an injective morphism of algebras

µI : USpbq{UpbqbH “ DpZSq ÝÑ DpZIq “ UIpbq{UpbqbH .

Moreover, the following assertions hold:
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(i) (a) the aZ-weights of uS are non-positive on a´Z ,

(b) the aZ-weights of uI ´ uS are negative on a´´I .

(ii) The morphism µI fits into commutative squares

Zpgq

��

Zpgq

��
DpZSq // DpZIq

and SpaSq //

��

SpaIq

��
DpZSq // DpZIq

,

where the vertical arrows in the first and second diagrams are the natural ones.

Proof. By Lemma C.2 (applied to ZI instead of Z) and Lemma C.3, we see that, for any
nonzero uS P USpbq{UpbqbH , we have WIpuSqmax “ t0u (in particular, uS,0 ‰ 0). This
implies that the limit in (C.5) exists, is independent of X and is nonzero if uS ‰ 0. This
readily implies that µI is a monomorphism of algebras. Moving on to (i), we deduce (a) and
(b) from the fact that the limit (C.5) exists.

The second square of assertion (ii) is commutative since the image of SpaSq in
Upbq{UpbqbH is obviously in the 0-weight space of aI . It only remains to show that the
first square of (ii) is commutative. Let z P Zpgq. Let rzS P Upbq and rzS P Upgqh be such that
z “ rzS ` rzS. Then rzS P USpbq and through our identification DpZSq » USpbq{UpbqbH , z gets
mapped to the image zS of rzS in USpbq{UpbqbH . By (i), up to translating rzS by an element
of UpbqbH , we may assume that the limit

rzI “ lim
tÑ8

et adX
rzS

exists in Upbq for every X P a´´I and that it is independent of X. Moreover, rzI P UIpbq and
its image zI in UIpbq{UpbqbH coincides with the image of zS by µI . As z is fixed by any
inner automorphism, the limit

rzI “ lim
tÑ8

et adX
rzS

also exists in Upgq for every X P a´´I , is independent of X and z “ rzI ` rzI . Since rzS P Upgqh
and lim

tÑ8
et adXh “ hI in the Grassmannian Grpgq, we have rzI P UpgqhI . Therefore, by

definition of the identification DpZIq » UIpbq{UpbqbH , zI is also the image of z in DpZIq.
The commutativity of the first square follows.
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Astérisque 396, 2017.

65

https://arxiv.org/abs/1604.01005v2
https://arxiv.org/pdf/1703.08048.pdf
http://docs.wixstatic.com/ugd/68dc5d_6dd3660bf09447168bafec1c2c348a95.pdf
http://de.arxiv.org/pdf/1711.08635.pdf


[34] J.-L. Waldspurger. La formule de Plancherel pour les groupes p-adiques (d’aprés Harish-
Chandra). J. Inst. Math. Jussieu 2(3), 235–333, 2003.

[35] N. R. Wallach. Real reductive groups. I, volume 132 of Pure and Applied Mathematics.
Academic Press, Inc., Boston, MA, 1988.

[36] N. R. Wallach. Real reductive groups. II, volume 132 of Pure and Applied Mathematics.
Academic Press Inc., Boston, MA, 1992.

66


	Introduction
	Notation
	The local structure theorem
	Spherical roots and polar decomposition

	Boundary degenerations and quantitative geometry at infinity
	Boundary degenerations of Z
	Quantitative escape to infinity
	Smooth equivariant compactifications
	Proof of Proposition 2.1

	Z-tempered H-fixed continuous linear forms and the space Atemp(Z)
	SF-representations of G
	The spaces Ctemp,N(Z) and Atemp,N(Z)
	Z-tempered functionals

	Ordinary differential equation for Z(g)-eigenfunctions on Z
	Differentiating tempered functions in direction of hI
	Algebraic preliminaries
	The function f on AZ and related differential equations
	The decomposition of f into eigenspaces
	Proof of Proposition 4.9
	Proof of Proposition 4.10


	Definition and properties of the constant term
	Definition of the constant term
	Some estimates
	The constant term as a smooth function on ZI
	Consistency relations for the constant term
	Constant term approximation
	Application to the relative discrete series for Z

	Transitivity of the constant term
	Uniform estimates
	Rapid convergence
	Real points of elementary group actions
	Invariant differential operators on Z and ZI (by Raphaël Beuzart-Plessis)

