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Abstract

Let Z be a unimodular real spherical space. We develop a theory of constant terms
for tempered functions on Z which parallels the work of Harish-Chandra. The constant
terms fr of an eigenfunction f are parametrized by subsets I of the set S of spherical
roots which determine the fine geometry of Z at infinity. Constant terms are transitive
ie., (f7)r = fr for I < J, and our main result is a quantitative bound of the difference
f — fr, which is uniform in the parameter of the eigenfunction.
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Introduction

Real spherical spaces are the natural algebraic homogeneous geometries Z = G/H attached
to a real reductive group GG. Formally, one defines real spherical by the existence of a minimal
parabolic subgroup P < G with PH open in GG. On a more informal level, one could define
real spherical spaces as the class of algebraic homogeneous spaces Z = G/H which allow a

uniform treatment of spectral theory, i.e., admit explicit Fourier analysis for L?(Z7).

Real spherical spaces provide an enormous class of algebraic homogeneous spaces. Im-
portant examples are the group G itself, viewed as a homogeneous space under its both sided
symmetries G ~ G x G/diag(G), and, more generally, all symmetric spaces. In case H is
reductive, a classification of all infinitesimal real spherical pairs (Lie G, Lie H) was recently

obtained and we refer to [21, 22| for the tables.



Harmonic analysis on spherical spaces was initiated by Sakellaridis and Venkatesh in
the context of p-adic absolutely spherical varieties of wavefront type [33]. In particular,
they developed a theory of asymptotics for smooth functions generalizing Harish-Chandra’s
concept of constant term for real reductive groups.

Harish-Chandra’s approach to the Plancherel formula for L?(G), a corner stone of 20th
century’s mathematics (cf. [15]), was based on his theory of the constant term [13, 14] and his
epochal work on the determination of the discrete series [11, 12]. In more precision, constant
terms were introduced in [13] and then made uniform in the representation parameter in
[14] by using the strong results on the discrete series in [11, 12]. Also in Harish-Chandra’s
approach towards the Plancherel formula for p-adic reductive groups, the constant term
concept played an important role and we refer to Waldspurger’s work [34] for a complete
account (the constant term in [34] is called weak constant term). Likewise, the Plancherel
theory of Sakellaridis and Venkatesh for p-adic spherical spaces is founded on their more
general theory of asymptotics.

Carmona introduced a theory of constant term for real symmetric spaces [6] parallel to
[13, 14], with the uniformity in the representation parameter relying on the description of the
discrete series by Oshima-Matsuki [32]. This concept of constant term then crucially entered
the proofs of Delorme [8] and van den Ban-Schlichtkrull [2] of the Plancherel formula for
real symmetric spaces.

Motivated by [33], we develop in this paper a complete theory of constant term for real
spherical spaces generalizing the works of Harish-Chandra [13, 14] and Carmona [6]. Let us
point out that our results hold in full generality for all real spherical spaces, i.e., in contrast to
[33], we are not required to make any limiting geometric assumptions on Z such as absolutely
spherical or of wavefront type. Further, we do not need to make any assumptions on the
discrete spectrum as in [33]. This is because of the recently obtained spectral gap theorem
for the discrete series on a real spherical space [28], which then implies the uniformity of the
constant term approximation in the representation parameter. The results of this paper then
will be applied in the forthcoming paper [9], where we derive the Bernstein decomposition
of L*(Z), which is a major step towards the Plancherel formula for Z.

Let us describe the results more precisely. In this introduction, G is the group of real
points of a connected reductive algebraic group G defined over R, and H = H(R) for an
algebraic subgroup H of G defined over R. Furthermore, we assume that Z is unimodular,
i.e., Z carries a positive G-invariant Radon measure. We will say that A is a split torus of
G if A= A(R), where A is a split R-torus of G.

Central to the geometric theory of real spherical spaces Z = G/H is the local structure
theorem (cf. [25, Theorem 2.3] and Subsection 1.1), which associates a parabolic subgroup
() © P, said Z-adapted to P, with Levi decomposition ) = LU.

Let now A be a maximal split torus of L and set Ay := A n H. We define Az to be
the identity component of A/Ay and recall the spherical roots S as defined in e.g., [26,
Section 3.2]. The spherical roots are linear forms on ay = Lie Az and give rise to the
co-simplicial compression cone a, := {X € az | a(X) <0, € S}. Set A, :=exp(a,) < Az.

We move on to boundary degenerations h; of b, which are parametrized by subsets I < S.



These geometric objects show up naturally in the compactification theory of Z (see [23], [20]
and Section 2), which in turn is closely related to the polar decomposition (see (1) below).
In more detail, let a; = () .; Ker a < az and pick X e a;” = {X e a; | a(X) <0, € S\I}.
Let Hj be the analytic subgroup of G with Lie algebra

Lie Hy = lim "™ *Lie i,
t—+00
where the limit is taken in the Grassmannian Gr(g) of g = Lie G and does not depend on X. If
we denote by zg = H the standard base point of Z, then one can view H; (up to components)
as the invariance group of the asymptotic directions vx(t) := exp(tX) - 2o for t — oo and
X € a; . Phrased more geometrically, Z; := G/H; is (up to cover) asymptotically tangent
to Z in direction of the curves yx, X € a; .

As a deformation of Z, the space Z; is real spherical. Further, one has Az, = Ay
naturally, but the compression cone a, = {X € az | «(X) < 0, a € I} becomes larger. In
particular, a; is the edge of the cone ay , which translates into the fact that A; = exp(a;)
acts on Z; from the right, commuting with the left action of G.

The general concept of “constant term” is to approximate functions f on Z in directions
vx, X € a; , by functions f7, called constant terms, on Z;. The notion “constant” then
refers to the fact that f; should transform finitely under the right action of A;.

The appropriate class of functions for which this works are tempered eigenfunctions on
Z. In order to define them, we need to recall the polar decomposition which asserts

7 = QAEW * 20, (1)

for a compact subset {2 € G and a certain finite subset VW of G which parametrizes the open
P-orbits in Z (see Lemma 1.6 and Remark 1.8 below for more explicit expressions of the
elements of W).
Let pg be the half sum of the roots of a in Lie U. Actually, as Z is unimodular, pg € a.
For f e C*(Z) and N € N, we set

gv(f) = sup a1+ |[logal) V| f(gaw - z)]
gEQweW,acA;,

and define C2 ~(Z) as the space of all f € C*(Z) such that, for all v in the enveloping

temp,N

algebra U(g) of the complexification g¢ of g,

qN,u(f) = QN(Luf)

is finite. The semi-norms gy, induce a Fréchet structure on C5, n(Z) for which the G-
action is smooth and of moderate growth (in [4], these are called SF-representations). We
define the space of tempered functions Cg,, (Z) = |Uyen Cromp.n(Z) and endow it with the
inductive limit topology.

We denote by Z(g) the center of U(g) and define Aysemy(Z) as the subspace of C2 (Z)

emp
consisting of Z(g)-finite functions.



Remark A. Functions f € Ajem,(Z) can be described suitably in terms of representation the-
ory. A variant of Frobenius reciprocity implies that elements f € Asmp(Z) can be expressed
as generalized matrix coefficients

fgH) = my(gH) == n(r(g) "),

for v € V*, where (m,V®) is a Z(g)-finite SF-representation of G and n : V¥ — C a H-
invariant continuous functional. If V=% denotes the continuous dual of V*, then an element
n e (V=) is called Z-tempered provided m,, , € Awemp(Z) for all v € V*. We denote the

corresponding subspace by (V*@)gmp.

For I < S, we choose a set W; © GG parametrizing the open P-orbits on Z;. Then it is
contents of Section 2 that there is a natural map m : W; — W which matches open P-orbits.
As Z; is a real spherical space, we can define Cf, ~(Z1) and Atemp n(Z1) as before.

The main result of this paper is the following (cf. Remark 5.6 and Theorem 5.9 for (i) -

(iii) and Theorem 7.10 for (iv)).

Theorem B. Let J be a finite codimensional ideal of the center Z(g) of U(g) and let
Atempn(Z : T) be the space of elements of Aiempn(Z) annihilated by J. There exists
Ny € N such that, for all N € N, for each f € Awmpn(Z : J), there exists a unique
f1 € Avempnin, (Z1 + T) such that, for allge G, Xy e a; ™ :

(i) If we interpret f, resp. fr, as functions on G which are right invariant under H,
resp. Hy, then
lim e X0 (f(gexp(tX;)) — fi(gexp(tX;))) = 0.

t—+00

(i) The assignment
R 3t e XD f(gexp(tX)))

defines an exponential polynomial with unitary characters, i.e., it is of the form
Dy pi(t)e™’, where the p;’s are polynomials and the v;’s are real numbers.

(iii) The linear map f — fr is a continuous G-morphism. Moreover for each wy € Wy
with w = m(wr) € W and any compact subset C; in a;~, there ezists € > 0 and a
continuous semi-norm p on Aemp n(Z) with:

[(az exp(tX))~"2 (f(gaz exp(tX)w - z9) — fr(gaz exp(tX)wr - 201)) |
<e (1 + |logaz|)V¥p(f), aze Ay, X;€Cr,geQt=0.

(iv) The bound in (iii) is uniform for all J of codimension 1, i.e., J = ker x for a character
X of Z(g).

Given f € Aiemp(Z) and I < S, we call fr € Aiemp(Z1) the constant term of f associated to
I. Note that properties (i) and (ii) in Theorem B determine f; uniquely as a smooth function
on Z;. Furthermore, we may interpret Theorem B(iii) in such a way that f; controls the
normal asymptotics of f in direction of a; ~ emanating from the base points w - 2y for certain

w e W.



Remark C. Theorem B can be phrased differently in the language of representation theory
and it is worthwhile to mention this reformulation. Let V' be a Harish-Chandra module and
V% its unique SF-completion. The subgroups H, H; being real spherical implies that the
invariant spaces (V=) and (V~=%)#1 are both finite dimensional (cf. [30]). Inside, we find
the subspaces of tempered functionals (V=*)/!  and (V_Oo)ginp. Then Theorem B defines
a linear map

V=), — (V=) ey

temp temp>

such that, for all v € V*, the matrix coefficient f = m, , is approximated by f; = m,,, in
the sense of Theorem B(iii). As A; normalizes H;, we obtain an action of a; on the finite

dimensional space (V‘w)gfw. It is easy to see that temperedness implies that

SpecaI(V—OO)ginp c ’OQ‘GI +iay,

which in turn translates into the behavior of f; as exponential polynomial as recorded in
Theorem B(ii).

Parts (i) - (iii) of Theorem B generalize the work of Harish-Chandra in the group case
(see [13, Sections 21 to 25], also the work of Wallach [36, Chapter 12], where the constant
term is called leading term) and the one of Carmona for symmetric spaces (see [6]). The
uniformity in (iv) generalizes the uniform results of Harish-Chandra in the group case (cf. [14,
Section 10]) and Carmona for symmetric spaces (cf. [6, Section 5]).

As a corollary of Theorem B, we obtain a characterization of tempered eigenfunctions f
in the discrete series by the vanishing of their constant terms f;, I < S (see Theorem 5.12
below). Again it is analogous to a result of Harish-Chandra. For this, we use in a crucial
manner some results on discrete series from [26, Section §].

The proof of Theorem B is inspired by the work of Harish-Chandra for real reductive
groups G, [13, 14], who associates to a tempered eigenfunction f on G certain systems of
linear differential equations. The main technical difficulty here is to set up the correct first
order system (4.24) of differential equations on A; associated to a function f € Aiemp(2).
This is based on novel insights on the algebra of invariant differential operators on Z. With
the solution formula for the first order differential system (4.24), one then obtains, as in [13],
for each f € Aiemp(Z), a unique smooth function f; € C*°(Z;) with properties (i), (ii) in
Theorem B and also (iii) for w; = w = 1. A main difficulty in this paper was to show that
fr is in fact tempered, which translates into the assertions in (iii) for all w; € W;. This, we
deduce from Proposition 2.1 on geometric asymptotics related to the natural matching map
m : W; — W. Let us point out further that our treatment in Section 7 of the uniformity in
Theorem B(iv) constitutes a major technical simplification to the so far existing state of the
art in [36, Chapter 12].

Earlier versions of this article needed the assumption that Z is of wavefront type. This
was mainly due to the lack of a better understanding of the algebra D(Z) of G-invariant
differential operators on Z and their behavior under boundary degenerations, i.e., overlooking
that there is a natural map D(Z) — D(Z;) originating from Knop’s work [19]. This was
observed by Raphaél Beuzart-Plessis and is now recorded in Appendix C. With this insight,



we could remove the wavefront assumption and make the paper valid in the full generality
of real spherical spaces.

Acknowledgement: We thank Raphaél Beuzart-Plessis and Friedrich Knop for their gen-
erous help on certain technicalities of the paper. Furthermore, we appreciate comments of
Yiannis Sakellaridis regarding the exposition of the paper.

1 Notation

In this paper, we will denote (real) Lie groups by upper case Latin letters and their Lie
algebras by lower case German letters. If R is a real Lie group, then Ry will denote its
identity component. Furthermore, if Z is an algebraic variety defined over R and £ is any
field containing R, then we denote by Z(k) the k-points of Z.

Let G be a connected reductive algebraic group defined over R and let G := G(R) be its
group of real points.

Remark 1.1. More generally, we could define G as an open subgroup of the real Lie group
G(R). The main analytic result of this paper (i.e., Theorem B) is not affected by this more
general assumption but we do not supply a complete proof here.

For an R-algebraic subgroup R of G, we set R := R(R) and note that R < G is a closed
subgroup.

Let now H < G be an R-algebraic subgroup. Having G and H, we form the homogeneous
variety Z = G/H. We note that Z(C) = G(C)/H(C) and denote by zy = H(C) the standard
base point of Z(C). Set Z = G/H and record the G-equivariant embedding

Z—Z(C), gH—g-z.

In the sequel, we consider Z as a submanifold of Z(C) and, in particular, identify z, with
the standard base point H of Z = G/H as well.

Remark 1.2. Note that Z is typically strictly smaller than Z(R), which is a finite union of G-
orbits. An instructive example is the space of invertible symmetric matrices Z = GL,,/O,,,
which features Z(R) = GL(n,R)/O(p,q). In particular, Z(R) 2 Z = G/H =
GL(n,R)/O(n).

As a further piece of notation, we use, for an algebraic subgroup R c G defined over R,

the notation Ry := Rn H and, likewise, Ry := Rn H. In the sequel, we use the letter P to
denote a minimal R-parabolic subgroup of G. The unipotent radical of P is denoted by /N.

p+g=n

1.1 The local structure theorem

From now on, we assume that Z is real spherical, that is, there is a choice of P such that
P - 2y is open in Z.



Remark 1.3. Notice that P(C)H(C) is Zariski open and hence dense in G(C) as G was
assumed to be connected. Thus, any other choice P’ of P, with P’ - 2, open, is conjugate to
P under H.

We now recall the local structure theorem for real spherical varieties (cf. [25, Theorem 2.3]
or [20, Corollary 4.12]; see also [5, 18] for preceding versions in the complex case), which
asserts that there is a unique parabolic subgroup ) > P endowed with a Levi decomposition
Q = L x U, defined over R, such that N

Qu - PH, (1)
Q, = Lu (1.2)
Lﬁ = Ln? (13)

where L, denotes the connected normal subgroup of L generated by all unipotent elements
defined over R.

Remark 1.4. (a) The Lie algebra [, is the sum of all non-compact simple ideals of [.
(b) As mentioned above, @ is the unique parabolic subgroup above P with properties
(1.1) - (1.3). Slightly differently, we could have defined @ via [23, Lemma 3.7] which asserts

Q(C) ={geG(C) | gE(C) -z = P(C) - 20} .

The group L is uniquely determined by @) and we recall from [20, Lemma 13.5] that L
is an invariant of Z, i.e., its H-conjugacy class is defined over R. In contrast to Ly, the
Levi subgroup L is only unique up to conjugation with elements from U which stabilize Ly.
In this regard, we note that it is quite frequent that Ly is trivial and then L could be an
arbitrary Levi of ). For later purposes of compactifications, we will only use those choices
of L which are obtained from the constructive proof of the local structure theorem (cf. [25,
Subsection 2.1]). In case Z is quasi-affine, this means that [ is defined as the centralizer of a
generic hyperbolic element of g* which is contained in (b + n)t (see the constructive proof
of the local structure theorem in [26]).

Such a parabolic subgroup @) as above will be called Z-adapted to P.

Let A; be the maximal split torus of the center of L and A be a maximal split torus
of P n L. Note that A, < A. Define A, := A/A,; and let (by slight abuse of notation)
Ay = (A/Ag)o ~ Ay/(Ag)o. From the fact that L, = L, and A = A; (A L,), we obtain
AZ >~ (AL)O/(AL)O N H with Az ~ ClL/ClL N b

We choose a section s : Ay — (Af)o of the projection (Ar)y — Az, which is
a morphism of Lie groups. We will often use a instead of s(a), az instead of  (1.4)
s(ayz) etc.

Note that Zg(A) = MA for the maximal anisotropic group M < P with this property.
Moreover, M A, as a Levi of P, is connected (recall that Levi subgroups of connected algebraic
groups are connected). Notice that M commutes with A and P = MAN. Observe that
M n A equals the 2-torsion points A, of A.



From (1.1) - (1.2), we obtain PH/H = QH/H ~ U x L/Ly, and, taking real points, we
get
[P 2](R) ~ U x (L/Lg)(R).

Next, we collect some elementary facts about (L/Ly)(R). To begin with, we define
My = {meM|m-zc Ay(R)}

and note that My is a cofinite normal 2-subgroup of M u, see Proposition B.2. We denote
by Fy; := Mpy/Myp this finite 2-group. Since the action of the P-Levi MA < L on L/Ly is
transitive, we obtain for the real points, by Proposition B.2,

(L/Ly)(R) = [M/Mpy] x™ A4 (R). (1.5)
From that, we derive the local structure theorem in the form
[P 20](R) = U x [[M/Mp] <" Ay (R)], (1.6)

which we will use later. Let us denote by A,(R)y ~ {—1,1}" the 2-torsion elements in
A, (R) ~ (R*)" and note that A,(R), naturally parametrizes the connected components of
A,(R), that is, the Az-orbits in A,(R). In particular, we record the natural isomorphism
of Lie groups a

AyR) ~ Az x Ay(R),.

Observe that Fy; naturally acts on Ay (R),. Hence, if we denote by (P\Z(R))open the set
of open P-orbits in Z(R), then we obtain from (1.6) and Corollary B.3 that:

Lemma 1.5. The map
Ay(R)2/Fryr = (PAZ(R))open, Fuaz — Pay
15 a bijection.
If we intersect (1.6) with Z, we obtain
[P 2](R) n Z = U x [[M/My] x"™ Azg] (1.7)

with Azr := Ayz(R) n Z. Observe that Azr might not be a group and is in general only a
Ag-set. With Az, := A,(R)2 n Azg, we then obtain

AZ,R = AZAZ,z ~ Ay x Az,z-

Note that F); acts on Az, and thus we obtain, in analogy to Lemma 1.5, that the map

AZ,2/FM e (P\Z)opena Fyaz — Pay



is a bijection. Next, we wish to find suitable representatives of the open P-orbits of Z in G,
i.e., find, for each Fyraz with az € Az, an element w € G such that Pay = Pw - 2. For
that, we consider the exact sequence

1_)AE_)A_)AZ:A/A£_)1-
Now, note that this sequence stays, in general, only left exact when taking real points
1> Ay(R) > AR) — A4(R).

In particular, we typically do not find a preimage of a torsion element ¢t € Az5 < A,(R) in
A = A(R). However, if we set T := exp(ia) < A(C) and Ty := exp(iaz) < A,(C), then
T — Ty is surjective. In particular, each t € Az - has a lift t € T, which can even be chosen
in exp(iaz) < T. Thus, we have shown that

Lemma 1.6. There ezists a set W < G of representatives of (P\Z)open Such that any element
w € W has a factorization in G(C) of the form

w = th, where t € exp(iay) and h € H(C) such thatt :=1t- 2y € Agy.
In particular, if a € Ay, aw - zg = w - 2.

In the sequel, W < G is a choice of representatives of (P\Z)open as in Lemma 1.6, assumed
to contain 1 as a representative of P - zj.

1.2 Spherical roots and polar decomposition

Let K < G be a maximal compact subgroup associated to a Cartan involution 6 of g with
0(X) = —X for all X € a. Furthermore, let x be an Ad G and f-invariant bilinear form on
g such that the quadratic form X — | X|? = —x(X,0X) is positive definite. We will denote
by (-, -) the corresponding scalar product on g. It defines a quotient scalar product and a
quotient norm on ay that we still denote by | - |.

For later reference, we record that K is algebraic, i.e., K = K(R), and further, M < K
as we requested G‘a = —id,.

Let X be the set of roots of ain g. If a € X, let g* be the corresponding weight space for
a. We write X, (resp. ¥,) < ¥ for the set of a-roots in u (resp. n) and set u™ = > o g7,
i.e., the nilradical of the parabolic subalgebra q~ opposite to q with respect to a.

Let (InB)Lt be the orthogonal of [~ b in [ with respect to the scalar product (-, -). One
has:

g=ho(lnh " du. (1.8)

Let T be the restriction to u™ of minus the projection from g onto (I n h)* @ u parallel to
h. Let a € ¥, and X_, € g~ Then (cf. [26, equation (3.3)])

T(X—a) = Z on,ﬁ ) (19)
Bex,u{0}

10



with X, 5€ g’ cuif Be X, and X, € ([nh)t.
Let M < Ny[3,] be the monoid generated by:

{a+ 8| ael,, eX,u{0} such that there exists X_, € g~ with X, 5 # 0}.  (1.10)
The elements of M vanish on ay so M is identified with a subset of a7,. We define

a, ={Xeaz|a(X)<0,ae M}
and a, ={Xeaz|a(X)<0, ae M}

Following e.g., [26, Section 3.2], we recall that a,, is a co-simplicial cone, and our choice
of spherical roots S consists of the irreducible elements of M which are extremal in Ry M.
Here, an element of M is called irreducible if it cannot be expressed as a sum of two nonzero
elements in M. Later, we will also need the edge of ay

azp:=a;,n(—ay)={Xeaz|a(X)=0, aecS}.

Note that az g (more precisely s(az g)) normalizes b and, likewise, Az g := exp(azg) < Az.
We turn to the polar decomposition for Z. Set A := exp(ay,) and Ay, = Az2A, < Azg.
By the definition of W, we then record that

AE,]R = AEW * 20 -
Lemma 1.7 (Polar decomposition). There ezists a compact subset Q < G such that
Z=0Ayg. (1.11)

Proof. Recall the group of 2-torsion points A, (R)z of A,(R). According to [20, Theorem 13.2
with Remark 13.3(ii)] (building up on the earlier work [23, Theorem 5.13]), we have Z(R) =
Q- Az (R)2Ay, for some compact subset 2 of G. Note that A;A;(R)s N Z = A,y and the

assertion follows. O

Remark 1.8 (Passage to H connected). An analytically more general setup would be to
work with connected H, i.e., with Zy = G/H, instead of Z = G/H. For that, only some
adjustments are needed. In detail, by right-enlarging W with a set Fjy of representatives
for H/Ho(H n M), we obtain with W, := WFpy a set which is in bijection with the set of
the open P x Hy-double cosets in (G. Similarly, one obtains a polar decomposition for Z; as
Zy = QAW - 29 with zp = Hy, now denoting the base point of Zj.

In order not to introduce further notation and maintain readability, the main text is kept
in the algebraic framework. At various places, we will comment on the necessary adjustments
needed for H connected.

The polar decomposition is closely related to compactification theory of Z, which we
summarize in the next section.

11



2 Boundary degenerations and quantitative geometry
at infinity

For a real spherical subalgebra h — g and any subset I < .S, there is natural deformation of
hr of b, see (2.1) below for the straightforward definition. We define H; = {exp(h;)) as the
analytic subgroup of G with Lie algebra h; and define the boundary degenerations of Z as
Zr = G/H;. Let us mention that Z; identifies (up to cover) with an open cone-subbundle
in the normal bundle of a certain G-boundary orbit in a smooth compactification of Z. This
more elaborate point of view will be taken in the forthcoming work [9], but is not the topic
of this paper.

The compactification theory is reviewed here shortly in Subsection 2.3, but only as a
tool to give a shorter proof of Proposition 2.1, which is the main result of this section. In
more detail, let W be the set of open P-orbits in the deformed space Z;. We introduce a
natural matching map m : W; — W for open P-orbits. The definition of m involves certain
sequences and the contents of Proposition 2.1 is about the rapid (i.e., exponentially fast)
convergence of these sequences.

2.1 Boundary degenerations of Z
Let I be a subset of S and set:

ap = {Xeaz|aX)=0,ael}, A = exp(a;)c Az,
a, = {Xea|aX)<0,aeS\I}, A;- = exp(a; ).

Then there exists an algebraic Lie subalgebra h; of g such that, for all X € a; ™, one has:

by = lim e (2.1)

t—+00

in the Grassmannian Gry(g) of g, where d := dim (h) (cf. [26, equation (3.9)]).
Notice that a; normalizes h;, and hence

br:=br +as

defines a subalgebra of g that does not depend on the section s.
Let Hj be the analytic subgroup of G with Lie algebra h; and set Z; = G/H;. Then Z;
is a real spherical space for which:

(i) PH; is open,
(ii) @ is Z;-adapted to P,

(iii) az, =az and a; = {X €az | a(X) <0, a € I} contains a,
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(cf. [26, Proposition 3.2]). Similarly to (1.8), one has:

g=h®(nhDu;.

Let T; : u= — (I n b)Y @ u; be the restriction to u~ of minus the projection of g onto
(I~ b)Y @ uy parallel to h;. Furthermore, let (I) = Ny[S] be the monoid generated by I.
Let X! 5 = Xo 5 if @+ 3 € (I) and zero otherwise. It follows from [26, equation (3.12)] that
Xoo + 2gesuoio) Xa € br. This implies that, for a € 3,

T(X_o)= > X,
Bex,u{0}

Let A, =expay . Similarly to Z, the real spherical space Z; has a polar decomposition:
Z[ = Q[AEIW[ * 20,1 5 (22)

where 2o ; = Hy, ; < G compact and Wy < G finite (cf. Lemma 1.7 and Remark 1.8 for the
choice of Wy as Hj is defined to be connected). In more detail, the Lie algebra b is algebraic
and we let H; be the corresponding connected algebraic subgroup of G. Using Lemma 1.6
applied to the real spherical space G(R)/H;(R), we can make, using Remark 1.8, a choice
for W; such that elements w; € W; are of the form

wr = f[h[, for some E] € exp(iﬁz) and h[ € ﬂI(C) . (23)

We fix such a choice in the following, requesting in addition that 1 € W;.

2.2 Quantitative escape to infinity

Let I < S. Let us pick X; € a; , i.e,, X; € a; and a(X;) <0 for all « € S\I. For s € R, let
as = exp(sXy). (2.4)
Fix w; = t;hy € W. According to [26, Lemma 3.9], there exist w € W and sy > 0 with
PwjasH = PwH, s> sp. (2.5)
Note that (cf. Lemma 1.6):
w = th, for some t € exp(idz) and h e H(C). (2.6)

A priori, w might depend on X, say w(X;). On the other hand, the limit (2.1) is locally
uniform in compact subsets of a; ~. In particular, the set of Y € a; ~ such that w(Y") = w(X;)
is open and closed. Hence, w is independent of X. Given w; € W; and w € W such that
(2.5) holds, we say that w corresponds to w; and note that this correspondence sets up a
natural map m : W; — W.

13



According to [26, Lemma 3.10], there exist elements us € U, b, € Az and mg € M such
that:

wras - Zg = usmgbsw-zy S = s,
. -1
Jpplebs) =1
lim vy = 1, (2.7)
S$——+00
lim mg = my,, for some m,, € M.
§—+00

Notice that in case w; = 1, one can take w = 1 and then one has m,,, = 1.
The goal of this section is to give a quantitative version of the convergence in (2.7). For
that, we first refer to Appendix A for the definition and basic properties of rapid convergence.
Recall the finite 2-group Fy; = My /My defined before (1.6) and fix with Fy; € M a set
of its representatives containing 1. Then we have the following result:

Proposition 2.1. The families (a;b;') and (us) converge rapidly to 1 and one can choose
the family (ms) such that (ms) converges rapidly to my,, € Fy.

Remark 2.2. (a) Proposition 2.1 allows us to change the representatives w; to m;}w ; without

loosing the special form w; = t;h; with ¢; € exp iaz. This is because of Fy;A; < Azr C
exp(iaz)A - zp Hence, we may and will assume in the sequel that m,,, = 1 for all w; € W.

(b) For H replaced by connected Hy, Proposition 2.1 stays valid with ﬁ’\]\} right-enlarged
by representatives of the component group My/(M n Hy). However, this causes that we
possibly cannot take m,,, =1 as in (a).

(c) In order to give a shorter proof of Proposition 2.1, we use the compactification theory
of Z(R), which we review in the next paragraph. In particular, it yields the framework to
consider Zy y := lims 4 Gs - 29 as an appropriate rapid limit in a suitable smooth compactifi-
cation of Z.

Geometrically, compactification theory provides (up to cover) a first order approximation
of Z; to Z at the vertex Zp at infinity. This first order approximation then yields readily
us — 1 rapidly and my; — m,,, € PT/[ rapidly. However, first order approximation can only
give a;b;' — 1 and to show that asb;! — 1 indeed rapidly, we need to use finer tools from
finite dimensional representation theory.

2.3 Smooth equivariant compactifications

By an equivariant compactification of Z(R), we understand here a G-variety Z , defined over
R, such that Z(R) is compact and contains Z(IR) as an open dense subset. In this context,
we denote by 0Z the boundary of Z in Z(R).

Suitable (i.e., smooth and equivariant) compactifications exist:

Proposition 2.3. Let Z = G/H be an algebraic real spherical space. Then there erists a
smooth equivariant compactification Z(]R) of Z(R) with the following property: for all I < S
and X € a;~, the limit zx := lim,_,,(exp(sX)-29) exists in 0Z and the convergence is rapid.
If bx is the stabilizer Lie subalgebra of zx in g, then by < hx < 61.
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The proof of this result is implicit in the proof of [20, Theorem 13.2]. Since the construc-
tive proof is of relevance for us, we allow ourselves to repeat the fairly short proof.

Proof. The starting point is the local structure theorem for the open P-orbit on Z as in (1.6)
(B 2)(R) = U x [[M/My] <" A,(R)] . (2.8)

One of the main results in [20], see loc.cit., Theorem 7.1, was that the compactification
theory of Z which can be reduced, via the local structure theorem, to the partial toric
compactification theory of A,. Let us be more precise and denote by = the character group
of A,. Note that = ~ Z" with n = dim A,. If we denote by N the co-character group of A,
then there is a natural identification of ay with /' ®z R. Further, the compression cone aé
identifies as a co-simplicial cone (in [20], one uses the rational valuation cone, denoted Z(X):
take kK = R and X = Z. Then a; = R®qg Z;(X)). The set of spherical roots S < = are
then the primitive (in =) extremal elements, co-spanning a,. Best possible compactifications
(a.k.a. wonderful compactifications) exist when #S = dim ayz and S is a basis of the lattice
=. In general, this is not satisfied and we proceed as follows: we choose a complete fan
F < agz, supported in a,, which is generated by simple simplicial cones C1,...,Cn, i.e.,

e UCi=ay,
e C;nCjis aface of both C; and Cj for all 1 <4,j5 < N,
o C;={Xeay|dy;(X)<0,1<j<n}for (¢ij)1<j<n & basis of the lattice =.

For the existence of such a subdivision, we refer to [10, Chapter III|. Now, attached to
the fan F, we construct the toric variety A,(F) expanding A, along F. Note that the toric
variety A, (F) is smooth, as the fan consists of simple cones (third bulleted property). Thus,
we obtain a smooth variety

Zy(F) :=U x [[M/MQ] x Ag(]:)]? (2.9)

which inflates to a smooth G-variety Z(F) := G-Z,(F), containing Z,(F) as an open subset.
This is the content of [20, Theorem 7.1]. Now, set Z(R) := Z(F)(R) and note that Z(R) is
compact by [20, Corollary 7.12] as F was assumed to be complete.

We now claim that the limit lim,_,.(exp(sX) - 29) exists in A,(F)(R) and that the
convergence is rapid. For that, we pick a cone C; which contains X, and let F; be the
complete fan supported in C;, which is generated by C;. Notice that A,(F;)(C) ~ C" is
open in A,(F)(C). More specifically, the embedding of A,(C) <> C" is obtained by

A, (C) 3 a— (Yij(a))icjcn € (C*)" < C". (2.10)

Given the definition of C; as the negative dual cone to the 9;;’s, j = 1,...,n, the claim now
follows.

Note that the stabilizer of z; := exp(sX) - zg in G is given by Hy := exp(sX)H exp(—sX)
with Lie algebra b, := e**4Xp. Since z, — zx in the smooth manifold Z (R), we obtain that
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the vector fields corresponding to eleIAHents of lim,_, ., hs = h; vanish at zx. This shows that
hr < bx. Finally the property hx < b is derived from [20, Theorem 7.3]. O

We end this subsection with further remarks and explanations of the construction in the
proof above.

Remark 2.4. (a) It is quite instructive to consider the special case of Z = G = A. Here
A, =A; =A=Azp with S = . Upon identifying a; with R" via the character lattice Z,
there are two standard choices for the complete fan F generated by the cones C1, ..., Cy. The
first one is for N = 2™ and the cones given by the orthants: C, = o(Rs()" for o € {—1,1}".
This fan leads to A,(F)(R) ~ PY(R)", the n-fold copy of the projective line. The other
standard choice is obtained via the identification R” ~ R"*!/Re with € = e, + ... + €,41,

where (eq,...,e,41) is the canonical basis of R, and has N = n + 1 cones given by:
n+1
Ci=[( @ Rsoej)+Re]/Re, I1<i<n+1.
j=1st. joi

This fan leads to the projective space A,(F)(R) ~ P*(R).

(b) In the previous example, we have seen that there are exactly N fixed points for G
in the compactification Z (R), paramatrized by the cones C; and explicitly given by limits
2o o= limye(exp(tX) - 29), for some X € intC;. This feature is not limited to this
specific example but general: the compactification 7 (R) features exactly N closed G(R)-
orbits through the various Zg;’s. This is in contrast to wonderful compactifications, where
one has exactly one closed orbit. For wonderful compactifications, one has az g = {0} and
S is a basis of the lattice =. If one of these two conditions fails, one is in need of a further
subdivision of a, into simple simplicial cones Cj.

(c) Let X € a;~ and F' € F be the smallest face in the fan which contains X. Then
spang I' < a; and hx = bh; + spang F'. In particular, for X € a;~ generic, we have hx = 61.

(d) (cf. [20, Section 11]) In case H = Ng(H) is self-normalizing, one obtains a wonderful
compactification Z(R) by closing up Z(R) in the Grassmannian Gry(g) of d = dim b-
dimensional subspaces of g. The embedding is given by ¢ -z, — Ad(g)h and, given the
definition of h; as a limit (cf. (2.1)), one derives easily that the stabilizer Hy of Zo.r in G has
Lie algebra 61.

2.4 Proof of Proposition 2.1

We choose a smooth compactification Z (R) = Z(F)(R) as constructed in the previous
section. To begin with, we note that the limit

207] = lim (le * 20 (211)
5—>00

exists. Moreover, Zy; € Ay(F)(R) and the convergence is rapid. Further, we deduce from
the fact that 2y s is fixed by H,;(C) and w; = t;h; that lim, . wrd, -2z = t7- 205 € Ay (F)(R)
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is rapid. On the other hand, w;a,-zg = usmsgsw 20 = usmsgsf-zo which, in local coordinates
as given by (2.9), translates into:

wid, - 2 = (us, [my, 1, - 20]) € U x [[M/Myg] <™ Az (F)(R)]. (2.12)

Since lim, o, wyd, - 29 = (1,[1,% - Z5]) is rapid, we thus deduce that lim, o, us = 1 is rapid
as well. Next, we use the smooth projection [M/Mp] x* A, (F)(R) — M/MyFy and

obtain that my(MgFy) rapid, 1(MyFy) € M/MyFy. In particular, we may assume that
S$—00

rapid

ms —— My, € My F). Notice that we are free to replace m, by elements of the form m,mpy
§—0

with my € My as we have
mempgb,w - zg = mompbgt - 2o = mybst - 2o = mgbsw - zg .

Thus, we may even assume that m := m,, € ]:74 (which was defined just before Proposition
2.1).
_1 rapid

We remain with showing b;a;* —— 1. Using the techniques from above, it is immediate
§—00

that d(as,bs) — 0 rapidly for any Riemannian metric d on Z (R). However, the statement
a;lb, — 1 rapidly is a considerably finer assertion and difficult to obtain working with
only one compactification. Thus, we change the strategy of proof and work with (varying)
finite dimensional spherical representations instead. The representations give us various
morphisms of Z into affine spaces.

We assume first that Z is quasi-affine. The representations we work with are finite
dimensional irreducible representations (m, V') of G(C) featuring two properties:

e The representation is H(C)-spherical, that is, there exists a vector vy # 0 such that
w(h)vy = vy for all h e H(C).

e Each N(C)-fixed vector is fixed by M (C).

The second property can be rephrased in order that the representation is K (C)-spherical
(Cartan—Helgason theorem). In particular, each of these representations is self-dual, its
highest weight A is an element of a* and its lowest weight is given by —\. We write Az for
the set of highest weights of all H(C) and K (C)-spherical irreducible representations.

Given A € Ay, we let (m,V) be such an irreducible representation of G(C) of highest
weight A\. Furthermore, we fix a highest weight vector v* in the dual representation V* of
V. From the fact that PH is open in G, we then deduce v*(vy) # 0 and, in particular,
VH = Cvp is one-dimensional. Moreover, it follows that Ay < a.

We expand vy into a-weight vectors

Vg = Z V_X+p

ueEAR

with A; := {p e a* | v_yy, # 0}. As vy is ag-fixed, we have A, < a}, and, by [23, Lemma
5.3], we obtain:
MQ,<0, we A0} (2.13)
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Set
Vs i= a?w(ds)vH s=0

and note, as vy is H-invariant, that this expression is independent of the choice of the
particular section s. From the definition, we then get

Vps = Z abv_xi, . (2.14)

HEA R

Vg1 = Z V_X\+pu

ueEAL s.t. p(Xr)=0
then it is immediate from (2.13) and (2.14) that

If we define

VH,s — UVH,I rapidly for s — 0. (2.15)

Recall v* € V*, a highest weight vector in the dual representation. Then we obtain from
Wrhs + 2o = UsMbst - 2o that:

v (m(wr)vp) = a (U*(W(usmsi)sf)vH)) = (asb M (0 (vg)) - (2.16)

By (2.15), we thus obtain from (2.16) that:

(asb7)> = t)\v*(ﬂ-(wl)UH,s) \U(m(wr)vm )

rapidly for s — o0. 2.17
o (0g) o (0p) pidly (2.17)

We now employ [26, Lemma 3.10] for the simple convergence azb;' — 1. Thus, (2.17)

implies t’\% = 1 with

(asb;) — 1 rapidly for s — o0, Ae Az. (2.18)

In case Z is quasi-affine, the set Az spans a}, as a consequence of [25, Lemma 3.4 and (3.2)]
and we get a;b;! — 1 rapidly from (2.18).

If Z is not quasi-affine, then matters are reduced via the so-called cone construction
from algebraic geometry. We extend G(C) to G'(C) := G(C) x C* and, for a character
Y : H(C) — C* defined over R, we set H'(C) := {(h,v¥(h)) | he H(C)}.

In this way, we obtain a real spherical space Z' := G'/H' which projects G'-equivariantly
onto Z. According to [20, Corollary 6.10], there is compatibility of compression cones:

a; =a; ®R. (2.19)

Furthermore, according to Chevalley’s quasiprojective embedding theorem for homogeneous
spaces, we find such a ¢ such that Z’ is quasi-affine and we complete the reduction to the
quasi-affine case as follows: we lift the identity (2.6) to Z" and obtain

wrdl, - zy = usmblw - 25§ = S,

with @/, € d,(1 x R*) € G’ and likewise for b/, € b,(1 x R*) € G'. Because of (2.19), we obtain
the rapid convergence V,(a.)™" — 1 in the quasi-affine environment of Z’. Projecting to Z
then completes this final reduction step.
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3 Z-tempered H-fixed continuous linear forms and the
space Asepmp(2)

In this section, we introduce the function space Asemp(Z) of tempered Z(g)-eigenfunctions
on Z. Via Frobenius reciprocity, these functions can naturally be interpreted as matrix
coefficients of smooth representations of G which are of moderate growth (S F-representations
for short). This section starts with a brief digression on S F-representations and then provides
the definition of Asemy(2).

3.1 SF-representations of GG

Let us recall some definitions and results of [4].
A continuous representation (7, E') of a Lie group G on a locally convex topological vector
space F is a representation such that the map:

G x E— E, (g,v) = m(g)v, is continuous.

If R is a compact subgroup of G and v € E, we say that v is R-finite if 7(R)v generates a
finite dimensional subspace of . Let V(g) denote the vector space of R-finite vectors in E.
Let 1 be a continuous linear form on £ and v € E. Let us define the generalized matrix
coefficient associated to n and v by:

Myo(g) =< n,m(g v >, geG.

Let G be a real reductive group and || - || be a norm on G (cf. [35, Section 2.A.2] or [4,
Section 2.1.2]). We have the notion of a Fréchet representation with moderate growth. A
representation (m, E') of G is called a Fréchet representation with moderate growth if it is

continuous and if, for any continuous semi-norm p on E, there exist a continuous semi-norm
g on E and N € N such that:

p(r(g)v) < q)lgl™, veE.geG. (3.1)

This notion coincides with the notion of F-representations given in [4, Definition 2.6] for
the large scale structure corresponding to the norm | - |. We will adopt the terminology of
F-representations.

Let (7, E) be an F-representation. A smooth vector in F is a vector v such that g — 7(g)v
is smooth from G to E. The space E* of smooth vectors in E is endowed with the Sobolev
semi-norms that we define now. Fix a basis X1,..., X, of gand k£ € N. Let p be a continuous
semi-norm on E and set

1/2
pk<v>=< D p(w(X{’“-'-X?“)vY) . veE”. (3.2)

mi+--+mp<k

We endow E* with the topology defined by the semi-norms pg, k£ € N, when p varies in the set
of continuous semi-norms of E, and denote by (7%, E®) the corresponding sub-representation
of (m, E).
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An SF-representation is an F-representation (m, F) which is smooth, i.e., such that
E = E® as topological vector spaces. Let us remark that if (7, £') is an F-representation,
then (7%, E®) is an SF-representation (cf. [4, Corollary 2.16]).

Recall our fixed maximal compact subgroup K < G.

Following [4], we call an SF-representation E admissible provided that E(x) is a Harish-
Chandra module with respect to the pair (g, K), that is, a (g, K)-module with finite K-
multiplicities which is finitely generated as a U(g)-module.

An admissible S F-representation will be called an SAF-representation of G.

It is a fundamental theorem of Casselman-Wallach (cf. [7], [36, Chapter 11] or [4])
that every Harish-Chandra module V' admits a unique SF-completion V| ie., an SF-
representation V' of GG, unique up to isomorphism in the SF-category, such that:

V(C}%) ~gK) V-

In particular, all SAF-representations of G are of the form V* for a Harish-Chandra
module V.

3.2 The spaces Cy;,, y(Z) and Asernpn(Z)

From now on and for the remainder of this paper, we will assume that Z is unimodular. Let
pq be the half sum of the roots of a in u. Let us show that

pg is trivial on ag .

As [ n h-modules,
g/b=ue(l/Inh).

But the action of ay = an b on (I/[nh) is trivial. Since Z is unimodular, the action of ay
has to be unimodular. Our claim follows.
Hence pg can be defined as a linear form on az.

We have the notion of weight functions on a homogeneous space X of a locally compact
group G (cf. [3, Section 3.1]). This is a function w : X — R.q such that, for every ball B of
G (i.e., a compact symmetric neighborhood of 1 in G), there exists a constant ¢ = ¢(w, B)
such that

w(g-z)<cw(xr), geB,xeX. (3.3)

One sees easily that, if w is a weight function, then 1/w is also a weight function.
Let v and w be the weight functions on Z defined by

v(z) :=volz(Bz) and w(z):= sup |log(a)],

agA, s.t. 26QaW-29

where B is some ball of G and | - | refers to the quotient norm on az = a/ay. It is then clear
that v is a weight function and w is a weight function by [24, Proposition 3.4]. Recall that
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the equivalence class of v does not depend on B (see loc.cit., Lemma 4.1 and beginning of
Section 3 for the definition of the equivalence relation).
For any N € N, we define a norm py on C.(Z) by

px(f) = sup (1 + w(2))"Vv(2)2|f(2)]) - (3.4)

2€Z

From the polar decomposition of Z (cf. (1.11)), one has

pn(f) = sup ((1 +w(gaw - z)) Vv (gaw - 2)"?| f (gaw - Zo)’) .
geae A, ,weW

From the fact that v and w are weight functions on Z and from [24, Propositions 3.4(2)
and 4.3], one then sees that:

The norm py is equivalent to the norm

foan(f):=  sup (a1 + |logal) | f(gaw - %)|) . (3.5)

9geQ,ac A, ,weWw

Moreover, due to the fact that v and 1/w are weight functions on Z, one gets that G acts

by left translations on (C.(Z),px) and, for any compact subset C' of GG, by changing z into
1

/=g ' zin (3.4), one sees that:
There exists ¢ > 0 such that
(3.6)
pN(Lgf)écpN(f)a geC,feCc(Z).
This is in essence what is needed to identify
Crempn(Z) = {f € C*(Z) | pni(f) < o0, k € N} (3.7)

as an SF-module for G. Here, the pyy, k € N, are as in (3.2), with p replaced by py and
(m, E) by the SF-representation (L,Cy,  y(Z)). Further, we endow the increasing union
Cromp(Z) = UnenChomp.n(Z), with the inductive limit topology. We call Cy7,, ,(Z) the space
of smooth tempered functions on Z.

Inside of C}%,, (Z), we define Ayep(Z) as the subspace of Z(g)-finite functions. Likewise

temp

we define Ayepmp n(Z).

3.3 Z-tempered functionals

Let (m, E) be an SF-representation and E’ its strong dual. An element n € (E')" will be
called Z-tempered provided

There exists NV € N such that, for all v € E, one has m,, €
ce  (2). ’ (3.8)

temp,N
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The Z-tempered functionals then define a subspace (E')//,,, of (E')". Frobenius reci-
procity then asserts for an SF-representation (7, E') that:

Hom(E,C%,,(2)) ~ (E'){! (3.9)

temp

which can be established as in [31, Lemma 6.5] via the Grothendieck factorization theorem
for topological vector spaces.

In case £ = V® is an SAF-representation, we adopt the more common terminology
V=% := (V*)" and recall the finiteness result for real spherical spaces (cf. [30, Theorem 3.2]):

dim (V=°)% < o0. (3.10)
For a finite codimensional ideal J of Z(g), let
Atempn(Z 2 T) = {f € Atempn(Z) | f is annihilated by T} (3.11)
and denote by Ayemp(Z : J) the subspace of Ajepm,(Z) annihilated by J.

Proposition 3.1. There exists an Ny € N such that Awemp(Z @ T) = Atempne(Z + T). In
particular, Aiemp(Z + J) is an SAF-representation of G.

The proof of Proposition 3.1 is preceded by two lemmas.

Lemma 3.2. There exists a Harish-Chandra module V7 annihilated by J such that any
Harish-Chandra module annihilated by J is a quotient of a finite direct sum of copies of V.

Proof. According to Harish-Chandra, there exist only finitely many isomorphism classes
Vi,..., V, of irreducible Harish-Chandra modules that are annihilated by J. We can find a
finite set F' < K of isomorphism classes of irreducible K-representations such that, for each
1 <7 < n, the (g, K)-module V; is generated by its d-isotypic component for some 6 € F.
Then every Harish-Chandra module which is annihilated by J is generated by the sum of
its d-isotypic components for every § € F. Let R(K) be the algebra (for convolution) of
K-finite functions on K and Ir € R(K) the ideal of elements which acts by zero in § for any
d € F. Let R(g, K) be the “Hecke algebra” of Knapp—Vogan [17, Section 1.4], i.e., the algebra
of K-finite distributions on G which are supported in K. Then R(g, K) is generated as a
U(g)-module (either on the left or on the right) by R(K) and moreover the category of (g, K)-
module is naturally equivalent to the category of non-degenerate (also called approzimately
unital by Knapp—Vogan) R(g, K)-modules. Setting V; = R(g, K)/(R(g, K)Ir + R(g, K)J)
we see that V7 is a (g, K)-module which is generated by any supplement subspace of Ir in
R(K) and annihilated by J. Hence, by another result of Harish-Chandra, V7 is in fact a
Harish-Chandra module. Moreover, it is clear that any Harish-Chandra module annihilated
by J is a quotient of a finite sum of copies of V. O

Lemma 3.3. Let f € Awempn(Z) be a K-finite element. Set EY := spange L(G) f, with the

closure taken in CJ5, n(Z). Then E' is an SAF-representation, i.e., E(fK) 1s a Harish-

Chandra module.
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Proof. We consider the (g, K)-module V/ := U(g)f. Since f is Z(g)-finite, the same holds
for V/. Now, as a finitely generated and Z(g)-finite module, V7 is a Harish-Chandra module
by a theorem of Harish-Chandra. Standard techniques (see [4]) then show that V7 is dense
in B and thus V/ ~ ) Efy). m

Proof of Proposition 5.1. Let Ey = V¥ be the SAF-globalization of V; where V; is as in
Lemma 3.2. We will actually show that Ayem,(Z : J) is precisely the image of

(E&)gmp ® EJ - Atemp<Z) (312)

N&v— My, .

Indeed, since (E';)/1,, is of finite dimension (cf. (3.10)), the image of (3.12) is contained
in Asemp,n, (Z : J) for some Ny = 0 and, by unicity of the SAF-globalization, this image
is closed in Aempn(Z @ J) for every N = Ny. Hence, it suffices to show that it is also
dense in Ayeppn(Z @ J) for every N > Ny. But by Lemmas 3.2 and 3.3, every K-finite
function f € Aiemp n(Z : J) is in the image of (3.12). Since K-finite functions are dense in

Atempn(Z + T), this completes the proof. O

4 Ordinary differential equation for Z(g)-eigenfunctions
on Z

Let f € Aiemp(Z). The goal of this section is to show that f ‘ 4, 8ives a certain system of
ordinary differential equations on A;. In more precision, f is by definition annihilated by an
ideal J < Z(g) of finite codimension. We construct out of f a certain vector valued function
®; on A; with values in a finite dimensional vector space Uy with dimension bounded by
dim Z(g)/J. The function f ‘ 4, 18 then recovered by contracting ®; with a vector in Uy.
The function ®; in turn satisfies a first order linear differential system recorded in (4.28).

This section starts with a basic estimate for functions f € 5, r(Z) which will be crucial
in the sequel: in a nutshell, we show that derivatives in direction of h; have decreasing decay
in direction of A;. After that, we have a short algebraic subsection on invariant differential
operators on Z, where we review in particular the contents of Appendix C. With these
preparatory subsections, we then derive the differential equation (4.28) for ®;. From the
solution formula for ®; in Lemma 4.6, we then derive a variety of basic growth estimates for
Dy

4.1 Differentiating tempered functions in direction of b;

Recall the basic notions about boundary degenerations related to subsets I < S of spherical
roots. Let us fix I < S throughout this section. We define a piecewise linear functional on
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ar by

Br(X) = gérelg\%a(X), Xear, (4.1)

and note that f;(X) < 0if X € a; . If a € A; with a = exp X, we set afr = frX),
We begin this section with a crucial estimate:

Lemma 4.1. Let Y € by and N € N. There exists a continuous semi-norm on Ci5, - N (Z),
p, such that

(Ly f)(a)| < a1+ |logal)¥p(f), ae A7~ feCE,, n(Z).
Proof. On one hand, if Y e [n b,
(Lyf)(a) = 0, a e A[ .

Hence, the conclusion of the Lemma holds for Y € [ n b.
On the other hand, from the definition of 77 (cf. beginning of Section 2.1), [ n h and the
elements
Yoo=X_o+T1(X_0)€by,

for a varying in ¥, and X_, in g—%, generate h; as a vector space. By linearity, it then
remains to get the result for Y =Y_,.
Let a € A; and a = s(a) (cf. (1.4) for the definition of s). Then let us show that

Ad(@)Y_y = @Yy .

One has Ad(a)X_, = a*X_, and Ad(@)Xnp = @’ X, 5. But a + 8 € {I). Hence, a*™% =1
as a € Ar. Our claim follows.
Let us get the statement for (Ly  f)(a), a € A7~ and f € Aempn(Z). One has:

(Ly_.f)(a) = (La (Ly_ )(20) = a®(Ly_, La~ f) (%) -
Recall that M is the monoid in Ny[X,]| defined in (1.10) and (/) denotes the monoid in
Ny[S] generated by I. Let us notice that:
Yo+ > Xas€h.
BeXu {0} s.t. a+pEI)
Hence one has:

(Ly_of)(a) = =0 Yisex, 010y s arprcry (Lxa s Lam1 f) (20)
=~ Dgesao(0) s.asppcny @ (La-1 Lx, , f) (20)

But a**¥ = a**? as a € A; © Az and o+ € S. Then, as (Lz1Lx, ,f)(20) = Lx, ,f(a),
one has:

(Ly_of)(a) = = > a®*P(Lx, . f)(a). (4.2)

BEXy U{O} s.t. a+ﬁ¢<1>
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If a + ¢ (I)as above and Lx, ,f # 0, one has o + 3 € M\{I) and, from the definition of
Br (cf. (4.21)):

G,OH_B < G/BI, a € A[__

Then

(Ly_of)(a)] < a™ >, (Lx,5)(a)l-

BeS, U{0} s.t. a+B&I)

Hence, we get the inequality of the Lemma for Y = Y_, by taking

P = Z QN,Xaﬁ )
BeXyu{0} s.t. a+pET)

with QN,X(f) = qN(fo) J

4.2 Algebraic preliminaries

For a real spherical space Z = GG/H, we denote by D(Z) the algebra of G-invariant differential
operators. We recall the deformations Z; = G/H; of Z which were defined with H; to be
connected. In particular, we point out that Hg = Hy and that Zg — Z is possibly a proper
covering. However, we have D(Z) < D(Zs) naturally by Remark C.1. Next we describe
D(Z) as in Appendix C.

Let R denote the right regular representation of G on C*(G). Differentiating R yields
an algebra representation of the universal enveloping algebra U(g) of gc:

R:U(g) — End(C*(G)), uw— R(u).

Set b := a + m + u and note that b c g is a subalgebra with g = b + h; for all I = S. Note
that bbby =ag + my for all I < S, where myg =mnbh. Let by := ag + myg. With
Ur(b) :={uelU(b) | XuelUl(g)hs, X ebi}, (4.3)

we obtain a subalgebra of U(b) which features U (b)by as a two-sided ideal. Next, we explain
the natural isomorphism

D(Zr) ~ Ur(b)/U(b)by (4.4)

from (C.1). For that, we denote for f; € C%(Z;) by f; € C*(G) its natural lift to a right
Hj-invariant function in G. Then, with regard to the quotient map 7 : U(b) — U(b) /U(b)by,
we take @ € U(b) to be any lift of u e Uy (b)/U(b)by < U(b)/U(b)by. Then we can define

(Ri(uw)fr)(gH1) = (R@)[1)(9),  geG,

as the right hand side is independent of the particular choice of the lift @ of w and the
representative g of the coset gH;. With this notion of R;, the isomorphism in (4.4) is
implemented by the assignment

Uy (6)/U(B)or 5 u — Ri(u) € D(Z).
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For f € C*(Z) c C*(Zs) and u € D(Z) < D(Zg), we use the abbreviated notation R(u)f
without specifying any further index.

In the sequel, we consider D(Z;) as a subspace of U(b)/U(b)by for any I < S. Notice
that U(b)/U(b)by is naturally a module for Az under the adjoint action, which yields us a
notion of az-weights of elements u € U(b)/U(b)by.

Recall the center azp = ag of Z, which has the property that Az g normalizes H and
as such acts on Z from the right, commuting with the left G-action on Z. In particular,
we obtain a natural embedding S(az g) — D(Z). When applied to the real spherical space
Zr=G/H;, I < S, we note that a; = az, g and record the inclusion S(a;) — D(Z;).

We rephrase Theorem C.4 from Appendix C as:

Lemma 4.2. For I < S, the following assertions hold:
(i) For anyueD(Z) cU(b)/U(b)by and X € a; —, the limit

T tad X
pr(u) = }E&e u
exists and defines an injective algebra morphism py : D(Z) — D(Z;), which does not

depend on X.

(i1) For any non-zero uw € D(Z), the az-weights of pr(u) and u are non-positive on a and
the az-weights of p(u) — u are negative on a; .

This Lemma shows that we can view D(Z;) as a subalgebra of D(Z). Since by = [nh+u
is of a particular simple shape, i.e., close to a parabolic, the algebra ID(Zg) can be described
easily. For that, let My := exp(my) < M and keep in mind the standard isomorphim

D(M /M) ~Um)™M /(U m)my o U )M (4.5)
Lemma 4.3. The natural map
®: S(az) @ [Um)™ /(Um)my A Um)MH)] — Uy (b) UD)br, u@v— uv+Ub)by

is an isomorphism. In particular, via (4.4) and (4.5), we obtain a natural isomorphim of
algebras

D(Zg) ~ S(az) ® D(M/Mp) (4.6)

Proof. In the absolutely spherical case, this is found in [19, Section 6] (what is called X}, the
horospherical deformation of a G-variety X, would correspond to our Zg). The slightly more
general case is an easy adaptation. In the following proof, we replace from (4.7) onwards
Hg by its algebraic closure, which is legitimate by Remark C.1(b).
Recall that
Ugs(6) = {u e U() | [X.u] € Ulg)ho X € by}

In particular, Ug(b) is ad a-invariant and we obtain a spectral decomposition

Ugp(b) = > Ug(b)y.

Aea*
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For A = 0, we further have
Uy (b)og =Ug(b) nU(a+m) = Ula)Um)M +U(m)my),

from which we easily derive that ® is injective.

It remains to be seen that & is surjective. For that, it suffices to show that
[Ug(6)/UB)bg]\ ~ D(Zg)yr = 0 for X # 0. To verify that, we pass to the graded level
and first note that the symbol map gives an embedding

grD(Zy) < Pol(T*Zy)Y, (4.7)

with Pol(T*Zg) := C[T*Zy] the regular (polynomial) functions on the quasi-affine va-
riety T*Zg. We identify the cotangent bundle T*Zy with G xf2 (g/hy)* and obtain
Pol(T*Z )% ~ Pol((g/hy)*)"2. Thus we have grD(Zy) = Pol((g/hy)*)"2 naturally. Re-
call the invariant non-degenerate bilinear form x on g. This form yields a G-equivariant
identification of g with its dual g* and induces an Hg-equivariant identification of (g/hg)*
with b% ={Xeg|r(X,Y)=0,Y € bhg}. The proof of the Lemma will then be completed
by showing that the restriction map

Pol(h) 2 — Pol(by)

is injective, where b == {X e m+a | (X,Y) = 0,Y € by}. This is now fairly standard.
Note that f)% = bﬁ"“’“ +u. Next let X = X+ X, € a+m with X, € a and X, € m. Suppose
further that a(X,) > 0 for a € ¥(a,u). Then, by a slight modification of [25, Lemma 2.5],
we have

AdU)X = X + [X,u] = X +1u. (4.8)

Now U = Hy and the fact that Z (and hence Zy) is unimodular implies that there exists
an element X, as above which lies in a7 (see Lemma 4.4 below). Tt follows then from (4.8)
that any f € Pol(b%)H@ is constant in the u-variable of h%, i.e., the restriction map above
is injective. This completes the proof of the Lemma. O

Lemma 4.4. Let Z be a unimodular real spherical space. Then the following assertions hold:
(i) Z is quasi-affine, i.e., Z(C) = G(C)/H(C) is a quasi-affine algebraic variety.
(ii) There exists an X € azf ~ az such that a(X) > 0 for all a € %,

Proof. [9, Example 11.6 and Lemma 11.7]. O

Let us denote by 3(Zg) the center of D(Zg). We then obtain from (4.6) that

3(Zy) ~ Slaz) ® 3(M/Mpy) . (4.9)
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We wish to describe the image of the natural map Z(g) — 3(Zg) < D(Zg) more closely,
i.e., derive a slight extension of [19, Lemma 6.4].

In order to do so, we have to recall first the construction of the Harish-Chandra homo-
morphism and then relate it to the Knop homomorphism for 3(M /Mpg).

We begin with a short summary on the Harish-Chandra homomorphims. The natural
inclusion Z(g) < U(a)Z(m) DU (g)n yields, via projection to the first summand, an injective
algebra morphism

70,a+m : Z(g) - U(Cl) ® Z(m) .

With t © m a maximal torus (which will be specified more closely below), we obtain with
j := a+ t a Cartan subalgebra of g. We choose a positive system of roots X% (jc) of the
the root system of g¢ with respect to jc such that the nonzero restrictions to a yield the
root spaces of n. Note that all roots are real-valued on jg := a + it and we denote by
p; € ji the corresponding half sum. Then, similar to what was just explained, we obtain,
by projection along the negative mc¢-root spaces with respect to tc, an injective algebra
morphism 7y, : Z2(m) — U(t). Putting matters together, we obtain with

Yo = (IdS(a) ® ’70,m) © Y0,a4+m

an injective algebra morphism 7o : Z(g) — U(j). If we identify U(j) = S(j) with the poly-
nomials C[j&] on j%, the Harish-Chandra isomorphism v : Z(g) — U(j)" is then obtained
by twisting 7o with the p;-shift, ie., v(2)(-) = 7(2)(- + p;) as polynomials on j&. For
our purpose we are in fact more interested in the unnormalized Harish-Chandra morphism
20 Z(g) — S() > UG)

Next we recall the Knop homomorphism for 3(M/Mpy). Set ty :=tn b and t; := t/ty.
Note that M /My is affine, i.e., the complexification Mc/(Mpy)c is an affine homogeneous
space. We will request, from our choice of t, that the complexification of t; is a flat for
Mc/(Mpy)c, i.e., compatible with the local structure theorem (cf. [20, Theorem 4.2] applied
toY = X = Mc/(My)c and k = C). Set py := pj‘i{ and let W), be the little Weyl group
of the affine space Mc/(Mpy)c. Then [19, Theorem in the Introduction part(a)] yields the
Knop isomorphism

k< 30M/Mi) — It + pu] ™

For our purpose it is easier to work with the unnormalized Knop homomorphism which yields
us an algebra monomorphism:

ko :3(M/Mpg) — S(t)/S(t)ty

The important thing to notice here is that the Knop homomorphism kj is compatible with
the unnormalized Harish-Chandra homomorphism 7o : Z(m) — S(t) in the sense that the
diagram

Z(m) —— 3(M/Mp) (4.10)

"/O,ml koj

S(t) —— S(4)/S (8t .
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is commutative, see [19, Lemma 6.4]. To summarize, we obtain from (4.6), the just explained
construction of the Harish-Chandra homomorphism and (4.10) an injective algebra morphism

Jo:3(Zg) — SG)/SG)(an + tn) (4.11)
together with the following commutative diagram

Z(g) 3(Zg) (4.12)

S0) —=50)/50)(am + tu) .

In this diagram, the upper lower horizontal arrow is obtained from the natural Z(g)-
module structure of 3(Zg) and the lower horizontal arrow is the natural projection S(j) —

S()/50)(am + tu).

Note that I(Z;) is naturally a module for Z(g), the center of U(g). We define by D(Z;)
the commutative subalgebra of ID(Z) which is generated by S(a;) and the image of Z(g) in
D(Z;).

Lemma 4.5. The Z(g)-module 3(Zy) is finitely generated. In particular, D(Z;) is a finitely
generated Z(g)-module for all [ < S.

Proof. Since S(j) is a module of finite rank over S(j)"i (Chevalley’s theorem), we obtain
from (4.12) and im~y = S(j)" that 3(Zy) is a finitely generated Z(g)-module. Since D(Z;)
is naturally a submodule of D(Zy) via the injective algebra morphism p; of Lemma 4.2,
the second assertion follows from the fact that Z(g) ~ S(j)"i is a polynomial ring (again by
Chevalley) and hence noetherian. O

Let us denote by Dy(Z) the image of Z(g) in D(Z) < D(Z). As we will see later, some
aspects become simpler if we work with the slightly smaller algebra Do(Z). It follows from
Lemma 4.5 that D(Z;) is a finitely generated p;(Do(Z))-module.

Fix now I < S. Since D(Z;) is finitely generated over p;(Dy(Z)), there exists a finite
dimensional vector subspace U of D(Z;) containing 1 such that the map

piDo(2))®@U — D(Z))

VRU — VU

is a linear surjective map.

Let Z be a finite codimensional ideal of Dy(Z) and let Z' := u;(Z). Let C' = C(Z) be a
finite dimensional vector subspace of p;(Dg(Z)) containing 1 such that u;(Do(2)) = C+7'.
Hence:

D(Z)=(C+TIVWU=CU+TU, (4.13)
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where Z'U (resp. CU) is the linear span of {vu | veZ' ,u e U} (resp. {vu | ve C,ue U}).
Since Z' is an ideal on Dy(Z), we obtain that:

T'U = T' 1 (Do(2))U = I'D(Z;) = D(Z,)T . (4.14)

Hence, (4.13) implies that:
D(Z;) =CU+D(Z)T'. (4.15)

In case Z is a one codimensional ideal of Dy(Z), one may and will take C' = C1, and
then CU = U.

In general, we choose a finite dimensional subspace Uz < C'U, possibly depending on Z,
such that the sum in (4.15) becomes direct:

D(Z;) = U; ®D(Z,)T". (4.16)

Let sz, resp. gz, be the linear map from D(Z;) to Uz, resp. D(Z;)Z’, deduced from this
direct sum decomposition. The algebra D(Z;) acts on Uz by a representation pz defined by:

pr(v)u = sz(vu), veD(Z;),ueUs. (4.17)

In fact:

The representation (pz,Uz) is isomorphic to the natural representation of
D(Z[) on D(Z])/D(Z])I/

We notice that, for v € D(Z;) and u € Uz,
vu = pz(v)u + gz(vu). (4.18)
If (w;)iz1,. ., is a basis of U, then we obtain, from D(Z;)Z" = p;(Z)U = Upr(Z) (see (4.14)),

elements z; = z;(v,u,Z) € Z, not necessarily unique, such that:

gz(vu) = Z uiptr(z) - (4.19)

Moreover, we record from Lemma 4.2(ii) that:

wr(z;) — z; has az-weights non-positive on a, and negative on a; . (4.20)

In order to use it later, we denote by F = F(Z) the (finite) set of all these az-weights
which occur when v describes a; € D(Z;) and u describes Uz. Let us define a piecewise
linear functional on az by:

Br(X) := /\e]rrrhz%c\l))\(X), Xeay. (4.21)

Note that 51‘ < 0 and ﬁ1|a,, < 0.
I

Gz
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4.3 The function ¢ on A, and related differential equations

Fix N € N and Z a finite codimensional ideal in Dy(Z). Recall the surjective morphism
Z(g) — Do(Z) and let J be the corresponding preimage of Z. Set

Atemp(Z 2 I) := Aerp(Z : T ),

with Agemp(Z + J) defined in (3.11).

Recall that we identified for any I < S the algebra D(Z;) as a subspace of U(b)/U(b)by.
Now given f € C*(Z), we denote by f € C®(G) its lift to a right H-invariant smooth
function on G. For w € U(b)/U(b)by we let further @ € U(b) be any lift. Then, for all
az € Az the notion

(Ruf)(az) := (R(u)f)(az)
is defined, i.e., independent of the lift @ and the section s.
Recall that (pz,Uz) is the finite dimensional D(Z;)-module defined in (4.17) and in
particular Uz < D(Z;) c U(b)/U(b)by. For any f € Awempn(Z : Z), let us define a function
¢y Ay — U by:

< ®f(az),u>=(R.f)(az), welUr,azeAy. (4.22)
Hence, for X € a; < D(Z),
< (Rx®f)(az),u >= (Rxuf)(az), azeAz,uelUz. (4.23)
Hence, by using (4.18) and (4.19) for Xu, one gets
Rx®; = 'pr(X)0) + Usx, XeA, (4.24)
where Vs x : Az — UF is given by:

< Uy x(az),u>= Y (Ruyuof)laz), azeAzuels, (4.25)

with z; = z;(X, u,7Z) given by (4.19).
Since R, f = 0 as z; € Z and f is annihilated by Z, one then has:

< Wyx(az),u>= ) (Ruuo-=f)az), azeAzuels. (4.26)

7

One sets:
I'z(X) = th(X), Xea;. (4.27)

Hence, we arrive at the fundamental first order ordinary differential equation:
RXCI)f = FI(X)CI)J@ + \Ifﬁx, Xear. (428)

Notice that I'z is a representation of the abelian Lie algebra a; on U;.
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For A € aj¢, one denotes by U7, the space of joint generalized eigenvectors of U7 by
the endomorphisms I'z(X), X € a;, for the eigenvalue A. Let Q7 be the (finite) subset of
A € aj ¢ such that U7, # {0}. One has:

Uiy = @ Uz, . (4.29)
AeQ1

If A€ O, let E) be the projector of U7 onto U7 ) parallel to the sum of the other U7 ’s.
Define, for A € Q7,
(I)ﬁ)\ = E)\ ©) (I)f .

We conclude this subsection with the solution formula for the system (4.28) (see the next
Lemma 4.6) and with two elementary estimates for ®; and ¥, y in Lemma 4.7 below.

Lemma 4.6. Let f € Ayepp(Z : I). One has,

(i) for allaz e Az, te R, X € ay,

t
Ds(azexp(tX)) = T2 (ay) —|—f =M, (ay exp(sX)) ds,
0

(i1) for allaze Az, te R, X €a;, Ae Qr,

t
®sa(azexp(tX)) = T3 d;  (ay) +J Exe =M« (ag exp(sX)) ds.
0

Proof. The equality (i) is an immediate consequence of (4.28). Indeed, we apply the el-
ementary result on first order linear differential equation to the function s — F(s) =
P r(azexp(sX)), whose derivative F'(s) = (Rx®Py)(az exp(sX)) satisfies

F/(S) = FI(X)F(S) + ‘Ifﬂx(az exp(sX)) .

The equality (ii) follows by applying E) to both sides of the equality of (i). O

We recall the definition of f; from (4.21).
Lemma 4.7. Let N € N.

(i) There exists a continuous semi-norm on C, . n(Z), p, such that:

|f(az)] < a7’ (1 + [logaz])™p(f)

foraze A, and f € Awempn(Z : I).
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(i) There exists a continuous semi-norm q on Cy, . n(Z) such that, for all compact subset

Qa c Ayz, there exists a constant C' = C'(Q24) > 0 such that:
|s.x (az)] < Caf?™ (1 + |log az|)V | X |a(f)

foraz e QuA,, X ea; and f € Aerpn(Z - I).

Proof. Let u — u' denote the principal anti-automorphism of U(g).
Let we D(Z;) < U(az + myz + u). One has:

(Ruf)(az) = (Liadaz)yw f)(az) -

Since Ad(a) contracts the az-weights of v (see Lemma 4.2(ii)), the assertion follows from
the continuity of the left regular action of U(g) on C7, v (2).
Moving on (ii), we recall from (4.26) that:

< \Ilf,X(aZ)7u >= Z(Rul(uj(z,)—zl)f)<aZ)> az € Az,u € UZv

1

with z; = z;(X,u,Z).
Since the az-weights of u; are non-positive on a, (see Lemma 4.2(ii)), we obtain that
w;(pr(z;) — 2;) decomposes into a finite sum over F — (a,)* of az-weight vectors:

Uz‘(,MI(Zz‘) - Zz) = sz‘,/\ .

A

Here, (a,)* denotes the dual cone of a. Then:
<Vyx(az)u> = 2 2\(Laaag ) f)az)
= 2iaaz(Ly, flaz).

Let k := maxyey; xeq, (deg(v;y)). Assume first that Q4 = {1} and |X| = 1. Then it follows

from the continuity of the left action of U(g) on Cff, y(Z) and the definition of 3; that

there is an appropriate Sobolev norm g = py such that the bound in (ii) holds for C' = 1.
In general, if u e U(g), a € Q4 and az € A, one has:

(LUf) (aaz) = (LAd(afl)uf) (aZ)

and the assertion follows from:

Q(Laf) < CQ(f)7 f € Lfmp,N(Z%a € QA-
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4.4 The decomposition of ®; into eigenspaces

We recall the representation I'z : a; — End(Uj) of the abelian Lie algebra a; from (4.27)
and Q7 the set of its generalized aj-eigenvalues.

We endow UF with a scalar product and, if 7' € End(U%), we denote by | T its Hilbert—
Schmidt norm. It is clear that, for any A € Qz, the projector E) defined just after (4.29)
commutes with the operators I'z(X), X € a;. For A\ € Qr, we set

E\(X) := e M) (EA o eFI(X)) , Xear.
As By o [I'z(X) — A(X)Idyz#] is nilpotent, one readily obtains that:
Lemma 4.8. Let A € Q7. We can choose ¢ = 0 such that:
|EA(X)] < e(W+ X)), Xear,
where Nz is the dimension of Uz.
Next, we decompose Q7 into three disjoints subsets QF, Q% and Q7 as follows:
(1) e OF if ReA\(X;) > po(X;) for some X; € a; ™,

(2) Ae Q% if Re A(X[) = po(X;) for all X;€a;,

(3) Ne Q7 if A ¢ QF U QY ie., for all X; € a7, ReA(X)) < po(X[) and
there exists X; € a;~ such that Re A(X;) < po(X7).

The next two propositions will be central for the definition of the constant term in the
next section. We first state the results and then provide the proofs in a sequence of lemmas.
The proofs of these results follow closely the work of Harish-Chandra (cf. [13, Section 22]):
to see the analogy replace M;" in [13] by A, and M; by Ay

Proposition 4.9. Let A € Q% and f € Awemp(Z : I). Then, for X; € a; ™, the following limit
lim e_tFI(XI)CI)M(aZeXp(tXI)), (054 EAz,

t—>+00
exists and is independent of Xy € a; .
For A€ Q% and f € Ayenp(Z : Z), we now set
Qrrwlaz) == lim e*tFI(X’)QDf,A(aZ exp(tXy)), azeAyz. (4.30)

t—+

Further we define
(I)f,)\,oo(aZ) = 07 az € AZ7 /\ € Q; o QE) f € -Atemp(Z . I) . (431)

Proposition 4.10. Let A € Q7 and f € Aerp(Z = ). Then, for ay € Az, Xy € a;~ and
t>0,
[y 1(az exp(tXr)) — Py oo(az exp(tXy))|

N et(pQ+551>(XI>(HEA(tXI)WDf(az)H

e}
| e OO By () X)) 119, (o exp(s )] ds)
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4.4.1 Proof of Proposition 4.9

We say that an integral depending on a parameter converges uniformly if the absolute value
of the integrand is bounded by an integrable function independently of the parameter.

Lemma 4.11. Let A € Q7 and X € a;~ be such that Re \(X;) > (pg + 51)(X1). Then

(i) The integral

0
J Exe T2ED@, o (azexp(sX7)) ds
0

converges uniformly on any compact subset of Ay.

(ii) The assignment
0
ay — J Ere T7X0W v (az exp(sX;)) ds
0

is a well-defined map on Az. Its deriative along v € S(ayz) is given by derivation
under the integral sign.

Proof. One has

E/\e*SFI(XI) — e*SA(XI)E/\eS(A(XI)*FI(XI)) — 675)\(X1)E)\<—SX]).

Hence, from Lemma 4.8, one has:
|Exe 7D | < (1 + [|sX;|) Ve sReAXD (4.32)

Using Lemma 4.7(ii), (4.32) and the assumption Re \(X;) > (pg + Br)(X1), we obtain that
the integral in (i) converges uniformly on compact subsets of A.

The assertion (ii) follows from (i) and the theorem on derivatives of integrals depending
of a parameter. O

Fix N € N such that f € Aiempn(Z : Z) and A € Q7 and put, for X; as in Lemma 4.11,
i.e., X7 € a;~ such that Re \(X) > (pg + B1)(X)):

Drrwlaz, X7) = lim e T2EDD, \(ayexp(tX))), aze Ay, (4.33)

t—+00

It follows from Lemmas 4.6(ii) and 4.11 that this limit exists and is C* on Az. Moreover

0

(I)f’)\,oo(az,X]) = (I)ﬁ)\(az) + J E)\eisFI(XI)\I/f’XI(CLZ exp(sXI)) dS, ayz € AZ . (434)
0

Lemma 4.12. For X; € a;~ such that Re \(X;) > po(X7), one has:

CI)f7A7w(az,X]> = O, azeAz.
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Proof. One has
le” =D 5 (az exp(tXr))| < e AN By(—t X)) ]| @5 (az exp(tX1))] .-
From Lemmas 4.8 and 4.7(i), one then has
le™ =0 s\ (az exp(tXr))| < Cay? (1 + [logaz|)V (1 + X )V 7etbeReN D,

The right hand side of the inequality tends to zero as t — +00. Hence, the Lemma follows
from the definition (4.33) of @ »(az, Xr). O

Lemma 4.13. Let X1, Xs € a;~ and suppose that
Re A(Xi) > (pq + Br)(Xi), i=1,2.

Then

Pirwlaz, X1) = Pramlaz, Xa), aze Ay,
Proof. Same as the proof of [13, Lemma 22.8]. We give it for sake of completeness. Let
azy € Az. Applying Lemma 4.6(ii) to azexp(t;X;) instead of az, Xs instead of X and t,
instead of t, one gets:

e*FI(thlthQX?)(I)f,A(aZ exp(t1 X1) exp(t2X3))

= e‘“tFZ(X“Q)f’,\(aZexp(thl))
2
+J E,\e’FI(“X”sQX?)\I!f,XQ(aZ exp(t1 Xy + $9X5)) dsg,
0

for ¢1,t > 0. From Lemmas 4.8 and 4.7(ii) applied to X = t; X7 + s2 X3 and (X,az) =
(X, azexp(t; X7 + s2X3)) respectively, one sees that:

o0
f | Exe T2 X492X2) 1, o (ag exp(t Xy + $2X0)) | dse
0

tends to 0 when t; — +o00. Hence:
limtth_,_,_oo 67FI(t1X1+t2X2)CI>f7)\(aZ exp(t1X1 + thg))

= limy, 10 e T2V, (ay exp(t X))

= ®sy0(az, Xi).
Since the first limit on the above equality is symmetrical in X; and X5, one then deduces
that:

Pramlaz, Xi) = Psroo(az, Xa).
O

Proof of Proposition 4.9. If A\ € Q2, the hypothesis of (4.33) is satisfied. Together with the
preceeding Lemma, it shows the proposition. O
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4.4.2 Proof of Proposition 4.10

Lemma 4.14. Assume X\ € QF and X; € a;~ such that Re \(X;) > (pg + Br)(X1). Then,
for any az € Az,
Pramlaz, X1) =0

and
o0

Qs y(azexp(tXy)) = —J E,\e(t_s)FI(XI)\I/ﬁXI(aZ exp(sXy))ds, teR.

t

Proof. Since A\ € QF, there exists X, € a;~ such that Re A\(Xy) > pg(Xp). Then, from
Lemma 4.12, &, (az, Xo) = 0, and, from Lemma 4.13, as Re A\(Xo) > po(Xo) > (pg +
Br)(Xo), one has @ o (az, X1) = Prrnlaz, Xo) for any X; € a;~ such that Re A(X;) >
(po + Br)(X1). This proves the first part of the Lemma. The second part follows from (4.34)
by change of variables and when we replace az by az exp(tX7). O

Corollary 4.15. Let A € QF and X1 € a;~ be such that Re \(X;) = (po+B1/2)(X;). Then,
foraz e Ay andt =0,

Q0
[@fa(az exp(tXy))]| < f N BBED| B (¢ — $) X)W s, x, (az exp(sX1)) | ds.
t

Proof. Since 5;(X;) < 0and Re A(X) = (pg+51/2)(X), one has, in particular, Re A\(X;) >
(po + Br)(X). Then one can see, from Lemmas 4.14 and 4.11, that:

0
[@fx(az exp(tX7))] < J TIRAEDEN(t — )X D)0 ., (az exp(sX7))| ds.
t

Our assertion follows, since Re A\(X;) > (po + Br/2)(X;) implies that (t — s) Re A(X;) <
(t —s)(pg + B1/2)(X) for s > t. O

Lemma 4.16. Let X; € a;~ be such that Re \(X1) < (pg + B1/2)(X1). Then

[®ra(az exp(tX7))]| < 6t<p@+5’/2)(x”<HEA(tX1)H||<I>f(az)H

o0
[ e O By (1 5)0) |10, (07 exp(s2X1) ds).
0
t > 0, ayz € AZ .
Proof. We use Lemma 4.6(ii) and the inequality (t — s)Re A(X) < (¢t — s)(pg + 51/2)(X1)
for s <t in order to get an analogue of the inequality of the Lemma, where So is replaced
by Sé The Lemma follows. O

Like in [13, after the proof of Lemma 22.8|, one sees that one can choose 0 < § < 1/2
such that:
Re )\(X[) < (pQ + 551)()([), X[ S Cl;i, A E QE . (435)
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Lemma 4.17. Let A\e QF and X; € a; . Then, foraze Az, t >0,

|@fa(az exp(tXy))]| < eflPetoPlEn (HEA(tXI)H [ 5(az)]

o0
| e OO By () X0) 119, (0 exp(s )] ds)

Proof. This is proved like Lemma 4.16, using that Re A\(X) < (pg + 06;)(X) and 0 < § <
1/2. O

Notice now that, if A € QF, it follows from Lemma 4.13 and the definition of 37 (cf. (4.21))
that:
For ay € Ay, ®s ) (az, Xy) is independent of X; € a; ™.
We will denote it by @5 (az).
Lemma 4.18. Assume A\ € Q% and let X; € a; . Then one has, fort >0 and az € Ag,

|Psa(az eXP(tigl)) — g wlaz exp(tXy))|

< et(pQ+6BI)(XI)J 6_5(’)@+6’/2)(X1)HEA((75—S)XI)HH\I/f,X,(azeXp(SXz))Hds.
0

Proof. From (4.34), one deduces:
0
Drroolazexp(tXy)) = @ra(azexp(tXy)) + f Ere=IM2XDQ ,  (a exp(sX;)) ds.
¢

The Lemma now follows from the fact that (¢t — s)5;(X;) = 0 whenever s > t. O

We recall that we have defined:
(I)f)\,oo(az) =0, aze Az \e Q—Ii_ U QE

Proof of Proposition 4.10. If A\ € Q% U QF, our assertion follows from Lemmas 4.17 and 4.18.
On the other hand, if A € QF, we can apply Lemmas 4.14 and 4.16, and Corollary 4.15. O

5 Definition and properties of the constant term

In this section, we define the constant term f; of a function f € Ayepp(Z) in terms of the
@y from the previous section. At first, f; is defined as a smooth function on Az but
then will be extended to a smooth function on Z; = G/H;. The main difficulty then is to
show that the function f; € C*(Z;) is indeed tempered. For that, we need to show certain
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consistency relations of f; with respect to the matching map m : W; — W, see Proposition
5.7. The consistency relations are immediate from our strong results of rapid convergence
in Proposition 2.1. As an application, we characterize the functions of the discrete series as
those with all constant terms vanishing, see Theorem 5.12.

Throughout this section, we fix a subset I of S and a finite codimensional ideal Z in

Dy(2).

5.1 Definition of the constant term

Let N e Nand f € Aiempn(Z : Z). Let us define f; as the function on Az by:

f](az) = Z < (I)f7,\,oo<az), 1 >, ayz € Az, (51)

AeQY

where @ ) o, has been defined in (4.30) and (4.31). From Lemma 5.2 and since the eigenvalues
of E\(I'z(X)), for any X € a;, are contained in pg(X) + iR if A € QF, one has that:

For any X € a;, the map t > e %X f;(exp(tX)) is an exponential (5.2)
polynomial with unitary characters. '

We will soon extend f; to a smooth function on G which is right invariant under Hy, i.e.,
fr descends to a smooth function on Z;. This will be prepared with a few estimates in the
next subsection.

5.2 Some estimates

In this subsection, we establish some estimates analogous to the ones given in [13, Section 23].

Lemma 5.1. Let N € N. There exists a continuous semi-norm q on Cf, n(Z) such that,
forall\e Qr,az € Ay, Xrea; ,t >0 and f € Aermpn(Z - I),

|Pyr(azexp(tXy)) — Py wlazexp(tXy))|
< (az exp(tX1))PeePrXnD(1 + |[log az | )N (1 + ¢ X |)) ™ Yzq(f) .

Proof. The assertion of the Lemma follows from Proposition 4.10, Lemmas 4.7 and 4.8, and
the fact that ag’ <1lforaze A, D

Lemma 5.2. Let N € N. One has:

Dram(azexp X) = TN, (az), Xearaze Az, N € Qr, f € Atempn(Z - T).
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Proof. According to (4.31), one may assume A € QY. From Lemma 4.6(ii) applied with ¢ = 1,
one has, for az € Az, X € ay,

1
e_FI(X)(I))\(aZ exp X) _ (I))\<CLZ) + f E)\e—sFI(X)\I;X (CLZ exp(sX)) ds.
0

—tr'z(Y)

Let Y € a; . Replacing az by azexp(tY’) and multiplying by e , one gets:

e T2+, (azexp(X + 1Y) = e T2, (azexp(tY))

1
—I—J Exe TTEXH Y (az exp(sX +tY)) ds.
0

Since A € QY, we obtain, from (4.32) and Lemma 4.7(ii), that the integral in this equality
tends to 0 for ¢ — c0. Recalling the definition of @ o (cf. (4.33)), one gets

€_FI(X)(I>L,\’OO(CLZ eXpX) = <I>f7A,OO(aZ), X e ar,az € AZ-

Lemma 5.3. Let N € N. There ezists a continuous semi-norm p on C2. (Z) such that,

temp,N
for all f € Ajenpn(Z :T), X QF,
[®amlaz,)]| < a1+ [logaz, )V p(f), az € Ay,

Proof. We fix X € a;~. Let az, € A, . If t is large enough, az, exp(tX) € A,. More
precisely, if az, = expY with Y € a , ¢ has to be such that a(Y +¢X) < 0 for all a € S\[.

For this, it is enough that ¢ > |Z(—§%| for all « € S\I. But |28f())| is bounded above by C|Y||
for some constant C' > 0. We Wiﬁ take:

t=Cly] (5:3)

and write az, = azexp(—tX) with az = az, exp(tX) € A,. Since A € Q% and exp(—tX) =
a}lazl, one has, from Lemma 5.2,

|@sam(az,)| = [Bxe 00 o (az)| = dfa"? |EX(—tX)Ppam(az)| . (5.4)

We know from Lemma 4.8 that ||Ey(—tX)| is bounded by a constant times (1 + t|X|)"z,
where N7 is the dimension of Uz. Using (5.3) and as X is fixed, one concludes that there
exists C'; > 0 such that:

|Ex(=tX)] < C1(1 + [ log ag, )™ .

We remark that ||logayz| < |[logaz,| + [tX| is bounded by some constant times ||logaz, |
because t = C||Y|| and | X| is fixed. Then, using (5.4), the Lemma follows from Lemma 5.1
(applied with ¢t = 0) and Lemma 4.7(i). O
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We recall that @, = 0 for A € QF U QF (cf. (4.31)). We obtain then, from Lemma
5.1, that:

Lemma 5.4. Let N € N. There exists a continuous semi-norm q on Aemp n(Z) such that,
for any f € Aiempn(Z 1), az€ A, Xrea; andt >0,

|(az exp(tX1)) " [f(az exp(tX)) — fi(az exp(tX7))]|
< PN (1 + |[log az )Y (1 + ¢ X7 )™ “Zq(f).
Note that the Lemma implies that:

lim (az exp(tX)) P?[f(azexp(tX;)) — filazexp(tX))] =0, aze Ay, Xrea; . (5.5)

t—00

5.3 The constant term as a smooth function on Z;

Let us first start by the following general remark:

If an exponential polynomial function of one variable, P(t), with unitary char-
acters, satisfies:
lim P(t) =0, (56)

t—+00

then P = 0.

We define some linear forms n and 7y on Ayepmp(Z : Z) by:

<777f> = f(ZO)a
<7717f> = fI(ZO,I), feAtemp<ZSI).

Let us remark that 7 is a continuous linear form on A, n(Z : Z) for any N € N.
Note that we obtain from the definition that:

my,.flaz) = filaz), azeAz.

Lemma 5.5. Let N € N. The linear form n; is the unique linear form on Aempn(Z : 1)
such that:

(1) For any f € Atempn(Z : L) and X; € a;

lim e~ 20 [y, g (exp(tX7)) — my, p(exp(tX1))] = 0.

t—00

(ii) For any f € Awempn(Z : T) and X € az, t — e P2 m, (exp(tX)) is an exponential
polynomial with unitary characters.

(11i) Moreover, ny is continuous on Aemp n(Z : I) and Hr-invariant.
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Proof. The assertion (i) is (5.5) and (ii) is (5.2).
To prove the unicity of such an n; satisfying (i) and (ii), we use (5.6). If 7} is another
linear form satisfying (i) and (ii), then, for any f € Aiemp n(Z : 1),

My, £ (exp(tX7)) —my s(exp(tX;)) =0, Xyea; ,teR.

This equality applied to ¢ = 0 implies that n; = 7.
Let us show the continuity of ;. By taking az = 1 in the inequality of Lemma 5.4, one
gets:

1f(z0) = fizo)l < Cq(f), Le, [ <n, f>— <, f>]<Cqlf).

Moreover 7 is a continuous map on Ayemp n(Z : ). This implies that n; is continuous on
Atemij(Z . I)
It remains to get that n; is Hy-invariant. From (5.5), for any X; € a; ™,

lim e~ X0 [f(exp(tX1)) — fr(exp(tX1))] = 0.

t—00

One applies this to Ly f, Y € h; and gets:

lim e~ XD [(Ly £)(exp(tX;)) — (Ly f)1(exp(tX;))] = 0. (5.7)

t—0

On the other hand, from Lemma 4.1, one has:

lim e~%*QXD(Ly f)(exp(tX[)) = 0. (5.8)

t—00

Hence, one gets, from (5.7) and (5.8), that:

lim e~ XD (Ly f);(exp(X;)) = 0.

t—00

But ¢ — e X1 (Ly f);(exp(tX;)) is an exponential polynomial with unitary characters
(cf. (5.2)). Hence, from (5.6), it is identically equal to 0. This implies that:

ni(Ly f) =0.
Then n; is continuous and h-invariant, and hence Hj-invariant. This completes the proof

of (iii). O

Let N € N be fixed. For f € Aiepmpn(Z : Z), since 0y is continuous, we obtain with

g~ f1(g) ==my 1(9), 9€G, (5.9)

a smooth extension of f; previously defined on Az. Note that, as n; is Hy-invariant, f; defines
a smooth function on Z; denoted by the same symbol. Further, note that the assignment
f — f1 is G-equivariant, in symbols:

(Lyf)r = Lof1r, g€G. (5.10)
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Remark 5.6. As a consequence of Lemma 5.5 and the above equivariance relation (5.10), for
all ge G and X;€a;

lim e~ "X f(gexp(tX1)) — fi(gexp(tX))] = 0.

t—00
and X +— e7P(X) fi(gexp X) is an exponential polynomial on a; with unitary characters.

Moreover, f; is the unique smooth function on G with these two properties.

5.4 Consistency relations for the constant term

Let wr € Wy and w € W. Set Hp,, = w[HIwI_1 and H, = wHw™'. Consider the real
spherical spaces Z,, = G/H,, and Z;,, = G/H;,,, and put 2 = H, € Z, and zf)”} =
Hiw, € Z1w, = G/H,,. Then (cf. [26, Corollary 3.8]) @ is Z,-adapted to P and Az, = Ay
with Agw = A
For f e C*(Z), let us define f* by:
(g 2) = flgw-2), geG.
In the same way, one defines ¢*? for ¢ € C*(Z;). Then f* e C*(Z,) and ¢*! € C*(Z1 ;).

Proposition 5.7 (Consistency relations for the constant term). Let w; € Wy and w =
m(w) eW. Let f € Aempn(Z :I). Then f* € Arempn(Zy : ) and

(fr)*"(az) = (f“")i(az), azeAy.

Here, fw S Atemp(Zw : I), (fw)[ € COO(ZwJ), f[ S COO(Z]>, le € COO(Z[’U,I), and, from
26, Proposition 3.2(5) and Corollary 3.8], one has:

w, I AZw = AZ?
Ay = Az = Az,

Hence, both sides of the equality are well-defined on A.
The proof of Proposition 5.7 is prepared by a simple technical lemma. Recall the elements
as = exp(sX;) for X;ea; .

Lemma 5.8. Let (g,) be a family in G which converges rapidly to g € G. Let f € Asempn(Z).
Then there exist C > 0 and € > 0 such that:

|(Ligyy-1F)as) = (Lg—1 f)(as)| < Calee™, s > 50,

Proof. As (g.) converges rapidly to ¢ when s tends to +oo, there exists s, C’, ¢’ strictly
positive and (X;) < g such that, for all s > s,

g, =gexp X, and | X,| < C'e™=". (5.11)
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As L1 preserves Asemp n(Z), one is reduced to prove, for all f € Ayempn(Z), that there
exist C, e, s9 > 0 such that:

|f(exp(Xs)as) — flas)|] < Calee™*.
But, by the mean value theorem, if a € Az and X € g,

|f(exp(X)a) — f(a)| < sup [(L_x[f)(exp(tX)a)||X].

te[0,1]

From (5.11), one then sees that it is enough to prove that, if | X| is bounded by a constant
C"” > 0, there exists a constant C"” > 0 such that:

sup |(L_xf)(exp(tX)a)| < C"a’?(1 + | logal)™, ae A,. (5.12)
te[0,1]

Decomposing —X in a basis (X;) of g and using the continuity of the endomorphisms Ly,
of Atemp n(Z), one sees that there exists a continuous semi-norm such that:

(L-xf)(@)] < a™(1+ |loga])¥q(f), aeAz.

But f — sup|y<c» ¢(Lexp(—tx)f) is a continuous semi-norm on Ayemp,n(Z). Hence, as L_x
and Lexp(—tx) commute, (5.12) follows. This achieves to prove the Lemma. O

Proof of Proposition 5.7. If a € A, one has:

[(Laf)“]r = [La(f)]r as (Laf)" = Laf" .

Hence, it is enough to prove the identity of the Proposition for ay = z5. Then, using (5.6)
and Remark 5.6, it is enough to prove that s — (f;)"’(as) is an exponential polynomial with
unitary characters satisfying:

lim a P [f*(as) = (f1)""(as)] = 0. (5.13)

§—+00

But, from (2.7),

asw - zo = (asby

b a7 Y (usmsbsw) - 20 = gowras - 2o,

for s > so, where g, = asb;'m;'u;"'. Then one has:
fw<a5) = Lwl_lgs_lf(a‘s) :

On the other hand, from [26, Lemma 3.5] for Z = Z;, as Az, g = A; (cf. loc.cit., equa-
tion (3.13)), one has:
asWr * 20,1 = Wids * 20,1 5 (5.14)
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which implies that:
(Lo f1)(@s - 20.0) = (1) (as) - (5.15)

Now, according to Proposition 2.1 — this is the key ingredient! —, the sequence (gswy)
converges rapidly to w;. Hence, we can apply Lemma 5.8 with ¢, = gsw; and find C’, &', s >
0 such that:

a; (L1 F)(as) = (L f)(as)] < C'e™, s > s (5.16)
Using Lemma 5.4, one has, for some C”, &’ > 0,

07 (L s f)(0) = (Lot fr)(a,)] < CPe™, 5> ).
Hence, from (5.15) and (5.16), one deduces (5.13). It remains to prove that:

s— (f1)" (as) = frlaswr - 20,1)

is an exponential polynomial with unitary characters. But, from [26, Lemma 3.5] applied to
ZI;

(f1)*"(as) = fi(wias).

Hence, our claim follows from (5.14). This achieves the proof of the Proposition. O

5.5 Constant term approximation

Now we turn to the main Theorem of this section.

Theorem 5.9 (Constant term approximation). Let I < S and Z be a finite codimensional
ideal of Do(Z).

(i) For all N € N, the map f — fr is a continuous linear map from Aiempn(Z : I) to
Atemp,Nerim UI(ZI : MI(I»

(i1) Let N € N and C; be a compact subset of a; . For wy € Wy let w = m(w;) € W.
Then there exist € > 0 and a continuous semi-norm p on Cg, n(Z) such that, for all
feAempn(Z: 1),

|(az exp(tX)) ™72 (f(gaz exp(tXr)w - 20) — fr(gaz exp(tXr)wr - Z0.1)) |

<e (14 [logaz|)"p(f),  aze Ay, XieCrgeQuweW,t=0.

Proof. We first show (i). In view of (3.5), it suffices to prove that, for any w; € Wy, there
exists a continuous semi-norm p on Asemp v(Z : Z) such that:

sup g (1 + [logaz, )= VD) £ (gag,w) < p(f), € Awmpn(Z: T).

geQ,azl EAEI
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For w; = 1, one has w = m(w;) = 1. Our claim then follows from (5.10), (5.1) and
Lemma 5.3 and the continuity of the left regular representation of G on C7, \(Z) (see

For general wy, one uses Proposition 5.7 to get fi(az,wr) = (f*)1(az,) and the above
inequality for H* instead of H. This shows (i).

Using Proposition 5.7, one is reduced to prove (ii) for w; = w = 1, by changing H into
H,,. Moreover, from (5.10) and (3.6), one is reduced to show (ii) for g = 1. In that case, (ii)
follows from (4.22) (applied with v = 1), (5.1) and Lemma 5.1 by choosing € > 0 and p in
the following way.

Set Nz := dim Uz. Let us consider the continuous function ¢ : (Xj,t) > e!rX0/2(1 4
t| X;[)™* on a; x R, which is smooth on the second variable and positive on a; x R>g. Recall
that d5;(X;) < 0 for any X; € a; . Since C; is a compact subset of a; ~, by continuity,
C' = maxx,cc, (X1, —2Nz/661(X1) — 1/| X1|) and € := —§/2[maxx,ec, (51(X7))] exist and
e > 0. Moreover, ¢ has values < C' on C; x R. Hence C' > 0 and, by Lemma 5.1, ¢ yields
the inequality in (ii) for ¢ > 0 by setting p := Cjq. O

Remark 5.10 (Statement for H, connected). Theorem 5.9 remains valid for H replaced by
Hy: exchange the expression fi(gazexp(tX)wy - zor) by fr(gmyazexp(tX)w; - zo) for
certain my,, € M, see Remark 1.8(b). Likewise, this will hold for Theorem 7.10 below, which
generalizes Theorem 5.9.

Remark 5.11 (Reformulation of Theorem 5.9 in terms of representation theory). Let (m, V)
be an SAF-representation of G, for example V* = Ay.,,,,(Z : ) (see Proposition 3.1). Then
Theorem 5.9(i) gives rise to a linear map

(V=N — (VRN m—

temp temp>

and correspondingly, for every v € V* an approximation of the matrix coefficient g —
f(g-20) = myu(g) by g — f1(g- 20,1) = My, +(g) as in Theorem 5.9(ii). In this language, the
consistency relations from Proposition 5.7 then translate into

(w-n)r =wr-nr wr € Wr,w = m(wy),

where, for an element £ € V=% and g € G, we use the notation g - £ = £(g!) for the dual
action.

5.6 Application to the relative discrete series for 7

Let x be a normalized unitary character of Az x = exp(azg), i-e., dXjazp = PQlas -
We recall that, if ae Az p and we W,

awH = waH (5.17)

(cf. [26, Lemma 3.5]).
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As ﬁzyE normalizes H, there is a right action (a, z) — z - a of Az pon Z. Let C*(Z, x)
be the space of C'° functions on Z such that:

f(z-a) =x(a)f(z), a€Azp,z€eZ

and observe that
a2 f(z-a)l =[f(2)], a€Azp,z2€Z, (5.18)

as y was requested to be normalized unitary.
If feC®(Z,x),uel(g) and N € N, then (5.17) and (5.18) allow us to define

rva(f) = sup la™P(1 + || logaH)N(Luf)(gaw-zoﬂ ,
geQ,aeAg/Az,E,wGW

with | - || refering to the quotient norm on az/az g. Moreover, we set
C(Z,x) ={feC™(Z.x) | rnu(f) <o, NeNuel(g)}.

Since ;11 g normalizes H, we obtain a closed subgroup H:=HA z.p (not depending on
the section s) and a real spherical space Z=a /ﬁ[ . We extend x trivially to 4 and then
define a character of H still denoted y. Let us define L2(Z:x) as in [26, Section 8.1].

Let w € W. We recall that H,, = wHw ! and Z,, = G/H,,. Let f be in C*(Z, x). Recall
that f, defined by f,(9) = f(gwH), g € G, is right H,-invariant and defines an element
of C*(Z,) and even of C*(Z,,x) by using the relation (5.17). This element will still be
denoted f,. Moreover, by “transport de structure”, if f is Z-tempered, f,, is Z,-tempered.

Let n be a Z-tempered H-fixed linear form on V*. Let w € W. Then az, = az and
w - n is Hy,-invariant and Z,-tempered by “transport de structure”. By [26, Corollary 3.8],
Q is Z,-adapted to P. Moreover, the set of spherical roots for Z,, is equal to S (see [26,
equation (3.2), definition of S in the beginning of Section 3.2 and Lemma 3.7]). Hence, one
can define (w - n)r, w e W.

Theorem 5.12. Let (w,V*) be an SAF -representation of G, with V its associated Harish-
Chandra module, and n be a Z-tempered continuous linear form on V' which transforms
under a unitary character x of Az g. Then the following assertions are equivalent:

(1) ForallveV,m,,e€e LA(Z:X).
(ii) For all proper subsets I of S and we W, (w-n); =0.
(i11) For allveV®, m,,ecC(Z, x).
Proof. Let us assume (i). Let S = {oy,...,0s} and wy,...,ws € az be such that:

Ui(wj') :51',]', Z,j = 1,...,8
WiJ—aZ,E, i=1,...,8.
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Here we use the scalar product on az defined before (1.9). From [26, Theorem 8.5], the linear
form Ay, on az, defined in loc.cit., equation (6.20), satisfies

(Avy = p)w;) >0, G =1,...,s. (5.19)

On the other hand, by uniqueness of the constant term approximation, the exponents of the
power series expansion of m,, , on A, (for v € V) are given by the restriction to a; of the
exponents § € a7 of the power series expansion of m,,, satisfying Re § ‘01 = pQ|a1 (cf. [26,
Section 9.1]).

By definition of Ay, such exponents { of m,,, satisfy Re {(w;) = Ay, (w,), for any
1 <j<sandwveV. Then it results from (5.19) that < n;,v >=m,, ,(1) =0forallveV,
and hence, by density, n; = 0. We just get (ii) for w = 1.

For general w, (ii) is obtained by applying the same arguments to Z,. This achieves to
prove that (i) implies (ii).

Let us assume that (ii) holds. Let Z be an ideal of Z(g) which annihilates V' or V®.
It is of finite codimension. Since n is Z-tempered, there exists Ny € N such that, for all
veV® my, € Aempn,(Z : ) (cf. (3.8)). Let v e V* and set f = m,,,,. Then one can apply
Theorem 5.9 to Z,, and f,, for w; equal to 1. Let I & S. Let C be a compact subset of a; ™,
1 be a compact subset of G and u € U(g). Hence, there exists a continuous semi-norm p
on C (Z), € > 0 such that:

temp,No

|(az exp(tX)) ™2 (Luf)(gaz exp(tX)w - zo)]
(5.20)
<e (1 + |logaz|)Vp(f), azeA,/Azp, XeC,geQ,weW,t=0.

From this, we will deduce that f € C(Z, x). Let S; be the unit sphere on az/az g and let
Xo € S1 nay/azp. Let Qy be an open neighborhood of Xy in Sy n a,/az g such that, for
all X € Qp, a(X) < a(Xy)/2, a € S. Let I be the set of @ € S such that a(Xy) = 0. One
has I # S. Then one has Xg e a; . Let Y € Q and ¢t > 0. Then t(Y — X(/2) € a, and
exp(tY) = expt(Y — Xo/2) exp(tXo/2). Using (5.20) for X = Xy/2, az = expt(Y — Xo/2)
and T' = t, one gets:

|(exp(tY')) P2 (L f)(g exp(tY )w - z0)|
<e (1 +t|Y — Xo/2)Yop(f) < e(L+ )N, Y eQygeQ,weW,t>0,

for some ¢ > 0 and any N € N. One deduces easily from this that, for any v € U(g) and
NeN:
sup a=P2(1 4 | log a|)|(L.f)(gaw - 2)| < 4.
geQ1, weW,acexp(R* Qo)

Using a finite covering of the compact set S1na,/az g, one deduces from this that f € C(Z, x).
This achieves to prove that (ii) implies (iii).

To prove that (iii) implies (i), one proceeds as in the proof that (ii) implies (i) in [26,
Theorem 8.5]. O
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6 Transitivity of the constant term

Proposition 6.1 (Transitivity of the constant term). Let I < J be two subsets of S. Then,

if fe f4uﬂnp(éz)7
fr=f1r-

Proof. By G-equivariance of the maps:

Atemp(Z) - Atemp(ZI) and Atemp(ZJ) - Atemp(ZI)
I = I = f ’

it is enough to show that, if f € Awemp(Z), fr(z01) = (f1)1(20.1). Recall that az, = az and
a;” ={Xear:a(X)<0,aeS\I}, a;={Xear: a(X)<0,aeJ\I}.
Asar={Xeaz: a(X)=0,acltanda;={Xeaz: a(X)=0,a € J}, one has:
ay<cap, G Sday Ay Cay.

One remaks that a;~ < a; ;. Let X €a;” and Y ea;”. Then X +Y ea; ™.

Using Theorem 5.9(ii) applied successively to (Z, I, f, X +Y, 1), (Z, J, f, X, exp(tY’)) and
(Zy,1, f;,Y,exp(tX)) instead of (Z, 1, f, X,az), one gets that there exist C' > 0 and ¢ > 0
such that, for all ¢ > 0,

aq| fexp(t(X +Y))) — fr(exp(t(X +Y)))| < Ce™,
| f(exp(tY) exp(tX)) — fr(exp(tY) exp(tX))| < Ce™,
ag|fr(exp(tX) exp(tY)) — (f7)r(exp(tX) exp(tY))| < Ce ¢,

®

X+Y)

where o, = e~tra( . Hence, one concludes from the three inequalities above that:

| fr(exp(((X +Y))) — (f))rlexp(t(X +Y)))| <3Ce™, t=0.

Hence, o[ fr(exp(t(X +Y))) — (fs)r(exp(t(X +Y)))] tends to zero when ¢ goes to +o0. But,
each term of this difference is an exponential polynomial in ¢ with unitary characters. Hence,
according to (5.6), the difference of the two occurring exponential polynomials is identically
zero. It implies, taking ¢t = 0, that f;(z0r) = (fs)1(20.1)- O

7 Uniform estimates

The goal of this section is to obtain a parameter independent version of the main result
Theorem 5.9: the bounds become uniform if we restrict ourselves to ideals Z of Dy(Z) of
codimension one. The crucial ingredient is a recent result that infinitesimal characters of
tempered representations have integral real parts (see [28] and summarized in Lemma 7.8
below).
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Recall the Cartan subalgebra j = a @t < g with real form jg = a @ it < j¢, associated
Weyl group Wj and half sum of roots p;. Note that ,oj| = p‘aH = ,OQ‘GH = 0 as Z was

aH
requested to be unimodular. In particular pj‘a factors through az and coincides with pg.

If A €j&/Wj, let xa be the character of Z(g) corresponding to A via the Harish-Chandra
isomorphism 7 : Z(g) — S(j)"1. More precisely,

xa(u) = (y(w)(A), we Z(g).

Further, we set Jj := ker y,. We also recall the untwisted Harish-Chandra homomorphism

Y0 : Z(g) — S(j) and set Tp0 := Yo(Ta)-
According to Chevalley’s theorem, S(j) is a free module of finite rank over S(j)" ~
7(Z(g)). Hence, we obtain a subspace Uy < S(j) such that the natural map:

(2(9) ® Uy — S(), v®u—vu

is an isomorphism. Thus, for any A € j&/W,, we obtain with vo(Z(g)) = Japo + C1 that
S(G)/S()Tn0 ~ Uy as vector spaces. The natural representation of S(j) on S(j)/S(3) Ta.0 ~ Uy
gives then rise to a S(j)-representation:

oa 2 S() — End(Up) .
For A € j&/W,, let us fix a representative A € j& such that A = W, - .
Lemma 7.1. The following assertions hold:

(i) The representation (ox,Up) is polynomial in A, i.e., for all v € S(j), the assignment
A — o (v) is polynomial.

(i1) One has Spec(op) = p; + W, - A.

Proof. We prove both assertions together. Consider the auxiliary S(j)-module S(j)/S()JIa
and call the corresponding representation of S(j) by o). We have Spec(a)) = W; - A. Recall
the complement Uy < S(j) and let Uy = Uy(- + pj) < S(j) obtained from pj-shift. We model
oy on U; and claim that v — ¢y (v) is polynomial in A. It suffices to verify the assertion for
v of the form v = ~(2)u with z € Z(g) and u € U;. Now

v =u(v(2) = xa(2)) + xa(z)u

with the first sum in the ideal S(j)Jx. The claim follows. It remains to relate the repre-
sentation o, to oy, which is given by ox(v) = o) (v(- + p;)) via the algebra automorphism
S(j) — S(), v — v(- + p;) obtained by the p;-shift upon identification S(j) ~ C[j&]. O

Recall that there is a surjective algebra morphism p : Z(g) — Dy(Z). Given a codimen-
sion one ideal Z in Dy(Z), its preimage J = p~*(Z) is of codimension one in Z(g), hence, of
the form Jy, for some A €jE/W;.
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Denote by X < j&/W; the set of A’s obtained that way. For A € X, we set Zp := p(Ja).

Next we wish to describe the set X more closely. Since Dg(Z) is a finitely generated
C-algebra without nilpotent elements, its maximal spectrum specmax(Dg(Z)) is an affine
variety and naturally identifies with X. The surjective algebra morphism p : Z(g) — Do(Z)
gives rise to the closed embedding;:

Py : X = specmax(Do(2)) < jis/W; = specmax(Z(g))
We recall our choice of t and tyg before Lemma 4.5.

Lemma 7.2. The affine subvariety X < j&/W; is given by

X ={Aeji/W,|Iue A=W\ such that (p; + )| = 0} (7.1)

ag+ty

To prepare the proof of this Lemma, we need to develop a little bit of general theory
which is used later on as well.

We recall that Lemma 4.5 implies that D(Z;) is a finitely generated C-algebra without
nilpotent elements and thus corresponds to an affine variety Y; = specmax(D(Z;)). It
follows from Lemma 4.2 that the algebra morphism uy : Do(Z) — D(Z;) is injective, hence
prs : Y — X is a dominant morphism of affine algebraic varieties. Moreover, since D(Z7)
is a module of finite type over Dy(Z), it follows in addition that p; . is a finite surjective
morphism with uniformly bounded finite fibers (by the going up property in ring theory, see
[1, Theorem 5.10] or [27, Proposition 3.2.4]).

Define 799 : Z(g) — S(3)/S()(ag + tg), obtained from the composition of v, and the
projection S(j) — S(3)/S()(ay + ty). We recall from (4.11) the injective algebra morphism

Jo: 3(Zg) — SG)/S()(au + tu) .

Now jy composed with the natural inclusion D(Zy) < 3(Zg) gives rise the injective mor-
phism
vg : D(Zg) — 5(3)/S0)(an + tu).

Next, we recall that D(Z;) is naturally a subalgebra of D(Zg) via the monomorphism
D(Z;) — D(Zg) of Lemma 4.2 applied to Z = Z;. Composing this injection with ¢y we
obtain a monomorphism

v D(Zr) — S6)/SG) (an + ty) -

With (4.12), we thus arrive at the following commutative diagram of finite module extensions

Sf) — S(i)/S(DfaH +ty) — S(i)/S(DrH +tg) (7.2)
Z(g) L~ Dy(2) = D(Z),
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with the middle vertical arrow ¢y uniquely determined by the injectivity of ;. In particular,
Lo is injective. On the level of affine varieties, this corresponds to the commutative diagram

it (ag + tg)t == (ag + ty)* (7.3)

’Yo,*l] LO,*j LI,*]

e

where (ay + ty)t < j&. Since all vertical arrows in (7.2) are injective and represent finite
module extensions, it follows that all vertical arrows in (7.3) are surjective (by application
of the going down property as above).

Proof of Lemma 7.2. Immediate from the surjectivity of the vertical maps in the commuta-
tive diagram (7.3). O

Recall the decomposition
D(Zr) = Ur®D(Z1)I},

from (4.16), with Uy := Uz, and T} := p;(Zy).
Recall that Uy < U and thus n := maxjex dim Uy, < . For every 0 < j < n, we now
set
X/ := {A e X |dim Uy = j}

and get X = [[7_, X?. Now, for every A € X/, the set
Xp:={zeX|Uy®D(Z)I, =D(Z;)}

is a subset of X7.

Lemma 7.3. The following assertions hold:

(i) For any 1 < j < n, the set ngj XF is Zariski-open in X. In particular, X7 is locally
closed in X.

(ii) For A € X7, the set X, is Zariski-open in XJ.

Proof. Note that Do(Z) = O(X) is the coordinate ring of the affine variety X. For any
x € X, we denote by m, < O(X) the corresponding maximal ideal. Since O(Y) = D(Z) is
a finite module of O(X), we find a finite dimensional subspace U = U, < O(Y) such that
O(Y) = U ® O(Y)m,. The Nakayama lemma implies that there exists an f € O(X) with
f(z) # 0 such that O(Y); = O(X);U. In particular, we have, for all z € X with f(z) # 0,
that O(Y) = U + O(Y)m,. This implies that:

X - Ny, z+—dim O(Y)/O(Y)m,

is upper semi-continuous and, in particular, for any 1 < j < n, we have that J, < XF is
Zariski-open in X and (i) follows.
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For (ii), we just saw that, for A € X7, we have, for z € X,, that there exists f € O(X)
such that f(z) # 0 and {y € X’ | f(y) # 0} = X,. Hence, X, is Zariski-open in X/. O

As quasi-affine varieties are quasi-compact for the Zariski topology, it follows that there
exists finitely many A € X, say Aq,...,A,, such that:

S
X=Xy, -
j=1
For any 1 < j < s, we define a fixed finite dimensional vector space U; := Uy, as above.

This gives us a direct sum decomposition
D(Z) =U;®D(Z)T,, AeX,,, (7.4)
and, upon the identification U; ~ D(Z;)/Z}, a representation
o D(Z) - End(Uy)
Lemma 7.4. The following assertions hold:
(i) Fir 1< j<s. For any v e D(Z;), the map
Xa; = End(Uj), A= pa(v)

is reqular, 1.e., locally the restriction of a rational function on X to Xu,. In particular,
there exists an open covering X = Uj:o X; with X; < Xy, such that, for allv e D(Zy),
there exists a constant C, > 0 such that

loa)| < C(T+ ADY  (AeXy), (7.5)

for an N € N independent of v. Here, || - || on the left hand side of (7.5) refers to the
operator norm of End(Uj).

(11) With S(a;) € D(Z;), one has:
Speca; (PA) < (pQ + VVJ ’ A)|01 :
Proof. Recall the terminology we introduced in the proof of Lemma 7.3. Since the assertion
is local, we may assume that X = Xy, for some j and U = U}, is such that O(Y) = O(X)U =

U@ O(Y)m, for all z € X. This decomposition defines a projection p, : O(Y) — U for any
x € X. Moreover, note that the natural map

OX)@U = O(Y), g®u—gu
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is an isomorphism. Accordingly, every f € O(Y) can be expressed uniquely as f = >}, ¢, ®w;
for a fixed basis (u;) of U. Then

p(f) = Zgi(x)ui

is regular in x € X. This proves the first assertion of (i) and the second assertion in (i) is an
immediate consequence thereof.

(ii) Geometrically, it might happen that the fiber of the morphism p; . : Y; — X over
A € X is not reduced, i.e., D(Z;)Z} is not a radical ideal in D(Z;). However, the set of A’s,
with reduced fibers, is open dense in X. In view of the continuity showed in (i), it suffices
to show that Spec,, (pr) < (py + W - )\)‘al for generic A, i.e., A reduced.

Next, we recall the diagram (7.3) with all vertical arrows surjective and all fibers being
finite. Now, as the fiber p;i(A) was assumed to be reduced, it has dim (U,) elements as
the corresponding affine algebra to this finite variety is just the aj-module D(Z;)/Z}. In
particular, 17, (A) consists of the aj-weights of Uy ~ D(Z;)/Z}.

From (7.3), we obtain the the fiber diagram:

P+ Wi X=—(p; + Wi - ) 0 (ag + tu)" =217, (u7 . (N)) (7.6)
WA= A A T (A).
Hence (ii) follows from the a;-equivariance of ¢ . O

The section s we use in the sequel is the one where we identify a; with the subspace
a?L c ay, the orthogonal being taken with respect to the form x introduced at the beginning
of Subsection 1.2. Let J(C) < G(C) be the Cartan subgroup with Lie algebra jc and
L := Hom(J(C),C*) be its character group. In the sequel, we identify £ with a lattice in j*.
We call a subspace U < j* rational provided that U = R(U n £). Likewise, we call a discrete
subgroup I'  (j*, +) rational if I' = T' n QL. Using the dual lattice LY < j, we obtain a
notion of rationality for subspaces and discrete subgroups of j as well.

Finally, we may and will request that /f}jxj is rational, i.e., with respect to a basis of j
which lies in LY, the matrix entries are rational.

Lemma 7.5. The following subspaces of j are all rational: ay,az and ay for [ < S.

Proof. The subspace ay is rational as it corresponds to the Lie algebra of the subtorus
(A, n H)p < J. Since the form m‘.xj is rational, we obtain that ay < a < j is rational as
well. Finally, we recall that S ¢ Qé and this gives us the rationality of a; for any I < S. O

We recall that Q4 denotes the set of a;-weights of py and (cf. Lemma 7.4)

Qn < {(pg +wA)|, | we W}, (7.7)
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where we identify a; as a subspace of a as above. For A € Q,, we recall the projectors
E, : Uy — Uy , to the generalized common eigenspace along the supplementary generalized
eigenspaces.

In the sequel, we abbreviate and write Asem,(Z : A) instead of Aiernp(Z : To).

The key to obtain uniform estimates for the constant term approximation is at the core
related to polynomial bounds for the truncating spectral projections FE).

Proposition 7.6. Let 1 < j < s. There exist constants C, N > 0 such that, for all A € X
with Atemp(Z = A) # {0}, one has

|EAl < C+]ADY,  AeQa,
with |Ey| the operator norm on the fized finite dimensional vector space End(Uj).

The proof of the Proposition is preceded by two lemmas:

Lemma 7.7. Let 0 < v < 1, N € N and A € Maty(C) with Spec(A) = {\,..., A} such
that ReAy < ... < Re),. Foreveryl < j <, let V; « C" be the generalized eigenspace
of A associated to the eigenvalue ;. For every 1 < k < r, we let E, = @leVj and
P, : CV — E, be the projection along @;:kﬂ V;. Suppose, for some 1 < k < r —1, that
Re Agr1 — Re Ay = v. Then there exists a constant C' = C(v, N) > 0 such that

[P < C(1+[ADY.

Proof. [29, Lemma 6.4]. O

Lemma 7.8. There exists a Wj-stable rational lattice =z in the vector space j* such that
ReA ez, (7.8)
for all A €& with Aemp(Z : A) # {0}.

Proof. Let 0 # f € Aemp(Z : A) be a K-finite element which generates an irreducible Harish-
Chandra module, say V. According to [26, Theorem 9.11], V' embeds into a twisted discrete
series of some L*(G/H;). Now, we apply [28, Theorem 1.1] and obtain a Wi-invariant lattice
=z, called Ay in [28], with property (7.8). The lattice is indeed rational by [28, Theorem 8.3]
combined with [28, Lemma 3.4]. O

Proof of Proposition 7.6. According to Lemma 7.5, ay is a rational subspace of a < j. Now,
we keep in mind the following general fact: if U — j is a rational subspace and = < j* is a
rational lattice, then E}U is a rational lattice in U*. In particular, it follows that = 1= = o
is a rational lattice in aj. Next, observe that Lemma 7.8 combined with (7.7) implies that
Re Q) < pQ‘uI + =z for all tempered infinitesimal characters A. Denote by = ; < a; the
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dual lattice of pQ‘aI + Zz ;. Since a; is a rational cone, we find elements Xj,..., X} of

a; N =z, such that:
k
u; = Z R;()Xj .
j=1

We identify U; with CV and define matrices A; := ['z(X;) = oa(X;). Let A € Q. Write
E,; for the spectral projection to the generalized eigenspace of A; with eigenvalue A(X;).
Since the matrices A; commute with each other and the X; span a;, we obtain that:

E/\ = E)\JO...OE)\’]C. (79)
Hence, we are reduced to prove a polynomial bound for each Ej ;. As
Spec(Ai) < (pg + Wi - A)(Xi),

we get Re Spec(A;) < Z. Hence, we can apply Lemma 7.7 to the matrices A;, with v = 1,
and obtain |Ey || < C(1+ |Ai|)". Now, we recall from (7.5) that

IPAGO] < Ol +[ADY,

after possible enlargement of C' and N. This gives the asserted norm bound for |E, ;|| and
then for E) via (7.9). O

For A € Q,, we recall the notation
E\x(X) = e B (X)) X eay,
and recall, from Lemma 4.6(ii), the starting identity:

(I)fy)\(az eXp(tX[)) = etFA(XI)(I)ﬂ,\(CLZ)

t
+J Ere ™MDy, (az exp(sX)) ds,
0

ay € Az, X;€ar,teR.

Lemma 7.9. There exist a continuous semi-norm q on Cif, . n(Z) and m € N such that,

for all compact subset Q4 < Ay, there exists a constant C = C(Q4) > 0 such that, for all
f e Aiempn(Z : A) and A €& /W,

[W.x(az)| < Cal ™ (1 + |logaz )N (1 + A" X a(f), azeQudz X ear.

Proof. The proof is the same than the proof of Lemma 4.7(ii), the factor (1 + |A[)™ coming
from Proposition 7.6. O
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Having said all that, it is now clear that all bounds from Sections 4 and 5.1 become
uniform at the cost of an extra polynomial factor in |A|. Polynomial behavior in ||A| can be
subsumed in raising the Sobolev order of the corresponding semi-norms. In more detail, if p
is a continuous semi-norm on an SF-module V* with infinitesimal character A, then there
exists C' > 0,k € N independent of p and V' such that (1 + |A|)p(v) < Cpg(v) for all v e V,
where p, denotes the k-th Sobolev norm of p with respect to a fixed basis of g. This simply
follows from the fact that

Ixa(2)|p(v) = p(2v) < C.pgeg - (v), veV®,

for all z € Z(g) and constants C, > 0. We only have to test against finitely many z, namely
a choice of Chevalley generators of the polynomial algebra Z(g) ~ S(j)"i, and the maximal
degree of such a generator will serve as k.

The preceding reasoning now implies the following parameter independent version of
Theorem 5.9:

Theorem 7.10 (Uniform constant term approximation). Let N € N, I < S and C; be a
compact subset of a;~. Let w; € Wy and w = m(w;) € W. Then there exist € > 0 and a

continuous semi-norm p on Ci5, - n(Z) such that, for all f € Asermpn(Z 2 N), A €jE/Wi:

(az exp(tX)) 72| f(gaz exp(tX)w - z0) — fr(gaz exp(tX)wy - Zo,1)]

<1+ [logaz)“plf).  aze Az XeCrgedt=0.

Moreover, let q be a continuous semi-norm on Cg .y (Z1), where Ny =
dim (D(Z1)/D(Z1)pur(Zy)). Then there exists a continuous semi-norm p on Cg, - n(Z) such
that:

q(fr) < p(f), f € Awempn(Z 2 ), A € /W

A Rapid convergence

Definition A.1. Let a = 0 and (x5) be a family of elements of a normed vector space with
s € [a, +0[. One says that (z5) converges rapidly to [ if

there exist e > 0,C > 0, 59 € [a, +00[ such that, for any s = sy,
|xs — 1| < Ce*s.
rapid l.

To shorten, we will write x4
§—00

Lemma A.2. Leta >0, E, F be two Euclidean spaces and l € E. Let ¢ be an F-valued map
of class C' on a neighborhood U of | and such that the differential ¢'(1) of ¢ at 1 is injective.

If (5)sefa,+o0 95 @ family of elements of E such that ¢(x) ropd, (1) and (zs) converges to
§—00

[ when s tends to 400, then
rapid
Ty — 1.
§—00
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Proof. Let G be a complementary of the image of ¢'(I) in F and consider the map:

o:UxGE — F
(1,2) — o(x)+z2.

As ¢/(1) is injective, ®'(l, z) is injective and dim(E x G) = dim(F). Hence, ®’(l, z) is invertible
for any z € G. From the local inversion theorem, @ is then bijective on its image and of class
C' on a neighborhood V' x W of (I, z) contained in U x G. Consider the restriction ® of ®
to V x W. Then ® is well-defined and of class C". Applying the Taylor expansion of o1 at
®(1,0) = ¢(1), one has for s large enough such that x5 € V:

los =1 = [} (g(x,) — (1))
< @Y (sD)] [¢(xs) — o) + ol B(s) — S(D)]) -

Our claim follows from the rapid convergence of (¢(x;)). O

Definition A.3. Let a > 0, X be a d-dimensional smooth manifold and (rs)se[a,+w0[ bE @
family of elements of X. One says that (xs) converges rapidly in X if there exist | € X and
a chart (U, ¢) around | such that:

(¢(xs)) converges rapidly to ¢(1) .

Remark A.4. This notion is independent of the choice of the chart (U, ¢). Indeed, let (U, ¢)
be another chart around /. Then, from Lemma A.2, ((po¢d™1) " (4(x,))) converges rapidly to
(1) which means that (¢(x,)) converges rapidly to ¢(1). Alsoif ¥ : X — Y is a differentiable
map between C® manifolds and (z;) converges rapidly to x in X, then W((xy)) converges
rapidly to U(z) in Y.

B Real points of elementary group actions

We assume that G is a reductive group defined over R and let H be an R-algebraic subgroup
of G. We form the homogeneous space Z = G/H and our concern is to what extent Z(R)
coincides with G(R)/H(R).

We say that G is anisotropic provided G(R) is compact and recall from [20, Proposi-
tion 13.1] the following fact:

Lemma B.1. If G is anisotropic, then Z(R) = G(R)/H(R).

In the sequel, we assume that G is a connected elementary group (defined over R), that
is:

e G = MA for normal R-subgroups A and M,

e M is anisotropic,
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e A is a split torus, i.e., A(R) ~ (R*)".

Consider now Z = G/H, with G elementary. We set M, := M n H and, likewise,
Ay = A~ H. Furthermore, we set A, := A/A, and M, := M/M,, which we view
as subvarieties of Z. From Lemma B.1, we already know that M,(R) = M(R)/M;(R).
Consider now the fiber bundle B

Ay —> Z—G/HA

and take real points
Ay(R) = Z(R) — (G/HA)(R). (B.1)

We claim that the natural map

My(R) x Ay(R) — Z(R) (B.2)

is surjective. In fact, observe that G/HA ~ M/(M n (HA)) is homogeneous for the

anisotropic group M. Hence, (G/HA)(R) ~ M(R)/(M n (HA))(R) and our claim follows
from (B.1).

We remain with the determination of the fiber of the map (B.2). Since M and A commute,
we obtain with N

My :={meM|mHeA, c Z}

a closed R-subgroup of M, which acts on A, by morphisms (translations). The kernel of
this action is My and this identifies My as a normal subgroup of ﬂﬁ. In particular, we
obtain an embedding ﬂﬂ /My — Ay and, taking real points, we obtain, as M is anisotropic

and ﬂ y 1s closed in M, a closed embedding

—~

Fyug) = Mp(R)/Mpy(R) — Az(R).

The image of Fy ) is compact, hence, a 2-group of A,(R) ~ (R*)*. In summary, we have
shown:

Proposition B.2. Let Z = G/H be a homogeneous space for an elementary group G = M A
with respect to an R-algebraic subgroup H. Then Fyyw) is a finite 2-group and the map

[M(R)/My(R)] x"® Ay(R) — Z(R), [mMpy(R),az]— may
1s an isomorphism of real manifolds.

Corollary B.3. Under the assumptions of Proposition B.2, the G(R)-orbits in Z(R) are in
bijection with Ay(R)o/Fymy, where Ayz(R)y is the group of 2-torsion points in Ay(R). The
isomorphism is given explicitly by:

Ay R)2/Fuw) — GRNZ(R), Fumyaz — G(R)az.
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C Invariant differential operators on Z and Z; (by
Raphaél Beuzart-Plessis)

To begin with, we let Z = G/H be a general homogeneous space attached to a Lie group G
and a closed subgroup H < G. Our concern is with the algebra of G-invariant differential
operators D(Z) and we start with a recall of the standard description of D(Z) in terms of the
universal enveloping algebra U (g) of gc. As usual, we denote the right regular representation
of G on C*(G) by R and, by slight abuse of notation, the induced action of the enveloping
algebra U(g) by the same letter; in symbols:

R:U(g) — End(C*(Q)).

Now, for an element u € U(g), the operator R(u) descends to a differential operator on Z if
and only if v € Ug(g), where

Ug(g) :={uel(g) | Ad(h)u —uel(g)h, he H}.

Notice that Uy(g) = U(g) is a subalgebra of U(g) which features U(g)h = Uu(g) as a
two-sided ideal. We recall the natural isomorphism

D(Z) ~ Un(g)/U(g)b, (C.1)

induced from the right regular action. For v € Uy (g)/U(g)bh, we denote by Ry (u) € D(Z) the
correponding invariant differential operator. Suppose furthermore that there is a subalgebra
b — g such that g = b + b (not necessarily direct). Then Poincaré-Birkhoff-Witt (PBW)
implies that U(g) = U(b) + U(g)h and setting Uy (b) = U(b) N UK (g), we obtain from (C.1)

an isomorphism

D(Z) ~ U (6)/U(b)(h A b). (C.2)

Remark C.1. (a) Recall that we expressed by Hj the identity component of H. It is then
clear that Uy (g) < Uy, (g). Hence, we obtain from Lie H = Lie Hy and (C.1) that

D(Z) = D(G/Ho)
naturally. Moreover, we record that

UHO(Q) = {ueu(g) | [Xau] EU(g)h, X e h}
= {uel(g) | Xuell(g)h, Xeb}.

(b) Assume that G = G(R) is the group of R-points of a linear algebraic group G over
R. Let Hgy be the Zariski closure of A in G and assume that H,, and H have the same
Lie algebra (this happens, e.g., if H has finite index in the group of R-points of an algebraic
subgroup of G). Then, by (C.2),

D(Z) = D(G/Huy)
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We now return to the spherical setup and request from now that Z = G/H is real
spherical and unimodular where as in the main body of the text, G = G(R) is the group of
R-points of a connected real reductive group and H is open in the R-points of an algebraic
subgroup of G. The topic of this section is then to study the relationship of D(Z) to D(Z;)
for I < S. Recall that the authors of this paper have defined H; to be connected. We
abbreviate notation and write Ry for Ry, and U;(g) = U, (g) etc. With

b:=a+m+u,

we obtain a subalgebra of g such that g = b + h; for all I < S. Further, we have b n f; =
ag +my =: by. In particular, we obtain an algebra isomorphism

Via this algebra isomorphism, we identify from now on D(Z;) with U;(b)/U(b)bg. Re-
mark that, as Ay normalizes H;, we obtain a natural inclusion S(a;) < D(Z;) induced from
the right action of Ay on Z;. Note that Zg = G/H, and ag = azg.

Lemma C.2. The symmetric algebra S(as) embeds in the center of D(Zs).

Proof. By slight abuse of notation, let us denote by H the algebraic closure of Hy in G and
let H = H(R). In view of Remark C.1(b), we may replace Hy by H in the following.

Let Z(C) = G(C)/H(C). Since Z is unimodular, Z(C) is a quasi-affine algebraic variety
(see Lemma 4.4) and there is a natural embedding

D(Z) — Endg(C[Z(C)]) ~ D End(V"),

where the direct sum runs over all isomorphism classes of algebraic finite dimensional irre-
ducible G-modules. Moreover, the image of S(ag) in End(V#) by this morphism corresponds
to the natural action of ag on V. Therefore, we only need to show that this action is scalar
for every finite dimensional irreducible G-module V. Set V/(U) = uV. Then V(U) is a proper
@-submodule of V' and the quotient V/V(U) is an irreducible L-module on which the split
center aj acts by a certain weight p € aj. Identify ag with a subspace of a; through the
choice of a splitting of az in ay. Then the claim would follow if we can show that the only
weight of ag in V# is the restriction of . We have

VEAV(U) = 0. (C.4)

Indeed, if v € VH A V(U) then Q(C)H(C).v < V(U) and, as Q(C)H(C) is Zariski dense
in G(C), this implies that the G(C)-invariant subspace generated by v is included in V(U)
hence v = 0 since V is irreducible and V(U) # V. By (C.4), the restriction of the projection
V — V/V(U) yields an injective ag-equivariant morphism V# < V/V(U). The result
follows. O
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In the sequel, we view U;(b)/U(b)by as a subspace of U (b)/U(b)by, which is naturally a
module for A/Ag, hence for Az. In particular, we can speak of the az-weights of an element
in Ur(b)/U(b)by. Recall that ag = azp < ay forall I < S.

Let I < S and (aj)" be the cone of elements A € aj such that

AMX) <0, Xeaj.
Let us € Us(b)/U(b)by and ug = Z ugy be its decomposition (in U(b)/U(b)by) into a;-

Aea’t
eigenvectors. Let Wy(ug) be the set of A € af such that ug, # 0. Then there exists a unique
minimal subset Wy (ts)mar of Wi(ug) such that

conv(Wr(ug)maz + (a5)") = conv(Wi(ug) + (a3)"),

where conv(D) denotes the convex hull of a subset D < af (indeed, W (tg)maz 1S just the set
of extremal points of conv(Wy(ug)+ (a3)*); this follows from a version of the Krein-Milman
theorem for convex subsets invariant by a cone, see, e.g., [16]).

Lemma C.3. Let Moy € Wi(Uus)maz- Then ugs .y, € Ur(b)/U(6)by.

Proof. Choose, for every A € aj, a lift ug, € Us(b) of ug, which is again an aj-eigenvector
of weight A\ and with @g) = 0 if ug) = 0. Set

us = Z us

3
Aeay

(a lift of ug). Then we want to show that @g,,,.. € Ur(b). By the choice of A4, there
exists X € a;~ such that A(X) < A\par(X) for every X € af with @gy # 0 and A\ # A\paq-

Therefore, we have

: —tA X) tad X~ ~
tlLHO(l) € ol )e us = uSa)\maz .

Since tlim e!2dXf = p; in the Grassmannian Gr(g), we easily check that for every n > 0 the
—00

limit tlim e!™XUs(g) <, in the Grassmannian Gr(U(g)<,) (which always exists) is a subspace
—00
of Ur(g)<n. Since ug € Us(g), this shows that gy, € Ur(g) nU(b) = U (b). O

Notice that, for every I < S, we have a morphism Z(g) — D(Z;) induced by the “right”
action of Z(g) on smooth functions on Z;. We can now state the main theorem of this
appendix.

Theorem C.4. For every ug € Us(b)/U(b)by, the limit

ur = lim e ¥ ug (C.5)
t—00

exists inU(b)/U(b)by for every X € a;~ and is independent of X. The map u — uy induces
an injective morphism of algebras

pr = Us(b)UB)by = D(Zs) — D(Z;) = U (b)/U(b)by.

Moreover, the following assertions hold:
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(i) (a) the az-weights of ug are non-positive on a,,

(b) the az-weights of uy — ug are negative on a; .

(i) The morphism py fits into commutative squares

Z(g)=——2Z2(g) and S(ag)—=5(a;) ,
| ] |
D(Zs) —=D(Zi) D(Zs) —=D(Zi)

where the vertical arrows in the first and second diagrams are the natural ones.

Proof. By Lemma C.2 (applied to Z; instead of Z) and Lemma C.3, we see that, for any
nonzero ug € Us(b)/U(b)by, we have W(ug)mer = {0} (in particular, ugg # 0). This
implies that the limit in (C.5) exists, is independent of X and is nonzero if ug # 0. This
readily implies that p; is a monomorphism of algebras. Moving on to (i), we deduce (a) and
(b) from the fact that the limit (C.5) exists.

The second square of assertion (ii) is commutative since the image of S(ag) in
U(b)/U(b)by is obviously in the 0-weight space of a;. It only remains to show that the
first square of (ii) is commutative. Let z € Z(g). Let Zg € U(b) and Z° € U(g)h be such that
z =25+ 2% Then Zg € Us(b) and through our identification D(Zs) ~ Us(b)/U(b)by, = gets
mapped to the image zg of Zg in Ug(b)/U(b)by. By (i), up to translating Zs by an element
of U(b)by, we may assume that the limit

E] = lim GtadXES
t—00

exists in U(b) for every X € a;~ and that it is independent of X. Moreover, Z; € U;(b) and
its image z; in U;(b)/U(b)by coincides with the image of zg by p;. As z is fixed by any

inner automorphism, the limit
# = lim /X3
t—00

also exists in U(g) for every X € a; ~, is independent of X and 2z = Z; + 2!. Since 2% € U(g)bh

and tlim e!2dXh = p; in the Grassmannian Gr(g), we have Z/ € U(g)h;. Therefore, by
—00

definition of the identification ID(Z;) ~ U;(b)/U(b)by, z; is also the image of z in D(Z;).

The commutativity of the first square follows. O
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