Overview

- **Equational Bound**
 - Membership problem and methods for checking
 - Our and other results
 - Application for flat graph and hypergraph algebras

- **Identity Checking Problem**
 - Previous results for different algebras
 - Different interpretations over rings
 - Results
The Membership Problem

Given: \(\mathcal{V} = \text{Var}(A) \) variety,
where \(A \) is a finite and finitely typed algebra

\[|A| = m \]

Input: \(B \) finite algebra.

\[|B| = n \]

Question: Is \(B \) in the variety generated by \(A \)?

\[B \in \text{Var}(A) \]
Example

\[\tau = \langle 1, -1, \cdot \rangle \]

Claim: A finite Abelian group

\(B \in \text{Var}(A) \), finite \(\iff \) B is a finite Abelian group and

\[\exp B | \exp A \]

Identity basis of \(\text{Var}(A) \) is

\[x^{\exp A} \equiv 1 \]

\[x \cdot 1 \equiv 1 \cdot x \equiv x \]

\[x \cdot x^{-1} \equiv x^{-1} \cdot x \equiv 1 \]

\[x \cdot (y \cdot z) \equiv (x \cdot y) \cdot z \]

\[x \cdot y \equiv y \cdot x \]
Method #1: Free algebra

\[B \in \text{Var}(A) \iff B \text{ is a homomorphic image of } F_{\forall}(n) \]

\[\overrightarrow{g_1} = \begin{pmatrix} a_1 & a_{i_1} & \cdots & a_{k_1} \\ \vdots & \vdots & & \vdots \\ a_n & a_{i_n} & \cdots & a_{k_n} \end{pmatrix} \]

\[\overrightarrow{g_2} = \begin{pmatrix} a_2 & a_{i_2} & \cdots & a_{k_2} \\ \vdots & \vdots & & \vdots \\ \vdots & \vdots & & \vdots \\ a_n & a_{i_n} & \cdots & a_{k_n} \end{pmatrix} \]

\[\overrightarrow{g_n} = \begin{pmatrix} a_n & a_{i_n} & \cdots & a_{k_n} \\ \vdots & \vdots & & \vdots \\ \vdots & \vdots & & \vdots \\ a_n & a_{i_n} & \cdots & a_{k_n} \end{pmatrix} \]

\[F_{\forall}(n) = \langle \overrightarrow{g_1}, \overrightarrow{g_2}, \ldots, \overrightarrow{g_n} \rangle \subseteq A^{A^B} \]

To be checked if \(g_1 \mapsto b_{i_1} \)

\(\vdots \) extends to a homomorphism

\(g_n \mapsto b_{i_n} \)
Method #2: Checking Identities

\(B \in \text{Var}(A) \iff \) All identities of \(A \) holds in \(B \)

Enough to check the identities of rank \(n \)

Moreover: \(F_{\text{Var}}(n) = \) equivalence classes of expressions

\(T = \{ t_1, t_2, \ldots, t_k \} \) system of representatives (\(k \leq m^n \))

Identities to be checked:

\[f(t_{i_1}, t_{i_2}, \ldots, t_{i_r}) \equiv t \quad t_{i_j}, t \in T, \ f \text{ operation} \]

Def. A \textit{finitely based}, if every identity of \(A \) follows from a finite set of identities.

If \(A \) is finitely based \(\implies \) polynomial algorithm
\(\beta \)-function

\[\mathcal{V} = \text{Var}(A) \]

\(\beta : \mathbb{N} \rightarrow \mathbb{N} \)

\[\beta(n) = \min\{k : |B| \leq n, \text{it is enough to check the identities of not longer than } k \text{ to decide whether } B \in \mathcal{V}\} \]

\[= \max\{l : \exists C \notin \mathcal{V}, |C| \leq n, \text{every identity in } A \text{ not longer than } l \text{ holds in } C\} + 1 \]

\(\Sigma_{\mathcal{V}}^{[k]} \): Identities of \(\mathcal{V} \) not longer than \(k \)

\(\mathcal{V}^k \): Variety defined by the identity set \(\Sigma_{\mathcal{V}}^{[k]} \)

\[B \in \mathcal{V} \iff B \models \Sigma_{\mathcal{V}}^{[\beta(n)]} \]
Connections

\(\forall \) finitely based \(\iff \) \(\beta \) bounded
Connections

\[\forall \text{ finitely based} \quad \iff \quad \beta \text{ bounded} \]

\[\beta \text{ bounded} \quad \implies \quad \forall \text{ finitely based} \]

finite set of identities

finite algebras

\(\mathcal{V}^k \)
Connections

\[\forall \text{ finitely based} \quad \iff \quad \beta \text{ bounded} \]

\[\beta \text{ bounded} \quad \implies \quad \forall \text{ finitely based} \]

or

\[\forall \text{ inherently non-finitely based} \]

finite set of identities

finite algebras
Connections

\(\forall \) finitely based \(\iff \beta \) bounded

\(\beta \) bounded \(\implies \forall \) finitely based

or

\(\forall \) inherently non-finitely based

finite set of identities

such an example is not known
Results

Claim: (McNulty) A β-function exists and is recursive.

Claim: $\beta(n) = \mathcal{O}(m^m n)$

Well known: A finitely based \iff β bounded

E.g. (Székely) There exists an algebra such that the β-function is at least sublinear.

Construction: (Kun, W): For every k there is an algebra such that $\beta(n) \sim n^k$.

Theorem: The β-function is not bounded by any polynomial.
Graph Algebras (C. Shallon, 1979)

\(G(V, E)\) graph, \(E \subseteq V^2\)

\[\begin{align*}
\text{AG}\left(V \cup \{0\}, \cdot\right) \text{ graph algebra:} \\
0 \cdot x &= x \cdot 0 = 0 \\
x \cdot y &= \begin{cases}
 x, & \text{if } (x, y) \in E \\
 0, & \text{otherwise}
\end{cases}
\end{align*}\]

\[
\begin{array}{cccccc}
\cdot & d & e & f & g & 0 \\
\hline
d & d & d & d & 0 & 0 \\
e & e & 0 & e & 0 & 0 \\
f & f & f & 0 & f & 0 \\
g & 0 & 0 & g & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}
\]
Hypergraph Algebras

Generalizations of the Graph Algebras:

\[R(R, \alpha) \text{ relational structure / hypergraph, } \alpha \subseteq R^k \]

\[A_R \left(R \cup \{0\}, f \right) \text{ hypergraph algebra:} \]

\[f(x_1, \ldots, x_k) = \begin{cases} x_1, & \text{if } x_i \in R \text{ and } (x_1, \ldots, x_k) \in \alpha \\ 0, & \text{otherwise} \end{cases} \]
Flat Semilattices

\(A \): arbitrary algebra

New operation: \(\land \)

\[x \land y = \begin{cases} x, & \text{if } x = y \\ 0, & \text{otherwise} \end{cases} \]

flat semilattice operation

\[F_G(V \cup \{0\}, \cdot, \land) \text{ flat graph algebra} \]

\[x \cdot y = \begin{cases} x, & \text{if } (x, y) \in E \\ 0, & \text{otherwise} \end{cases} \]

\[F_R(R \cup \{0\}, f, \land) \text{ flat hypergraph algebra} \]
Flat Graph Algebra Varieties

... a direct product ...
Flat Graph Algebra Varieties

\[G^t \]

\[G^{t-1} \]

\[\ldots \]

\[0 \]

\ldots a direct product’s subalgebra
Flat Graph Algebra Varieties

homomorphic image of a direct product's subalgebra

So if $H \subseteq G^t$ is an induced subgraph $\implies F_H \in \text{Var}(F_G)$
Subdirectly Irreducible Flat Graph Algebras

Theorem: (Willard, 1996) Let $F_G = \langle F_G, \cdot, \wedge \rangle$ be a finite flat graph algebra, and $D \in \text{Var}(F_G)$ a finite algebra. Then the following are equivalent:

1. D is subdirectly irreducible
2. $D = F_H$ is a finite flat graph algebra, where H is a connected induced subgraph of G^t for some $t \in \mathbb{N}$.
3. D is simple.

Theorem: (Birkhoff) Every algebra is a subdirect product of subdirectly irreducible ones.

Corollary: It is enough to know β’s order of magnitude for subdirectly irreducible algebras.

Corollary: It is enough to investigate the connected induced subgraphs of G^t.
Graph \(r \)-Coloring

Def. A graph \(G \) is **\(r \)-colorable** if its vertices can be colored with \(r \) colors so that there is no edge between vertices of the same color.

![Graph Coloring Diagram](image)

Def. \(G \) is **\(r \)-critical**, if \(G \) is not \(r \)-colorable, but removing any edges of \(G \) results in an \(r \)-colorable graph.

E.g. 2-critical graphs are the odd circles

Theorem: (Toft, 1972) For every \(r \geq 3 \) there is an \(r \)-critical graph \(H_{r \text{-crit}} \) with \(n \) vertices and \(\sim n^2 \) edges.
r-Colorable Graphs

$G_r = (\{ v_1, \ldots, v_r, u_1, \ldots, u_r \}, E_r)$

$(x, y) \in E \iff \begin{cases}
 x, y \in U_r \\
 x = v_i \in V_r, y = u_j \in U_r, i \neq j \\
 x = u_i \in U_r, y = v_j \in V_r, i \neq j
\end{cases}$

Theorem: $H = (U, F)$ is a connected r-colorable graph

\iff H connected induced subgraph of G_r^t for some $t \in \mathbb{N}$.
β-Function for Flat Graph Algebras

Reminder: The subdirectly irreducibles in $\text{Var}(F_{G_r})$ are those graph algebras belonging to r-colorable graphs.

Theorem: (Kun, W) For a flat graph algebra F_{G_r}, $\beta(n) \sim n^2$.

Proof of $\beta(n) = \Omega(n^2)$

Let $H_{r\text{-crit}}$ be an r-critical graph, then $F_{H_{r\text{-crit}}} \notin \text{Var}(F_{G_r})$, thus $\exists p \equiv q$ identity:

$$F_{G_r} \models p \equiv q \quad \text{but} \quad F_{H_{r\text{-crit}}} \not\models p \equiv q$$

So there is an evaluation $u_1, \ldots, u_k \in F_{H_{r\text{-crit}}}$ so that $p(u_1, \ldots, u_k) \neq q(u_1, \ldots, u_k)$. If there was an edge (u, v) where $u \cdot v$ did not occur while evaluating $p(u_1, \ldots, u_k)$ and $q(u_1, \ldots, u_k)$, then $p \not\equiv q$ would be true by removing the edge (u, v). But since $H_{r\text{-crit}}$ is critical, then by removing one edge we get an r-colorable graph, so $p \equiv q$ holds. \square
β-Function for Flat Hypergraph Algebras

Theorem: (Willard, 1996) Let $F_R = \langle F_R, f, \wedge \rangle$ be a finite flat hypergraph algebra, and $D \in \text{Var}(F_R)$ a finite algebra. Then the following are equivalent:

1. D is subdirectly irreducible
2. $D = F_S$ is a finite flat hypergraph algebra, where S is a connected induced subhypergraph of R^t for some $t \in \mathbb{N}$.
3. D is simple.

Theorem: (Toft, 1972) For every $r \geq 3$ there is an r-critical k-hypergraph with n vertices and $\sim n^k$ edges.

Theorem: (Kun, W) The subdirectly irreducible algebras of $\text{Var}(F_{G_{r,k}})$ are the flat hypergraph algebras belong to r-colorable k-hypergraphs.

Theorem: (Kun, W) For a flat hypergraph algebra $F_{G_{r,k}}$

$\beta(n) \sim n^k$.
The Identity Checking Problem

- **TERM-EQ(A)**

 Given: \(A \) a finite and finitely typed algebra

 Input: \(t \equiv s \) identity, where \(t \) and \(s \) are terms

 Question: Is \(t = s \) for every substitution over \(A \)?

- E.g. \((x_1^{-1}x_2^{-1}x_1x_2)^3 \equiv x_2^6 \) in \(S_3 \)

- E.g. \([x_1, x_2]^3 \equiv id \) in \(S_3' = A_3 \)

- E.g. \(x^p \equiv x \) in \(\mathbb{Z}_p \)
Groups

 TERM-EQ is coNP-complete for G finite nonsolvable groups.

- Theorem: *Goldmann, Russel* (2001)
 For nilpotent groups TERM-EQ is in P.

 TERM-EQ is in P for metacyclic groups (semidirect product of cyclic groups).

- The question is open for other finite groups.
Semigroups

Are there any semigroups so that \textsc{Term-Eq} is coNP-complete?

- \textit{Volkov} (2002)
 \#elements \approx 2^{1700}

- \textit{Kisielewicz} (2002)
 few thousand

 13

- \textit{Klima} (2003)
 6

Other semigroups?
Rings

Theorem: *Burris, Lawrence* (1993)
For a finite ring \mathcal{R}, $\text{TERM-EQ}(\mathcal{R})$ is in P, if \mathcal{R} is nilpotent, $\text{TERM-EQ}(\mathcal{R})$ is coNP-complete otherwise

TERM:
- any
 - E.g. $(x + y)^n$
- TERM_Σ (sum of monomials)
 - E.g. $x_1x_2^3x_3 + x_1 + x_2x_1x_3 + x_{19}$
 - TERM_Σ-EQ(\mathcal{R}) problem
- monomial
 - just in the multiplicative semigroup
 - TERM-EQ problem for the multiplicative semigroup
Theorem: Lawrence, Willard (1997)
If $\mathcal{R} = M_n(\mathbb{F})$ is a finite simple matrix ring whose invertible elements form a nonsolvable group, then $\text{TERM}_\Sigma\text{-EQ}(\mathcal{R})$ is coNP-complete.

$\text{TERM}_\Sigma\text{-EQ}(M_2(\mathbb{Z}_2))$ and $\text{TERM}_\Sigma\text{-EQ}(M_2(\mathbb{Z}_3))$ are coNP-complete.

Conclusion: For a finite simple matrix ring $M_n(\mathbb{F})$, $\text{TERM}_\Sigma\text{-EQ}(M_n(\mathbb{F}))$ is in P if it is commutative; Otherwise it is coNP-complete.
Multiplicative Semigroup of Rings

 TERM-EQ is in P for the multiplicative semigroup of a finite simple matrix ring if it is commutative; Otherwise it is coNP-complete.

Let \mathcal{R} be a finite ring,
$\mathcal{J}(\mathcal{R})$ denotes its Jacobson-radical.
Then $\mathcal{R}/\mathcal{J}(\mathcal{R}) = M_{n_1}(F_1) \oplus \cdots \oplus M_{n_k}(F_k)$

- Theorem: For a finite ring \mathcal{R} TERM$_\Sigma$-EQ(\mathcal{R}) is in P if $\mathcal{R}/\mathcal{J}(\mathcal{R})$ is commutative; Otherwise it is coNP-complete.