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Non-self-adjoint operators and spectral instability

Non-self-adjoint operators appear naturally in many areas, e.g.:

> In the theory of linear PDEs given by non-normal operators
> solvability theory

evolution equations given by non-normal operators

the Kramers-Fokker-Planck type operators

the damped wave equation
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> In mathematical physics when studying scattering poles (resonances).

Bad resolvent control: For non-normal operators P : H — H the norm of the resolvent
may be very large even far away from the spectrum o(P):
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Consequence:

» The spectrum can be very unstable under small perturbations of the operator.



Pseudospectrum

A way to quantify this zone of spectral instability is given by the e-pseudospectrum
[Trefethen-Embree '05], defined by

o:(P) :=c(P)U {z €p(P): |I(P=2)"1 > 871} ;

or equivalently
oc(P):= |J o(P+Q).

QEB(H)
IQll<e

> Renewed interest has started in numerical analysis with the works of [Trefethen
'97] (and [Trefethen-Embree '05]);

> Active subject in the field of PDE: Davies, Zworski, Sjostrand, Bulton,
Pravda-Starov, ... ;

» It is natural to add small random perturbations; Hager '06, Hager-Sjéstrand '08,
Bordeaux-Montrieux '08, Davies-Hager '09, Sjostrand '08-'15,
Zworski-Christiansen '10.



Laurent and Toeplitz operators

Laurent operator: For p € L>(SY), L(p) : £2(Z) — ¢2(Z) defined by

Lphu=peu (L)) = 5- [ p(EaE"de

2
Toeplitz operator: For p € L>®(S1), T(p) : £?(IN) — ¢?(IN) defined by
T(p) == InL(p)In.
Identifying CN with £2([1, N]), we define a N x N Toeplitz matrix by
Tn(p) = i1, mL(P) 1N
or by its matrix representation
ao a1 a—2 ... ai_n

a1 ao a_q
T(p) = S . a=a()ec

an—1 ao



Spectra and Pseudospectra

The spectral theory of these operators were extensively studied, cf.
Béttcher-Silbermann (also Trefethen-Embree), Widom, Goldsheid-Khoruzenko,
Hatano-Nelson, Ghoberg, ...

We assume for simplicity that the symbol p is a trigonometric polynomial (i.e. the
corresponding operators are banded).

i) Laurent operator: is normal, so o(L(p)) = p(S?).
ii) Toeplitz operator: by truncating we may loose normality, and by [Gohberg '52]

ess(T(p)) = p(S?) and o(T(p)) = p(S*) U{z € C; wind(p, z) # O}
iii) Toeplitz matrix:
> for non-normal Ty(p), in general Nlin o(Tn(p)) # Nle a(T(p)).
> Set p;(z) = p(rz), then by [Schmidt—Spitzer '60] ‘
(Tn(p) = () o(T(pr)),

Nlinma
r>0
o(Tn(p)) C a finite union of analytic connected arcs .
Pseudospectra are well behaved !
i) NILmQQ o=(Tn(p)) = 0-(T(p)) [Landau '75, Reichel-Trefethen '92, Bdttcher '96]

ii) For every € > 0, there exists Np s.t. for all N > Np, o(T(p)) C o=(Tn(p))




Example: p(z) =2z73 —z72 +2iz71 — 422 - 2i73

Laurent operator Toeplitz operator

circulant matrix Toeplitz matrix

Figure: Picture taken from [Trefethen-Embree '05], represents the spectra of the Laurent,
Toeplitz operators and Toeplitz and circulant matrix corresponding to the symbol p.



Small random perturbations of large Toeplitz matrices
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Small random perturbations of large Toeplitz matrices

We are interested in small random perturbations of P,(\’I . CN - CN, a non-normal
Toeplitz matrix for N > 1, of the form:

PO = PS4+ 6Qu, 0<d<1
where

Qu = (g k(W))1<jk<n with gj,x ~ Ng(0,1) (iid).

> If C; > 0 is large enough, then
(g € Bew2(0, GiN) = ) [|Qllus < GiN, with probability > 1 — eV
We study the following two cases of P,?,:

Case 1: Large Jordan block matrices

Case 2: Large bi-diagonal matrices



Perturbations of large Jordan blocks

We are interested in the spectrum of a random perturbation of the large Jordan block
Ap :

0 1 0 O 0
0O 0 1 0 0
o o0 o 1 ... O
Ao=1|. . . . . B R AL
0 0 0 O 1
0O 0 0 O 0

> The spectrum of Ag is o(Ag) = {0};
» D(0,1) is a region of spectral instability;

> in C\D(0,1) we have spectral stability, i.e. a good resolvent estimate.

For a small (0 < 6 < 1) (random) perturbation
As = Ao +6Qu, Qu=(qk(w)icjk<n, gjk(w) ~Ne(0,1) (iid)

we expect the spectrum to move in a small neighborhood of D(0, 1).



Numerical simulation

Numerical simulation for the eigenvalues of As, a complex Gaussian random
perturbation of Ag, with p(z) =z
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Previous results

Theorem (Davies-Hager '09)
If0< &6 < N7, R=6YN & >0, then with probability > 1 — 2N~2, we have
a(As) € D(0, RN3/N) and

#(o(As) N D(0,Re=)) < 2 + X inN.
g o

» With probability close to 1, most eigenvalues are close to a circle, contained in
D(0, RN3/N)\D(0, Re—“).

> At most O(In N) eigenvalues inside D(0, Re™7).

> Sjostrand improved on this result by giving a probabilistic angular Weyl law for
the eigenvalues close to the S?*

Theorem (Guionnet-Matched-Wood-Zeitouni '14)

Assume that N—1—+' <6 < N—1=F for some 0 < k < &/, then

1
— Z 8(z — p) — the uniform measure on S?,
HET(As)

weakly in probability as N — oo.



Interior density of eigenvalues
To obtain more information in the interior, we consider the random point process
(related works on the zeros of random polynomials by Shiffman and Zelditch, Sodin,
Hough-Krishnapur-Peres-Virag)
== ¥ &

zeo(As)

Study for ¢ € Co(D(0, r)) the first intensity measure of =:

E[=(»)1p0,com] = /go(z)du(z) (recall: ||Qlus < GiN).

Theorem (Sjéstrand-V '14)
Let e=N/C < 5§ < N=3 and N >> 1. Let rg belong to a parameter range,
N—1

1 1 r, N
—<rn<l-=, st 2 1—rp)?+o0N3 <« 1.
L N S 3 (1—ro)+ <

Then, for all ¢ € Co(D(0,r0 — 1/N))
1
E |:]IBCN2(0,C1N)(q) > 50(/\)} = E/W(ZK(Z)L(C’ZL
A€o (As)

where

£(z) = ﬁ (1 +O(|Z|N+1N(1 — 122 +6N3>> :



Numerical simulation
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Figure: The experimental integrated density of eigenvalues (averaged over 500 realizations), as
a function of the radius, of a 1001 x 1001-Jordan block matrix perturbed with a random
complex Gaussian matrix and with coupling § = 2 - 107 2%, The red line is the hyperbolic
volume on the unit disk as a function of the radius.



Large bi-diagonal matrices - first results

We now consider the following two cases:

0 a2 0 0 0 a b O 0
0 0 a 0

b 0 a 0
0 b 0 0 0 0 0 a 0

P = o and Py =

o .. 0 a "
a b
0 0 b 0 0 0 a

> Here a, bc C\ {0} and N > 1.
» Identifying CN with ¢2([1, N]), [1, N] = {1,2,.., N} and also with szN](Z) (the
space of all u € ¢2(Z) with support in [1, N]), we have:

P = 1[1YN](ae"DX + 1)1’37’-D")7
PII = 1[17N](ae’-DX —+ bGZfDX).
> The symbols of these operators are,

pi(€) = ae’ + be '€, pri(€) = ae™® + be?t.



Numerical simulation for Py,

D= 601 §= le-12
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Numerical simulation for P,

D= 601 §= le-12




Theorem (Sjostrand-V '15)

Let P = P; where a, b € C satisfy 0 < |b| < |a|. Let Ps = P+ 6Q.,. Choose

0 < N=%, k > 5/2 and consider the limit of large N. Let ~y be a segment of the ellipse
E1 = P(SY) and let T =T (r,y) = {z € C; dist(z, E1) = dist(z,v) < r} with
(InN)/N < r < 1. Let g be small and fixed.

Then with probability

1
>1-0(1) (; +ln N) N2re—2N% 1)
we have

#(o(Ps)NT) — %vollw]xslpl—l(r)' < O(1)N% (% +1n N) ‘ )

> If we choose v = E?, we have

1 —
5 Volo,mjx 51 Py (ry=n

(= total number of eigenvalues of Ps), so the number of eigenvalues outside of I’
is bounded be the right hand side of (2).
» With r > 0 fixed but arbitrarily small we get

Corollary

Let T be any fixed neighborhood of E;i. Then with probability as in (1), we have

[# (a(Ps) N (C\T))| < O(1)N%In N.



A W N =

Outlook

. Consider general non-normal Toeplitz matrices.
. Density in the interior of the pseudospectrum
. Correlation functions, universality

. limiting point-process
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Thank you for your attention !
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