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Abstract. We construct what we think to be the first known examples of compact
pseudo-Riemannian manifolds having an essential group of conformal transformations,
and which are not conformally flat. Our examples cover all types (p, q), with 2 ≤ p ≤ q.

1. Introduction

The aim of this short note is to provide a negative answer to the following
question, raised by G. D’Ambra and M. Gromov in [DG] under the name of pseudo-
Riemannian Lichnerowicz Conjecture.

Question 1 ([DG] p96). Let (M, g) be a compact pseudo-Riemannian manifold
of dimension n ≥ 3. Assume that the group of conformal transformations of (M, g)
does not preserve any metric in the conformal class [g]. Is then (M, g) conformally
flat?

When there does not exist any metric in the conformal class [g] of a pseudo-
Riemannian manifold (M, g) for which the conformal group Conf(M, g) acts iso-
metrically, one usually says that Conf(M, g) is essential, or equivalently that
(M, [g]) is an essential conformal structure.

Question 1 is a generalization to the pseudo-Riemannian framework of a ques-
tion asked by A. Lichnerowicz in the middle of the sixties. The conjecture raised by
Lichnerowicz was that among compact Riemannian manifolds, the standard sphere
is the only essential conformal structure. Following several attempts providing par-
tial solutions to the conjecture, a complete answer was given independently by M.
Obata and J. Ferrand.

Theorem 1 ([Ob],[Fe1]). Let (M, g) be a compact Riemannian manifold of di-
mension n ≥ 2. If the conformal group of (M, g) is essential then (M, g) is con-
formally diffeomorphic to the standard sphere Sn.

We won’t detail here the interesting developments of Theorem 1 in the non-
compact case (see [Fe2], [Sch], [Fr3]), and for other structures than conformal ones
([Mat], [MRTZ]). We refer the interested reader to the very nice survey [Fe3] which
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reviews the full history of the conjecture. Reference [KM] deals with the parallel
results for strictly pseudoconvex CR-structures.

Here, we will only focus on the non-Riemannian situation, the basic question
being to find a generalization to Theorem 1 for pseudo-Riemannian manifolds.
Recall that for any type (p, q), 1 ≤ p ≤ q, there is a compact structure generalizing
the standard conformal sphere. It is type-(p, q) Einstein’s universe Einp,q, namely
the product Sp×Sq endowed with the conformal class of the product metric −gSp⊕
gSq (where gSm stands for the Riemannian metric with constant curvature +1 on
Sm). The conformal group of Einp,q is the pseudo-Riemannian Möbius group
O(p + 1, q + 1), and this conformal group is essential. Let us also emphasize
that the space Einp,q is conformally flat, namely each point of Einp,q admits a
small neighborhood conformally diffeomorphic to an open subset of type-(p, q)
Minkowski space.

A direct generalization of Theorem 1 would be that Einp,q (and its finite covers
when p = 1) is the only compact type-(p, q) conformal structure admitting an
essential conformal group. It turns out that such a statement is far from true,
already in the Lorentzian framework, as the following result shows.

Theorem 2 ([Fr1]). For every pair of integers (n, g), with n ≥ 3 and g ≥ 1,
the manifold obtained as the product of S1 and the connected sum of g copies of
S1 × Sn−2 can be endowed with infinitely many distinct conformally flat Lorentz
structures, each one being essential.

Theorem 2 contrasts with Theorem 1 in the sense that at the global level,
there are a lot of compact Lorentz manifolds which are essential. Nevertheless,
all examples built in [Fr1] to show Theorem 2 have the same local geometry since
they are conformally flat. Hence, they do not provide a negative answer to the
local question 1. Actually several results obtained for instance in [BN], [FrZ],
[FrM], involving stronger essentiality assumptions on the conformal group, seemed
to support a positive answer to Question 1. To this extent, our main result stated
below is rather surprising.

Theorem 3. For every p ≥ 2, and every q ≥ p, one can construct on the product
S1×Sp+q−1 a 2-parameter family of distinct type-(p, q) analytic pseudo-Riemannian
conformal structures, which are not conformally flat, and with an essential con-
formal group.

Let us stress the fact that examples provided by this theorem are compact (non-
compact essential structures which are not conformally flat were already known,
see for instance [A2], [KR], [Po]).

The structures constructed to get Theorem 3 will even have a stronger essen-
tiality property, namely their conformal group can not preserve any finite Borel
measure which is nonzero on open subsets. Since a pseudo-Riemannian metric de-
fines naturally a volume form, this strong essentiality property is indeed stronger
than the classical notion of essentiality.

Observe that Theorem 3 does not cover the Lorentzian signature, so that Ques-
tion 1 remains open in this case.
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2. Construction of the counterexamples

Let us fix two integers p, q, with q ≥ p ≥ 2. We write q = 2 + s for some s ∈ N.
We consider Rp+q, endowed with coordinates (x1, . . . , xp+q) and the metric

g0 := 2dx1dx2 + x2
3dx

2
1 + 2dx3dx4 + Σp+qj=5εjdx

2
j , (1)

where
- εj = 1 if j ∈ {5, . . . , 4 + s}.
- εj = −1 otherwise.
The metric g0 is pseudo-Riemannian of signature (p, q) on Rp+q. Actually,

expression (1) makes sense only when q > 2 (or equivalently s ≥ 1), which we will
assume in all the paper. To build type-(2, 2) examples, one merely has to consider
the metric 2dx1dx2 + x2

3dx
2
1 + 2dx3dx4 on R4 and all what we do below adapts

in a straightforward way. Observe that those type-(2, 2) metrics where already
considered for other purposes, for instance in [DW, section 6.3].

Let us pick a vector λ = (α, β) ∈ R2, and consider the linear transformation of
Rp+q whose matrix in coordinates (x1, . . . , xp+q) is given by

ϕλ = diag(e−α+2β , e3α, e2α−β , e3β , eα+β , . . . , eα+β).

One checks immediately that (ϕλ)∗g0 = e2(α+β)g0, so that ϕλ is a conformal
diffeomorphism of (Rp+q, g0). Actually, any diagonal linear transformation of Rp+q
which is conformal for g0 must be of the form ϕλ for some λ ∈ R2.

We are going to consider the open subset of R2 defined by

Λ = {(α, β) ∈ R2 | α < β <
α

2
< 0}.

For every λ ∈ Λ, all entries of ϕλ are in the interval ]0, 1[, hence the group Γλ
generated by ϕλ acts freely properly and discontinuously on

Ṙp+q = Rp+q \ {0}.

Because Γλ preserves the conformal class [g0], the quotient manifold

Mλ = Ṙp+q/Γλ

inherits from [g0] a type-(p, q), analytic conformal structure [gλ].
When λ ∈ Λ, ϕλ is a linear Euclidean contraction preserving orientation and

it is not hard to check that the manifold Mλ is analytically diffeomorphic to the
product S1 × Sp+q−1.

2.1. The conformal structures (Mλ, [gλ])λ∈Λ are strongly essential

We consider the conformal structure (Mλ, [gλ]), where λ ∈ Λ. On Ṙp,q, let us
define the flow

ϕt = diag(e−
3
2 t, e−

3
2 t, 1, e−3t, e−

3
2 t, . . . , e−

3
2 t).
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This flow satisfies (ϕt)∗g0 = e−3tg0, hence is conformal for g0. Moreover, it cen-
tralizes Γλ, hence induces a conformal flow ϕt on (Mλ, [gλ]). Let

πλ : Ṙp+q →Mλ

be the covering map. Let us consider the “box”

U = {(x1, . . . , xp+q) ∈ Rp+q | xj ∈ [−1

2
,

1

2
] for j 6= 3 and x3 ∈ [

1

2
,

3

2
]},

and the segment

I = {(0, 0, x3, 0, . . . , 0) ∈ Rp+q | x3 ∈ [
1

2
,

3

2
]}.

Then, one has
lim

t→+∞
ϕt(πλ(U)) = πλ(I), (2)

the limit being taken for the Hausdorff topology. Relation (2) implies that the
flow ϕt can not preserve any finite Borel measure on Mλ which is positive on open
sets, hence (Mλ, [gλ]) is a strongly essential conformal structure.

2.2. Some curvature computations

We must now check that for every λ ∈ Λ, the structure (Mλ, [gλ]) is not conformally
flat. For that, it is enough to check that [g0] is not conformally flat, which will
be ensured by Proposition 4 below. In all this section, we denote by ∇, R, W
respectively the Levi-Civita connection, the Riemann curvature tensor, and the
Weyl tensor of the metric g0. We will adopt the notation ei, i = 1, . . . , p + q, for
the coordinate vector field ∂

∂xi .

Proposition 4. The metric g0 is Ricci flat but not flat. Hence it is not con-
formally flat. The only nonzero component of the Weyl tensor W are, at each
x ∈ Rp,q

W (e1, e3, e1) = −W (e3, e1, e1) = e4

and
W (e3, e1, e3) = −W (e1, e3, e3) = e2.

In particular the Weyl tensor of gλ is nowhere zero on Mλ.

Proof. Let us first recall Koszul’s formula, for pairwise commuting vector fields
X,Y, Z on Rp+q.

2g0(∇XY, Z) = X.g0(Y,Z) + Y.g0(Z,X)− Z.g0(X,Y ) (3)

Thanks to (3), and given that among the functions

g0(ei, ej), i, j ∈ {1, . . . , p+ q},

the only nonconstant one is g0(e1, e1) = x2
3, we get that all the expressions

g0(∇eiej , ek) vanish, except:

g0(∇e1e1, e3) = −x3
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and
g0(∇e1e3, e1) = g0(∇e3e1, e1) = x3.

Hence ∇e1e1 = −x3e4 and ∇e1e3 = ∇e3e1 = x3e2.
It follows that all the curvature components R(ei, ej)ek vanish, except

R(e3, e1)e1 = ∇e3(−x3e4)−∇e1(x3e2) = −e4

and
R(e3, e1)e3 = ∇e3(x3e2)− 0 = e2.

This implies that the Ricci tensor of g0 is identically zero, which yields W = R.
Because R is nonzero at each point of Ṙp+q, we conclude that g0, hence gλ, is not
conformally flat, and moreover that the Weyl tensor of gλ is nonzero at each point
of Mλ.

2.3. The conformal structures (Mλ, [gλ])λ∈Λ are pairwise distinct

To get Theorem 3, it remains to show that whenever λ = (α, β) and λ̃ = (α̃, β̃)
are distinct in Λ, then (Mλ, [gλ]) and (Mλ̃, [gλ̃]) are not conformally diffeomorphic.
This will be done through several observations.

Conformally invariant plane distribution on (Ṙp+q, [g]). We saw in Proposition 4
that for every x ∈ Rp+q, the only nonzero components of Wx are

Wx(e1(x), e3(x), e1(x)) = −Wx(e3(x), e1(x), e1(x)) = e4(x)

and
Wx(e3(x), e1(x), e3(x)) = −Wx(e1(x), e3(x), e3(x)) = e2(x).

This implies that

ImWx = Span(e2(x), e4(x)) for every x ∈ Rp+q.

The 2-dimensional distribution (Span(e2(x), e4(x)))x∈Ṙp+q clearly integrates into a

foliation of Ṙp+q which is preserved by Γλ. Hence, we get a 2-dimensional foliation
on Mλ, that we denote by Fλ. Let us stress that Fλ is defined by the conformal
structure [gλ], since it integrates the distribution given by the image of the Weyl
tensor of [gλ]. In particular, any conformal diffeomorphism between (Mλ, [gλ]) and
(Mλ̃, [gλ̃]) maps Fλ to Fλ̃.

Observe moreover that among the leaves tangent to the distribution

Span(e2(x), e4(x))x∈Rp+q ,

only one is preserved individually by Γλ, namely

Σ = {(0, u, 0, v, 0, . . . , 0) ∈ Ṙp,q | (u, v) ∈ Ṙ2} ⊂ Ṙp+q.

It follows that Fλ admits a unique closed leaf Σλ, diffeomorphic to a 2-torus, and
obtained by projecting Σ on Mλ.
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Distinguished closed lightlike geodesics on (Mλ, [gλ]). Let (M, g) be a pseudo-
Riemannian manifold, which is not Riemannian. We denote by ∇ the Levi-Civita
connection associated to the metric g. A 1-dimensional immersed submanifold γ
of M is called a lightlike geodesic if there exists a parametrization γ : I → M
satisfying

g0(γ̇, γ̇) = 0 (4)

and
∇γ̇ γ̇ = 0. (5)

A parametrization s 7→ γ(s) satisfying (5) is called an affine parametrization of
γ.

Whereas equation (5) depends on the choice of a metric g in the conformal class
[g], the property for a 1-dimensional immersed submanifold γ to be a lightlike
geodesic only depends on [g]. This is a direct consequence of the relation between
the Levi-Civita connections of two metrics in the same conformal class (see for
instance [M] for the related computations).

However, an affine parametrization s 7→ γ(s) with respect to g won’t be in
general an affine parametrization for another g′ in the conformal class [g]. Yet,
and this is a remarkable fact, there does exist a finite dimensional, conformally
invariant, family of local parametrizations for a lightlike geodesic. To see this, let
us consider s 7→ γ(s) a lightlike geodesic of (M, g), with affine parameter s. A
parameter p = p(s) will be said to be projective if it satisfies the equation

{p, s} = − 2

n− 2
Ric(γ̇(s), γ̇(s)). (6)

In equation (6), Ric denotes the Ricci tensor of the metric g and {p, s} is the
Schwarzian derivative of p, namely

{p, s} =
p′′′

p′
− 3

2
(
p′′

p′
)
2

.

Recall that {p, u} = 0 if and only if p = h(u), where h is an homographic

transformation. From the chain rule {p, q} = ({p, s} − {q, s})( dsdq )
2
, one infers

that q = q(s) is another projective parameter for γ if and only if there exists an
homographic transformations h such that q = h(p).

Let g′ = e2σg be a metric in the conformal class of g. Suppose that we
parametrize some piece of γ by an affine parameter s with respect to the met-
ric g, and by an affine parameter t with respect to the metric g′. If p = p(s)
is a projective parameter associated to s, and q = q(t) is a projective parameter
associated to t, the relation {p, q} = 0 must hold (see [M, Proposition 2.10]). In
other words, q is also a projective parameter associated to s and p is a projective
parameter associated to t, hence the class of projective parameters depends only
on the conformal class [g].

Assume now that γ is a closed lightlike geodesic of (M, [g]). The previous dis-
cussion shows that around each point of γ, there is a small segment which can be
parametrized projectively and two such projective parametrizations differ by ap-
plying a suitable homographic transformation. In other words, the 1-dimensional
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manifold γ is endowed with a (RP1,PSL(2,R))-structure, and this structure is an
invariant of the conformal class [g].

Let us illustrate this on our structures (Mλ, [gλ]). We keep the notations of Sec-
tion 2.2 and denote by ∇ the Levi-Civita connection of g0. We already computed
that on Ṙp+q, the quantities ∇e2e2,∇e2e4 and ∇e4e4 are identically zero. It fol-
lows that lightlike geodesics of the surface Σ ⊂ Ṙp+q are just pieces of straightlines
s 7→ x0 + s.u, where x0 ∈ Σ and u ∈ Span(e2, e4), parametrized by some interval
I ⊂ R of the form I = R, I =] −∞, a[ or I =]b,+∞[. Lightlike geodesics of Σλ
are thus merely the curves s 7→ πλ(x0 + s.u). Among them, only four are closed,
namely:

(1) γ+
λ :]0,+∞[→Mλ, s 7→ πλ((0, s, 0, . . . , 0)).

(2) γ−λ :]0,+∞[→Mλ, s 7→ πλ((0,−s, 0, . . . , 0)).
(3) δ+

λ :]0,+∞[→Mλ, s 7→ πλ((0, 0, 0, s, 0, . . . , 0)).
(4) δ−λ :]0,+∞[→Mλ, s 7→ πλ((0, 0, 0,−s, 0, . . . , 0).

The parametrizations of geodesics of Σ which are of the form s 7→ x0 + s.u
are affine with respect to g0 (again because ∇e2e2 = ∇e2e4 = ∇e4e4 = 0).
The key point is that because g0 is Ricci-flat, equation (6) tells us that those
parametrizations are actually projective. A conformal map preserves projective
parametrizations, hence s 7→ γ±λ (s) and s 7→ δ±λ (s) are projective parametriza-
tions for the closed lightlike geodesics of Σλ. This tells us in particular that the
(RP1,PSL(2,R))-structures on γ+

δ and γ−δ are both projectively equivalent to the
quotient ]0,+∞[/{z 7→ e3αz}, and those on δ+

λ and δ−λ are projectively equivalent
to ]0,+∞[/{z 7→ e3βz}.

Conclusion. Let λ = (α, β) and λ̃ = (α̃, β̃) be two points of Λ. Assume that there
exists a conformal diffeomorphism

f : (Mλ, [gλ])→ (Mλ̃, [gλ̃]).

As observed before, f maps Σλ to Σλ̃, and the set of closed lightlike geodesics
of Σλ to the set of closed lightlike geodesics of Σλ̃. Hence the set {γ±λ , δ

±
λ } is

mapped to {γ±
λ̃
, δ±
λ̃
}, the maps being projective with respect to the distinguished

(RP1,PSL(2,R))-structures on γ±λ , δ
±
λ , γ

±
λ̃
, δ±
λ̃

.

The last observation is that whenever µ and ν are two distinct reals in ]0, 1[,
the projective structures ]0,+∞[/{z 7→ µ.z} and ]0,+∞[/{z 7→ ν.z} are distinct.
This is just because no homographic transformation mapping ]0,+∞[ to itself
conjugates the groups generated by z 7→ µ.z and z 7→ ν.z respectively.

We thus infer that (e3α, e3β) = (e3α̃, e3β̃) or (e3α, e3β) = (e3β̃ , e3α̃). Since (α, β)
and (β, α) can not be simultaneously in Λ, we conclude that (α, β) = (α̃, β̃).
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[Fe3] J. Ferrand, Histoire de la réductibilité du groupe conforme des variét és rieman-
niennes (1964–1994). Séminaire de Théorie Spectrale et Géométrie, Vol. 17, Ann
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