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Abstract

We improve recent results on conformal pseudo-Riemannian ac-
tions of simple Lie groups obtained by U. Bader and A. Nevo, and get
optimal statements.

1 Introduction

A general motivation of our work is to understand actions of “big” Lie groups
preserving a rigid geometric structure on a compact manifold. An account on
this subject can be found, for instance, in [4], where it is vaguely conjectured
that such actions should be sufficiently peculiar to be “classified”. Yet,
many constructions show that this is by no means a simple matter, and
even very special situations still resist to existing approaches. In a recent
work [1], U. Bader and A. Nevo made a substantial progress towards the
understanding of conformal actions of simple Lie groups on compact pseudo-
Riemannian manifolds. The technics they used relied essentially on Lie
algebraic considerations, in a way that was pioneered a few years ago by
N. Kowalsky (see [10]). Our aim in these “remarks” is to show how extra
geometrical and dynamical arguments allow us to sharpen these results, in
order to get optimal statements.

To fix the notations, let Rp,q be the Minkowski space of type (p, q), i.e.
Rp+q endowed with the quadratic form of type (p, q): −dx2

1 − . . . − dx2
p +

dy2
1 + . . .+ dy2

q .
One defines a pseudo-Riemannnian manifold M of type (p, q) as a mani-

fold such that the tangent space at each point is endowed with a non degen-
erate quadratic form of signature (p, q) (the distribution of these quadratic
forms being moreover smooth). Given a pseudo-Riemannian metric g0 of
signature (p, q) on M , the conformal structure associated to g0 is the class
of metrics which are conformal to g0, i.e. of the form eσg0, for some smooth
function σ. Equivalently, two pseudo-Riemannian metrics are conformal if
and only if they determine the same isotropic cone (of course, we exclude
here the “trivial” Riemannian case).
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A distinguished class of conformal pseudo-Riemannian manifolds is the
locally conformally flat ones, i.e. those which are locally conformal to the
Minkowski space Rp,q. An important example of such a manifold is the
conformal compactification of Minkowski space, denoted by C p,q. This later
space can be defined as the projection of the isotropic cone of the space
Rp+1,q+1 on the projective space RPp+q+1. The manifold Cp,q inherits from
Rp+1,q+1 a natural conformal structure of type (p, q), which is conformally
flat and invariant under the action of O(p + 1, q + 1). In fact, C p,q admits
a conformal two-fold covering, which is the product Sp × Sq endowed with
the conformal class of −gSp + gSq . Let us recall two fundamental properties
of the space Cp,q. First of all, the existence of a stereographic projection,
which embeds conformally the space Rp,q as a dense open subset of Cp,q.
Secondly, a theorem of Liouville on Cp,q, asserting that when p + q ≥ 3,
any conformal diffeomorphism between open subsets of C p,q extends to a
unique element of O(p + 1, q + 1) (see for instance [12] or [6]). The two
previous results show that Cp,q is the universal substratum of conformally
flat pseudo-Riemannian geometry of type (p, q). Indeed, in dimension ≥ 3,
a conformal pseudo-Riemannian manifold of type (p, q) is conformally flat if
and only if it supports a (O(p+ 1, q + 1), Cp,q)-structure.

We will always consider in the following, manifolds of dimension ≥ 3.
Moreover, to simplify notations, we adopt the convention p ≤ q. Since we
are not concerned with the Riemannian case, we also assume 1 ≤ p. Of
course, the translation of our statements to the case where p ≥ q ≥ 1 is
straightforward.

In [1], the authors consider a simple Lie group G with finite center, acting
conformally on a compact pseudo-Riemannian manifold of signature (p, q).
They first prove that the real rank of G, denoted by rkR(G), must satisfy
the inequality rkR(G) ≤ p + 1 (recall that for us, p ≤ q). Of course, one
wonders what can be said when the rank of G is the maximal possible. The
main result of [1] answers partially this question:

Theorem 1 [1] Let G be a connected simple Lie group with finite center
acting smoothly and conformally on a smooth compact pseudo-Riemannian
manifold M of type (p, q). Assume the (real) rank of G equals p+ 1. Then:

• The group G is locally isomorphic to SOo(p + 1, k + 1), for some k
such that p ≤ k ≤ q.

• There exists a closed G-orbit, which is conformally equivalent to a finite
cover of Cp,k.

• In particular, if the G action is minimal, then M is conformally equiv-
alent to a finite cover of Cp,k.

It is the last part of the statement, which suggests that a rigidity property
should hold for these actions. Unfortunately, it involves a minimality extra-
condition. Our main result is to relax this condition (by the way, we will

2



also relax the finiteness condition on the center of the Lie group). In the
non-Lorentzian case, i.e. the case p ≥ 2, we get the

Theorem 2 Let G be a connected simple Lie group acting smoothly and
conformally on a smooth compact pseudo-Riemannian manifold M of type
(p, q) with p ≥ 2. If the rank of G equals p+ 1, then:

• The group G is locally isomorphic to SOo(p+1, k+1) for some k such
that p ≤ k ≤ q.

• Up to finite cover, M is conformally equivalent to the space C p,k.

Let us precise here that “up to finite cover” means, for us, “after a finite
number of manipulations consisting in taking finite quotients or finite cov-
ers”.

In the Lorentzian case, i.e. when p = 1, M is not necessarily C 1,k, but
all possibilities are completely described as follows:

Theorem 3 Let G be a connected simple Lie group of rank 2, acting smoothly
and conformally on a smooth compact Lorentz manifold M of dimension n.
Then:

• The group G is locally isomorphic to SOo(2, k) for some k such that
3 ≤ k ≤ n.

• M is, up to finite cover, a complete conformally flat structure on S1 ×

Sn−1, i.e M is a quotient of C̃1,n−1 (the universal cover of C1,n−1) by an
infinite cyclic group Γ.

• The possible groups Γ are those generated by any element in a product

Z∗ × O(n − k) ⊂ Õo(2, n) (the universal cover of Oo(2, n)), where the Z

factor is the center of Õ(2, n).

Remark 4 In the last theorem, it follows easily from the proof that when
k = n or k = n − 1, the manifold M is, up to finite cover, conformally
equivalent to the space C1,n−1.

2 Proofs of the main theorems

2.1 About the finiteness of the center

We first study what become the conclusions of theorem 1 if we remove the
asumption that the center of G is finite.

Theorem 5 Let G be a simple Lie group acting smoothly and conformally
on a smooth compact pseudo-Riemannian manifold M of type (p, q). If the
rank of G equals p+ 1, then:
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• The group G is locally isomorphic to SOo(p+ 1, k + 1) for p ≤ k ≤ q.
In particular, its Lie algebra is the full Lie algebra of conformal vector fields
of Rp,q (or, equivalently, of any open subset of Rp,q).

• Each G-invariant closed subset contains a G-orbit N which is locally
conformally flat.

Proof. we have to recall the main steps of the proof of theorem 1. The
authors prove first the existence of a point m ∈M such that StabG(m) = H
is normalized by a real algebraic cocompact group Q ⊂ G. It is done thanks
to the remark that the points of M where the orbits have minimal dimen-
sion l is a compact subset M ′ ⊂ M , and the existence of a G-equivariant
continuous Gauss map ψ : M ′ −→ P(g? ⊗ g?) × Grl(g) (where Grl(g) de-
notes the Grassmannian of subspaces of dimension l in g). The conclusion is
then obtained by looking at the algebraic action of G on P(g? ⊗ g?)×Gr(g)
(section 4 of [1]). If we consider a closed G-invariant subset F instead of M
itself, the points of F the orbits of which have minimal dimension are still a
G-invariant compact subset, and one can still define the map ψ. So, also in
this case, a pointm as above exists. The existence of such a point, and a case
by case study involving Lie algebras lead the authors to prove that g has to
be isomorphic to so(p+1, k+1). Remark that this Lie algebra is exactly the
Lie algebra of conformal vector fields of Rp,q, by Liouville’s theorem. On the
other hand, h is isomorphic to the Lie algebra of the parabolic subgroup P ,
stabilizer of a point in Cp,k, for the action of O(p+ 1, k + 1) (see [1] section
5). Until this point of the proof, no asumption on the center of G is needed.
Now, making the asumption that G has a finite center, the authors get that
G/P is compact, and the orbit of m as well. Moreover, since the action
of Ad(H) on g/h can leave invariant a single pseudo-Riemannian conformal
class, the orbit has to be (up to finite cover) conformally equivalent to C p,k.
Now, without the finiteness asumption on the center, the orbit N of m may
not be closed, but remains locally conformally equivalent to C p,k. ♦

2.2 Conformal flatness

We can now prove:

Theorem 6 Let G be a simple Lie group acting conformally on a compact
pseudo-Riemannian manifold M of type (p, q), such that the rank of G equals
p+ 1. Then M is conformally flat.

Proof. We consider a G-orbit N given by theorem 5. Let x be a point
of N , and H = StabG(m). There is a neighbourhood of x in N which
is conformally equivalent to some neighbourhood V of 0 in Rp,q. The Lie
algebra h is exactly the Lie algebra of conformal vector fields of V vanishing
at 0. So, in [articular, there is a subgroup H ′ ⊂ H, isomorphic to R ×
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SOo(p, k) (up to finite index), and acting faithfully on TxN . This action is
moreover the same as the linear action of R × SOo(p, k) on Rp,k.

The action of SOo(p, k) ⊂ H ′ on TxM is easy to describe. On TxN , it
is, as we just said, the usual linear action on Rp,k. On TxN

⊥, the action
is trivial. Indeed TxN

⊥ has Riemannian signature, and since SOo(p, k) is
simple without compact factor, any morphism from SOo(p, k) in a com-
pact group has to be trivial. Now, the following theorem ensures that in a
neighbourhood of x, the action of SOo(p, k) is linearizable.

Theorem 7 If a semi-simple Lie group acts conformally on a pseudo-Rie-
mannian manifold by fixing some point, then its action is linearizable near
that point.

We will prove this result in §3.
Thanks to theorem 7, we know that in some neighbourhood of x, the

fixed points of SOo(p, k) constitute a smooth submanifold N⊥ ⊂ M . At x,
one has Tx(N⊥) = (TxN)⊥. The R-action commutes with SOo(p, k), and
hence it preserves N⊥. (Actually, in order to get a global N⊥ we saturate
it by the R-action).

Let us choose an element f in H ′ lying in the R factor. The differential
Dxf acts as a homothety of distorsion λ on TxN . But since N is of signature
(p, k) andDxf must be in R×O(p, q) (f is a conformal transformation ofM),
the action of Dxf on TxN

⊥ is that of a euclidean similarity λR (R ∈ O(n)).
The conformal Riemannian manifold N⊥ has therefore an essential (i.e.

non proper) conformal group. By Ferrand’s Theorem [5] (in both the com-
pact and the non compact case), this manifold is conformally a standard
sphere or a Euclidean space. In any case, the action of f on N⊥ is smoothly
linearizable near x, so it is smoothly locally conjugated to the action of λR

in a neighbourhood of 0. Moreover, on (TN⊥)
⊥
, the action of Df has to

commute with that of O(p, k) (which is irreducible). Therefore, in some
trivialisation Rq−k × Rq−k × Rp,k of TM over a neighbourhood U of x in
N⊥, the action of Df is as follows: (y, u, v) 7−→ (λR.y, λR.u, λv).

Let us suppose that f is a contraction, i.e that 0 < λ < 1, and consider
W the Weyl tensor of the conformal structure [11]. This tensor vanishes if M
has dimension 3, so we suppose in a first time that the dimension ofM is ≥ 4.
Let us put the euclidean norm N on the factor Rq−k ×Rp,k, we get that for
y ∈ U , v ∈ TyM and n ∈ N, N (Dfn

y (v)) = λnN (v). Now let X,Y,Z ∈ TyM ,
and set T = Wy(X,Y,Z). By conformal invariance of the Weyl tensor, one
gets Dfn

y T = Wfn(y)(Df
nX,DfnY )DfnZ. But the norm N (Dfn

y T ) be-
haves like λnN (T ) while the norm N (Wfn(y)(Df

nX,DfnY )DfnZ) behaves
like λ3nrn (where rn is a bounded sequence of reals). We get a contradiction
as n tends to +∞, unless W = 0 at y, and hence all along N⊥.

When x runs over N , the corresponding submanifolds N⊥, fills a neigh-
borhood of N in M . Therefore the Weyl tensor vanishes on an open G-
invariant set Ω.
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To conclude, let us consider a maximal G-invariant open set Ω on which
the Weyl tensor vanishes. If it is not the whole M , we apply theorem 5 to
its complementary F . Doing the proof above once again, we will find some
x ∈ F such that the Weyl tensor vanishes on some neighbourhood of x. This
yields a contradiction with the maximality of Ω. We conclude that W = 0
on the whole M , i.e M is conformally flat.

When M has dimension 3, another tensor (the Schouten tensor of type
(2, 1)) is left invariant by G, and vanishes if and only if the manifold is
conformally flat. We prove by the same arguments as above that such a
tensor must be identically zero. ♦

2.3 Proof of Theorem 2

Let M be as in Theorem 2. We infer from Theorem 6 that M is conformally
flat. Therefore, there is a holonomy morphism ρ : π1(M) −→ O(p+1, q+1)

and a developping map δ from the universal cover M̃ to C̃p,q, the univer-
sal cover of Cp,q. The map δ is a conformal local diffeomorphism, which
is ρ-equivariant. The holonomy morphism ρ extends to a morphism ρ :
Conf(M̃ ) −→ O(p + 1, q + 1), and δ is also ρ-equivariant. By theorem 5,
the group G is locally isomorphic to SOo(p + 1, k + 1) for p ≤ k ≤ q.
Now, since we are not in the Lorentzian case, the fundamental group of
SOo(p + 1, k + 1) is finite and so, up to finite index, we can suppose that
G = SOo(p + 1, k + 1). Then, ρ embeds the group G in O(p + 1, q + 1).
But up to conjugacy, there is a unique way to embed SOo(p + 1, k + 1) in
O(p + 1, q + 1), and looking at the canonical one, we see that the central-
izer of ρ(G) in O(p+ 1, q + 1) is a compact subgroup K ⊂ O(p+ 1, q + 1),
which is isomorphic to O(q − k). Since G acts on M , and so is centralized
by π1(M), the image of the holonomy homomorphism is contained in K.
But up to conjugacy, K is included in a product O(p + 1) × O(q + 1), so

that our structure is in fact a (C̃p,q, O(p + 1) × O(q + 1))-structure. It is
a standard fact (see e.g [15] proposition 3.4.10) that such a structure on a
compact manifold has to be complete. In other words, δ is a diffeomorphism
and M is a finite quotient of C̃p,q (which is itself a double covering of Cp,q).

2.4 Proof of Theorem 3

As in the previous discussion we get that G is locally isomorphic to SOo(2, k)

for 3 ≤ k ≤ n. Let us consider the developping map δ : M̃ −→ C̃1,n−1

and the holonomy morphism ρ : π1(M) −→ Õ(2, n). We denote by π the

projection from C̃1,n−1 to C1,n−1. We call δ̂ the composition π ◦ ρ̂ and ρ̂
the morphism ρ followed by the projection on O(2, n). Since G is locally
isomorphic to SOo(2, k), there is a family of conformal vector fields on M
whose Lie algebra is so(2, k). Now, looking at the image of these vector fields
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by δ̂, we get again that the image of the morphism ρ̂ centralizes a subgroup of
O(2, n) which is isomorphic to O(2, k). As in the previous proof, we deduce
that the image ρ̂(π1(M)) is included in some compact groupK isomorphic to
O(n−k). Now, the lift of any compact subgroup of O(2, n) is included, up to

conjugacy, in a product R×O(n) ⊂ Õ(2, n). Recall that C̃1,n−1 is R×Sn−1.
The R-factor of R × O(n) acts by translation on R and trivially on Sn−1,
and the O(n) factor acts trivially on R and by rotations on Sn−1. Observe

that R × O(n) acts transitively on C̃1,n−1 with compact stabilizers. Then,
proposition 3.4.10 of [15] ensures that the structure on M is complete, i.e δ
is a diffeomorphism. Now, observe that any discrete subgroup of R × O(n)

yielding a compact quotient of C̃1,n−1 is infinite cyclic (up to finite index).
Moreover, quotients by such infinite cyclic groups are always finitely covered
by S1×Sn−1. On the other hand, an element (t, σ) ⊂ R×O(n) centralizes a
subgroup with Lie algebra so(2, k) exactly when t = kπ, k ∈ Z∗ (recall that

(π, Id) generates the center of Õ(2, n)), and σ is included in some subgroup
O(n− k) ⊂ O(n).

3 Proof of Theorem 7

Much has been written about (local) linearization of a semi-simple Lie group
action near a fixed point (see [2] for a report on the question). Essentially,
it is known that linearization is possible in the analytic case, but not al-
ways in the smooth one. Theorem 7 is a first evidence for thinking that a
linearization theorem should be true for actions of semi-simple Lie groups
preserving a rigid structure.

There are many (but non-obvious) ways to show that conformal struc-
tures are rigid at order 2 (i.e. of finite type 2). In general, one associates
to the conformal structure a natural pseudo-Riemannian metric on a nat-
ural fiber bundle over M . Here, we adopt the approach of [6]. There, one
considers the bundle X1(M) of 1-jets of metric in the conformal class, and
shows that it is naturally endowed with a pseudo-Riemannian metric, and
with a horizontal distribution H, for which the projection π : X 1(M) →M
is horizontally conformal, that is for any u ∈ X 1(M), dπu : Hu → Tπ(x)M
is conformal. Actually, the advantage of this construction (with respect to
the others) is that X1(M) is an affine fiber bundle, i.e its fibers are affine
spaces. Now, if G is a group acting conformally on M with a fixed point
x0, then it acts affinely on X1

x0
(M). In particular, if G is a semi-simple Lie

group, thanks to the standard theorems on vanishing of its H 1-cohomology
(with respect to any representation), one infers that G fixes a point u0 in
X1

x0
(M). Let h = π ◦ expu0

: Hu0
→ M , where exp is the exponential map

of the pseudo-Riemannian metric on X1(M) (defined on a neighbourhood
of the 0 section of TX1(M)). Then h conjugates the action of G near x0
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with the linear action of G on Hu0
(which is the same via dπu0

as its linear
action on Tx0

M). ♦

References

[1] U. Bader, A. Nevo, Conformal actions of simple Lie groups on compact
pseudo-Riemannian manifolds. J. Differential Geom. 60 (2002), no. 3,
355–387.
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D. Bernard et Choquet-Bruhat. Ed. Travaux en cours 33. Paris. Her-
mann (1988).

[9] S. Kobayashi, Transformation groups in differential geometry. Ergeb-
nisse der Mathematik und ihrer Grenzgebiete, Band 70. Springer-
Verlag, New York-Heidelberg, 1972.

[10] N. Kowalsky, Noncompact simple automorphism groups of Lorentz
manifolds, Ann. Math. 144 (1997) 611-640.

[11] R.S. Kulkarni, U.Pinkall, Conformal geometry. Aspects of Mathematics,
E12. Friedr. Vieweg and Sohn, Braunschweig, 1988.

[12] I. Segal, Mathematical cosmology and extragalactic astronomy. Pure
and Applied Mathematics, Vol. 68. Academic Press [Harcourt Brace
Jovanovich, Publishers], New York-London, 1976.

8



[13] D. Stowe, Stable orbits of differentiable group actions. Trans. Amer.
Math. Soc. 277 (1983), no. 2, 665–684.

[14] W. Thurston, A generalization of the Reeb stability theorem. Topology
13 (1974), 347–352.

[15] W.Thurston, Three dimensional geometry and topology. Vol 1, Prince-
ton University Press, 1997. Edited by Silvio Levy.

CNRS, UMPA, ENS Lyon,
46, allée d’Italie,
69364 Lyon cedex 07, FRANCE
cfrances@umpa.ens-lyon.fr, Zeghib@umpa.ens-lyon.fr,
http://www.umpa.ens-lyon.fr

9


