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Exercice 1 We consider the advection equation

ot ox

{8u+aau:O, VreR, t>0,
u(t =0,z) =u’(z), VzeR,

with «°(z) € C1(R).

1. Find the solution using the method of characteristics.

The characteristic method is a method to find the solutions for some scalar hyperbolic equations
(advection equation and some nonlinear scalar equations).
The characteristic curve C' = {(t, X (¢t)) € R* x R} is a curve where the PDE can be reduced
to an ODE. For advection problem the curve is defined by

X (t)=a, t>0,
{ X(0) = Xo. 2)

It is trivial to prove that X (¢) = X + at. Now we note that

du(t, X (t /
du(t, X(¢)) _ Byu+ X (£)8yu = 0.
dt
Consequently the solutions of the PDE (1) are solutions of the ODE w = 0 given by

u(t, X (t)) = u(0,X(0)) = uo(Xo). We note that Xo = = — at is the unique Xy such as the
solution u(t, x) is defined in R by

u(t, Xo + at) = up(Xo) < u(t,z) = up(x — at).

The unique solution is given by the foot (beginning) Xy of the characteristic curve.

Now we consider the advection equation defined on R™

ou ou

It g R+

8t+aax 0, Vxe , >0, 3)
u(t =0,z) =u’(z), VazecRT,

with «%(z) € C1(RT).



2. Assume that a < 0, prove that the equation (3) admits a unique solution.

We use the method of characteristics to find the solution. The characteristic curves with a foot
Xo € RT generate (z,t) in the space RT™ x R* thus we obtain the solution

u(t,r) = up(x — at), V(t,z) € RT x RT

3. Assume that a > 0, explain why the equation have no solution if we do not add a boundary
condition u(t,0) = ¢(t). Give the condition on g such as

(4)

u(z —at), x> at,
gt —2), = <at,

is solution in C'(R* x RT) of (3) with u(t,0) = g(t).

We use the method of characteristics to find the solution. The characteristic curves with a foot
Xo € RT do not generate the space RT™ x RT.

Indeed z — at ¢ RT for (t,7) € Rt x R*. Since u’(z) € C'(R") the solution u’(z — at) is not
correctly defined. Consequently we add a boundary condition

—u+a—=0, VreR" t>0,
u(t =0,z) = u’(x), VzecRT, (5)
u(t,x =0) =g(t), VteR".

After we plug the function (4) in the equation. This function (4) is a solution. She is included

in CY(RT x RT) if some conditions are verified. To finish we give these conditions
The solution (4) is C*(RT x RT) if g(0) = u® and ¢ (0) + au’(0) = 0.

We obtain these conditions using g(t — 2) = u’(z — at), dyg(t — £) = Opu’(z — at) = 0
for z = at.

4. Assume that u(z) is a function with compact support in R. Prove the following energy

estimate L d
a
—— t,x)2dx ) = <|u(t,z = 0)°. 6
2dt(/R+ru<,x>\ m) ~Jult,z = 0) (6)

We multiply by u(t,z) and integrate the equation (3) to obtain

/ u(t, z)Oru(t, x)dx + a/ u(t, z)0gu(t, z)dr = 0,
R+

R+

equivalent to

at/ lu(t, z)2dz = —aax/ [u(t, @)z = — [Ju(t,z) "]
R+ 2 R+

For obtain this result we use the derivate formula 2f(z)f (z) = (f(x)2?)". Since the solution is
defined in a compact space, the solution is equal to zero when x is close to infinity. We obtain
the result.




5. Distinguishing a > 0 and a < 0, prove the uniqueness of the solution to (3).

We define two solutions uj, ug of (3) and study the equation of the difference between u; and
uo. We apply the previous computations to obtain

O E(t) = 6,5/ luy (t, ©) — us(t, z)|*de = g|u1(t,0) — us(t,0)|2.
R+

If a <0, E(t) = [p+ |u1(t,2) — ug(t, x)|* decreases (O,E(t) < 0). Since the initial data are the
same for the two solutions we obtain the uniqueness. Indeed the energy is equal to zero for
t = 0. For t > 0 the energy decreases and is non negative consequently E(t) = 0.

If a > 0, the energy increases. But if we add a boundary condition (the same boundary condition
for each solution) %|us(t,0) — ua(t,0)|* = 0, then E(t) = C. Since E(t = 0) = 0 we obtain the
uniqueness.




