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Exercice 1 We consider the advection equation{ ∂u

∂t
+ a

∂u

∂x
= 0, ∀x ∈ R, t > 0,

u(t = 0, x) = u0(x), ∀x ∈ R,
(1)

with u0(x) ∈ C1(R).

1. Find the solution using the method of characteristics.

The characteristic method is a method to find the solutions for some scalar hyperbolic equations
(advection equation and some nonlinear scalar equations).
The characteristic curve C = {(t,X(t)) ∈ R+ × R} is a curve where the PDE can be reduced
to an ODE. For advection problem the curve is defined by{

X
′
(t) = a, t > 0,

X(0) = X0.
(2)

It is trivial to prove that X(t) = X0 + at. Now we note that

du(t,X(t))

dt
= ∂tu + X

′
(t)∂xu = 0.

Consequently the solutions of the PDE (1) are solutions of the ODE du(t,X(t))
dt = 0 given by

u(t,X(t)) = u(0, X(0)) = u0(X0). We note that X0 = x − at is the unique X0 such as the
solution u(t, x) is defined in R by

u(t,X0 + at) = u0(X0)⇐⇒ u(t, x) = u0(x− at).

The unique solution is given by the foot (beginning) X0 of the characteristic curve.

Now we consider the advection equation defined on R+

{ ∂u

∂t
+ a

∂u

∂x
= 0, ∀x ∈ R+, t > 0,

u(t = 0, x) = u0(x), ∀x ∈ R+,
(3)

with u0(x) ∈ C1(R+).



2. Assume that a < 0, prove that the equation (3) admits a unique solution.

We use the method of characteristics to find the solution. The characteristic curves with a foot
X0 ∈ R+ generate (x, t) in the space R+ × R+ thus we obtain the solution

u(t, x) = u0(x− at), ∀(t, x) ∈ R+ × R+

3. Assume that a > 0, explain why the equation have no solution if we do not add a boundary
condition u(t, 0) = g(t). Give the condition on g such as{

u0(x− at), x > at,
g(t− x

a ), x < at,
(4)

is solution in C1(R+ × R+) of (3) with u(t, 0) = g(t).

We use the method of characteristics to find the solution. The characteristic curves with a foot
X0 ∈ R+ do not generate the space R+ × R+.
Indeed x− at /∈ R+ for (t, x) ∈ R+ × R+. Since u0(x) ∈ C1(R+) the solution u0(x− at) is not
correctly defined. Consequently we add a boundary condition

∂u

∂t
u + a

∂u

∂x
= 0, ∀x ∈ R+, t > 0,

u(t = 0, x) = u0(x), ∀x ∈ R+,
u(t, x = 0) = g(t), ∀t ∈ R+.

(5)

After we plug the function (4) in the equation. This function (4) is a solution. She is included
in C1(R+ × R+) if some conditions are verified. To finish we give these conditions
The solution (4) is C1(R+ × R+) if g(0) = u0 and g

′
(0) + au

′
(0) = 0.

We obtain these conditions using g(t − x
a ) = u0(x − at), ∂xg(t − x

a ) = ∂xu
0(x − at) = 0

for x = at.

4. Assume that u(x) is a function with compact support in R. Prove the following energy
estimate

1

2

d

dt

(∫
R+

|u(t, x)|2dx
)

=
a

2
|u(t, x = 0)|2. (6)

We multiply by u(t, x) and integrate the equation (3) to obtain∫
R+

u(t, x)∂tu(t, x)dx + a

∫
R+

u(t, x)∂xu(t, x)dx = 0,

equivalent to

∂t

∫
R+

|u(t, x)|2dx = −a

2
∂x

∫
R+

|u(t, x)|2dx = −
[
|u(t, x)|2

]+∞
0

.

For obtain this result we use the derivate formula 2f(x)f
′
(x) = (f(x)2)

′
. Since the solution is

defined in a compact space, the solution is equal to zero when x is close to infinity. We obtain
the result.



5. Distinguishing a > 0 and a < 0, prove the uniqueness of the solution to (3).

We define two solutions u1, u2 of (3) and study the equation of the difference between u1 and
u2. We apply the previous computations to obtain

∂tE(t) = ∂t

∫
R+

|u1(t, x)− u2(t, x)|2dx =
a

2
|u1(t, 0)− u2(t, 0)|2.

If a < 0, E(t) =
∫
R+ |u1(t, x) − u2(t, x)|2 decreases (∂tE(t) ≤ 0). Since the initial data are the

same for the two solutions we obtain the uniqueness. Indeed the energy is equal to zero for
t = 0. For t > 0 the energy decreases and is non negative consequently E(t) = 0.

If a > 0, the energy increases. But if we add a boundary condition (the same boundary condition
for each solution) a

2 |u1(t, 0)− u2(t, 0)|2 = 0, then E(t) = C. Since E(t = 0) = 0 we obtain the
uniqueness.


