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Numerical methods for hyperbolic systems

Correction 2 of exercise sheet: advection equation and finite volumes
schemes

Exercice 1 We propose to solve the advection equation on the domain [0, L]
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8tu+a8:1; 0, Vxel0,L], t>0, "
u(t =0,z) = u(z), Vaec[0,I],

u(t,z =0) =u(t,x = L),

with u%(z) € C1([0, L]).

We consider the upwind scheme

n+l _ . n

G =) a o a—lal
j J _
At AL (uj —uj_q) + AL (ujy1 —uj) =0, (2)
and the centered scheme
uttl a
L () =0, (3)

with At the time step, Az the step mesh and uy the approximation to u(nAt, jAz) where
neN, jeN.

1. The advection equation satisfies the maximum principle

minxG[O,L] u(t =0, ZL‘) < u(tv .T) < maxgc(o,1] u(t =0, :E)

Prove that the upwind scheme satisfies the discrete maximum principle under a CFL con-
dition
min; u? < w1 < max; ul
JEO,Ng] Y5 = Uy = J€E[0,Nz] Yy »

with N, = % the number of cells.



To prove the discrete maximum principle we write the scheme as a convex combination

n+l _ n CL+|CL‘ CL—‘Q| n a+‘a| n a_‘a‘ n
YT _At< 2hx  2Ax ) At 9Ny i1 - At 9Ny It

We obtain

+1_ |al a+ |al la| —a

If <1 — At (%)) > 0 we remark that all coefficients are positive and the sum of the coefficients
is equal to 1. Consequently u?“ = C(uj,u}_y,uj,) with C a convex combination.

Using the properties of convex combination we obtain the discrete maximum principle on the
following CFL condition

lelat
Az —

2. Prove that the upwind scheme is stable for the L? norm using the Neumann analysis.



L? stability with continuous Fourier transform

The Neumann analysis is a method to prove the L? stability based on Fourier transfor-

mation. We begin by introduce the piecewise constant functions u"(x) defined by u"(z) = uy

for x € [m 141 } This function belongs to the space L%(0,1). Consequently we can write
this funcmon in the Fourier space. We obtain

_ Z an(k)ehﬁrkAx
k
with the Fourier coefficient @™ (k). The scheme is stable for L? norm if

/ )P < / (@)

Using the Plancherel equality we show that the previous condition is equivalent to
Z|An+1 |2§Z|an(k)2
k

This is this equality that we propose to prove. If we define v"(x) = u"(x + Az) therefore
0" (k) = 0(k)e* ™A% The scheme written in the Fourier space is

0
N . +lal  a—]a a-+lal _ a—lal ;.
(k) = a"(k) — At (2 k) + At e () — Ar_ Mot (i
@ (k) = @t (k) 2Azx 2Ax k) + 20z (k) 2A$eu(),
with ¢ = 2rkAz. After some simplifications we obtain
ati ey = (1- ot (g iy p a1l e 43)Y anry
2Ax 2Ax ’
At (k) = (1 ~ At (A(elf e N2 — e — e—iC))) an(k),
with A = 5% Now we use e = cos({) £ isin(¢). We obtain
Wt (k) = A(k)a" (k),
with A(k) =1 —2A¢ (Nisin(¢) + |A|(1 — cos)(C))).
To prove the stability we must prove |0"1(k)|? = |A(k)|?|a"(k)|* with |A(k)| < 1.
By definition of the complex module we have
|A(K)|? = (1 — 2At|A| 4 2A¢8 )| cos(€))? + 4At2 N sin?(C).
Expanding the previous expression we obtain
JAK)|> = (1 — 2AA])? + (1 — 2At|A|) (2At|A| cos(C)) + 4At2N2.
Expanding the first term we can show that |[A(k)|> < 1 if
(1 — 2AtA]) (4ALA] — 2|A| At cos(¢)) > 0.
To finish we obtain that this expression is satisfied if (1 — 2A¢|\|), therefore |a|At <L




L? stability with discrete Fourier transform

This method of proof the discrete Fourier transform and the properties of circulant ma-
trix.

2imjk
To begin we define the symmetric matrix P with Pj = ﬁe n

The discrete Fourier transform is given by U = P*U for the vector U with P* = P' = P~L,
The inverse Fourier transform is given by U = PU.

The circulant matrix are defined by

Co C1 Co2 ... Cp-1
Cnh—1 Co C1 Cn—2

C = Cn—2 Cn-1 Cp Cn—3
C1 C c3 ... (O

If a matrix C is a circulant matrix we can diagonalize the matrix with the decomposition

C = PA¢ P* and the diagonal matrix A¢ defined by

n—1

2imjk
Ak, = E cje n .

j=0
This result shows that when we write the scheme on the Fourier space we obtain the scheme
under the diagonal form, more easily to study. The upwind scheme is defined by

Ut = cur
with g = 1— |, ¢p1 = 2(a+]al), c1 = 3(Ja| —a) and a = “—At Apply the Fourier transform

we obtain
p*uU"tt = prcpp*U",
U™t = AU

Consequently we obtain ||[U™!|| < [|A¢|||[U”]] and the scheme is stable if maxy, [\E| < 1.
In this case the eigenvalues of Ax are defined by

2irk 1 2irk(n—1)

1
A6 =1=lal+5(lal —a)e™s + S(lal +a)e™

2imk 1 —2ink

1
)\ =1—|of+= (|a!—a)e n +§(|a|+a)e n

2ink

We use the fact that e?™ = 1. Using e n = cos(2 )E= 181n(2”k) we obtain A&, = A(k). To
finish we use the end of the previous proof.




3. Give the consistency error associated to the upwind scheme.

To study the consistency error associated to a scheme we plug the exact solution in the scheme.
We define u(xj,t,) the exact solution. Firstly we can prove that the upwind (2) scheme can be
rewritten on the following form

J u;l n n)

n+1
= a
N i

u la|

" 2Ax

(ufiq —2uj +uj_4) =0.

Now we plug the exact solution in the previous form of the scheme

u(zy, ") —u(a;,t") | a
(w(@jt1, ") — u(@j-1,t"))
" At 2Ax (4)

+% (u(wj+1, tn) - 2u(xj, tn) + u(xj_l, tn)) =0.

Using a Taylor expansion we prove that

At?
w(wy, ") = u(zj, ") + Atdpu(z;, t") + Tattu(a:j, t") + O(At?), (5)
n n n AxQ n 3
w(zjy1,t") = u(z;, t") + Azyu(z;, t") + Tamu(xjjt ) + O(Ax?), (6)
and
Az? 3
w(xj_1,t") = u(z;,t") — Axoyu(z;, t") + Tﬁmu(xj, t") + O(Az”). (7)

Subtracting (6) and (7) we obtain
a
m(u(xjﬂ, ") — u(zj_1,t")) = adyu(w;, t") + O(Az?).
Adding (6) and (7) we obtain
lal

2Ax
Finally (5) yields

(w(zjyr, t™) — 2u(zj, t") + u(wj_1,t")) = |a| Axdpzu(w;, t™) + O(Az?).

u(zj, ") — u(a;, t")
At
Plugging these relations in (4) we obtain

= Oyu(z;,t") + O(At).

Oru(z;,t") + O(At) + adyu(z;, t™) + O(Az?) — |;|Ax8mu(xj, t"). (8)

Since u(z;,t") is a solution then

(8) = O(At) + O(Az?) — @Axaxxu(xj, t") = O(At) + O(Ax).




4. Discuss the discrete maximum principle for the centered scheme.

To prove the discrete maximum principle we write the scheme as a convex combination

umt = u;‘ — At

a
n n
; Uiy + At ——u

a
2Ax 2Az IV
The coefficient associated to u!',; is negative thus u}”l = C(u},uj_y,u},;) is not a convex

combination. Therefore the maximum principle is not preserved.

For example we take as initial data u? =1if j < jo and u? =2if j > jo. Forn=1 and j = j

1 _q_
ujo—l

gﬁ; < 1. The maximum principle is not preserved.

5. Study the L? stability and the consistency error associated to the centered scheme.

L? stability with continuous Fourier transform

We begin by the L? stability. We introduce the Fourier coefficient 4"(k). The scheme
written in the Fourier space is

@ (k) = (1= At (M€ = 7)) ) @ k),
with ¢ = 2rkAz and A = 5%, Now we use e = cos({) + isin(¢). We obtain
a" k) = A(k)a" (k).
with A(k) =1 — 2At (2Xisin(Q))).

To prove the stability we must prove that |a"*1(k)|? = |A(k)|?|a™ (k)| with |A(k)| < 1.
By definition of the complex module we have

|A(K)|? = 1 + 4A8*2% sin? ().
Consequently |A(k)|? > 1. The scheme is not stable.

The proof using the discrete transform is detailed for this scheme in the note of the lec-
ture.




Now we study the consistency of the scheme
We define u(z;,t,) the exact solution. We plug the exact solution in the previous form of the
scheme

u(wy, ") — u(z;, t") a " "
’ At ’ + 29Ax (U(xj+1,t ) - U(xj_l,t )) (9)

Subtracting (6) and (7) we obtain

e
2Azx
Using (5) we obtain

(u(wjs1,t") — u(zj_1,t")) = adpu(x;, t") + O(Ax?).

u(a;, t") — u(z;, ")
At

Plugging these relations in (9) we obtain

= Juu(xj,t") + O(At).

dpu(z,t") + O(At) + adyu(z;, t") + O(Az?). (10)

Since u(z;,t") is solution then

(10) = O(At) + O(Az?).




