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Exercice 1 We propose to solve the advection equation on the domain [0, L]
∂u

∂t
u+ a

∂u

∂x
= 0, ∀x ∈ [0, L] , t > 0,

u(t = 0, x) = u0(x), ∀x ∈ [0, L] ,
u(t, x = 0) = u(t, x = L),

(1)

with u0(x) ∈ C1([0, L]).

We consider the upwind scheme

un+1
j − unj

∆t
+
a+ |a|
2∆x

(unj − unj−1) +
a− |a|
2∆x

(unj+1 − unj ) = 0, (2)

and the centered scheme

un+1
j − unj

∆t
+

a

2∆x
(unj+1 − unj−1) = 0, (3)

with ∆t the time step, ∆x the step mesh and unj the approximation to u(n∆t, j∆x) where
n ∈ N, j ∈ N.

1. The advection equation satisfies the maximum principle

minx∈[0,L] u(t = 0, x) ≤ u(t, x) ≤ maxx∈[0,L] u(t = 0, x).

Prove that the upwind scheme satisfies the discrete maximum principle under a CFL con-
dition

minj∈[0,Nx] u
n
j ≤ un+1

j ≤ maxj∈[0,Nx] u
n
j ,

with Nx = L
∆x the number of cells.



To prove the discrete maximum principle we write the scheme as a convex combination

un+1
j = unj −∆t

(
a+ |a|
2∆x

− a− |a|
2∆x

)
unj + ∆t

a+ |a|
2∆x

unj−1 −∆t
a− |a|
2∆x

unj+1.

We obtain

un+1
j =

(
1−∆t

(
|a|
∆x

))
unj + ∆t

a+ |a|
2∆x

unj−1 + ∆t
|a| − a
2∆x

unj+1.

If
(

1−∆t
(
|a|
∆x

))
≥ 0 we remark that all coefficients are positive and the sum of the coefficients

is equal to 1. Consequently un+1
j = C(unj , u

n
j−1, u

n
j+1) with C a convex combination.

Using the properties of convex combination we obtain the discrete maximum principle on the
following CFL condition

|a|∆t
∆x

≤ 1.

2. Prove that the upwind scheme is stable for the L2 norm using the Neumann analysis.



L2 stability with continuous Fourier transform

The Neumann analysis is a method to prove the L2 stability based on Fourier transfor-
mation. We begin by introduce the piecewise constant functions un(x) defined by un(x) = unj

for x ∈
[
xj− 1

2
,x+ 1

2

]
. This function belongs to the space L2(0, 1). Consequently we can write

this function in the Fourier space. We obtain

un(x) =
∑
k

ûn(k)e2iπk∆x

with the Fourier coefficient ûn(k). The scheme is stable for L2 norm if∫ 1

0
|un+1(x)|2 ≤

∫ 1

0
|un(x)|2

Using the Plancherel equality we show that the previous condition is equivalent to∑
k

|ûn+1(k)|2 ≤
∑
k

|ûn(k)|2

This is this equality that we propose to prove. If we define vn(x) = un(x + ∆x) therefore
v̂n(k) = û(k)e2iπk∆x. The scheme written in the Fourier space is

ûn+1(k) = ûn(k)−∆t

(
a+ |a|
2∆x

− a− |a|
2∆x

)
ûn(k) + ∆t

a+ |a|
2∆x

e−iζ ûn(k)−∆t
a− |a|
2∆x

eiζ ûn(k),

with ζ = 2πk∆x. After some simplifications we obtain

ûn+1(k) =

(
1−∆t

(
a+ |a|
2∆x

(1− e−iζ) +
a− |a|
2∆x

(eiζ − 1)

))
ûn(k),

ûn+1(k) =
(

1−∆t
(
λ(eiζ − e−iζ) + |λ|(2− eiζ − e−iζ)

))
ûn(k),

with λ = a
2∆x . Now we use e±iζ = cos(ζ)± i sin(ζ). We obtain

ûn+1(k) = A(k)ûn(k),

with A(k) = 1− 2∆t (λi sin(ζ) + |λ|(1− cos)(ζ))).

To prove the stability we must prove |ûn+1(k)|2 = |A(k)|2|ûn(k)|2 with |A(k)| ≤ 1.
By definition of the complex module we have

|A(k)|2 = (1− 2∆t|λ|+ 2∆t|λ| cos(ζ))2 + 4∆t2λ2 sin2(ζ).

Expanding the previous expression we obtain

|A(k)|2 = (1− 2∆t|λ|)2 + (1− 2∆t|λ|)(2∆t|λ| cos(ζ)) + 4∆t2λ2.

Expanding the first term we can show that |A(k)|2 ≤ 1 if

(1− 2∆t|λ|)(4∆t|λ| − 2|λ|∆t cos(ζ)) ≥ 0.

To finish we obtain that this expression is satisfied if (1− 2∆t|λ|), therefore |a|∆t∆x ≤ 1.



L2 stability with discrete Fourier transform

This method of proof the discrete Fourier transform and the properties of circulant ma-
trix.

To begin we define the symmetric matrix P with Pjk = 1√
n
e

2iπjk
n .

The discrete Fourier transform is given by Û = P ∗U for the vector U with P ∗ = P
t

= P−1.
The inverse Fourier transform is given by U = P Û.

The circulant matrix are defined by

C =


c0 c1 c2 . . . cn−1

cn−1 c0 c1 cn−2

cn−2 cn−1 c0 cn−3
...

. . .
...

c1 c2 c3 . . . c0

 .

If a matrix C is a circulant matrix we can diagonalize the matrix with the decomposition
C = PΛCP

∗ and the diagonal matrix ΛC defined by

λkC =
n−1∑
j=0

cje
2iπjk
n .

This result shows that when we write the scheme on the Fourier space we obtain the scheme
under the diagonal form, more easily to study. The upwind scheme is defined by

Un+1 = CUn,

with c0 = 1− |α|, cn−1 = 1
2(α+ |α|), c1 = 1

2(|α| −α) and α = a∆t
∆x . Apply the Fourier transform

we obtain

P ∗Un+1 = P ∗CPP ∗Un,

Ûn+1 = ΛCÛ
n.

Consequently we obtain ||Ûn+1|| ≤ ||ΛC ||||Ûn|| and the scheme is stable if maxk |λkC | ≤ 1.
In this case the eigenvalues of ΛC are defined by

λkC = 1− |α|+ 1

2
(|α| − α)e

2iπk
n +

1

2
(|α|+ α)e

2iπk(n−1)
n ,

λkC = 1− |α|+ 1

2
(|α| − α)e

2iπk
n +

1

2
(|α|+ α)e

−2iπk
n .

We use the fact that e2iπk = 1. Using e
2iπk
n = cos(2πk

n ) ± i sin(2iπk
n ) we obtain λkC = A(k). To

finish we use the end of the previous proof.



3. Give the consistency error associated to the upwind scheme.

To study the consistency error associated to a scheme we plug the exact solution in the scheme.
We define u(xj , tn) the exact solution. Firstly we can prove that the upwind (2) scheme can be
rewritten on the following form

un+1
j − unj

∆t
+

a

2∆x
(unj+1 − unj−1)− |a|

2∆x
(unj+1 − 2unj + unj−1) = 0.

Now we plug the exact solution in the previous form of the scheme

u(xj , t
n+1)− u(xj , t

n)

∆t
+

a

2∆x
(u(xj+1, t

n)− u(xj−1, t
n))

+
|a|

2∆x
(u(xj+1, t

n)− 2u(xj , t
n) + u(xj−1, t

n)) = 0.
(4)

Using a Taylor expansion we prove that

u(xj , t
n+1) = u(xj , t

n) + ∆t∂tu(xj , t
n) +

∆t2

2
∂ttu(xj , t

n) +O(∆t3), (5)

u(xj+1, t
n) = u(xj , t

n) + ∆x∂xu(xj , t
n) +

∆x2

2
∂xxu(xj , t

n) +O(∆x3), (6)

and

u(xj−1, t
n) = u(xj , t

n)−∆x∂xu(xj , t
n) +

∆x2

2
∂xxu(xj , t

n) +O(∆x3). (7)

Subtracting (6) and (7) we obtain

a

2∆x
(u(xj+1, t

n)− u(xj−1, t
n)) = a∂xu(xj , t

n) +O(∆x2).

Adding (6) and (7) we obtain

|a|
2∆x

(u(xj+1, t
n)− 2u(xj , t

n) + u(xj−1, t
n)) = |a|∆x∂xxu(xj , t

n) +O(∆x2).

Finally (5) yields

u(xj , t
n+1)− u(xj , t

n)

∆t
= ∂tu(xj , t

n) +O(∆t).

Plugging these relations in (4) we obtain

∂tu(xj , t
n) +O(∆t) + a∂xu(xj , t

n) +O(∆x2)− |a|
2

∆x∂xxu(xj , t
n). (8)

Since u(xj , t
n) is a solution then

(8) = O(∆t) +O(∆x2)− |a|
2

∆x∂xxu(xj , t
n) = O(∆t) +O(∆x).



4. Discuss the discrete maximum principle for the centered scheme.

To prove the discrete maximum principle we write the scheme as a convex combination

un+1
j = unj −∆t

a

2∆x
unj+1 + ∆t

a

2∆x
unj−1.

The coefficient associated to unj+1 is negative thus un+1
j = C(unj , u

n
j−1, u

n
j+1) is not a convex

combination. Therefore the maximum principle is not preserved.

For example we take as initial data u0
j = 1 if j ≤ j0 and u0

j = 2 if j > j0. For n = 1 and j = j0

u1
j0

= 1− a∆t
2∆x ≤ 1. The maximum principle is not preserved.

5. Study the L2 stability and the consistency error associated to the centered scheme.

L2 stability with continuous Fourier transform

We begin by the L2 stability. We introduce the Fourier coefficient ûn(k). The scheme
written in the Fourier space is

ûn+1(k) =
(

1−∆t
(
λ(eiζ − e−iζ)

))
ûn(k),

with ζ = 2πk∆x and λ = a
2∆x . Now we use e±iζ = cos(ζ)± i sin(ζ). We obtain

ûn+1(k) = A(k)ûn(k).

with A(k) = 1− 2∆t (2λi sin(ζ))).

To prove the stability we must prove that |ûn+1(k)|2 = |A(k)|2|ûn(k)|2 with |A(k)| ≤ 1.
By definition of the complex module we have

|A(k)|2 = 1 + 4∆t2λ2 sin2(ζ).

Consequently |A(k)|2 ≥ 1. The scheme is not stable.

The proof using the discrete transform is detailed for this scheme in the note of the lec-
ture.



Now we study the consistency of the scheme
We define u(xj , tn) the exact solution. We plug the exact solution in the previous form of the
scheme

u(xj , t
n+1)− u(xj , t

n)

∆t
+

a

2∆x
(u(xj+1, t

n)− u(xj−1, t
n)) (9)

Subtracting (6) and (7) we obtain

a

2∆x
(u(xj+1, t

n)− u(xj−1, t
n)) = a∂xu(xj , t

n) +O(∆x2).

Using (5) we obtain

u(xj , t
n+1)− u(xj , t

n)

∆t
= ∂tu(xj , t

n) +O(∆t).

Plugging these relations in (9) we obtain

∂tu(xj , t
n) +O(∆t) + a∂xu(xj , t

n) +O(∆x2). (10)

Since u(xj , t
n) is solution then

(10) = O(∆t) +O(∆x2).


