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Numerical methods for hyperbolic systems

Exercise sheet 2: Galerkin discontinuous for advection equation

Exercice 1 We consider the Lax-Wendroff scheme
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with ∆t the time step, ∆x the step mesh and unj the approximation to u(n∆t, j∆x) where
n ∈ N, j ∈ N.

1. Study the L2 stability.

2. Prove that the consistency error associated to the Lax-Wendroff scheme is O(∆x2 +∆t2)

(use the fact that ∂ttu− a2∂xxu = 0).

Exercice 2 In this exercise we propose to study the high order DG approximation for the
advection equation with a > 0. Ω is the domain. The mesh Ωh is defined by N + 1 points xi

and n cells Ki =
[
xi− 1

2
, xi+ 1

2

]
. We call a generic cell K. Finally the test functions are defined

by v ∈ Vh = {v/v|K ∈ Pp(K)} with Pp(K) a space of p-order polynomials defined on K.

1. Write the weak formulation of the equation for an element K.
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a basis of Vh. The numerical solution in the element Ki is noted
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The DG-centered scheme is given by

p∑
l=0

∂t

∫
Ki

uihφ
i
m − a

p∑
l=0

∫
Ki

uih∂xφ
i
m + a

p∑
l=0

[
uφim

]x
i+1

2
x
i− 1

2

= 0, 0 ≤ m ≤ k, (2)
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and in matrix form by
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2. Assuming that boundary conditions are periodic, prove that
1

2

d

dt

∫
K
u2hdx = 0.

3. Derive the classical finite volumes centered scheme starting the DG scheme (??).

4. Design a flux
[
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which is the DG extension of the upwind finite volume scheme.


