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Numerical methods for hyperbolic systems

Exercise sheet 2: Galerkin discontinuous for advection equation

Exercice 1 We consider the Lax-Wendroff scheme
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with At the time step, Az the step mesh and u} the approximation to u(nAt, jAx) where
neN, jeN

1. Study the L? stability.

2. Prove that the consistency error associated to the Lax-Wendroff scheme is O(Az? + At?)
(use the fact that Oyu — a?0z,u = 0).

Exercice 2 In this exercise we propose to study the high order DG approximation for the
advection equation with @ > 0. €2 is the domain. The mesh €2}, is defined by N 4+ 1 points x;

and n cells K; = [a:i_; i1 ] We call a generic cell K. Finally the test functions are defined
2 2
by v € Vj, = {v/v|x € PP(K)} with PP(K) a space of p-order polynomials defined on K.

1. Write the weak formulation of the equation for an element K.
We define {(Z)} f:o a basis of Vj,. The numerical solution in the element K; is noted
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The DG-centered scheme is given by
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and in matrix form by
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2. Assuming that boundary conditions are periodic, prove that oY
K

3. Derive the classical finite volumes centered scheme starting the DG scheme (77).

uidm =0.

4. Design a flux [uqbﬁn] z"*% which is the DG extension of the upwind finite volume scheme
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