
TU München
Zentrum Mathematik
Lehrstuhl M16
E. Sonnendrücker
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Numerical methods for hyperbolic systems

Part 1 of correction exercise sheet 2: Galerkin discontinuous for advection
equation

Exercice 1 We consider the Lax-Wendroff scheme

un+1
j − unj

∆t
+

a

2∆x
(unj+1 − unj−1)− a2∆t

2∆x2
(unj+1 − 2unj + unj−1) = 0 (1)

with ∆t the time step, ∆x the step mesh and unj the approximation to u(n∆t, j∆x) where
n ∈ N, j ∈ N.

1. Study the L2 stability.



L2 stability with continuous Fourier transform

The Neumann analysis is based on Fourier transformation. We introduce the Fourier
coefficient ûn(k). The scheme written in the Fourier space is

ûn+1(k) = ûn(k)− a∆t

2∆x

(
eiζ ûn(k)− e−iζ ûn(k)

)
+
a2∆t

2∆x2

(
2ûn(k)− eiζ ûn(k)− e−iζ ûn(k)

)
with ζ = 2πk∆x. After simplification we obtain

ûn+1(k) =

(
1−

(
λ

2
(eiζ − e−iζ) +

λ2

2
(2− eiζ − e−iζ)

))
ûn(k),

with = a∆t
∆x . Now we use e±iζ = cos(ζ)± i sin(ζ). We obtain

ûn+1(k) = A(k)ûn(k),

with A(k) = 1−
(
λi sin(ζ) + λ2(1− cos)(ζ))

)
.

To prove the stability we must prove |ûn+1(k)|2 = |A(k)|2|ûn(k)|2 with |A(k)| ≤ 1.
By definition of the complex module we have

|A(k)|2 = (1− λ2(1− cos(ζ)))2 + λ2 sin2(ζ).

Expanding the previous expression we obtain

|A(k)|2 = 1− 2λ2(1− cos(ζ)) + λ4(1− cos(ζ))2 + λ2(1− cos2(ζ)).

Now we simplify to obtain

|A(k)|2 = 1− λ2(1− 2 cos(ζ) + 2 cos2(ζ)) + λ4(1− cos(ζ))2.

|A(k)|2 = 1− λ2(1− cos(ζ))2 + λ4(1− cos(ζ))2 = 1 + (λ4 − λ2)(1− cos(ζ))2.

If λ ≤ 1 the term (λ4 − λ2) ≤ 0 and |A(k)| ≤ 1. Consequently the scheme is stable

a∆t

∆x
≤ 1.



L2 stability with discrete Fourier transform

The Lax wendroff scheme is defined by

Un+1 = CUn,

with C a circulant matrix defined by the coefficients c0 = 1−α2, cn−1 = 1
2(α2+α), c1 = 1

2(α2−α)
and α = a∆t

∆x . Apply the Fourier transform we obtain

P ∗Un+1 = P ∗CPP ∗Un,

Ûn+1 = ΛCÛ
n.

Consequently we obtain ||Ûn+1|| ≤ ||ΛC ||||Ûn|| and the scheme is stable if maxk |λkC | ≤ 1.
In this case the eigenvalues of ΛC are defined by

λkC = 1− α2 +
1

2
(α2 − α)e

2iπk
n +

1

2
(α2 + α)e

2iπk(n−1)
n ,

λkC = 1− α2 +
1

2
(α2 − α)e

2iπk
n +

1

2
(α2 + α)e

−2iπk
n .

We use the fact that e2iπk = 1. Using e
2iπk
n = cos(2πk

n ) ± i sin(2iπk
n ) we obtain λkC = A(k). To

finish we use the end of the previous proof.



2. Prove that the consistency error associated to the Lax-Wendroff scheme is O(∆x2 +∆t2)
(use the fact that ∂ttu− a2∂xxu = 0).

Before we study the consistency error, we study the exact solution. u is solution of ∂tu+a∂xu =
0. Taking the derivative of the equation we prove u is solution to ∂ttu + a∂t,xu = 0 and
∂t,xu+ a∂xxu = 0. Consequently u is solution of

∂ttu− a2∂xxu = 0. (2)

Now we define u(xj , tn) the exact solution. Using the second order Taylor expansion in time
and first order expansion in space (as previously), we obtain the following consistency error

E = ∂tu(xj , tn) +
∆t

2
∂ttu(xj , tn) +O(∆t2) + a∂xu(xj , tn)

−∆t
a2

2
∂xxu(xj , tn) +O(∆x2 + ∆x2∆t).

We obtain

E = ∂tu(xj , tn) +
∆t

2
(∂ttu(xj , tn)−∆t

a2

2
∂xxu(xj , tn)) +O(∆t2) + a∂xu(xj , tn)

−∆t
a2

2
∂xxu(xj , tn) +O(∆x2 + ∆x2∆t)

Since u(xj , tn) is a solution of ∂tu+ c∂xu = 0 and (2) we obtain E = O(∆x2 + ∆t2).


