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Numerical methods for hyperbolic systems

Exercise sheet 3: Linear hyperbolic systems

Exercice 1
We considerthe wave equation {

∂tp+ ∂xu = 0,
∂tu+ ∂xp = 0,

(1)

1. Diagonalize the system and show that the upwind scheme is given by
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(2)

with v = p+ u and w = p− u.

2. Prove that the upwind scheme (2) for the initial system (1) can be write on the following
form
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and used this form to compute the consistency error.

3. Prove that the scheme (2) satisfy the maximum principle under a CFL condition.

4. Prove that the scheme (2) is stable for all lq norms (1 ≤ q ≤ ∞) using the previous result
and convex functions. The lq norm is defined by

||(v, w)||lq =

∆x
∑
j

||(vj , wj)||qq

 1
q

with ||(vj , wj)||qq = |vj |q + |wj |q.

Additional question



We introduce the damped wave equation{
∂tp+ ∂xu = 0,
∂tu+ ∂xp = −σu, (4)

and the upwind scheme associated


pn+1
j − pnj

∆t
+
unj+1 − unj−1

2∆x
−
pnj+1 − 2pnj + pnj−1

2∆x
= 0,

un+1
j − unj

∆t
+
pnj+1 − pnj−1

2∆x
−
unj+1 − 2unj + unj−1

2∆x
= −σunj ,

(5)

5. We call ”steady states” the solutions of the systems defined by ∂xu = 0 and ∂xp = −σu.

Prove that (5) preserve exactly the steady states.

Exercice 2
We consider the Maxwell equation{

µ∂tB + c∂xE = −cσ∗B,
ε∂tE + c∂xB = −cσE, (6)

with periodic boundary condition on Ω = [0, L] and µ > 0, ε > 0, σ > 0, σ∗ > 0, c > 0.

1. Prove the following energy equality and the uniqueness of the solutions.

d

dt

(∫
Ω
ε|E(t, x)|2 + µ|B(t, x)|2dx

)
= −

∫
Ω
σ|E(t, x)|2 + σ∗µ|B(t, x)|2dx (7)

2. We introduce the plane waves (which are a good approximations of physical waves)
defined by E(t, x) = E0e

j(wt−kx) and B(t, x) = B0e
j(wt−kx) (j complex number) with E0 ∈ R,

B0 ∈ R, k the wave vector and w the frequency. Give the conditions (called dispersion relation)
on w and k such as the plane waves are solutions of (6) for σ = 0 and σ∗ = 0.

In this part we assume that σ = 0 and σ∗ = 0. Now we introduce the DG centered scheme

for (6). The mesh Ωh is defined by n+ 1 points xi and n cells Ki =
[
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]
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of the cell Ki is ∆xi = |xi+ 1
2
− xi− 1

2
|. We call a generic cell K. To finish the test function are

defined by v ∈ Vh = {v/v|K ∈ Pp(K)}. The scheme is given by
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3. We consider Vh = P 1(K). We propose to use the Lagrange polynomial associated with
the point xi− 1

2
and xi+ 1

2
. Prove that the family is a basis of Vh. Write the scheme in a cell Ki.

4. In this exercise we propose to study the numerical dispersion relation which define the
numerical wave vector k̃ for Vh = P 0(K) = Span(1). Write the scheme for this basis. Now

we define Bn
i = B0e

j(wn∆t−k̃i∆x) and En
i = E0e

j(wn∆t−k̃i∆x) with j the complex number and i
the index of the cell. Gives the relation between w and k̃ such as the discrete plane waves are
solutions of (8). Show that the numerical dispersive relation is k̃2 = w2

c2
+ O(∆xp + ∆tq) with

p > 1 and q > 1.


